
Under review as a conference paper at ICLR 2024

DURENDAL: GRAPH DEEP LEARNING FRAMEWORK
FOR TEMPORAL HETEROGENEOUS NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal heterogeneous networks (THNs) are evolving networks that characterize
many real-world applications such as citation and events networks, recommender
systems, and knowledge graphs. Although different Graph Neural Networks
(GNNs) have been successfully applied to dynamic graphs, most of them only
support homogeneous graphs or suffer from model design heavily influenced by
specific THNs prediction tasks. Furthermore, there is a lack of temporal hetero-
geneous networked data in current standard graph benchmark datasets. Hence, in
this work, we propose DURENDAL, a graph deep learning framework for THNs.
DURENDAL can help to easily repurpose any heterogeneous graph learning model
to evolving networks by combining design principles from snapshot-based and
multirelational message-passing graph learning models. We introduce two different
schemes to update embedding representations for THNs, discussing the strengths
and weaknesses of both strategies. We also extend the set of benchmarks for TNHs
by introducing two novel high-resolution temporal heterogeneous graph datasets
derived from an emerging Web3 platform and a well-established e-commerce web-
site. Overall, we conducted the experimental evaluation of the framework over
four temporal heterogeneous network datasets on future link prediction tasks in an
evaluation setting that takes into account the evolving nature of the data. Experi-
ments show the prediction power of DURENDAL compared to current solutions
for evolving and dynamic graphs, and the effectiveness of its model design.

1 INTRODUCTION

Graph neural networks (GNNs), as a powerful graph representation technique based on deep learning,
have been successfully applied to many real-world static and heterogeneous graphs (Bing et al.,
2022). Recently, GNNs also attracted considerable research interest to learn, extract, and predict from
evolving networks, which characterize many application domains, such as recommender systems
(You et al., 2019), temporal knowledge graphs (Cai et al., 2022), or social network analysis (Dileo
et al., 2022). However, the success of heterogeneous graph learning has not entirely transferred to
temporal heterogeneous networks (THNs).

Current architectural designs for dynamic GNNs have been proposed for homogeneous graphs only.
A few heterogeneous graph learning models try to extend the computation to handle the graphs’
dynamic but suffer limitations in model design, evaluation, and training strategies. Specifically, they
struggle to incorporate state-of-the-art designs from static GNNs, limiting their performance. Their
evaluation settings are fixed train test splits, which do not fully reflect the evolving nature of the data,
and commonly used training methods are not scalable. Furthermore, existing solutions for learning
from THNs are heavily designed to solve a specific prediction task, i.e. knowledge base completion,
making it hard to obtain general-purpose embedded representation for nodes, edges, and the whole
graphs.

To overcome the limitations described above, we propose DURENDAL, a graph deep learning frame-
work for temporal heterogeneous networks. Inspired by the ROLAND (You et al., 2022) framework
for dynamic homogeneous graphs, DURENDAL can help to easily repurpose any heterogeneous
graph learning model to dynamic graphs, including training strategies and evaluation settings for
evolving data. The ability to easily extend heterogeneous GNNs to the dynamic setting arises from
a combination of model design principles. To handle dynamic aspects we consider the node em-

1

Under review as a conference paper at ICLR 2024

beddings at different GNN layers as hierarchical node states, recurrently updating them over time
through customizable embedding modules. Additionally, to handle the heterogeneity, we introduce
heterogeneous hierarchical node states and customizable semantic aggregation schemes. In this way,
modern architectural design options such as skip connections or attention mechanisms can be easily
incorporated. We propose two different update schemes for temporal heterogeneous node states
discussing their strengths and drawbacks in terms of scalability, memory footprint, and learning
power, allowing researchers to easily follow one of the two schemes according to the real application
scenario they face.

We train DURENDAL using an incremental training procedure and using a live-update setting for
the evaluation. We conducted experiments over four different THNs network datasets on future
link prediction tasks. The four datasets were selected based on certain minimum requirements
that they had to meet in order to serve as useful testing grounds for temporal heterogeneous graph
learning models. Since current graph benchmarks for THNs are very limited, we also extend the set
of benchmarks for TNHs by introducing two novel high-resolution temporal heterogeneous graph
datasets derived from an emerging Web3 platform and a well-established e-commerce website.

The experimental evaluation shows the prediction power of DURENDAL and the effectiveness of its
model design and update schemes. DURENDAL achieves better performance compared to current
solutions for dynamic graphs on three of the four datasets, which exhibit different time granularity,
number of snapshots, and new incoming links. The effectiveness of the DURENDAL model design
is shown by the increase in performance of state-of-the-art heterogeneous graph learning models
repurposed in a dynamic setting with our framework, which also highlights the benefit of some
modern architectural design options for GNNs. Lastly, we compare the two different DURENDAL
update schemes with the ROLAND one, showing the improvements in the prediction performance of
our schemes.

We summarize our main contributions as follows: i) we propose a novel graph deep learning
framework that allows an easy repurposing of any heterogenous GNNs to a dynamic setting; ii) we
introduce two different update schemes for obtaining temporal heterogeneous node embeddings,
highlighting their strengths and weaknesses and their practical use scenarios; iii) we define some
minimal requirements datasets must satisfy to be useful testing grounds for temporal heterogeneous
graph learning models, extending the set of benchmarks for THNs by introducing two novel high-
resolution THNs datasets; and iv) we evaluate different types of approaches for dealing with THNs in
the new live-update setting, enabling an assessment of the performances along the snapshots of the
evolving networks.

2 RELATED WORK

Temporal GNNs. GNNs have been successfully applied to extract, learn, and predict from temporal
networks as surveyed in Longa et al. (2023). Most of the works combine GNNs with recurrent models
(e.g. a GRU Cell (Chung et al., 2014)): adopting GNN as a feature encoder (Peng et al., 2020),
replacing linear layers in the RNN cells with GNN layers (Zhao et al., 2020; Li et al., 2017; Seo
et al., 2018), or using RNNs to update the learned weights (Pareja et al., 2020). Other works combine
GNN layers with temporal encoders (Xu et al., 2020) or extend the message-passing computation on
temporal neighborhood (Luo & Li, 2022; Zhou et al., 2022). All these works have been proposed
only for homogeneous graphs. Moreover, most have limitations in model design, evaluation, and
training strategies, as shown in You et al. (2022).

Temporal Heterogenous GNNs. Only a few works on heterogeneous graph deep learning try to
extend the reasoning over temporal networks. For instance, Jin et al. (2020) and Li et al. (2021b)
employ a recurrent event encoder to encode past facts and use a neighborhood aggregator to model
the connection of facts at the same timestamp. Hu et al. (2020b), inspired by Transformer positional
encoding methods, introduces a relative temporal encoding technique to handle dynamic graphs.
Wang et al. (2022a) addressed the task of few-shot link prediction over temporal KGs using a meta-
learning-based approach that builds representations of new nodes by aggregating features of existing
nodes within a specific ∆t temporal neighborhood. Though these methods have empirically shown
their prediction power, they struggle to easily incorporate state-of-the-art designs from static GNNs
(e.g. skip connections), which are beneficial for GNN architectural design (You et al., 2022; Xu et al.,
2021). Furthermore, most of the works use only a fixed-split setting (You et al., 2022) to evaluate link

2

Under review as a conference paper at ICLR 2024

prediction performance or do not evaluate it at all. A fixed-split setting does not take into account the
evolving nature of data as it provides to train the model on a huge part of historical information and
test it only on the last timestamped information. In contrast, the recently proposed live-update setting
(You et al., 2022), where models are trained and tested over time, can lead to a better evaluation for
temporal graph learning models since performances are measured for each test snapshot.

Factorization-based models. Factorization-based Models (FMs) have enjoyed enduring success in
Knowledge Graph Completion (KGC) tasks, often outperforming GNNs (Chen et al., 2022). Various
FMs have been proposed for temporal KGs (Cai et al., 2022). Despite their huge prediction power
reached with simple architecture and order of magnitude fewer parameters compared to GNNs, they
have shown a few drawbacks; for instance, they struggle to incorporate node features, they work in
transductive settings only, and they are heavily designed to cope only with KGC tasks.

DURENDAL differs from the above works proposing a new update scheme for node embeddings
that preserve heterogeneous information from the past and capture relational temporal dynamics.
Moreover, it can handle node features and inductive tasks w.r.t. FM models since it relies on GNN
architectures. Lastly, DURENDAL can be trained and evaluated in a live-update setting You et al.
(2022) that takes into account the evolving nature of the data.

3 THE PROPOSED FRAMEWORK: DURENDAL

Temporal heterogeneous graphs. A heterogeneous graph, denoted as G = (V,E), consists of a
set of nodes V and a set of links E. A heterogeneous graph is also associated with a node-type
ϕ : V 7→ A and a link-type ψ : E 7→ R mapping functions, where A and R are the predefined
sets of node and link types such that |A|+ |R| > 2. Nodes can be paired with features related to a
certain node type Xa = {xv | v ∈ V ∧ ϕ(v) = a}. On the other hand, in a temporal graph, each
node v has a timestamp τv and each edge e has a timestamp τe. We focus on the snapshot-based
representation of temporal graphs, at the basis of the definition of temporal heterogeneous graph.
In fact, a temporal heterogeneous graph G = {Gt}Tt=1 can be represented as a sequence of graph
snapshots, where each snapshot is a heterogeneous graph Gt = (Vt, Et) with Vt = {v ∈ V |τv = t}
and Et = {e ∈ E|τe = t}.

Heterogeneous GNNs. The objective of a GNN is to learn node representations via an iterative
aggregate of neighborhood messages. In heterogeneous graph learning, models exploit the highly
multi-relational data characteristic as well as the difference in the features related to each node type,
to obtain better representations of nodes. Hence, in heterogenous GNNs node embeddings are learned
for each node type and messages are exchanged between each edge type. Then, the partial node
representations derived for each edge type, in which they are involved, are mixed together through an
aggregation scheme. Formally, we denote by H(L) = {h(L)

v }v∈V the embedding matrix for all the
nodes after applying an L-layer GNN. The l-layer of a heterogenous GNN, H(l), can be written as:

h(l)v =
⊕
r∈R

f
(l,r)
θ (h(l−1)

v , {h(l−1)
w : w ∈ N (r)(v)})

where N (r)(v) denotes the neighborhood of v ∈ V under relation r ∈ R, f (l,r)θ denotes the message
passing operator for layer l and relation r, and

⊕
is the aggregation scheme to use for grouping node

embeddings generated by different relations. In the following sections, we will also refer to partial
views of the embedding matrix w.r.t. types. Specifically, we will use H(l,r) to denote the partial
embeddings related to a relation type r ∈ R and H(l,a) to denote the node embedding matrix related
only to a specific node type a ∈ A.

From heterogeneous GNNs to temporal heterogeneous GNNs. Figure 1 shows the proposed
DURENDAL framework to generalize any heterogenous GNNs to a dynamic setting. Following
the ROLAND (You et al., 2022) model design principle, the node embeddings at different GNN
layers are hierarchical node states which are recurrently updated over time through customizable
embedding modules. To allow easy repurposing of any heterogenous GNNs to a temporal setting, we
introduce heterogeneous hierarchical node states and customizable semantic aggregation schemes,
that define how partial node representations for each relation type are aggregated. In this way,
modern architectural design options such as skip connections or attention mechanisms can be easily
incorporated. Node embeddings can be updated using a moving average, a two-layer MLP, or a GRU

3

Under review as a conference paper at ICLR 2024

H(0,a1) H(0,an)

Linear layer Linear layer

H(0)

GNN layer GNN layer

r1 rn

...

H(1)

...

...

H(1,r1) H(1,rn)...

(a)

GNN ... GNN

H(0,a1) ... H(0,an)

Aggregate

Decoder

Pred yt-1

(b)

GNN ... GNN

...

UPD UPD UPD

Aggregate

Ht-1
(1)

Ht-2
(1)

Ĥt-1
(1)

Decoder

Pred yt-1

Ht-1
(1)

GNN ... GNN

...

UPD ... UPD

Aggregate

Ht
(1)

Ĥt
(1)

Decoder

Pred yt

Ht
(1)

H
t-1

(0
,a

0)

H
t (0

,a
n)

H
t (0

,a
0)

H
t-1

(0
,a

n)

(c)

Figure 1: DURENDAL model design. (a) Scheme of the computation beyond a heterogeneous GNN
layer. (b) Compact representation of the (a) scheme within the GRAPHEDM paradigm (Chami
et al., 2022). (c) DURENDAL framework with the Update-Then-Aggregate scheme: the orange layer
(temporal layer) updates over time the hierarchical node state of each relation type (returned by the
first two layers in (b)), then the aggregation scheme (yellow) is run on top the temporal layer. In the
Aggregate-Then-Update scheme the temporal layer and the aggregation scheme are swapped.

Cell. A suitable option for the semantic aggregation scheme could involve semantic-level attention
coefficients (Wang et al., 2019). The forward computation of the l−layer of DURENDAL on the t
snapshot for a node v, h(l)vt , can be written as:

h(l)vt =
⊕
r∈R

UPDATE(f
(l,r)
θ (h(l−1)

vt , {h(l−1)
w : w ∈ N (r,t)(v)}), h(l)vt−1

) (1)

where UPDATE (UPD in Figure 1) is a custom update function and N (r,t)(v) is the neighbourhood
of v on the relation r at time t.

Updating schemas: Update-Then-Aggregate and Aggregate-Then-Update. As shown in Eq.
1, node states are first updated over time and then aggregated along the different semantic levels,
i.e. relation types. We denote this solution as Update-Then-Aggregate scheme - UTA. This scheme
provides a rich representation of temporal heterogeneous information. Indeed, it captures relational
temporal dynamics by preserving partial node states that are updated through several embedding
modules, one for each relation type. Furthermore, thanks to the heterogeneous node states, it is
more suited for continual learning (Yuan et al., 2023) settings and it allows partial update scenarios,
i.e. feeding the model with a new batch of data related to a specific subset of relations or node
types. In contrast, an Aggregate-Then-Update (ATU) scheme can be used to first aggregate the partial
representation of nodes and then update the node states using a single update module. Formally, the
forward computation of DURENDAL with the Aggregate-Then-Update scheme can be written as:

h(l)vt = UPDATE(
⊕
r∈R

f
(l,r)
θ (h(l−1)

vt , {h(l−1)
w : w ∈ N (r,t)(v)}), h(l)vt−1

) (2)

This second solution loses the heterogeneity of the information from the past because it updates the
node embeddings only at the semantic-aggregated level. However, it is useful to reduce the memory

4

Under review as a conference paper at ICLR 2024

footprint of the model when modeling relational temporal dynamics is not beneficial (see Appendix
for use case examples). Moreover, utilizing a single embedding update module reduces the number
of learnable parameters, thereby mitigating the model’s susceptibility to overfitting.

Scalability. To train DURENDAL, it is not necessary to keep in memory the whole temporal
heterogeneous network. Indeed, we use the live-update setting for training DURENDAL. The live-
update setting is an incremental training approach in which the model is fine-tuned and then tested
on each snapshot. Hence, given a new graph snapshot Gt, since the hierarchical node states Ht−1

have already encoded information up to time t− 1, to train the model and make predictions on t only
Gt, the GNN model and Ht−1 must be stored in the C/GPU memory. In addition, if we adopt the
Update-Then-Aggregate scheme, we can easily split the computation for each relation type from the
input until the aggregation layer. This splitting allows us to i) parallelize the training procedure on the
different semantic levels of the network; and ii) keep in memory only a portion of the GNN model,
node states, and new data related to a specific semantic level.

4 TEMPORAL HETEROGENEOUS NETWORKS DATASET

Here we present four THN datasets to evaluate the performance of graph machine-learning models
on future link prediction tasks. The datasets serve as useful playgrounds for testing graph ML
models because they provide high-resolution temporal heterogeneous information along multiple
time snapshots. To the best of our knowledge, there are no current benchmark datasets for temporal
heterogeneous graph learning.

Dataset requirements. We define some minimal requirements graph datasets must meet to be
considered suitable for temporal heterogeneous graph learning evaluation. Specifically, we introduce
three simple metrics to measure different properties of the data: heterogeneity, temporality, and
evolutivity. Heterogeneity is the number of relation types available in the dataset, temporality is
the number of graph snapshots, and evolutivity is the average number of new links in the snapshots
(i.e. 1

|T−1|
∑T

t=1 |Et|). We require a value for heterogeneity greater or equal (g.e.q.) to two (by
definition of heterogeneous graphs), for temporality g.e.q. to four (minimum number of snapshots to
allow live-update evaluation (You et al., 2022)), and for evolutivity g.e.q. to zero (i.e. edges have
timestamps). Furthermore, we define time-granularity as the duration of the time interval on which a
graph snapshot is constructed, but we do not impose a minimum value for this metric.

Our datasets. To cope with the above issue, we present four THN datasets that satisfy our require-
ments. The first two datasets are part of a well-established suite for benchmarking knowledge base
completion tasks, while the remaining two are introduced in this work to extend the benchmark set
for THNs.

• GDELT18, ICEWS18: the Global Database of Events, Language, and Tone and the
Integrated Crisis Early Warning System used by Jin et al. (2020). The two datasets are
event knowledge graphs in which nodes are actors and edges are verbs between actors.
They are used to evaluate temporal knowledge base completion (Cai et al., 2022) tasks and
are available in the most used graph representation learning libraries. We process the data
according to Jin et al. (2020) and then we construct graph snapshots with time granularity
equal to one week for GDELT and to one month for ICEWS. Since most of the verbs have
no instances in the original datasets, we decided to select only the top 20 most frequent
verbs. Actors and verbs codename follow the CAMEO ontology.1

• TaobaoTH: a transformation of a dataset of user behaviors from Taobao, offered by Alibaba
and provided by the Tianchi Alicloud platform2. The original dataset was used in prior works
on recommendation (Zhu et al., 2019) or temporal graph learning (Jin et al., 2022) but user
behaviors were considered just as node features or not considered at all. Here we transform
Taobao data into a temporal heterogeneous graph for recommendation, where the types of
nodes are users, items, and categories for items. To introduce heterogeneity, edges between
users and items represent different types of user actions (buy, pageview, add to favorite/cart)
towards items - with timestamps. Moreover, edges between items and categories assign

1https://parusanalytics.com/eventdata/data.dir/cameo.html, September 2023
2https://tianchi.aliyun.com/dataset/649, September 2023

5

https://parusanalytics.com/eventdata/data.dir/cameo.html
https://tianchi.aliyun.com/dataset/649

Under review as a conference paper at ICLR 2024

each item to its set of categories. We construct heterogeneous graph snapshots with time
granularity equal to five minutes. We consider a heterogeneous subgraph induced by 250k
random sampled items for scalability issues.

• SteemitTH: A novel benchmark dataset collecting different kinds of user interactions
from Steemit (Li et al., 2021a), the most well-known blockchain-based online social network.
Users on Steemit have access to a wide range of social and financial operations that keep track
of user activity with a three-second temporal precision on the underlying blockchain. Data
from June 3, 2016, through February 02, 2017, have been gathered through the official API
which provides access to the information stored in the blocks. For building a heterogeneous
graph, we focused on four kinds of relationships: “follow”, upvote (like), comment, and
Steem Dollars (SBD) transfer - financial operation. The heterogeneous graph snapshots have
a monthly time granularity. The starting date corresponds to when the “follow” operation
has been made available on the platform. We also collected the textual content produced by
users, used to build a feature vector for each node (more details in the Appendix)

We report some dataset statistics in Table 1. The number of nodes and edges refers to the whole
graph.

Table 1: Dataset statistics. Evolutivity is divided by |E|.

Dataset |N| |E| |R| |T| time-granularity evolutivity

GDELT18 4,931 2,026 20 4 week 0.263
ICEWS18 11,775 7,333 20 7 month 0.139
TaobaoTH 359,997 210,448 5 288 5min 0.003
SteemitTH 20,849 1,832,570 4 5 month 0.177

5 EXPERIMENTAL EVALUATION

Tasks. The future link prediction problem arises in many different applications and domains. When
it comes down to heterogeneous graphs, link prediction can be performed on the whole set of relation
types (e.g. Knowledge Base Completion (Cai et al., 2022), multirelational link prediction (Zitnik et al.,
2018)) or on a specific relation. We conducted our evaluation considering both kinds of link prediction
tasks. Specifically, given all the graph snapshots up to time t and a candidate pair of nodes (u, v), the
monorelational future link prediction task consists of finding if (u, v) are connected through a given
relation r in a future snapshot t + 1; while the multirelational future link prediction task involves
any r in the set of all the possible relations. For the monorelational tasks, we focus on a specific
relation type for each dataset to study how the models can learn from past information and current
heterogeneous interactions between nodes to predict predefined future relations. This choice allows
us to analyze the prediction performance in real-application scenarios on general heterogeneous
graphs, i.e. graphs that are not KGs, as in the case of SteemitTH and TaobaoTH. Specifically,
we perform the following future link prediction tasks: i) “follow” link prediction between users
for SteemitTH; ii) “buy” link prediction between users and items for TaobaoTH; and iii) public
statements prediction from one actor to another (e.g. governments) for GDELT18 and ICEWS18,
according to the CAMEO ontology. For the multirelational tasks, we focus on the event KGs as they
represent two standard benchmark datasets for heterogeneous graph learning. Moreover, considering
problems different from “user-follow-user” and “user-buy-item” prediction could be not so interesting
and meaningful for SteemitTH and TaobaoTH.

Experimental setup. We evaluate the DURENDAL framework over the future link prediction task.
At each time t, the model utilizes information up to time t to predict edges in the snapshot t + 1.
We use the area under the precision-recall curve (AUPRC) and the mean reciprocal rank (MRR) to
evaluate the performance of the models. As a standard practice (Pareja et al., 2020), we perform
random negative sampling to obtain an equal number of positive and negative edges3. We consider
the live-update setting (You et al., 2022) for the evaluation of the models by which we assess their
performance over all the available snapshots. We randomly choose 20% of edges in each snapshot to
determine the early-stopping condition. It is worth noting that in SteemitTH we also use the node

3We sampled negative edges due to memory constraints.

6

Under review as a conference paper at ICLR 2024

features derived from the textual content, while in the other settings, node features are not available.
We rely on HadamardMLPs (Wang et al., 2022b) and ComplEx (Trouillon et al., 2016) as decoders for
monorelational and multirelational link prediction as both demonstrated their effectiveness compared
to other link prediction decoders (Wang et al., 2022b; Ruffinelli et al., 2020; Lacroix et al., 2018).
For the multirelation link prediction experiments, we rely on the experimental setting presented by
Zitnik et al. (2018). We compute the AUPRC and MRR score for each relation type, averaging the
performance over all the relations to obtain the final evaluation scores. To extend this setting to THNs,
we repeat the procedure for each snapshot using the live-update evaluation. Code, datasets, and all
the information about the experiments are available in our repository4.

Baselines. We compare DURENDAL to nine baseline models, considering at least one candidate for
homogeneous, heterogeneous, static, and dynamic graph learning. Among the static graph learning
models, we decide to compare DURENDAL with solutions that utilize an attention mechanism,
whose great potential has been well demonstrated in various applications (Hu et al., 2018; Lee et al.,
2019; Hu et al., 2020b). Whereas for temporal graph learning models, we compare the performance
with temporal GNNs (Longa et al., 2023) as well as walk-aggregating methods (Kazemi et al., 2020).
Specifically, we select the following candidates: GAT (Veličković et al., 2018), HAN (Wang et al.,
2019), EvolveGCN (Pareja et al., 2020), GCRN-GRU, TGN (Rossi et al., 2020), CAW (Wang et al.,
2021), and HetEvolveGCN (a new baselines we developed for snapshot-based THNs, see Appendix).
For multirelational link prediction, baselines need to leverage heterogeneous graphs. Hence, we
consider HAN, HetEvolveGCN, and two additional baselines based on tensor factorization, which
demonstrated huge prediction power on knowledge graphs link prediction (Ruffinelli et al., 2020;
Lacroix et al., 2018; Cai et al., 2022): ComplEx (Trouillon et al., 2016) and TNTComplEx (Lacroix
et al., 2020). A brief description of the baselines is provided in the Appendix. All the candidate
models have been trained using the incremental training procedure.

Results for monorelational link prediction. Table 2 shows the prediction performance of the
candidate models in monorelational future link prediction tasks. We report the average AUPRC
and MRR over the different snapshots. DURENDAL achieves better performance compared to
baselines in three of the four datasets. On GDELT18 and ICEWS18, all dynamic models achieve
performances around 90% because they leverage temporal information related to events, which is
crucial for predicting future public statements. DURENDAL, achieving the best performance overall,
gains the greatest advance from the semantics related to events, i.e. the different relation types. On
SteemitTH, all the models obtain great performances; DURENDAL, by exploiting information
derived from node attributes, timestamps on edges, and semantic relations, reaches an AUPRC
and MRR score of 0.982 and 0.891, respectively. On TaobaoTH, we obtain surprising results.
The best performance is achieved by HAN, that do not use leverage temporal information, apart
from the incremental training. TGN and CAW achieve notably worse prediction performance than
heterogeneous GNNs, while EvolveGCN, GCRN-GRU, and HetEvolveGCN obtain poor performance.
DURENDAL reaches good performance using an embedding update module that simply computes a
convex combination between the past and the current representation of nodes, with a past coefficient
no greater than 0.1. The same results are obtained using a time granularity of one or ten minutes.
Hence, predicting future “buy” relations seems just related to the other actions performed by users
on items (view an item, add it to your favorites or in your cart) in the previous snapshot, not to the
order they are carried out, nor to repetition over time. The result is surprising because sophisticated
dynamic models seem to give too much importance to past information without learning this simple
structural pattern. However, it is important to note that TaobaoTH has a very low evolutivity value,
equal to 0.003. Finally, it is worth noticing that TGN and CAW reach worse performance of at least
one snapshot-based baseline for three of the four datasets. In our intuition, their continuous-time
representation for temporal networks is not beneficial in application scenarios where datasets are
snapshots-based.

Results for multirelational link prediction. Table 3 shows the prediction performance of the
candidate models in multirelational future link prediction tasks. We report the average AUPRC and
MRR over the different snapshots. DURENDAL performs better than baselines on both datasets with
at least one of the two update schemes. The results highlight the importance of two different update
schemes for temporal knowledge graph forecasting (Gastinger et al., 2023). On GDELT18, the best
performance is achieved using the Upgrade-Then-Aggregate scheme, i.e. preserving partial node

4https://anonymous.4open.science/r/durendal-5154/

7

https://anonymous.4open.science/r/durendal-5154/

Under review as a conference paper at ICLR 2024

Table 2: Results on the monorelational future link predictions tasks in terms of AUPRC and MRR
averaged over time. We run the experiments using 3 random seeds, reporting the average result
for each model. Results for TGN and CAW are obtained using their official implementations in a
live-update setting5.

GDELT18 ICEWS18 TaobaoTH SteemitTH
AUPRC MRR AUPRC MRR AUPRC MRR AUPRC MRR

GAT 0.488 0.506 0.477 0.506 0.500 0.500 0.940 0.845
HAN 0.564 0.601 0.561 0.566 0.996 0.996 0.974 0.859
EvolveGCN 0.933 0.864 0.930 0.898 0.500 0.500 0.979 0.895
GCRN-GRU 0.935 0.806 0.873 0.816 0.500 0.500 0.950 0.855
TGN 0.908 - 0.916 - 0.710 - 0.889 -
CAW N/A - 0.893 - 0.518 - 0.907 -
HetEvolveGCN 0.877 0.855 0.934 0.922 0.5 0.5 0.977 0.879
DURENDAL 0.947 0.930 0.986 0.981 0.995 0.993 0.982 0.891

Table 3: Results on the multirelational future link predictions tasks in terms of AUPRC and MRR
averaged over time. We report the average result for each method over experiments with 3 different
random seeds.

GDELT18 ICEWS18
AUPRC MRR AUPRC MRR

HAN 0.608 0.704 0.618 0.710
HetEvolveGCN 0.628 0.664 0.611 0.653
ComplEx 0.527 0.705 0.505 0.699
TNTComplEx 0.540 0.744 0.525 0.743
DURENDAL-UTA 0.672 0.743 0.677 0.745
DURENDAL-ATU 0.660 0.730 0.693 0.749

states to capture relational temporal dynamics. Indeed, due to the significant temporal variability of
the Global Database of Events, datasets extracted from GDELT are considered more challenging
than the ones collected from ICEWS (Messner et al., 2022; Wu et al., 2020). GDELT18 exhibits
also the highest evolutivity rate in Table 1. Hence, using different embedding update modules for
different relations is beneficial to predict its evolution. On ICEWS18, preserving partial node states
leads to slightly worse results. In our intuition, as highlighted for other datasets collected from the
ICEWS system, ICEWS18 requires more entity-driven predictions, as the relations in these datasets
are sparse and they usually encode one-time patterns with limited, if any, regularity, e.g., official visits,
or negotiations (Messner et al., 2022). Hence, by focusing on the evolution of the entity embeddings
instead of modeling relational temporal dynamics, DURENDAL with the Aggregate-Then-Update
scheme achieves the best results. It is worth noting that factorization-based models, typically used
for temporal knowledge graph completion (Cai et al., 2022) (i.e. missing temporal link prediction),
achieve good performance on these temporal knowledge graph forecasting tasks, often outperforming
other GNN baselines on both datasets.

Effectiveness of model-design. DURENDAL can easily repurpose any heterogenous GNN to a
dynamic setting thanks to its model design. Here we study the prediction performance of different
DURENDAL repurposed heterogeneous GNNs. Specifically, we repurpose RGCN (Schlichtkrull
et al., 2018), HAN (Wang et al., 2019), and HGT (Hu et al., 2020b). Node embeddings are updated
using ConcatMLP You et al. (2022) or a GRU cell, following the Aggregate-Then-Update scheme.
Figure 2a shows the AUPRC distributions of the models on the “follow” link prediction task on
SteemitTH. Results show that an attention-based aggregation scheme for heterogeneous graph
learning is a valuable choice for GNN architectural design. Indeed, HAN and HGT achieve the
best results and their AUPRC distributions exhibit low variance. Furthermore, ConcatMLP seems
preferable to a GRU Cell because it obtains better results with negligible variation. Lastly, the

5The official implementations for TGN and CAW do not compute the MRR for evaluating their performance.
On GDELT18, CAW obtains nan values as AUPRC score.

8

Under review as a conference paper at ICLR 2024

rgcn han hgt
Model

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
PR

C
Di

st
.

concatmlp
gru

0.979

0.980
han zoom

0.950

0.975
hgt zoom

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Snapshot

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

AU
PR

C

SteemitTH-UTA
SteemitTH-ATU
SteemitTH-RU

(b)

Figure 2: (a) AUPRC distributions of DURENDAL repurposed RGCN, HAN, and HGT on future
link prediction task on SteemitTH, using ConcatMLP or a GRU cell as embedding update module
(experiments with 10 random seeds). Attention-based aggregation schemes and ConcatMLP update
modules are desirable for GNN architectural design. (b) Results snapshot-by-snapshots of DUREN-
DAL models for “follow” link prediction on SteemitTH using different update schemes. UTA
outperforms the other update schemes but ATU is still a profitable choice for learning on multiple
snapshots.

Table 4: Results comparison between UTA, ATU and ROLAND-update (RU) schemes. We report the
average result for each method over experiments with 3 different random seeds .

GDELT18 ICEWS18 TaobaoTH SteemitTH
AUPRC MRR AUPRC MRR AUPRC MRR AUPRC MRR

UTA 0.947 0.930 0.986 0.981 0.995 0.993 0.982 0.891
ATU 0.996 0.962 0.991 0.978 0.999 0.999 0.971 0.882
RU 0.935 0.806 0.875 0.816 0.500 0.500 0.950 0.855

DURENDAL model design helps HAN to reach better results: the worst result in its AUPRC
distribution is 0.979, which is better than the average result of “vanilla” HAN 0.974 (see Table 2).

Effectiveness of update schemes. We also studied the effectiveness of the two different update
schemes described in Section 3. Table 4 reports the prediction performance of DURENDAL models
with Update-Then-Aggregate, Aggregate-Then-Update, and ROLAND-update, i.e. no heterogeneous
update. The update schemes of DURENDAL perform better than the ROLAND update scheme.
In particular, Update-Then-Aggregate seems preferable to Aggregate-Then-Update when the time
granularity of the dataset is coarser, and vice-versa. Finally, we also show the prediction performance
snapshot by snapshots for “follow” link prediction on SteemitTH in Figure 2b. In this context,
UpdateThen-Aggregate dominates the other update schemes but Aggregate-Then-Update is still a
profitable choice for learning on multiple snapshots.

6 CONCLUSION

We propose DURENDAL, a snapshot-based graph deep learning framework for learning from
temporal heterogeneous networks. Inspired by the ROLAND framework for dynamic homogeneous
graphs, DURENDAL can help to easily repurpose any heterogeneous graph learning model to
dynamic graphs, including training strategies and evaluation settings for evolving data. To help
easy repurposing, DURENDAL introduces heterogeneous hierarchical node states and customizable
semantic aggregation schemes. We also introduce two different update schemes, highlighting the
strengths and weaknesses of both in terms of scalability, memory footprint, and learning power.
To evaluate our framework, we describe the minimum requirements a benchmark should satisfy to
be a useful testing ground for temporal heterogenous GNN models, and we extend the current set
of benchmarks for TNHs by introducing two novel high-resolution temporal heterogeneous graph
datasets. We evaluate DURENDAL over the future link prediction task using incremental training
and live-update evaluation over time. Experiments show the prediction power of DURENDAL over
four THNs datasets, which exhibit different time granularity, number of snapshots, and new incoming
links. Moreover, we show the effectiveness of the DURENDAL model design by enhancing the
prediction performance of heterogenous GNN models by repurposing them in our framework.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rui Bing, Guan Yuan, Mu Zhu, Fanrong Meng, Huifang Ma, and Shaojie Qiao. Heterogeneous
graph neural networks analysis: a survey of techniques, evaluations and applications. Artificial
Intelligence Review, pp. 1–40, 2022.

Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, and Jianxin Li. Temporal knowledge
graph completion: a survey. arXiv preprint arXiv:2201.08236, 2022.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learning
on graphs: A model and comprehensive taxonomy. Journal of Machine Learning Research, 23
(89):1–64, 2022.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):3438–3445, Apr. 2020. doi: 10.1609/aaai.v34i04.
5747. URL https://ojs.aaai.org/index.php/AAAI/article/view/5747.

Yihong Chen, Pushkar Mishra, Luca Franceschi, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Refactor gnns: Revisiting factorisation-based models from a message-passing perspective.
In NeurIPS, 2022.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Federico Cinus, Marco Minici, Corrado Monti, and Francesco Bonchi. The effect of people recom-
menders on echo chambers and polarization. In Proceedings of the International AAAI Conference
on Web and Social Media, volume 16, pp. 90–101, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 3844–3852, Red Hook, NY, USA, 2016.
Curran Associates Inc.

Steemit developer documentation. Broadcast Ops, 2021. URL https://developers.steem.
io/apidefinitions/broadcast-ops.

Manuel Dileo, Cheick Tidiane Ba, Matteo Zignani, and Sabrina Gaito. Link prediction with text in
online social networks: The role of textual content on high-resolution temporal data. In Discovery
Science: 25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022,
Proceedings, pp. 212–226. Springer-Verlag, 2022.

Manuel Dileo, Pasquale Minervini, Matteo Zignani, and Sabrina Gaito. Temporal smoothness
regularisers for neural link predictors. CoRR, abs/2309.09045, 2023.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In KDD, pp. 135–144. ACM, 2017.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019. URL
https://arxiv.org/abs/1903.02428.

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett Schuelke, and Heiner Stuckenschmidt. Compar-
ing apples and oranges? on the evaluation of methods for temporal knowledge graph forecasting.
In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi
(eds.), Machine Learning and Knowledge Discovery in Databases: Research Track, pp. 533–549,
Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-43418-1.

Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, and Yongfeng Zhang.
Understanding echo chambers in e-commerce recommender systems. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’20, pp. 2261–2270, New York, NY, USA, 2020. Association for Computing Machinery.

10

https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://developers.steem.io/apidefinitions/broadcast-ops
https://developers.steem.io/apidefinitions/broadcast-ops
https://arxiv.org/abs/1903.02428

Under review as a conference paper at ICLR 2024

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In ICML, volume 70 of Proceedings of Machine Learning
Research, pp. 1263–1272. PMLR, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, pp.
855–864. ACM, 2016.

William L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. Leveraging meta-path based context for top-
n recommendation with a neural co-attention model. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’18, pp. 1531–1540,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, WWW ’20, pp. 2704–2710, New York, NY, USA,
2020b. Association for Computing Machinery.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal
graph benchmark for machine learning on temporal graphs. CoRR, abs/2307.01026, 2023.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs. In Thirty-Sixth Conference on Neural Information
Processing Systems, 2022.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive
structure inferenceover temporal knowledge graphs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6669–6683, Online, November
2020. Association for Computational Linguistics.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21:
70:1–70:73, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In ICML, volume 80 of Proceedings of Machine Learning Research,
pp. 2869–2878. PMLR, 2018.

Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decompositions for temporal
knowledge base completion, 2020.

John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention
models in graphs: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD), 13
(6):1–25, 2019.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2024

Chao Li, Balaji Palanisamy, Runhua Xu, Jinlai Xu, and Jingzhe Wang. SteemOps. In Proceedings
of the Eleventh ACM Conference on Data and Application Security and Privacy. ACM, apr
2021a. doi: 10.1145/3422337.3447845. URL https://doi.org/10.1145%2F3422337.
3447845.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and
Xueqi Cheng. Temporal knowledge graph reasoning based on evolutional representation learning.
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2021b.

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio, Franco
Scarselli, and Andrea Passerini. Graph neural networks for temporal graphs: State of the art, open
challenges, and opportunities. arXiv preprint arXiv:2302.01018, 2023.

Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning. In
Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the First Learning on Graphs Conference,
volume 198 of Proceedings of Machine Learning Research, pp. 1:1–1:18. PMLR, 09–12 Dec 2022.

Johannes Messner, Ralph Abboud, and İsmail İlkan Ceylan. Temporal knowledge graph completion
using box embeddings. In AAAI, pp. 7779–7787. AAAI Press, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–4609, Jul. 2019.
doi: 10.1609/aaai.v33i01.33014602. URL https://ojs.aaai.org/index.php/AAAI/
article/view/4384.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, pp. 5363–
5370, 2020.

Hao Peng, Hongfei Wang, Bowen Du, Md Zakirul Alam Bhuiyan, Hongyuan Ma, Jianwei Liu,
Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, et al. Spatial temporal incidence dynamic
graph neural networks for traffic flow forecasting. Information Sciences, 521:277–290, 2020.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. ArXiv, abs/2207.10128, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 3982–3992, 2019.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M.
Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR, abs/2006.10637,
2020.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria
Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, and Rik Sarkar. Py-
Torch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Mod-
els. In Proceedings of the 30th ACM International Conference on Information and Knowledge
Management, pp. 4564–4573, 2021.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkxSmlBFvr.

12

https://doi.org/10.1145%2F3422337.3447845
https://doi.org/10.1145%2F3422337.3447845
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://openreview.net/forum?id=BkxSmlBFvr

Under review as a conference paper at ICLR 2024

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings
15, pp. 593–607. Springer, 2018.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured se-
quence modeling with graph convolutional recurrent networks. In Neural Information Processing:
25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018,
Proceedings, Part I 25, pp. 362–373. Springer, 2018.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pp. 2071–2080. JMLR.org, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Ruijie Wang, Zheng Li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, and Tarek F. Abdelzaher.
Learning to sample and aggregate: Few-shot reasoning over temporal knowledge graphs. In
NeurIPS, 2022a.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, WWW ’19, pp. 2022–2032, New
York, NY, USA, 2019. Association for Computing Machinery.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In ICLR. OpenReview.net, 2021.

Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A survey on the fairness of
recommender systems. ACM Trans. Inf. Syst., 41(3), feb 2023. ISSN 1046-8188.

Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, and Neil Shah. Flashlight: Scalable
link prediction with effective decoders. In The First Learning on Graphs Conference, LOG ’22,
2022b.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamilton. Temp: Temporal message
passing for temporal knowledge graph completion. In EMNLP (1), pp. 5730–5746. Association
for Computational Linguistics, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, jan 2021. doi: 10.1109/tnnls.2020.2978386. URL https:
//doi.org/10.1109%2Ftnnls.2020.2978386.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
tion learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In International Conference
on Machine Learning (ICML), 2021.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR (Poster), 2015.

Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg, and Jure Leskovec.
Hierarchical temporal convolutional networks for dynamic recommender systems. In The World
Wide Web Conference, WWW ’19, pp. 2236–2246, New York, NY, USA, 2019. Association for
Computing Machinery.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: Graph learning framework for dynamic
graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’22, pp. 2358–2366, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539300. URL https://doi.org/
10.1145/3534678.3539300.

13

https://doi.org/10.1109%2Ftnnls.2020.2978386
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3534678.3539300

Under review as a conference paper at ICLR 2024

Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong, and Victor Chang.
Continual graph learning: A survey. arXiv preprint arXiv:2301.12230, 2023.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on
Intelligent Transportation Systems, 21(9):3848–3858, sep 2020. doi: 10.1109/tits.2019.2935152.
URL https://doi.org/10.1109%2Ftits.2019.2935152.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl: A
general framework for temporal gnn training on billion-scale graphs. Proc. VLDB Endow., 15(8):
1572–1580, apr 2022.

Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, and Kun Gai.
Joint optimization of tree-based index and deep model for recommender systems, 2019.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinform., 34(13):i457–i466, 2018.

A APPENDIX

Description of the baselines. Here we briefly summarize the baseline methods we used in the
evaluation and comparison.

1. GAT (Veličković et al., 2018) for homogeneous graphs. It leverages masked self-attentional
layers with graph convolution to implicitly obtain different weights for different nodes in a
neighborhood;

2. HAN (Wang et al., 2019) for heterogeneous graphs. It introduces hierarchical attention,
including node-level and semantic-level attention. Specifically, node-level attention aims to
learn the importance between a node and its metapath-based neighbors, while semantic-level
attention is able to learn the importance of different meta-paths.

3. EvolveGCN (Pareja et al., 2020) for dynamic graphs. It utilizes an RNN to dynamically
update the weights of internal GNNs, which allows the GNN model to change during test
time.

4. GCRN-GRU (Seo et al., 2018) for dynamic graphs. It is a generalization of the T-GCN
model Zhao et al. (2020), which internalizes a GNN into the GRU cell by replacing linear
transformations in GRU with graph convolution operators. GCRN uses ChebNet Defferrard
et al. (2016) for spatial information and separate GNNs to compute different gates of RNNs.

5. TGN (Rossi et al., 2020) for dynamic graphs. Temporal Graph Networks (TGNs) adopt a
continuous-time representation for temporal networks (Longa et al., 2023) by treating the
interactions between nodes as a list of events that occur over time. When two nodes are
involved in an interaction, they exchange messages (Gilmer et al., 2017), which are then
used to update their memories, vectors that serve as a condensed representation of a node’s
historical interactions at a specific point in time. To obtain the final node’s embedding,
an extra graph aggregation step is conducted involving the node’s temporal neighbors,
incorporating both the node’s original features and its memory state at a specific point in
time.

6. CAW (Wang et al., 2021) for dynamic graphs. Causal Anonymous Walks (CAW) leverage
temporal random walks to perform link prediction adopting a continuous time representation
for temporal networks (Longa et al., 2023). Specifically, given a candidate pair (u, v) at
time t, CAW extracts multiple random walks starting from u and v such that the timestamps
of edges in a walk can only be monotonically decreasing. Subsequently, the walks undergo
anonymization, where every node identifier is substituted with a count vector indicating how
frequently that node appears at various positions within the walks. Each walk is then encoded
using an RNN, and the resulting encodings are aggregated either through self-attention or
by computing a simple average.

7. HetEvolveGCN for THNs. It is an extension of the EvolveGCN model we developed to
deal with temporal heterogeneous graphs in a live-update setting. It applies EvolveGCN

14

https://doi.org/10.1109%2Ftits.2019.2935152

Under review as a conference paper at ICLR 2024

for each metapath, i.e. it has an RNN to dynamical update weights of each relation-type
specific GNN. The partial representations are then aggregated using summation.

8. ComplEx (Trouillon et al., 2016) for static heterogeneous graphs. ComplEx introduces
complex embeddings for entities and relations in knowledge graphs and the Hermitian dot
product as scoring functions to perform link prediction using tensor factorization.

9. TNTComplEx (Lacroix et al., 2020) for temporal heterogeneous graphs. TNTComplEx
extends the ComplEx decomposition to the temporal link prediction setting by adding a new
factor T related to timestamp embeddings. To allow factorization-based models to work
with unseen timestamps (i.e. the temporal knowledge graph forecasting setting (Gastinger
et al., 2023)), we apply a recurrent architecture to model the temporal dynamics as in Dileo
et al. (2023).

Live-update setting. As the live-update setting is a newly introduced protocol for training and
evaluating temporal graph learning models, we briefly summarize its steps as follows:

1. Split the dataset of the current snapshot into train and validation set.

2. Train the model on the train set optimizing the binary cross-entropy loss until the prediction
performance on the validation set does not get worse (early-stopping condition).

3. Compute the prediction performance on the next snapshot.

4. Repeat steps 1-3 from the first snapshot until the second-last fine-tuning the model on the
new snapshot.

5. Compute the overall prediction performance of the model over time by averaging the
performance over the single snapshots, or analyze the performance snapshot-by-snapshot.

Use case examples for UTA and ATU. In our work, we propose two different schemes for the
node embedding updates over time. The first, namely Update-Then-Aggregate (UTA), provides a
rich representation of temporal heterogeneous information as it preserves partial node states that
are updated through several embedding modules, one for each relation type. The latter, Aggregate-
Then-Update (ATU), uses a single embedding update module as it updates the node embedding at the
semantic-aggregated level. In the following, we provide some examples of when UTA could be a
more profitable choice than ATU and vice-versa.

• UTA is useful for capturing relational temporal dynamics in application scenarios where
relations between entities evolve with different characteristics and temporal scales. On
SteemitTH, we observed that UTA performs better than ATU as this dataset, derived from
a blockchain-based online social network, exhibits both social - “follow” relationships -
and economic interactions - cryptocurrency transactions- which shows different temporal
patterns and an unstable correlation over time. Indeed, economic transactions between
users occur frequently, with different amounts of exchange and repeatedly, whereas “follow”
relationships typically occur one-time between two users and do not have implicit weights,
i.e. all the relationships a user creates have the same “weight”. Another interesting use case
for UTA could be a temporal heterogeneous network related to the IMDB dataset 6. In fact,
a relationship between Actor and Movie entities, such as Actor-starred_in-Movie,
occurs densely and with variability over time, while a relationship between actors, such as
Actor-married-Actor, occurs rarely and at most only a few time for each entity.

• ATU could be a profitable choice when relations do not exhibit very different temporal
patterns and scales. For instance, ICEWS18 contains mainly relations that are sparse and
they usually encode one-time patterns with limited, if any, regularity, e.g., official visits,
or negotiations, and ATU performs better than UTA. As a further example, a subset of
SteemitTH with vote and comment relationships only may also benefit from ATU as these
two social interactions are very similar.

Training details for GNN-based architectures. We developed DURENDAL using Pytorch Geomet-
ric (PyG) (Fey & Lenssen, 2019). We use the implementation available in PyG for GAT, HAN, RGCN,
and HGT. For EvolveGCN, GCRN-GRU, and HetEvolveGCN, we use the implementation available

6https://developer.imdb.com/non-commercial-datasets/, September 2023

15

https://developer.imdb.com/non-commercial-datasets/

Under review as a conference paper at ICLR 2024

in Pytorch Geometric Temporal (Rozemberczki et al., 2021). We used the official implementations
for TGN and CAW. We ran our experiments on NVIDIA Corporation GP107GL [Quadro P400].
In all our experiments, we use the Adam (Kingma & Ba, 2015) optimizer. This choice was made
according to some prior works on GNN architecture for temporal heterogeneous networks (Jin et al.,
2020; Li et al., 2021b; Wang et al., 2019; Hu et al., 2020b). We adopt the live-update setting to train
and evaluate the models, wherein we engage in incremental training and assess their performance
across all the available snapshots. With respect to each snapshot, a random selection of 20% of
edges is employed to establish the early-stopping condition (validation set), while the remaining
80% are utilized as the training set. The edges contained within the subsequent snapshot constitute
the test set. Consistently, we apply identical dataset divisions and training procedures across all the
methods. Hyperparameters are tuned by optimizing the AUPRC on the validation set, and the model
parameters are randomly initialized. The hyperparameter search spaces are as follows: learning rate
{0.1, 0.01, 0.001}, L2 weight-decay {5e-1, 5e-2, 5e-3}, number of hidden layers {1, 2}, representation
dimension {32, 64, 128, 256}. For DURENDAL, we also tested three different message-passing
operators: GAT (Veličković et al., 2018), SAGE (Hamilton et al., 2017), and the operator from the
work by Morris et al. (2019).

Implementation details for factorization-based models. Factorization-based models (FMs) achieve
state-of-the-art performances on several benchmark datasets for both static and temporal knowledge
graph completion (Lacroix et al., 2018; Cai et al., 2022). Despite their huge prediction power, current
implementations are specifically designed to solve completion tasks, i.e. predicting missing links, and
they cannot perform predictions on unseen timestamps. Moreover, to the best of our knowledge, the
prediction power of FMs on temporal knowledge graph forecasting tasks (Gastinger et al., 2023), like
those presented in this work, has not been analyzed. To cope with these problems, we implemented a
new version of TNTComplEx where timestamp embeddings can be generated sequentially using a
recurrent neural architecture. The idea was inspired by Dileo et al. (2023) where an RNN is used for
temporal regularization (Lacroix et al., 2020). Given the equation that describes TNTComplEx in
(Lacroix et al., 2020), the tensor T related to timestamps is generated row-by-row sequentially using
a customizable recurrent architecture. The embedding tl of timestamp l is obtained as:

tl = MLP(RNN(hl−1,0)); l ∈ {1, ..., |T |} (3)

where h0 ∈ Rm is the learnable initial hidden state, 0 is the zero vector, RNN is the function that
describes the recurrent architecture, MLP is a function that describes one multi-layer perceptron layer
that maps the output of the RNN to an output vector with the same embedding size of the entity and
relation embeddings.

Training details for FMs. We used the implementation available in PyG for ComplEx and we
implemented TNTComplEx on its top. We used Adagrad as the optimizer because it achieved state-
of-the-art performances on several KGs datasets (Lacroix et al., 2018; 2020). The hyperparameter
search spaces are as follows: learning rate {0.1, 0.01, 0.001}, L2 weight-decay {5e-1, 5e-2, 5e-3},
representation dimension {5, 25, 50, 100, 500, 2000}. For TNTComplEx, we tested RNN, LSTM,
and GRU as recurrent architectures with hidden dimensions {5, 25, 50, 100, 500}. The best results
reported in the paper are obtained using Adagrad with a learning rate equal to 0.1 and a weight-decay
equal to 5e-3, GRU with 500 as hidden size, and an embedding dimension of 2000.

GNN architectures. We tested DURENDAL and all the other baselines using either one or two
graph message-passing hidden layers. We do not test architecture with more than two graph message-
passing layers to avoid the over-smoothing problem (Chen et al., 2020). We define and test two
different configurations for the number of hidden neurons: the first has 64 and 32 hidden neurons and
the second has 256 and 128. DURENDAL, GAT, and HAN achieve their best performances using 2
layers, while the other models use only one hidden layer. All the models reach better performance
with the highest number of hidden neurons among the considered dimensions for each layer. For
DURENDAL, we report in Table 5 the best configuration for the update modules for each dataset. In
our intuition, ConcatMLP works better when the assumption of temporal smoothness, i.e. entities
behave very similarly on neighboring timestamps, is strong. For example, this is the case of an online
social network (Steemit). Vice versa, on event networks (ICEWS, GDELT), where entities are mainly
government organization that acts in complex ways, a recurrent architecture that captures long-term
patterns is beneficial. The weighted average, instead, can be leveraged when the actions performed by
entities strongly depend on the previous snapshot, as highlighted in Section 5. The results presented in

16

Under review as a conference paper at ICLR 2024

the paper are obtained using a DURENDAL model with GraphConv as the message-passing operator
and semantic-level attention mechanism (Wang et al., 2019) to aggregate partial node representations.

Table 5: Best embedding update module of DURENDAL models for future link prediction over the
four THNs datasets.

Dataset Update module

GDELT18 GRU
ICEWS18 GRU
TaobaoTH Weighted average
SteemitTH ConcatMLP

Resources and computational cost. Table 6 reports the hardware specifics of the machine on
which we run algorithms for data gathering, preprocessing, and all the experiments described in the
paper. Overall, computing all the experiments with all the baselines and a single configuration of
hyperparameters takes about 2 days. We describe the amount of computational time for individual
experiments in Table 7. We report for each dataset the overall computational time of the pipeline
from the data loading until the output of the prediction for each candidate model, considering one
configuration of hyperparameters. A crucial part of the work is related to the data gathering and
preprocessing but we do not report their computational time since we provide the obtained datasets.
All the reported computational times are provided approximately.

Resource Description

CPU Intel Core i9-9820X CPU @ 3.30GHz x 20
GPU NVIDIA Corporation GP107GL [Quadro P400]
RAM 64GB
Disk 256 GB

Table 6: The hardware specifications of the machine utilized for executing algorithms involved in
data gathering, preprocessing, and all the experiments detailed in the paper.

Experiment Running time

GDELT18 monorelational 10min
ICEWS18 monorelational 10min
SteemitTH 30min
TaobaoTH 20h
GDELT18 multirelational 30min
ICEWS18 multirelational 30min
Effectiveness update-scheme 8h
Effectiveness model-design 6h

Table 7: Approximate computational time for individual experiments (overall computational time of
the pipeline from the data loading until the output of the prediction for each candidate model).

Besides the approximate computational time for individual experiments, we also provide a discussion
on the general computational efficiency of our solution. As DURENDAL is a general framework, the
computation efficiency of our solutions depends on the efficiency of the underlying static heterogenous
GNNs. In our experiments, we consider GraphConv (Morris et al., 2019) as message-passing operator
and semantic attention (Wang et al., 2019) as aggregation mechanism. The number of parameters
of GraphConv is linear in the number of edges, hence the total number of parameters for each
heterogenous GNN layer is |R| ∗ O(|E|) + |R|, where R is the set of all possible relation and E
is the set of edges, the first addend is related to the message passing and the second to the single-
head attention mechanism, which is again linear in the number of edges. The overhead given by
DURENDAL is represented by the embedding updates modules, which contribute with a number
of parameters equal to |R| times the number of parameters of a single module (e.g. a GRU). Hence,

17

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300 350 400
Embedding size

0

200

400

600

800
Ti

m
e

(s
ec

on
ds

)

ICEWS18
GDELT18

Figure 3: Execution time of DURENDAL on ICEWS18 and GDELT18 with different embedding
size.

the computational efficiency of DURENDAL is strictly related to |R|. As described in Section 3,
one can mitigate the computational cost by using an Aggregate-Then-Update scheme, which only
requires a single embedding update instead of modules. It is also important to highlight that it is
not necessary to keep in memory the whole temporal heterogeneous network and parameters (see
scalability in Section 3). We also provide the training time of DURENDAL on different embedding
sizes on ICEWS and GDELT, the two datasets with the biggest value for |R|, in Figure 3. Time
grows no more than linear of the embedding size and our solution takes no more than 15 minutes for
training.

Dataset requirements: the case of OGB and TGB. Open Graph Benchmark (OGB) (Hu et al.,
2020a) is the most well-known benchmark dataset for graph ML. Despite its rich source of graph
datasets, it does not contain networks that satisfy the minimum requirements we defined in the previ-
ous paragraph. Indeed, the only heterogeneous graphs available in the benchmark are ogbl-biokg,
ogbn-mag, ogbl-wikikg2, and WikiKG90Mv2, but the first two datasets have evolutivity equal
to zero, while the latter two have temporality equal to three. Recently, a temporal graph benchmark
was publicly released (Huang et al., 2023). It contains several datasets for different temporal graph
learning tasks, but none of them is heterogeneous.

Task independence. Following the encoder-decoder model Chami et al. (2022), DURENDAL can be
used to learn node representations that are task-independent, useful to solve multiple learning tasks
on graphs, or suited for specific tasks (e.g. dynamic node classification, link prediction, or graph
classification). For instance, DURENDAL can be adopted to solve a node classification task by using
a softmax function as decoder on the output layer and the cross entropy loss function. However, we
have not tested DURENDAL on other learning tasks due to the absence of benchmark datasets. To
the best of our knowledge, there is no dataset for dynamic node prediction or graph classification on
a heterogeneous network. Moreover, as described above, in July 2023, a temporal graph benchmark
was publicly released (Huang et al., 2023). It contains two datasets for dynamic node property
prediction, but none of them is heterogeneous.

Limitations. In the evaluation setup, due to the high computation cost of evaluating all the possible
candidates for each prediction, we adopted a random negative sampling strategy to compute MRR.
That may lead to a biased evaluation metric since it is more likely to sample “easy” candidates due
to the sparsity of real-world networks. Moreover, only in the last years, the research community
is pushing towards better evaluation for temporal graph learning models Poursafaei et al. (2022).
In the case of THNs these aspects require further investigation since current solutions have been

18

Under review as a conference paper at ICLR 2024

proposed only for homogeneous networks. Furthermore, current approaches are not suitable for
the“incremental” temporal networks in our benchmark, such as online social networks. For instance,
historical negative edges are not suitable since past “follow” links cannot be considered as a negative
edge.

Relations with other Graph Representation Learning techniques. In this work we proposed
a framework for temporal heterogeneous graph learning that is based on Graph Neural Networks
(GNNs) as they represent the state-of-the-art for various graph machine learning tasks (Wu et al.,
2021; Longa et al., 2023), they can leverage node features and deal with inductive tasks. When it
comes down to heterogenous networks and knowledge graphs, there exist no GNN-based methods that
work well on several benchmark datasets such as Metapath2Vec (Dong et al., 2017), which is based
on random walks, and factorization-based models (Ruffinelli et al., 2020), such as DistMult (Yang
et al., 2015) or ComplEx (Trouillon et al., 2016). In this paragraph we briefly describe the relations
between these models and our framework, answering if they can still be incorporated in DURENDAL.
Any node embedding methods that can be incorporated in an encoder-decoder architecture (Chami
et al., 2022) can be also easily incorporated in DURENDAL, following at least one of the two update
schemes, by replacing the GNN layers with the methods themselves. We provide a more general
view of the DURENDAL framework using the Update-Then-Aggregate (UTA) schema in Figure 4.
Formally, the equation that describes the forward computation of DURENDAL UTA with any encoder
method can be written as:

h(l)vt =
⊕
r∈R

UPDATE(ENC
(l,r)
θ (h(l−1)

vt), h(l)vt−1
) (4)

where ENC(l,r)
θ could be any Graph Representation Learning (Hamilton, 2020) encoder function for

node embeddings.

ENC ... ENC

...

UPD UPD UPD

Ht-1
(1)

Ht-2
(1)

Ĥt-1
(1)

Ht-1
(1)

ENC ... ENC

...

UPD ... UPD

Ht
(1)

Ĥt
(1)

Ht
(1)

H
t-1

(0
,a

0)

H
t (0

,a
n)

H
t (0

,a
0)

H
t-1

(0
,a

n)

Decoder

Pred yt-1

Decoder

Pred yt

Aggregate Aggregate

Figure 4: DURENDAL framework with UTA schema and customizable encoder function for node
embeddings. ENC could be any Graph Representation Learning (Hamilton, 2020) encoder function
for node embeddings, such as GNNs, random-walk, or tensor factorization-based methods.

As an example, if we consider Metapath2Vec, one can train the model on the first snapshot to obtain
node embeddings. Then, on the next snapshots, Metapath2Vec learnable parameters can be fine-tuned
on the new linearized neighborhoods for nodes to obtain the embedding for the new snapshots, which
can be mixed with the historical information of the previous steps using an embedding update module
(e.g. GRU). In this case, you can use the Aggregate-Then-Update scheme, but not the Update-Then-
Aggregate one, as Metapath2Vec does not return node embeddings for each relation but a single

19

Under review as a conference paper at ICLR 2024

node embedding that resumes all the metapaths. To use an Update-Then-Aggregate scheme with
random-walk-based methods, we may use a Node2Vec encoder (Grover & Leskovec, 2016) for each
relation type. However, by using shallow encoders we are not able to generalize on unseen nodes, so
DURENDAL loses the inductive property.

Data-related concerns, gathering and preprocessing. The data collection campaign for building the
SteemiiTH dataset has been designed to take into account privacy implications since the informa-
tion comes from online social networks. In the case of blockchain-based social networks, a first level
of pseudo-anonymization is provided by the blockchain itself, however, information within blocks is
not encrypted. To minimize the exposure of personally identifiable information we implemented a few
on-the-fly strategies which pseudo-anonymize usernames and avoid storing textual content produced
by users. Indeed, usernames are hashed and then stored, while for the textual content, we derived
semantically meaningful sentence embeddings by Sentence-BERT (SBERT) (Reimers & Gurevych,
2019) and stored the embeddings only. The model has only access to the pseudo-anonymized THN
and to text embeddings. The above collection procedure as well as data preprocessing has been
approved by the ethics committee of our institution and has been run exclusively on data publicly
available through the platform API. Finally, all data is stored within a secure silo. Hence, since we
can not release the complete dataset related to SteemitTH, we briefly summarize how to collect
and preprocess data to obtain it in the following steps:

1. Collect data from June 3, 2016, to February 2, 2017, using the Steemit API (developer docu-
mentation, 2021). Consider the first 3 months as the initial training snapshot and the follow-
ing months as subsequent snapshots. “follow” interactions are available in custom_json
operations, transactions are available in transfer operations, votes in vote operations.
Posts and comments written by users are available in comment operations.

2. Construct a HeteroData object with a single node type and four relation types: “follow”,
“vote”, “comment” and “transaction”. To construct the edge list related to each relation,
you can refer to SteemOps Li et al. (2021a) which describes in detail the schema of each
operation and which field contains the ids of the nodes involved in each interaction.

3. For the textual content X , we use a pre-trained SBERT language model (Reimers &
Gurevych, 2019) to obtain points in the Euclidean space. For each time interval t, we
call D(u,t) the collection of documents (posts and comments) posted by user u during time
interval t. To obtain the initial node features X(u,t) of u at time t, we average its document
embeddings, that is X(u,t) =

1
|D(u,t)|

∑
d∈D(u,t)

SBERT(d) using the element-wise sum.
Users with no published textual content - missing node features - have a zeros vector as
initial features.

4. Repeat steps 2-3 for each snapshot.

To process textual content we use the all-MiniLM-L6-v2 SBERT model. We choose this model
because i) is trained on all available training data (more than 1 billion training pairs), ii) is designed
as a general purpose model, and iii) is five times faster than the best SBERT model but still offers
good quality7.

For GDELT18, ICEWS18, and TaobaoTH, we download the source data from the PyG library (Fey
& Lenssen, 2019). We release the code to compute data preprocessing and obtain the graph snapshot
representation to train and test DURENDAL. For further details, you can inspect the annotated code
in the GitHub repository8.

Societal impacts. Temporal heterogeneous graph learning benefits a wide range of real-world
applications, including but not limited to social network analysis, recommender systems, and research
collaboration. However, there are also some potentially negative societal impacts, mainly due to
incorrect results returned by an intended usage of the framework. For instance, incorrect predictions
on event knowledge graphs may result in false events or relationships between nodes which may stoke
misinformation or spread of fake news. Similar considerations hold for the usage of the framework in
recommender systems for items or relationship recommendations; in the former incorrect suggestions
may produce unfair or even harmful recommendations, while in the latter they may foster different

7https://www.sbert.net/docs/pretrained_models.html, September 2023
8https://anonymous.4open.science/r/durendal-5154/

20

https://www.sbert.net/docs/pretrained_models.html
https://anonymous.4open.science/r/durendal-5154/

Under review as a conference paper at ICLR 2024

kinds of bias and even promote the formation of echo chambers (Ge et al., 2020; Cinus et al., 2022).
To mitigate the above outcomes one may act at the recommender system level by adopting different
methods to increase fairness, as extensively surveyed in (Wang et al., 2023); while the effects of
incorrect event predictions may be mitigated by combining human moderators and validators with
DURENDAL to better discern between true and false events.

21

	Introduction
	Related work
	The proposed framework: DURENDAL
	Temporal heterogeneous networks dataset
	Experimental evaluation
	Conclusion
	Appendix

