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Abstract

Bayesian inference typically relies on a large number of model evaluations to estimate pos-
terior distributions. Established methods like Markov Chain Monte Carlo (MCMC) and
Amortized Bayesian Inference (ABI) can become computationally challenging. While ABI
enables fast inference after training, generating sufficient training data still requires thou-
sands of model simulations, which is infeasible for expensive models. Surrogate models offer
a solution by providing approximate simulations at a lower computational cost, allowing
the generation of large datasets for training. However, the introduced approximation er-
rors and uncertainties can lead to overconfident posterior estimates. To address this, we
propose Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI) – a
framework that combines surrogate modeling and ABI while explicitly quantifying and prop-
agating surrogate uncertainties through the inference pipeline. Our experiments show that
this approach enables reliable, fast, and repeated Bayesian inference for computationally
expensive models, even under tight time constraints.

*These authors contributed equally to this work.
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1 Introduction

Mathematical models are essential for simulating real-world processes, typically mapping parameters to
observable data. Estimating these parameters from real-world observations, i.e., the inverse problem, is
fundamental across scientific disciplines (e.g. Etz & Vandekerckhove, 2018; Von Toussaint, 2011; Hülsenbeck
et al., 2001; Ellison, 2004). However, because models never perfectly capture reality and observed data are
often sparse and imprecise, parameter estimation inherently involves uncertainty. Bayesian inference offers a
systematic framework for estimating parameters while incorporating uncertainty in a statistically grounded
manner (e.g. Gelman et al., 1995).

Markov Chain Monte Carlo (MCMC) methods are widely used for Bayesian inference to generate high-
quality samples from the posterior distribution given fixed observations (Gilks et al., 1995). However,
MCMC is computationally expensive and slow, rendering it impractical in scenarios where near-instant
inference is required (Robert et al., 2018). Near-instant inference is, for example, necessary in adaptive
robotic control or closed-loop medical devices, where parameters such as object mass or patient sensitivity
must be estimated immediately to allow accurate prediction and safe action (e.g. Marlier, 2024; Tasoujian
et al., 2020; Malagutti et al., 2023). Furthermore, each new set of observations requires restarting the entire
process, further increasing costs when inference is needed for multiple datasets. Multiple inference runs may
be needed for ongoing adaptation as conditions evolve or more data become available. Tracking the spread
of a disease such as influenza or COVID-19 is one example of this. New case data continuously arrive, and
separate datasets exist for different regions, requiring repeated Bayesian updates to infer transmission rates
or reproduction numbers for each location (e.g. Radev et al., 2021; Yang et al., 2015). MCMC also relies on
a known likelihood function that can be evaluated either analytically or numerically.

Amortized Bayesian Inference (ABI), a deep-learning-based approach originating from simulation-based in-
ference (SBI), addresses these limitations (Cranmer et al., 2020; Radev et al., 2020; Lückmann et al., 2021).
SBI methods are typically employed when evaluating the likelihood is infeasible, but simulations from the
model are possible, allowing learning a mapping from observed data to the posterior of the model parameters
via simulated data. ABI in particular leverages generative neural networks to learn this mapping. Training
data is generated through multiple model evaluations. Once trained, ABI enables near-instant posterior in-
ference for new datasets, as the computational cost is incurred during training. Being likelihood-free makes
ABI well-suited for complex problems involving noisy or high-dimensional data, where evaluating the like-
lihood is infeasible or unreliable. However, the learned posterior only approximates the true posterior, and
high accuracy requires well-designed network architectures and extensive training data.

Both MCMC and ABI face limitations when the simulation model is computationally expensive, since both
require a large number of model evaluations. MCMC requires many likelihood evaluations per generated pos-
terior sample; ABI requires extensive model simulations to generate sufficient amounts of training data. As
a result, if computational time is limited, obtaining a good posterior becomes infeasible for both approaches.
Note that such computational effort can arise for different reasons – for instance, from a high-dimensional
parameter space or from the complexity of the governing equations. In Earth sciences, for example, low-
dimensional models can be computationally very expensive, particularly if they involve (coupled systems
of) non-linear partial differential equations or long simulated time periods (e.g. Mohammadi et al., 2018;
Hommel et al., 2015), resulting in runtimes up to multiple days for a single model run.

Our goal is to enable ABI for computationally expensive models to benefit from the aforementioned ad-
vantages that ABI offers. To this end, surrogate models are the crucial tool, allowing us to reduce the
computational cost of expensive simulations for training data generation. Surrogate models (Sudret, 2008;
Rasmussen & Williams, 2006), however, are only approximations (i.e., imperfect representations) of the ref-
erence simulation, and therefore not necessarily reliable. It is crucial to quantify the uncertainties associated
with surrogate modeling, such as those arising from limited training data or any inherent inflexibility of the
surrogate. These uncertainties then need to be propagated through the inference pipeline, ensuring consis-
tent posterior estimation. Previous methods have integrated these uncertainties into MCMC methods with
surrogate models (e.g. Lückmann et al., 2018; Zhang et al., 2020; Reiser et al., 2025). However, this requires
many additional MCMC runs to incorporate the surrogate uncertainty, largely eliminating the computational
advantages of surrogates.
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We introduce Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI), which enables
ABI for computationally expensive models while accounting for the uncertainty inherent in surrogate approx-
imations. By leveraging a surrogate, we reduce the training error that arises from insufficient data during
ABI training, as simulating from the surrogate is easy and fast. This comes at the cost of introducing a
surrogate approximation error. However, unlike the ABI training error, the surrogate approximation error
can be quantified and propagated, enabling reliable ABI for computationally expensive models.

For this purpose, we adapt and further develop the uncertainty estimation and propagation method for
surrogate modeling proposed in Reiser et al. (2025). Our main novelty is to replace the MCMC with ABI for
inference. This novelty and its benefits can be viewed from two perspectives: 1) Replacing MCMC with ABI
substantially improves sampling efficiency, as parallel chains for draws from the surrogate posterior are no
longer required. 2) UA-SABI enables ABI training with surrogate data while accounting for the uncertainty
inherent in the surrogate approximation. This significantly reduces the required runs from the expensive
simulation model while retaining the amortization property and, therefore, enabling ABI for computationally
expensive models.

An illustration of the workflow, including training phases and inference, is given in Fig. 1. We demonstrate
the workflow and substantiate the claimed advantages both theoretically and practically with a toy example
and two real-world case studies.
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Figure 1: Illustrative workflow of UA-SABI training and inference.

2 Methods

2.1 Amortized Bayesian Inference (ABI)

This work focuses on using ABI to infer the parameters of computationally expensive simulation models.
The typical ABI procedure (Radev et al., 2020) can be divided into a training phase and an inference
phase. Training includes simulating data and then training a neural posterior estimator (NPE) on that data
(Papamakarios & Murray, 2016; Durkan et al., 2019; Greenberg et al., 2019b).

ABI Training Data Generation Training data is generated using a simulation model M = M(x, ω),
typically a realistic first-principles model. M depends on inputs x and parameters ω and yields an output
y. Additionally, it can contain stochastic parts omitted in the following to simplify the notation. To learn
the mapping from observations to posterior draws, a training set DB = {(x(i), ω(i), y(i))}NB

i=1 of NB samples
must first be generated. This can be performed by simulating NB pairs of parameters, inputs, and outputs
from the simulation model:

y(i) = M(x(i), ω(i)) with (x(i), ω(i)) ∼ p(x, ω). (1)

Neural Posterior Estimation After creating the training dataset, the NPE, including a summary net-
work Sθ(x, y) and an inference network Iφ(s), must be trained. The goal of Sθ(x, y) is to embed (stacked)
observations, i.e., model inputs and outputs (x, y) of potentially variable length (e.g., a measurement series)
in a fixed-length vector s that serves as input to Iφ(s). Then, Iφ(s) generates samples from the approximate
posterior qφ(ω | s). Here, θ and φ are learnable coefficients in Sθ(x, y) and Iφ(s). In our case studies, we
use coupling flows (Papamakarios et al., 2021) as inference networks. Coupling flows have been empirically
and theoretically shown to be expressive and allow for fast evaluation and sampling (Draxler et al., 2025).
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However, ABI is generally flexible in its choice for the inference network and works with any generative
neural network (e.g. Ardizzone et al., 2019; Padmanabha & Zabaras, 2021; Denker et al., 2021; Wildberger
et al., 2023; Schmitt et al., 2024b). Thus, the summary and inference networks are modular and can be
independently replaced or adapted to suit the specific problem at hand.

The optimal parameters of the summary and inference network (θ∗, φ∗) are obtained jointly by minimizing
the Kullback-Leibler (KL) divergence between the true posterior p(ω | x, y) and the approximate posterior
qφ(ω | s) (Radev et al., 2020):

(θ∗, φ∗) = argmin
θ,φ

Ep(x,y)[KL(p(ω | x, y) || qφ(ω | s))] (2)

= argmin
θ,φ

Ep(x,y)[Ep(ω|x,y)[−log qφ(ω | s)]] (3)

= argmin
θ,φ

−
∫∫∫

p(x, y, ω) log qφ(ω | Sθ(x, y)) dx dy dω. (4)

According to Radev et al. (2020), the expectations can be approximated with the Monte Carlo estimates,
utilizing simulations {(x(i), ω(i), y(i))}NB

i=1 from the (potentially expensive) simulation model (1). This results
in the following loss function:

L(φ, θ) = −
NB∑
i=1

log qφ(ω(i) | Sθ(x(i), y(i))). (5)

2.2 Uncertainty-Aware Surrogate Modeling

Uncertainty-aware surrogate modeling is introduced in and adapted from Reiser et al. (2025). A surrogate
model M̃ aims to approximate the behavior of a simulation model M with negligible computational cost. The
surrogate model is typically parametrized by learnable surrogate coefficients, denoted as c. The simulation
model output can then be approximated by

y = M(x, ω) ≈ M̃c(x, ω) = ỹ. (6)

However, due to limited simulation data from M used for training M̃c, the surrogate coefficients c can only
be estimated with substantial epistemic uncertainty. For the same reason, the expressibility of M̃c must
be restricted, i.e., the complexity of M̃c must be kept relatively low. This introduces an approximation
error, denoted as ϵ, which captures the misspecification of the surrogate. In practice, one usually has to
expect a non-negligible approximation error due to limitations in model capacity, optimization challenges,
or regularization constraints. We assume the approximation error ϵ ∼ p(ϵ | σ) to follow a distribution
parametrized by σ, leading to the error-adjusted surrogate output

ỹϵ = f(ỹ, ϵ) with ϵ ∼ p(ϵ | σ), (7)

which is essentially a perturbed version of ỹ. This setup defines the surrogate likelihood

p(ỹϵ | ỹ, σ) = p(ỹϵ | x, ω, c, σ), (8)

that approximates the (usually unknown) likelihood of the simulation model.

Using sparse training data (NT ≪ NB) obtained from the simulation model DT = {(x(i), ω(i), y(i))}NT
i=1,

with y(i) = M(x(i), ω(i)) and (x(i), ω(i)) sampled from a given prior, we infer the surrogate model coefficients
c and σ via Bayesian inference. This enables capturing both the surrogate model’s epistemic uncertainty
and the irreducible approximation error. For this purpose, we consider the likelihood equation 8 and the
prior p(c, σ). The joint posterior over the surrogate parameters and the approximation noise, given training
data DT from the simulation model M , is then

p(c, σ | DT ) ∝
NT∏
i=1

p(y(i) | x(i), ω(i), c, σ) p(c, σ), (9)
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assuming an i.i.d. sampled approximation error. This assumption serves as a simple stand-in, since surrogate
construction is not the focus of this work. It suffices to demonstrate that even a basic error model outperforms
making no error assumption at all. In general, UA-SABI is not limited to the i.i.d. case; heteroscedastic
surrogate error models (e.g. Kohlhaas et al., 2023) are fully compatible with the method.

The conditions under which M̃ is considered optimal are implied by the assumed distributions of x and
ω in DT and the specified error model p(ϵ | σ). Sampling-based algorithms such as MCMC can be used
to estimate the surrogate posterior equation 9. For the considered surrogates, this is tractable since their
likelihoods are fast to evaluate, and the surrogate posterior – compared to model parameter posteriors
across datasets – is estimated only once. While this formulation fully captures surrogate uncertainty, we
now temporarily simplify the setup by omitting this uncertainty to introduce an uncertainty-unaware baseline
method – Surrogate-based ABI. This allows us to isolate and demonstrate the benefit of propagating surrogate
uncertainty through to inference.

2.3 Surrogate-based ABI (SABI)

The quality of the NPE depends on a sufficient training budget DB to ensure that p(ω | x, y) is well
approximated via qφ(ω | Sθ(x, y)). However, for the expensive models considered here, generating sufficient
ABI training data becomes infeasible. To mitigate this, we propose using a surrogate model of the expensive
simulator to efficiently generate sufficient training data. Surrogate-based ABI (SABI) thus differs from
standard ABI only in the generation of training data. Instead of using the expensive model, a (point)
surrogate model with a point estimate c is used to generate the training data DB = {(x(i), ω(i), ỹ(i))}NB

i=1:

ỹ(i) = M̃c(x(i), ω(i)) with (x(i), ω(i)) ∼ p(x, ω). (10)

For the point surrogate, the median of the posterior in Eq. (9) can be used as it is robust to outliers and
invariant under monotonic transformations, but also the mean is a valid option.

However, in general, M̃c is only an approximation of the simulation model M . Therefore, the SABI posterior
trained with surrogate data p(ω | x, ỹ) will be systematically different from the true posterior p(ω | x, y),
as no surrogate uncertainties or errors are considered in the ABI training process. Specifically, neither the
epistemic uncertainty of M̃c, nor its irreducible approximation error is propagated. As we show in our
experiments, this can lead to highly inaccurate posterior approximations.

2.4 Uncertainty-Aware Surrogate-based ABI (UA-SABI)

To ensure reliable inference, the uncertainty of the surrogate model needs to be propagated through the ABI
training and inference procedure, as illustrated in Fig. 1. This results in our proposed Uncertainty-Aware
Surrogate-based Amortized Bayesian Inference (UA-SABI) approach.

Instead of generating training data with the point surrogate model, UA-SABI utilizes the uncertainty-aware
surrogate model:

ỹ(i)
ϵ ∼ p(ỹϵ | x(i), ω(i), c(i), σ(i)) with (x(i), ω(i)) ∼ p(x, ω), (c(i), σ(i)) ∼ p(c, σ | DT ). (11)

To propagate uncertainty to the ABI training, we now additionally draw the surrogate coefficients c(i) and
the approximation error parameter σ(i) from the surrogate posterior equation 9. These coefficients are then
used to evaluate the surrogate model and obtain ỹ(i). The pair (ỹ(i), σ(i)) is subsequently used to generate
a sample ỹ(i)

ϵ from the distribution of the error-adjusted surrogate output. We now approximate the KL
divergence in Eq. (5) as:

L(φ, θ) = −
NB∑
i=1

log qφ(ω(i) | Sθ(x(i), ỹ(i)
ϵ )). (12)

Figure 2 gives a detailed graphical overview. Additionally, a pseudocode summarizing the UA-SABI training
procedure can be found in Appendix A.
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Figure 2: Detailed graphical overview of UA-SABI training as implemented in Algorithm 1. First phase:
training of uncertainty-aware surrogate model using sparse simulation data, yielding a posterior over surro-
gate parameters. Second phase: ABI training using surrogate-generated data, where full surrogate uncer-
tainty is propagated through sampled surrogate outputs.

3 Related Work

Multi-Fidelity Approaches in SBI Multi-fidelity methods leverage models or simulations of varying
accuracy and cost to accelerate inference, combining cheap, approximate simulations with a smaller num-
ber of expensive, high-fidelity runs. In Approximate Bayesian Computation (ABC), such strategies reduce
computational burden: Warne et al. (2018) apply multi-level Monte Carlo variance reduction to rejection
sampling in ABC, improving efficiency. Prescott & Baker (2020) introduce a multi-fidelity ABC approach
that combines early acceptance and rejection of parameter samples and selectively runs high-fidelity simula-
tions based on low-fidelity outputs, balancing computational cost and accuracy. Building on this, Prescott &
Baker (2021) integrate the multi-fidelity strategy with sequential Monte Carlo sampling, further enhancing
efficiency by more effectively exploring the parameter space for MF-ABC proposals. More recent work by
Warne et al. (2022) integrates low- and high-fidelity simulations within a multilevel Monte Carlo framework
to accelerate SBI for partially observed stochastic processes, using inexpensive approximations to preselect
parameters and high-fidelity simulations to refine posterior estimates, while Prescott et al. (2024) dynamically
select between low- and high-fidelity models based on predictive accuracy, optimizing resource allocation. In
multi-fidelity simulation-based Inference (MF-SBI) (Krouglova et al., 2025) a neural posterior estimator is
first pre-trained on large amounts of low-fidelity data and then fine-tuned with a smaller set of high-fidelity
simulations. While sharing similar goals, none of the aforementioned methods explicitly take the uncertainty
of the low-fidelity simulations into account. UA-SABI’s uncertainty-awareness guards against overconfidence
in regions with scarce data – a protection which appears not to be in place for the low-fidelity training re-
gions in MF-SBI, for example. Further, unlike many of the multi-fidelity methods, UA-SABI does not require
domain expertise for the construction of the surrogate.
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Sequential Neural Posterior Estimation (S-NPE) S-NPE iteratively refines posterior estimates by
adaptively choosing simulations that are most informative, improving efficiency. Papamakarios & Murray
(2016) use initial simulations to fit a Bayesian conditional density estimator for the posterior and then
sample parameters from the current posterior estimate to guide the next round of simulations. Similarly,
Toni et al. (2009) introduced Sequential ABC (ABC-SMC), which iteratively refines posterior distributions
by progressively tightening acceptance thresholds. Kulkarni & Moritz (2023) build on ABC-SMC, leveraging
massively parallel architectures, such as GPUs, to more efficiently explore the parameter space. Lueckmann
et al. (2017) sequentially train a Bayesian mixture-density network. Greenberg et al. (2019a) developed
Automatic Posterior Transformation, which employs flexible flow-based density estimators and dynamically
updated proposal distributions. Deistler et al. (2022) introduce truncated S-NPE, restricting simulations to
truncated regions around high-probability areas. However, UA-SABI and S-NPE pursue related but distinct
goals: UA-SABI focuses on fully amortized inference, enabling fast posterior estimation for new datasets
through one-time training, whereas S-NPE sequentially refines the posterior on the same dataset to improve
accuracy and sample efficiency across rounds. Additionally, the referenced S-NPE procedures implement an
active learning strategy for simulation selection, assuming data are generated iteratively, while UA-SABI
can also operate on pre-existing simulation datasets (offline training).

Gaussian Process Surrogates in SBI Several methods employ Gaussian Process (GP) surrogates to
improve sampling efficiency in likelihood-free inference. Meeds & Welling (2014) construct a GP to emulate
the expensive simulator and use its predictive mean and uncertainty to estimate the acceptance probability
in ABC, avoiding simulator calls when the surrogate is sufficiently confident. Wilkinson (2014) fit a GP to
the ABC log-likelihood to prune implausible parameter regions before sampling, greatly reducing simulation
cost. Bayesian Optimization likelihood-free inference (Gutmann & Corander, 2016) fits a GP to the discrep-
ancy between simulated and observed data and uses Bayesian optimization to adaptively choose simulator
parameters, concentrating effort on informative regions and enabling accurate posterior estimation with few
simulations. As in UA-SABI, these approaches apply surrogates, focusing specifically on GPs. However, they
employ the surrogate to intelligently select simulation parameters for subsequent likelihood-free inference,
whereas UA-SABI uses the surrogate itself to directly generate training data and is agnostic to the surrogate
model class.

Structure-Aware SBI Methods Several computational strategies exploit the structure of simulators
or information about the inference problem to improve efficiency in SBI. Compositional simulation-based
inference for time series (Gloeckler et al., 2025) breaks long, high-dimensional time series into local transi-
tions, performing inference on each step and composing the results to recover a global posterior. Cost-aware
simulation-based inference (Bharti et al., 2025) tackles heterogeneous simulation costs by prioritizing cheaper
and more informative simulations using a combination of rejection and importance sampling, introducing a
cost function to guide allocation of simulation resources. In contrast to UA-SABI, structure-aware methods
exploit knowledge about the simulator, whereas UA-SABI treats the simulator as a black box and requires
no such knowledge.

Neural Likelihood Estimation Neural likelihood estimation is a likelihood-free inference approach that
models the likelihood function directly. Sequential neural likelihood (Papamakarios et al., 2019) uses auto-
regressive neural flows and focuses simulations on high-posterior regions for efficient inference. Bayesian
synthetic likelihood (Price et al., 2018) approximates the likelihood of summary statistics with a multivari-
ate normal, incorporating their uncertainty to provide robust and accurate inference. Jointly Amortized
Neural Approximation (JANA) (Radev et al., 2023a) combines neural likelihood and posterior estimation.
In addition to learning a neural posterior, it simultaneously learns a neural likelihood to enable marginal
likelihood estimation, which is essential for tasks such as Bayesian model selection. However, its objective
differs slightly, as it aims to learn both the likelihood, serving as a surrogate model, and the posterior jointly.
Such a highly parameterized neural likelihood requires a sufficient amount of training data (Frazier et al.,
2024). While UA-SABI also requires simulation data to train a surrogate, it achieves effective inference with
far fewer simulations compared to neural likelihood estimation, making it more practical for very expensive
models.
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Figure 3: Context of UA-SABI and its alternatives under tight computational constraints.

Low-Budget Simulation-based Inference with Bayesian Neural Networks Delaunoy et al. (2024)
also focus on the challenge of limited training data in ABI. They employ Bayesian Neural Networks (BNNs),
which model uncertainty via distributions over network parameters. However, selecting an appropriate
distribution and defining a meaningful prior for weights and biases remains speculative and can undermine
posterior reliability, as noted in (Delaunoy et al., 2024). Moreover, BNNs still demand substantial training
data and compute resources (~25,000 GPU hours in Delaunoy et al. (2024)), thus only shifting computational
resources from evaluating expensive simulation models to training BNNs.

Uncertainty-Aware Surrogate-Based Inference Reiser et al. (2025) consider the same setting, re-
placing a computationally expensive model with an uncertainty-aware surrogate. However, their inference
approach differs: they run MCMC separately for each observation set and for every surrogate sample. This
results in a computational cost that scales with both the number of observations and the number of surrogate
samples, making their method significantly more expensive. Their proposed method, E-Post, marginalizes
over the surrogate coefficient posterior p(c, σ | DT ) to obtain the posterior of the parameters of interest ω:

p(ω | y) =
∫∫

p(ω | y, c, σ) p(c, σ | DT ) dc dσ. (13)

In practice, this integral is approximated via a Monte Carlo integration with a sufficient number of samples
from the surrogate posterior p(c, σ | DT ).

During inference with UA-SABI, this explicit marginalization is not required, as the NPE is trained over the
entire posterior space of both the outputs and the surrogate parameters. This results in a form of double
amortization of the surrogate and ABI training costs through repeated inference. Since UA-SABI and E-Post
share the same overall objective and framework, E-Post with MCMC inference serves as a benchmark for
UA-SABI. A formal proof of asymptotic equivalence is given in Proposition 1 in Appendix B.

4 Case Studies

We evaluate and benchmark UA-SABI against its uncertainty-unaware counterpart SABI, the corresponding
MCMC-based methods, and (if possible) standard ABI using a toy example and two real-world case studies.
Code is publicly available on GitHub1.

4.1 Objectives

We aim to validate the parameter posterior obtained with UA-SABI by assessing its quality and justifying
the computational effort required to train the surrogate by reducing the effort to train the ABI model. Our
central research question is “Can we train ABI with surrogate data, do we have to, and, if so, how should
we account for the uncertainty introduced by the surrogate?”. To keep focus on that, we deliberately remove
unrelated complexities. Specifically, in our real-world case studies, we use computationally expensive but low-
dimensional problems. High-dimensional models present significant challenges for surrogate training, as they

1https://github.com/LS3-university-of-stuttgart/ua-sabi-paper
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typically require substantially more data to adequately capture the model’s behavior. Additionally, inference
on high-dimensional problems becomes more complex due to multi-modality and non-identifiability issues
that complicate posterior estimation. This would make result interpretation less transparent and potentially
obscure insights about the proposed approach itself.

We want to show the advantage of using surrogate data instead of scarce simulation data, and demonstrate
the importance of quantifying and propagating the uncertainty of the surrogate model. To do so, we compare
UA-SABI, SABI, and standard ABI for the true model – trained with full and low budget (shown in blue in
Fig. 3). To validate the posteriors produced by these methods, we also compare them with those obtained
using the corresponding MCMC-based approach (shown in purple in Fig. 3). Further, to highlight the
efficiency of our method, we compare the runtimes of UA-SABI and E-Post (shown in red in Fig. 3).

To assess posterior calibration for our first two case studies, we generate multiple synthetic ground truth
parameters and perform inference on the simulated datasets. For each dataset, we compute the rank of the
ground truth within the posterior samples and summarize the results using empirical cumulative distribution
function (ECDF) difference plots – a procedure known as simulation-based calibration (SBC) checking (Talts
et al., 2020; Säilynoja et al., 2022; Modrák et al., 2023). SBC assesses whether the inference method is
calibrated by verifying that the rank of the true parameter among posterior samples follows a uniform
distribution across repeated simulations. To compare runtimes, we estimated how many observation sets are
needed before the accumulated computational cost of repeated E-Post inference runs exceeds the total cost
of UA-SABI, including both training and its repeated (quasi-instant) inference.

General Setup For all case studies, we use polynomial chaos expansion (PCE) for the surrogate model
(Wiener, 1938; Sudret, 2008; Oladyshkin & Nowak, 2012), as it is a fast-to-evaluate and fast-to-train surrogate
and a flexible black-box model which can be applied to (almost) arbitrary simulation models. In principle,
PCE is just one example among many possible choices – any uncertainty-aware surrogate could be used
and replaced in a modular fashion depending on the application domain. A deterministic PCE constructs
the surrogate through a spectral projection onto orthogonal (w.r.t. p(x, ω)) polynomial basis functions,
expressed as

M̃c(x, ω) =
J∑

j=0
cj · Ψj(x, ω), (14)

with Ψ = {Ψj}J
j=0 being the multivariate orthogonal polynomial basis and c = {cj}J

j=0 the corresponding
coefficients. The number of expansion terms J is computed via the standard truncation scheme (Sudret,
2008). For our case studies, we choose a relatively low polynomial degree, as we operate in a data-scarce
regime and aim to avoid overfitting. In the real-world case studies, the underlying models are highly compu-
tationally expensive, so a higher polynomial degree would require additional model runs that could exceed
the available computational budget. In general, selecting the appropriate surrogate complexity is important
but challenging to determine a priori, as it depends on the specific application.

To construct a Bayesian PCE (Shao et al., 2017; Bürkner et al., 2023), we define a prior distribution over
the surrogate coefficients p(c) and the approximation error parameter p(σ). We choose a normal likelihood
for the simulator output y = M(x, ω):

p(y | x, ω, c, σ) = N (y | M̃c(x, ω), σ). (15)

Employing Hamiltonian Monte Carlo (Hoffman & Gelman, 2014) yields samples from the surrogate posterior
p(c, σ | DT ) (Bürkner et al., 2023). The resulting Bayesian PCEs serve as our uncertainty-aware surrogate.

4.2 Case Study 1: LogSin Model

We first evaluate our surrogate-based ABI approaches in a simple synthetic scenario: a simulation model
with one parameter ω and a one-dimensional input x:

y = M(x, ω) = ω log(x) + sin(0.05x) + 0.01x + 1. (16)
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4.2.1 Setup

We generate surrogate training data by evaluating the simulation model M at the first 16 points of a
two-dimensional Sobol sequence (Sobol’, 1967), scaled to [1, 200] for x and [0.6, 1.4] for ω. The resulting
input-output pairs are used to train a Bayesian PCE. This introduces significant surrogate uncertainty and
approximation error, as a perfect match to the simulation model is unattainable. The surrogate’s posterior is
sampled using HMC via Stan (Carpenter et al., 2017; Stan Development Team, 2024). We employ 4 chains,
each with 1,000 warm-up and 250 sampling iterations, yielding 1,000 surrogate posterior samples in total to
be propagated.

To perform inference on observation sets, we sample 200 ground truth parameters ω∗ from a prior
p(ω) = N (1, 0.2) and generate four (x, y) observations for each. We compare the inference results of our pro-
posed surrogate-based ABI to surrogate-based MCMC methods. For ABI, we used an equivariant DeepSet
summary network (Zaheer et al., 2017), given p(y | x) being i.i.d., and a coupling flow inference network. We
employ online training, where newly sampled surrogate outputs are used at each iteration. All ABI models
were trained for 100 epochs, with a batch size of 64 and 128 batches per epoch, using BayesFlow (Radev
et al., 2023b). For given observations, ABI generates 4,000 posterior samples via the inference network.
Surrogate-based MCMC (Point) draws 4,000 samples using 4 chains (1,000 warm-up and 1,000 sampling
iterations). For E-Post, we run MCMC separately for each surrogate posterior draw (1,000 warm-up, 4 sam-
pling iterations per run), a process that is embarrassingly parallelizable but still computationally expensive.
Further computational details are given in Appendix C.

4.2.2 Impact of Uncertainty Propagation

First, we compare the performance of our two surrogate-based methods, SABI and UA-SABI, against each
other. Then we compare them against a low-budget ABI, trained with the same simulation data as used
for surrogate training, and a full-budget ABI trained on sufficient simulation data. Figure 4a shows corre-
sponding recovery plots. They show the posterior median (circles) and median deviation (vertical lines) for
any given ground truth value ω∗.

Figure 4a shows that a low-budget ABI model is unable to recover the ground truth values, particularly
towards the boundaries of the parameter domain. Using a surrogate as part of SABI or UA-SABI, it
becomes possible to generate sufficient ABI training data. Assigning the inter- and extrapolation tasks to
the surrogate, specifically designed for this purpose, produces better outcomes than relying on the NPE to
implicitly interpolate the posterior from scarce data. However, without propagating surrogate uncertainty
(i.e., using SABI), estimated posterior uncertainty remains minimal and does not cover the true values, thus
producing overconfident posteriors. Conversely, incorporating surrogate uncertainty via UA-SABI leads to
an increase in posterior uncertainty, now better covering the true values. Indeed, the ECDF difference plots
showing calibration in Fig. 4b confirm that both low-budget ABI and SABI produce severely miscalibrated
posteriors, while UA-SABI and full-budget ABI yield well-calibrated posteriors. However, achieving this
calibration with full-budget ABI requires substantially more training data, highlighting the efficiency of
UA-SABI under limited simulation budgets.

4.2.3 Validation of Parameter Posterior

We validate the correctness of the surrogate-based ABI approaches and benchmark their performance against
a reference solution. To this end, we compare the two surrogate-based ABI methods, SABI and UA-SABI,
against the corresponding surrogate-based MCMC methods, Point and E-Post. We plot the posterior medians
(circles) and their median deviations (lines) for the ABI methods along with the corresponding MCMC
results, as well as the ECDF differences for all the methods in Fig. 5.

When comparing the ABI posteriors to the MCMC full reference solution, we observe that for the uncertainty-
unaware methods, the SABI results align closely with the MCMC counterpart. Comparing the respective
ECDF differences it shows that both Point and SABI produce similarly overconfident posteriors. For the
uncertainty-aware methods, E-Post and UA-SABI, we observe a slight difference in the recovery plots and
the ECDF differences. To investigate this discrepancy, we performed a convergence analysis for the MCMC
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Figure 4: LogSin recovery plots (top) and ECDF difference plots (bottom) for full-budget ABI, low-budget
ABI, SABI, and UA-SABI (from left to right) over 200 ground truth samples. In the ECDF difference plots,
empirical ranks are shown in blue, 95% confidence bands assuming calibration are shown in grey.
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Figure 5: LogSin recovery plots (left) and ECDF difference plots (right) comparing ABI methods to corre-
sponding MCMC methods over 200 ground truth samples. In the ECDF difference plots, empirical ranks
are shown in blue, 95% confidence bands assuming calibration are shown in grey.

sampling of E-Post, with results shown in Appendix D. The analysis confirms that the difference can be
attributed to non-convergence of many MCMC runs. Examining the calibration results reveals that while
E-Post is slightly underconfident, UA-SABI yields well-calibrated posteriors. This indicates the reliability
and correctness of UA-SABI.

4.2.4 Runtime Comparison

Next, we justify the computational effort required to train UA-SABI. Specifically, we aim to determine the
break-even point – that is, the number of observation sets (i.e., measurement series) after which training
UA-SABI and performing (quasi-instant) inference becomes more efficient than repeatedly rerunning E-Post.
Beyond that point, the one-time training cost of UA-SABI is amortized. All experiments were performed
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on a standard laptop equipped with an Intel Core i7-1185G7 CPU. For ABI, we consider both the upfront
training phase and the inference time for the given sets as part of the total runtime. For E-Post, we measure
the inference runtime while parallelized across 8 cores. Unlike for UA-SABI, E-Post runtimes depend on the
number of cores used for parallelization.

In Fig. 7a, we show the runtime of UA-SABI and E-Post for {5, 10, 15, 20} inference runs. We observe that
UA-SABI’s runtime is nearly constant for the number of inference runs, while E-Post scales linearly. Based
on this comparison, UA-SABI is already justified after around 9 inference runs.

4.3 Case Study 2: Carbon Dioxide (CO2) Storage Model

In the second case study, we test our method on a virtual benchmark that represents a real-world problem.
Specifically, we consider a CO2 storage benchmark (Köppel et al., 2019). In this test case, a non-linear
hyperbolic partial differential equation models the two-phase flow of CO2 in brine. It describes CO2 injection,
plume migration, pressure build-up, and the influence of uncertain porous medium properties in a deep
saline aquifer. Given the CO2 saturation as measurements, our aim is to infer three parameters of interest:
injection rate of CO2 (IR), relative permeability degree in the fractional flux function (PM), and porosity
(PR) of the formation. This test case allows us to analyze the performance of UA-SABI in inference for
hydrosystem models. The underlying physical model exhibits strong discontinuities at certain combinations
of parameter values and space/time coordinates, which inherently limit the approximation performance
of PCE-based surrogate models. However, this scenario provides an opportunity to test UA-SABI under
challenging conditions where the surrogate model is strongly misspecified. Five separate Bayesian PCE
models with sparsity-inducing priors (Bürkner et al., 2023) are trained for five different instants at days
{20, 40, 60, 80, 100} and at a fixed location 30m from the injection well. A similar setup was studied in
(Oladyshkin et al., 2020). We show parameter posterior results for porosity, the most informative parameter
of the CO2 storage model.

4.3.1 Setup

In general, the setup for the CO2 storage model follows the same structure as that described in Section 4.2.1.
The priors of the input parameters are given as IR ∼ 6.4×10−4×(1+Beta(4, 2)), PM ∼ 2×Beta(1.25, 1.25)+2,
and PR ∼ Beta(2.4, 9) (Köppel et al., 2019). For PCE training, we considered 64 Sobol sequence evaluations
scaled to the input parameter prior ranges and constructed the polynomial basis with arbitrary polynomial
chaos (aPC) based on the priors (Oladyshkin & Nowak, 2012; Bürkner et al., 2023).

In contrast to case study 1, we used an offline ABI training set, where the training data is pre-generated
from 104 parameter prior draws and fixed during the training process, allowing for direct comparison with a
standard full-budget ABI trained on pre-generated simulation data. Further computational details are given
in Appendix C.

4.3.2 Validation of Parameter Posterior

We compare the inferred posterior samples obtained from a full-budget ABI (NB = 104), a low-budget ABI
(NB = 64), SABI, and UA-SABI. Full-budget ABI was feasible due to the already available data (Köppel
et al., 2017; Oladyshkin et al., 2020). Therefore, recovery plots were chosen to validate the quality of our
results relative to standard ABI (Fig. 6).

Recovery plots in Fig. 6a again show that low-budget ABI struggles to recover the ground truth parameter,
particularly near domain boundaries. SABI also produces poor estimates and, moreover, fails to capture
uncertainty in the inferred parameter posteriors. This overconfidence results in miscalibrated posteriors,
confirmed by the two corresponding ECDF difference plots in Fig. 6b.

In contrast, UA-SABI performs comparably to full-budget ABI while accounting for the additional uncer-
tainty introduced by using a surrogate to generate training data. According to the ECDF difference plots, it
produces a well-calibrated posterior for porosity. Additionally, recovery plots between ABI and MCMC for
surrogate-based methods and ECDF difference plots for MCMC-based methods are provided in Appendix E.
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Despite the model’s discontinuities and the resulting surrogate misspecification, our method successfully
quantifies and propagates surrogate uncertainty to the parameter posterior.
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Figure 6: CO2 recovery plots (top) and ECDF difference plots (bottom) for full-budget ABI, low-budget
ABI, SABI, and UA-SABI (from left to right) over 200 ground truth samples. In the ECDF difference plots,
empirical ranks are shown in blue, 95% confidence bands assuming calibration are shown in grey.

4.3.3 Runtime Comparison

Also, for the CO2 storage model, we compare the runtimes, following the same approach as in Section 4.2.4.
The experiments were run on a computing cluster with two AMD EPYC 7551 CPUs (totaling 64 physical
cores) to speed up E-Post through parallelization.

Figure 7b presents the measured runtimes of UA-SABI and E-Post for {5, 6, 7, 8} inference runs, whereby E-
Post was parallelized on 16 cores. We observe a break-even point between 6 and 7 inference runs, indicating
that UA-SABI becomes justified after 7 runs. Despite using more cores for E-Post, the training costs are
amortized earlier for a more expensive model.
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Figure 7: Comparison of runtimes for UA-SABI (training and inference) and E-Post (inference) with break-
even point.
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4.4 Case Study 3: Microbially Induced Calcite Precipitation Model

In this case study, we transition from benchmarks to realistic conditions by using real measurement data.
Case studies 1 and 2 introduced a toy example and a virtual benchmark, respectively. Case study 3 now
focuses on posterior inference from observed measurements, where the primary goal is to evaluate the ap-
plicability of UA-SABI under real-world conditions. Specifically, in addition to simulation-to-surrogate
misspecification, we encounter simulation-to-real and thus surrogate-to-real misspecification. A runtime
comparison for the MICP model on synthetic data is added in Appendix F.5.

The underlying model predicts microbially induced calcite precipitation (MICP). MICP is a reactive trans-
port process, here taking place inside a porous medium. It includes at least biofilm, calcite, and the unreactive
solid matrix as solid phases, water, and, in some cases, an additional fluid phase such as gas. Relevant in
the aqueous phase are dissolved calcium, inorganic carbon, and urea. The complete set of relevant species
is detailed in Hommel et al. (2015). The process is mediated by S. pasteurii, a bacterium that produces
the enzyme urease. Urease catalyzes the hydrolysis of urea into ammonia and carbonic acid. In aqueous
solution, ammonia consumes hydrogen ions (H+), which raises the pH. The increase in pH alters carbonate
equilibria: carbonic acid dissociates further, releasing additional H+ and carbonate ions. This raises the
concentration of dissolved carbonate species. When calcium ions are present, they combine with carbonate
ions and trigger the precipitation of calcite within the pore space. A schematic illustration of the relevant
process during MICP is given in Appendix F.1.

The experiment is performed on a 61cm sand-filled column with a 2.54cm diameter. Bacteria are first
injected from the bottom, followed by an overnight no-flow period to allow biofilm formation. Biofilm
growth is then stimulated with a 24h substrate injection. Afterwards, two pore volumes of a 0.33mol/L
calcium-urea solution are injected at 10ml/min, repeated every 24h. Each injection is followed by a no-flow
period for mineralization, and then a substrate injection to reactivate the biofilm (Hommel et al., 2015).
This cycle is repeated 30 times. A more detailed description can be found in Hommel et al. (2015).

Measurements of the volume fraction of calcite on eight spatial points located at 3.81, 11.43, 19.05, 26.67,
34.29, 41.91, 49.53, and 57.15cm distance from the bottom are available. After the last cycle, we build
our surrogate based on four parameters of interest: the coefficient for preferential attachment to biomass
(ca,1, [s−1]), the coefficient for attachment to arbitrary surfaces (ca,2, [s−1]), the dry mass density of biofilm
(ρf , [kg/m3]), and the enzyme content of biomass (kub, [kg/kg]).

The MICP case provides an opportunity to test UA-SABI on a model that is highly computationally ex-
pensive yet low-dimensional in parameter space, and for which real-world measurement data are available.
We again employ PCE as the surrogate modeling technique, due to its demonstrated success for this model
(Scheurer et al., 2021). In total, eight Bayesian PCEs are trained, one for each measurement location.

4.4.1 Setup

In general, the setup for the MICP model follows the same structure as that described in the former case
studies. The priors of the input parameters are given as ca,1 ∼ U(10−10, 10−7), ca,2 ∼ U(10−10, 10−6), ρf ∼
U(1, 15), and kub ∼ U(10−5, 5 · 10−4) (Scheurer et al., 2021). For PCE training, 25 model evaluations within
the prior ranges of input parameters are available, which are not necessarily optimal for surrogate training.
We constructed the polynomial basis with aPC based on the available model evaluations (Oladyshkin &
Nowak, 2012; Bürkner et al., 2023).

As in case study 2, we used an offline ABI training set of 104 parameter prior draws. In contrast to case study
2, no pre-generated simulation data are available for these draws. Instead, output data can only be generated
through the surrogate; thus, no comparison with a full-budget ABI is possible. Further computational details
are given in Appendix C.

4.4.2 Validation of Surrogate Model and Parameter Inference Setup

Since inference will be performed using real measurement data, the first step is to evaluate how accurately the
surrogate represents the underlying system. Figure 8a presents the measurement data, the model evaluations
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used for surrogate training, and the surrogate predictions obtained from 104 prior samples across the eight
locations. The results indicate that the simulated model data—and consequently the surrogate – do not
cover the region occupied by the measurement data. This makes the measurement data out-of-distribution
(OOD) relative to the simulation model’s a priori predictions – a phenomenon that is suspected to occur
frequently in dynamic systems modeling, although rarely investigated in detail.
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(a) Surrogate output with original prior for kub ∼
U(10−5, 5 · 10−4).
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(b) Surrogate output with adjusted prior for kub ∼
U(10−5, 5 · 10−3).

Figure 8: Measurement data for calcite, 25 model evaluations, and surrogate model output obtained with
original prior (left) and adjusted prior (right) for kub of the MICP model across eight locations. Surrogate
predictions are obtained from 104 prior samples; median and 90% confidence intervals are shown.

Neural networks are known to generalize poorly outside their training domain, resulting in poor posteriors
obtained via ABI (Schmitt et al., 2024a), which is shown in Appendix F.2. Thus, we seek to transfer this
challenge to the surrogate instead. To this end, we found that the surrogate priors used for parameter
inference can be adjusted to ensure that the measurement data fall within the surrogate’s support. This
approach leverages the generalization properties of the low-dimensional, regularized surrogate, avoiding
dependence on the poor generalization abilities of neural networks, which are used within the ABI model
during inference.

The results of a sensitivity analysis (more detailed in Appendix F.3) on the surrogate using Sobol indices
(Sobol’, 1990) shows that the surrogate’s output at all locations is almost only sensitive to kub.

In Fig. 9, the surrogate output is shown exemplarily at location index 3 by varying kub. It can be observed
that the uncertainty of the surrogate increases when evaluating OOD inputs. Based on these results, we
adapt the parameter inference prior range for kub, such that kub ∼ U(10−5, 5 ·10−3). This adjustment results
in a prior predictive that covers the measurement data, as illustrated in Fig. 8b.

4.4.3 Comparison of Parameter Posterior

Since parameter inference is carried out on real measurement data, no ground truth is available. We therefore
compare only the inferred posteriors obtained using low-budget ABI (NB = 25), SABI, UA-SABI, Point, and
E-Post. For easy visual comparison, we applied kernel density estimation (KDE) with Scott’s bandwidth
method to the posterior samples from each approach. Since kub is the only sensitive parameter, we present
its posterior estimates in Fig. 10 to avoid redundancy, while posterior estimates for the remaining parameters
are provided in Appendix F.4.

Figure 10 demonstrates that low-budget ABI, which is shown as a point estimate due to quasi-nonexistent
variance in the posterior, exhibits a pronounced bias and substantially underestimates posterior uncertainty.
This confirms again that training an ABI model with very limited data is not meaningful. Comparing the
surrogate-based methods further highlights that explicitly quantifying surrogate uncertainty and propagating
it through the inference process is reflected in the wider posterior estimates. However, E-Post and UA-SABI
posteriors exhibit slight difference, which we attribute to non-convergence of some MCMC runs in E-Post.
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Figure 9: MICP surrogate output at location index 3 over kub. The output is obtained by evaluating the
uncertainty-aware surrogate for kub ∈ [10−5, 5 · 10−3] and keeping the other parameters fixed at their means.
Median and 90% confidence intervals of the surrogate output are shown in green, the region of the original
prior is shown in grey.
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Figure 10: KDEs of 4,000 parameter posterior samples for kub of the MICP model obtained with low-budget
ABI, Point, E-Post, SABI, and UA-SABI.

To assess the validity of the obtained posteriors and the appropriateness of the quantified and propagated
uncertainty, Fig. 11 presents the posterior predictive distributions for calcite across the four surrogate-based
methods.

Figure 11a and Fig. 11b clearly illustrate that not quantifying and propagating uncertainty results in over-
confident posterior predictives. In contrast, as shown in Fig. 11c and Fig. 11d, explicitly accounting for
uncertainty produces confidence intervals that successfully cover the measurement data. Both methods yield
comparable intervals, with UA-SABI producing a slightly broader interval as its higher posterior density
in the out-of-distribution region of the most sensitive parameter kub (Fig. 10) yields increased surrogate
predictive uncertainty.

Overall, this demonstrates that quantifying and propagating the uncertainty of a surrogate model enables
ABI for highly computationally expensive models. Even when the available model simulations are subop-
timal for surrogate training and far from the measurement data, accounting for uncertainty and promoting
generalization in the surrogate model leads to more trustworthy results.

5 Summary and Outlook

In this work, we introduced Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI) –
a framework designed to enable efficient and reliable ABI for computationally expensive models. UA-SABI
combines surrogate modeling and ABI while explicitly quantifying and propagating surrogate uncertainties
through the inference process. This addresses a core limitation of existing approaches: while surrogate
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(b) SABI.
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(c) E-Post.
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(d) UA-SABI.

Figure 11: MICP posterior predictives for calcite for the four surrogate-based methods. Surrogate predictions
are obtained from 4,000 posterior samples, median and 90% confidence intervals are shown.

models can reduce the cost of generating training data for ABI, ignoring their approximation error often
leads to overconfident and misleading posteriors. By incorporating uncertainty awareness, UA-SABI enables
better-calibrated and reliable inference, even under tight computational constraints.

We validated UA-SABI in both a simple toy example and two real-world problems of modeling CO2 storage
and MICP, highlighting its ability to produce well-calibrated posterior estimates that match those obtained
with MCMC-based methods. Our experiments demonstrate the importance of sufficient training data, as
low-budget ABI produces erroneous posteriors. Also, they show the importance of uncertainty propagation
when using a surrogate: Surrogate-based ABI results in overconfident posteriors, whereas UA-SABI correctly
reflects model uncertainty in its predictions. Moreover, we showed that the upfront computational effort of
training UA-SABI is quickly offset in scenarios involving repeated inference, with amortization becoming
beneficial already after a few inference runs. Additionally, the MICP experiment poses a challenging real-
world scenario by having 1) only a limited number of model runs available, and 2) real measurement data
that are not adequately captured by these model runs.

Overall, UA-SABI offers an efficient and reliable solution in settings that require repeated inference for
computationally expensive models. In general, we conclude that using surrogates to generate training data
can be an effective strategy for ABI when simulations are scarce or computationally expensive. Moreover,
explicitly accounting for surrogate uncertainty in the training data improves ABI results, particularly by
reducing overconfidence.

In this work, we applied UA-SABI only to low-dimensional, computationally expensive problems to keep
results interpretable and avoid challenges that would distract from our scope. While this focus allowed us to
clearly demonstrate the method’s core advantages, the question of scalability to higher dimensions naturally
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arises. In general, standard ABI performs well in high-dimensional settings when sufficient simulated train-
ing data is available (e.g. Zhou et al., 2025). However, data-scarcity necessitates the use of surrogate models
to augment the limited training data. Extending UA-SABI to high-dimensional problems thus hinges on
developing surrogates that satisfy two critical requirements: robustness to high-dimensionality and minimal
training data requirements. If these conditions cannot be met, standard ABI remains the more practical
choice. High-dimensional surrogate modeling, however, presents fundamental challenges. In the PCE frame-
work, for example, a high-dimensional parameter space results in a high-dimensional coefficient space and
thus a high-dimensional integration problem, which suffers from the curse of dimensionality. Consequently,
the surrogate type must be chosen to accommodate this challenge. Neural network surrogates could be one
option, but they require substantial training data again (similar to standard ABI) so nothing is gained here.
In PCE, existing approaches try to address high-dimensionality through input dimensionality reduction tech-
niques (e.g. Li & Tartakovsky, 2020) or sparsity methods in PCE (e.g. Bürkner et al., 2023; Luthen et al.,
2021) to reduce either the parameter space or the integration space. Combining these methods would be a
valuable direction for future research.

Additionally, the surrogate is technically misspecified, as the simulator is not fully contained within the
surrogate class. Thus, future work could integrate UA-SABI with recently proposed methods for detecting
and mitigating model misspecification in ABI (Schmitt et al., 2024a; Dellaporta et al., 2022; Elsemüller et al.,
2025), which are all naturally compatible with our framework.

Author Contributions

This work represents an equal contribution of Stefania Scheurer and Philipp Reiser. Following the CRediT
taxonomy:
Stefania Scheurer: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review
& Editing, Philipp Reiser: Conceptualization, Methodology, Software, Writing - Original Draft, Writing
- Review & Editing, Tim Brünnette: Writing - Review & Editing, Wolfgang Nowak: Writing - Review
& Editing, Anneli Guthke: Writing - Review & Editing, Paul-Christian Bürkner: Conceptualization,
Writing - Review & Editing.

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for supporting this
work by funding – EXC2075 – 390740016 under Germany’s Excellence Strategy and the Collaborative Re-
search Centre SFB 1313, Project Number 327154368. We acknowledge the support by the Stuttgart Center
for Simulation Science (SimTech). We further acknowledge the support of the DFG Collaborative Research
Center 391 (Spatio-Temporal Statistics for the Transition of Energy and Transport) – 520388526. Addition-
ally, we thank Dr. Ilja Kröker for his help and to both Dr. Kröker and Dr. Johannes Hommel for providing
data.

References
Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided Image Generation

with Conditional Invertible Neural Networks, 2019. URL https://arxiv.org/abs/1907.02392.

Ayush Bharti, Daolang Huang, Samuel Kaski, and François-Xavier Briol. Cost-aware Simulation-based
Inference, 2025. URL https://arxiv.org/abs/2410.07930.

Paul-Christian Bürkner, Ilja Kröker, Sergey Oladyshkin, and Wolfgang Nowak. A Fully Bayesian Sparse
Polynomial Chaos Expansion Approach with Joint Priors on the Coefficients and Global Selection of
Terms. Journal of Computational Physics, 488:112210, 2023. doi: 10.1016/j.jcp.2023.112210.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A Probabilistic Programming Language.
Journal of Statistical Software, 76(1):1–32, 2017. doi: 10.18637/jss.v076.i01.

18

https://arxiv.org/abs/1907.02392
https://arxiv.org/abs/2410.07930


Published in Transactions on Machine Learning Research (01/2026)

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The Frontier of Simulation-based Inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020. doi: 10.1073/pnas.1912789117.

Michael Deistler, Pedro J. Goncalves, and Jakob H. Macke. Truncated Proposals for Scalable and Hassle-
free Simulation-based Inference. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 23135–23149. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9278abf072b58caf21d48dd670b4c721-Paper-Conference.pdf.

Arnaud Delaunoy, Maxence de la Brassinne Bonardeaux, Siddharth Mishra-Sharma, and Gilles Louppe.
Low-Budget Simulation-based Inference with Bayesian Neural Networks, 2024. URL https://arxiv.
org/abs/2408.15136.

Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, and François-Xavier Briol. Robust Bayesian
Inference for Simulator-based Models via the MMD Posterior Bootstrap. In G. Camps-Valls, F. J. R.
Ruiz, and I. Valera (eds.), International Conference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, pp. 943–970. PMLR, 2022. URL https://proceedings.
mlr.press/v151/dellaporta22a.html.

Alexander Denker, Maximilian Schmidt, Johannes Leuschner, and Peter Maass. Conditional Invertible
Neural Networks for Medical Imaging. Journal of Imaging, 7(11):243, 2021. doi: 10.3390/jimaging7110243.

Felix Draxler, Stefan Wahl, Christoph Schnörr, and Ullrich Köthe. On the Universality of Volume-Preserving
and Coupling-Based Normalizing Flows, 2025. URL https://arxiv.org/abs/2402.06578.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper_files/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf.

Aaron M. Ellison. Bayesian Inference in Ecology. Ecology Letters, 7(6):509–520, 2004. doi: 10.1111/j.
1461-0248.2004.00603.x.

Lasse Elsemüller, Valentin Pratz, Mischa von Krause, Andreas Voss, Paul-Christian Bürkner, and Stefan T.
Radev. Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference?
A Systematic Evaluation, 2025. URL https://arxiv.org/abs/2502.04949.

Alexander Etz and Joachim Vandekerckhove. Introduction to Bayesian Inference for Psychology. Psycho-
nomic Bulletin & Review, 25:5–34, 2018. doi: 10.3758/s13423-017-1262-3.

David T. Frazier, Ryan P. Kelly, Christopher C. Drovandi, and David J. Warne. The Statistical Accuracy
of Neural Posterior and Likelihood Estimation, 2024. URL https://arxiv.org/abs/2411.12068.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis. Chapman &
Hall/CRC, 1995. ISBN 9780429258411.

Walter R. Gilks, Sylvia Richardson, and David Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC, 1995. ISBN 9780429170232.

Manuel Gloeckler, Shoji Toyota, Kenji Fukumizu, and Jakob H. Macke. Compositional Simulation-based
Inference for Time Series, 2025. URL https://arxiv.org/abs/2411.02728.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic Posterior Transformation for
Likelihood-Free Inference. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 2404–2414. PMLR, 2019a. URL https://proceedings.mlr.press/v97/greenberg19a.html.

David S. Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic Posterior Transformation for
Likelihood-free Inference. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2404–2414. PMLR, 2019b. URL https://proceedings.mlr.press/v97/greenberg19a.html.

19

https://proceedings.neurips.cc/paper_files/paper/2022/file/9278abf072b58caf21d48dd670b4c721-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9278abf072b58caf21d48dd670b4c721-Paper-Conference.pdf
https://arxiv.org/abs/2408.15136
https://arxiv.org/abs/2408.15136
https://proceedings.mlr.press/v151/dellaporta22a.html
https://proceedings.mlr.press/v151/dellaporta22a.html
https://arxiv.org/abs/2402.06578
https://proceedings.neurips.cc/paper_files/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://arxiv.org/abs/2502.04949
https://arxiv.org/abs/2411.12068
https://arxiv.org/abs/2411.02728
https://proceedings.mlr.press/v97/greenberg19a.html
https://proceedings.mlr.press/v97/greenberg19a.html


Published in Transactions on Machine Learning Research (01/2026)

Michael U. Gutmann and Jukka Corander. Bayesian Optimization for Likelihood-Free Inference of Simulator-
Based Statistical Models. Journal of Machine Learning Research, 17(125):1–47, 2016. URL http://jmlr.
org/papers/v17/15-017.html.

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47):1593–1623, 2014. URL
https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf.

Johannes Hommel, Ellen Lauchnor, Adrienne Phillips, Robin Gerlach, Alfred B Cunningham, Rainer Helmig,
Anozie Ebigbo, and Holger Class. A Revised Model for Microbially Induced Calcite Precipitation: Im-
provements and New Insights Based on Recent Experiments. Water Resources Research, 51(5):3695–3715,
2015. doi: 10.1002/2014WR016503.

John P. Hülsenbeck, Fredrik Ronquist, Rasmus Nielsen, and Jonathan P. Bollback. Bayesian Inference of
Phylogeny and its Impact on Evolutionary Biology. Science, 294(5550):2310–2314, 2001. doi: 10.1126/
science.1065889.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

Rebecca Kohlhaas, Ilja Kroeker, Sergey Oladyshkin, and Wolfgang Nowak. Gaussian Active Learning on
Multi-Resolution Arbitrary Polynomial Chaos Emulator: Concept for Bias Correction, Assessment of
Surrogate Reliability and its Application to the Carbon Dioxide Benchmark. Computational Geosciences,
27(3):369–389, 2023. doi: 10.1007/s10596-023-10199-1.

Markus Köppel, Fabian Franzelin, Ilja Kröker, Sergey Oladyshkin, Dominik Wittwar, Gabriele Santin, An-
drea Barth, Bernard Haasdonk, Wolfang Nowak, Dirk Pflüger, and Christian Rohde. Datasets and exe-
cutables of data-driven uncertainty quantification benchmark in carbon dioxide storage, 2017.

Markus Köppel, Fabian Franzelin, Ilja Kröker, Sergey Oladyshkin, Gabriele Santin, Dominik Wittwar, An-
drea Barth, Bernard Haasdonk, Wolfgang Nowak, Dirk Pflüger, and Christian Rohde. Comparison of
Data-Driven Uncertainty Quantification Methods for a Carbon Dioxide Storage Benchmark Scenario.
Computational Geosciences, 23:339–354, 2019. doi: 10.1007/s10596-018-9785-x.

Anastasia N. Krouglova, Hayden R. Johnson, Basile Confavreux, Michael Deistler, and Pedro J. Gonçalves.
Multifidelity Simulation-based Inference for Computationally Expensive Simulators, 2025. URL https:
//arxiv.org/abs/2502.08416.

Sourabh Kulkarni and Csaba Andras Moritz. Improving Effectiveness of Simulation-based Inference in the
Massively Parallel Regime. IEEE Transactions on Parallel and Distributed Systems, 34(4):1100–1114,
2023. doi: 10.1109/TPDS.2023.3238045.

Loïc Le Gratiet, Stefano Marelli, and Bruno Sudret. Metamodel-based Sensitivity Analysis: Polynomial
Chaos Expansions and Gaussian Processes, pp. 1289–1325. Springer, 2017. ISBN 978-3-319-12385-1. doi:
10.1007/978-3-319-12385-1_3.

Jing Li and Alexandre M Tartakovsky. Gaussian Process Regression and Conditional Polynomial Chaos
for Parameter Estimation. Journal of Computational Physics, 416:109520, 2020. doi: 10.1016/j.jcp.2020.
109520.

Jan-Matthis Lückmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H. Macke. Likelihood-free
Inference with Emulator Networks. In F. J. R. Ruiz, C. Zhang, D. Liang, and T. D. Bui (eds.), Proceed-
ings of The 1st Symposium on Advances in Approximate Bayesian Inference, volume 96 of Proceedings
of Machine Learning Research, pp. 32–53. PMLR, 2018. URL https://proceedings.mlr.press/v96/
lueckmann19a.html.

Jan-Matthis Lückmann, Jan Bölts, David S. Greenberg, Pedro Goncalves, and Jakob Macke. Benchmarking
Simulation-based Inference. In A. Banerjee and K. Fukumizu (eds.), Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pp. 343–351. PMLR, 2021. URL https://proceedings.mlr.press/v130/lueckmann21a.html.

20

http://jmlr.org/papers/v17/15-017.html
http://jmlr.org/papers/v17/15-017.html
https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2502.08416
https://arxiv.org/abs/2502.08416
https://proceedings.mlr.press/v96/lueckmann19a.html
https://proceedings.mlr.press/v96/lueckmann19a.html
https://proceedings.mlr.press/v130/lueckmann21a.html


Published in Transactions on Machine Learning Research (01/2026)

Jan-Matthis Lueckmann, Pedro J. Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher,
and Jakob H. Macke. Flexible Statistical Inference for Mechanistic Models of Neural Dynam-
ics. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf.

Nora Luthen, Stefano Marelli, and Bruno Sudret. Sparse polynomial chaos expansions: Literature survey
and benchmark. SIAM/ASA Journal on Uncertainty Quantification, 9(2):593–649, 2021. doi: 10.1137/
20M1315774.

Nicolò Malagutti, Grace McGinness, and Dilip A. Nithyanandam. Real-Time Personalised Pharmacokinetic-
Pharmacodynamic Modelling in Propofol Anesthesia Through Bayesian Inference. In 2023 45th Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1–6, 2023.
doi: 10.1109/EMBC40787.2023.10339991.

Norman Marlier. Simulation-based Inference for Robotic Grasping. PhD thesis, Universite de Liege (Belgium),
2024.

Edward Meeds and Max Welling. GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computa-
tion, 2014. URL https://arxiv.org/abs/1401.2838.

Martin Modrák, Angie H. Moon, Shinyoung Kim, Paul-Christian Bürkner, Niko Huurre, Kateřina Falte-
jsková, Andrew Gelman, and Aki Vehtari. Simulation-based Calibration Checking for Bayesian Com-
putation: The Choice of Test Quantities Shapes Sensitivity. Bayesian Analysis, pp. 1–28, 2023. doi:
10.1214/23-BA1404.

Farid Mohammadi, Rebekka Kopmann, Anneli Guthke, Sergey Oladyshkin, and Wolfgang Nowak. Bayesian
Selection of Hydro-morphodynamic Models under Computational Time Constraints. Advances in Water
Resources, 117:53–64, 2018. doi: 10.1016/j.advwatres.2018.05.007.

Sergey Oladyshkin and Wolfgang Nowak. Data-Driven Uncertainty Quantification Using the Arbitrary
Polynomial Chaos Expansion. Reliability Engineering & System Safety, 106:179–190, 2012. doi: 10.1016/
j.ress.2012.05.002.

Sergey Oladyshkin, Farid Mohammadi, Ilja Kröker, and Wolfgang Nowak. Bayesian3 Active Learning for the
Gaussian Process Emulator using Information Theory. Entropy, 22(8):890, 2020. doi: 10.3390/e22080890.

Govinda A. Padmanabha and Nicholas Zabaras. Solving Inverse Problems Using Conditional Invertible
Neural Networks. Journal of Computational Physics, 433:110194, 2021. doi: 10.1016/j.jcp.2021.110194.

George Papamakarios and Iain Murray. Fast ϵ -free Inference of Simulation Models with
Bayesian Conditional Density Estimation. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/
6aca97005c68f1206823815f66102863-Paper.pdf.

George Papamakarios, David Sterratt, and Iain Murray. Sequential Neural Likelihood: Fast Likelihood-free
Inference with Autoregressive Flows. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 837–848. PMLR, 2019. URL https://proceedings.mlr.
press/v89/papamakarios19a.html.

George Papamakarios, Eric Nalisnick, Danilo J Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing Flows for Probabilistic Modeling and Inference. Journal of Machine Learning Research, 22
(57):1–64, 2021. URL http://jmlr.org/papers/v22/19-1028.html.

Thomas P. Prescott and Ruth E. Baker. Multifidelity Approximate Bayesian Computation. SIAM/ASA
Journal on Uncertainty Quantification, 8(1):114–138, 2020. doi: 10.1137/18M1229742.

21

https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://arxiv.org/abs/1401.2838
https://proceedings.neurips.cc/paper_files/paper/2016/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.mlr.press/v89/papamakarios19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
http://jmlr.org/papers/v22/19-1028.html


Published in Transactions on Machine Learning Research (01/2026)

Thomas P. Prescott and Ruth E. Baker. Multifidelity approximate Bayesian computation with sequential
Monte Carlo parameter sampling. SIAM/ASA Journal on Uncertainty Quantification, 9(2):788–817, 2021.
doi: 10.1137/20M1316160.

Thomas P. Prescott, David J. Warne, and Ruth E. Baker. Efficient Multifidelity Likelihood-free Bayesian
Inference with Adaptive Computational Resource Allocation. Journal of Computational Physics, 496:
112577, 2024. doi: 10.1016/j.jcp.2023.112577.

Leah F Price, Christopher C Drovandi, Anthony Lee, and David J Nott. Bayesian Synthetic Likelihood.
Journal of Computational and Graphical Statistics, 27(1):1–11, 2018. doi: 10.1080/10618600.2017.1302882.

Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. BayesFlow: Learning
Complex Stochastic Models with Invertible Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 33(4):1452–1466, 2020. doi: 10.1109/TNNLS.2020.3042395.

Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, and
Ullrich Köthe. OutbreakFlow: Model-based Bayesian Inference of Disease Outbreak Dynamics with Invert-
ible Neural Networks and its Application to the COVID-19 Pandemics in Germany. PLoS Computational
Biology, 17(10):e1009472, 2021. doi: 10.1371/journal.pcbi.1009472.

Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, and Paul-Christian
Bürkner. JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. In R. J. Evans
and I. Shpitser (eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216 of Proceedings of Machine Learning Research, pp. 1695–1706. PMLR, 2023a. URL https:
//proceedings.mlr.press/v216/radev23a.html.

Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte,
Ullrich Köthe, and Paul-Christian Bürkner. BayesFlow: Amortized Bayesian Workflows with Neural
Networks. Journal of Open Source Software, 8(89):5702, 2023b. doi: 10.21105/joss.05702.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2006. ISBN 026218253X.

Philipp Reiser, Javier E. Aguilar, Anneli Guthke, and Paul-Christian Bürkner. Uncertainty Quantification
and Propagation in Surrogate-based Bayesian Inference. Statistics and Computing, 35(3):66, 2025. doi:
10.1007/s11222-025-10597-8.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, 2004. ISBN 978-1-4757-
4145-2. doi: 10.1007/978-1-4757-4145-2.

Christian P. Robert, Víctor Elvira, Nick Tawn, and Changye Wu. Accelerating MCMC Algorithms. Wiley
Interdisciplinary Reviews: Computational Statistics, 10(5):e1435, 2018. doi: 10.1002/wics.1435.

Teemu Säilynoja, Paul-Christian Bürkner, and Aki Vehtari. Graphical Test for Discrete Uniformity and Its
Applications in Goodness-of-Fit Evaluation and Multiple Sample Comparison. Statistics and Computing,
32(32), 2022. doi: 10.1007/s11222-022-10090-6.

Stefania Scheurer, Aline Schäfer Rodrigues Silva, Farid Mohammadi, Johannes Hommel, Sergey Oladyshkin,
Bernd Flemisch, and Wolfgang Nowak. Surrogate-based Bayesian Comparison of Computationally Expen-
sive Models: Application to Microbially Induced Calcite Precipitation. Computational Geosciences, 25(6):
1899–1917, 2021. doi: 10.1007/s10596-021-10076-9.

Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T. Radev. Detecting Model Misspecifi-
cation in Amortized Bayesian Inference with Neural Networks. In U. Köthe and C. Rother (eds.), Pattern
Recognition, pp. 541–557. Springer Nature Switzerland, 2024a. doi: 10.1007/978-3-031-54605-1_35.

Marvin Schmitt, Valentin Pratz, Ullrich Köthe, Paul-Christian Bürkner, and Stefan T. Radev. Consistency
Models for Scalable and Fast Simulation-based Inference. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,

22

https://proceedings.mlr.press/v216/radev23a.html
https://proceedings.mlr.press/v216/radev23a.html


Published in Transactions on Machine Learning Research (01/2026)

volume 37, pp. 126908–126945. Curran Associates, Inc., 2024b. URL https://proceedings.neurips.
cc/paper_files/paper/2024/file/e58026e2b2929108e1bd24cbfa1c8e4b-Paper-Conference.pdf.

Qian Shao, Anis Younes, Marwan Fahs, and Thierry A. Mara. Bayesian Sparse Polynomial Chaos Expansion
for Global Sensitivity Analysis. Computer Methods in Applied Mechanics and Engineering, 318:474–496,
2017. doi: 10.1016/j.cma.2017.01.033.

Ilya M. Sobol’. On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals. USSR
Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967. doi: 10.1016/0041-5553(67)
90144-9.

Il’ya Meerovich Sobol’. On Sensitivity Estimation for Nonlinear Mathematical Models. Matematicheskoe
modelirovanie, 2(1):112–118, 1990.

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, 2024. URL http:
//mc-stan.org/. Version 2.36.

Bruno Sudret. Global Sensitivity Analysis Using Polynomial Chaos Expansions. Reliability Engineering &
System Safety, 93(7):964–979, 2008. doi: 10.1016/j.ress.2007.04.002.

Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating Bayesian
Inference Algorithms with Simulation-based Calibration, 2020. URL https://arxiv.org/abs/1804.
06788.

Shahin Tasoujian, Saeed Salavati, Matthew A. Franchek, and Karolos M. Grigoriadis. Robust Delay-
Dependent LPV Synthesis for Blood Pressure Control with Real-Time Bayesian Parameter Estimation.
IET Control Theory & Applications, 14(10):1334–1345, 2020. doi: 10.1049/iet-cta.2019.0651.

Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael P.H. Stumpf. Approximate Bayesian
Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems. Journal of the
Royal Society Interface, 6(31):187–202, 2009. doi: 10.1098/rsif.2008.0172.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-
Normalization, Folding, and Localization: An Improved R̂ for Assessing Convergence of MCMC (with
Discussion). Bayesian Analysis, 16(2):667 – 718, 2021. doi: 10.1214/20-BA1221.

Udo Von Toussaint. Bayesian Inference in Physics. Reviews of Modern Physics, 83(3):943–999, 2011. doi:
10.1103/RevModPhys.83.943.

David J. Warne, Ruth E. Baker, and Matthew J. Simpson. Multilevel Rejection Sampling for Approximate
Bayesian Computation. Computational Statistics & Data Analysis, 124:71–86, 2018. doi: 10.1016/j.csda.
2018.02.009.

David J. Warne, Thomas P. Prescott, Ruth E. Baker, and Matthew J. Simpson. Multifidelity Multilevel
Monte Carlo to Accelerate Approximate Bayesian Parameter Inference for Partially Observed Stochastic
Processes. Journal of Computational Physics, 469:111543, 2022. doi: 10.1016/j.jcp.2022.111543.

Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938. doi:
10.2307/2371268.

Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H. Macke, and Bernhard
Schölkopf. Flow Matching for Scalable Simulation-based Inference. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 16837–16864. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/
paper_files/paper/2023/file/3663ae53ec078860bb0b9c6606e092a0-Paper-Conference.pdf.

Richard Wilkinson. Accelerating ABC Methods using Gaussian Processes. In S. Kaski and J. Corander
(eds.), Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics,
volume 33 of Proceedings of Machine Learning Research, pp. 1015–1023. PMLR, 2014. URL https:
//proceedings.mlr.press/v33/wilkinson14.html.

23

https://proceedings.neurips.cc/paper_files/paper/2024/file/e58026e2b2929108e1bd24cbfa1c8e4b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e58026e2b2929108e1bd24cbfa1c8e4b-Paper-Conference.pdf
http://mc-stan.org/
http://mc-stan.org/
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788
https://proceedings.neurips.cc/paper_files/paper/2023/file/3663ae53ec078860bb0b9c6606e092a0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3663ae53ec078860bb0b9c6606e092a0-Paper-Conference.pdf
https://proceedings.mlr.press/v33/wilkinson14.html
https://proceedings.mlr.press/v33/wilkinson14.html


Published in Transactions on Machine Learning Research (01/2026)

Wan Yang, Marc Lipsitch, and Jeffrey Shaman. Inference of Seasonal and Pandemic Influenza Transmission
Dynamics. Proceedings of the National Academy of Sciences, 112(9):2723–2728, 2015. doi: 10.1073/pnas.
1415012112.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R. Salakhutdinov, and Alexan-
der J. Smola. Deep Sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

Jiangjiang Zhang, Qiang Zheng, Dingjiang Chen, Laosheng Wu, and Lingzao Zeng. Surrogate-based Bayesian
Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approxima-
tion Error. Water Resources Research, 56(1):e2019WR025721, 2020. doi: 10.1029/2019WR025721.

Lingyi Zhou, Stefan T Radev, William H Oliver, Aura Obreja, Zehao Jin, and Tobias Buck. Bridging
Simulations and Observations: New Insights into Galaxy Formation Simulations via Out-of-distribution
Detection and Bayesian Model Comparison - Evaluating Galaxy Formation Simulations under Limited
Computing Budgets and Sparse Dataset Sizes. Astronomy & Astrophysics, 701:A44, 2025. doi: 10.1051/
0004-6361/202453399.

24

https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf


Published in Transactions on Machine Learning Research (01/2026)

A Algorithmic Overview

Algorithm 1 gives an algorithmic overview of UA-SABI training. Note that this is for online training. In
case of offline training, inputs and parameters {(x(i), ω(i))}NB

i=1 are fixed and not resampled in each epoch.

Algorithm 1 Training of Surrogate and UA-SABI
Surrogate Training Phase

Require: Simulation model M(x, ω), prior p(c, σ), likelihood p(y | x, ω, c, σ)
Ensure: Posterior p(c, σ | DT )

1: Choose inputs and parameters {(x(i), ω(i))}NT
i=1

2: for i = 1, . . . , NT do
3: Evaluate simulation model y(i) = M(x(i), ω(i))
4: end for
5: Construct training dataset DT = {(x(i), ω(i), y(i))}NT

i=1
6: Perform Bayesian inference for surrogate parameters

p(c, σ | DT ) ∝
NT∏
i=1

p(y(i) | x(i), ω(i), c, σ) p(c, σ)

UA-SABI Training Phase
Require: Prior p(x, ω), posterior p(c, σ | DT )
Ensure: Trained summary and inference network parameters θ̂, φ̂

7: for each epoch do
8: for i = 1, . . . , NB do
9: Sample inputs and parameters from prior (x(i), ω(i)) ∼ p(x, ω)

10: Sample surrogate parameters from posterior (c(i), σ(i)) ∼ p(c, σ | DT )
11: Evaluate surrogate ỹ(i) = M̃c(i)(x(i), ω(i))
12: Sample corrected surrogate output ỹ(i)

ϵ ∼ p(ỹϵ | ỹ(i), σ(i))
13: Pass (x(i), ỹ(i)

ϵ ) through summary network s(i) = Sθ(x(i), ỹ(i)
ϵ )

14: Pass s(i) through inference network Iφ(s(i)) which implies qφ(ω(i) | s(i))
15: end for
16: Compute loss from Eq. (5) and update network parameters θ, φ
17: end for

B Proofs

We refer to ABI standard conditions as those under which ABI yields asymptotically correct posteriors,
following Radev et al. (2020). Specifically, we assume (i) an infinitely large training dataset, (ii) a conditional
neural density estimator qφ(ω | y) that is sufficiently expressive, (iii) convergence of the training procedure
to the true conditional density, and (iv) inference data drawn from the same data-generating process as the
training data.

Likewise, MCMC standard conditions refer to ergodicity, irreducibility, and aperiodicity of the Markov chain
(e.g., Robert & Casella, 2004), ensuring convergence of the chain to the target posterior distribution as the
number of samples tends to infinity.
Proposition 1. Under ABI standard conditions, and assuming an infinite number of samples used to prop-
agate from the surrogate posterior p(c, σ | DT ), the posterior distribution targeted by UA-SABI converges to
the E-Post posterior.

Proof. In UA-SABI, as per Eq. (11), we sample from the joint distribution

p(ω, y, c, σ | DT ) = p(y | ω, c, σ) p(ω) p(c, σ | DT ) (17)
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to train the conditional neural density estimator qφ(ω | y). We only condition on the data y and treat the
surrogate parameters (c, σ) as nuisance parameters ignored by qφ(ω | y). This means that we (implicitly)
integrate over the distribution of (c, σ). Hence, UA-SABI targets the following posterior:

pUA−SABI(ω | y, DT ) ∝
∫∫

p(y | ω, c, σ) p(ω) p(c, σ | DT ) dc dσ. (18)

On the other hand, E-Post targets the following posterior, as per Eq. (13):

pE−Post(ω | y, DT ) =
∫∫

p(ω | y, c, σ) p(c, σ | DT ) dc dσ (19)

∝
∫∫

p(y | ω, c, σ) p(ω) p(c, σ | DT ) dc dσ, (20)

which shows pUA−SABI(ω | y, DT ) = pE−Post(ω | y, DT ).

Corollary 1. For an infinite number of samples from the surrogate posterior p(c, σ | DT ) and under ABI
and MCMC standard conditions, the empirical distributions of UA-SABI samples and MCMC samples from
E-Post converge to each other.

C Additional Case Study Details

C.1 Surrogate Models

In case study 1, we train a Bayesian PCE with 2-dimensional Legendre polynomials and a maximum total
degree of 3, resulting in J = 10 polynomials. We set a normal prior for the surrogate coefficients, p(c) =
N (0, 5), and a half-normal prior for the approximation error parameter, p(σ) = Half-N (0.5).

In case study 2 and 3, we consider a Bayesian PCE with 3- and 4-dimensional aPC polynomials for the
CO2 model (see Section 4.3) and a maximum total degree of 3, resulting in J = 19 and J = 35 polynomials
respectively. Following Bürkner et al. (2023), we place a sparsity-inducing R2D2 prior on the surrogate
coefficients c with R2 ∼ Beta(0.5, 2). For the approximation error we set the prior as p(σ) = Half-N (0.1).

C.2 Neural Posterior Estimation

For the first two case studies, we used the same NPE setup. The summary network Sθ(x, y) is a DeepSet
Zaheer et al. (2017) composed of two hidden layers, each containing 10 neurons. It outputs a 10-dimensional
summary vector. For the inference network Iφ(s), we employ a coupling flow as implemented in Radev et al.
(2023b). For the third case study, we did not use a summary network as the measurement locations in the
experiment were fixed. For the inference network Iφ(s), we used a spline coupling flow (Durkan et al., 2019)
as implemented in Radev et al. (2023b). The training process employed a cosine learning rate scheduler
with an initial learning rate of 5 × 10−4 and a minimum learning rate fraction of α = 10−6. The scheduler
operated over a total of 12,800 steps, corresponding to 128 batches per epoch over 100 epochs. All NPE
models were trained using the Adam optimizer (Kingma & Ba, 2017) for 100 epochs.

D Additional Results for Case Study 1: LogSin Model

This section shows the MCMC convergence analysis of E-Post for the LogSin model to explain the differences
between UA-SABI and E-Post. We follow the same setup as described in Section 4.2.1, but used more samples
and chains to check convergence. We analyzed the convergence for each of the 200 ground truth parameters
and for each surrogate posterior sample respectively. We run MCMC separately for each of the 1,000
surrogate posterior samples with 4 chains and 1,000 warm-up and 1,000 sampling iterations, respectively,
resulting in 1,000 × 4 × 1,000 draws per ground truth parameter used for analysis.

For each surrogate posterior sample we can check the convergence of the MCMC run using standard diagnos-
tics R̂. As convergence threshold, we follow the standard recommendation R̂ < 1.01 (Vehtari et al., 2021).
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Figure 12 shows the ratio of non-converged runs (R̂ > 1.01) started by each surrogate posterior sample (SPS)
vs. total number of runs for each of the 200 ground truth parameters. It is evident that for most ground
truth parameter values more than 10% of the runs have not converged, with some having more than 40% of
the runs with an R̂ > 1.01. Notably, for most ground truth parameter values, more than 10% of the runs
have not converged, with some parameters even exceeding more than 40% for that ratio. This indicates that
the E-Post posterior is not reliable, which results in deviating posteriors for E-Post and UA-SABI, as shown
in Fig. 5.
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Figure 12: Ratio of non-converged runs (R̂ > 1.01) started by each surrogate posterior sample (SPS) vs.
total number of runs for each of the 200 ground truth parameters for the LogSin model.

Additionally, Fig. 13 shows the trace plots of single E-Post runs (4 chains) for two exemplary draws of the
surrogate posterior with bad R̂ given a single ground truth parameter for the LogSin model. These traces
indicate that the chains fail to mix properly between the two modes of the underlying posterior. When the
modes have little overlap, MCMC struggles to recover their correct proportions.
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Figure 13: Trace plots of single E-Post MCMC runs for two exemplary draws of the surrogate posterior given
a single ground truth parameter for the LogSin model. The different colors indicate different chains.

E Additional Results for Case Study 2: CO2 Storage Model

This section shows the recovery and ECDF difference plots for porosity of the CO2 storage model shown for
SABI vs. Point and UA-SABI vs. E-Post.

In Fig. 14 we show that SABI and Point as well as UA-SABI and E-Post yield similar results in both recovery
and calibration. The notably wide intervals observed for Point, especially compared to SABI in the recovery
plots suggest convergence problems in the MCMC, likely due to the low standard deviation in the likelihood.
These convergence problems may explain the inconsistencies between SABI and Point. In comparison, their
uncertainty-aware counterparts UA-SABI and E-Post produce highly similar estimates.
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Figure 14: CO2 recovery plots comparing to ground truth and MCMC full reference solution, ECDF difference
plots (from left to right) for 200 ground truth samples: SABI vs. Point (top) and UA-SABI vs. E-Post
(bottom). For ECDF difference plots, empirical ranks are shown in blue, 95% confidence bands assuming
calibration are shown in grey.

F Additional Results for Case Study 3: MICP Model

F.1 Illustration

Figure 15: Schematic illustration of relevant processes during MICP. Figure adapted from Scheurer et al.
(2021), licensed under CC BY 4.0.
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F.2 Parameter Posterior with Original Priors

Performing inference with the original prior for kub leads, regardless of the inference method, to point-like
posteriors at the upper boundary of the prior. The reason is the same for all methods: the maximal value
of kub yields the highest output values. Since the measurement data are always higher than the surrogate
output under the original prior, the posterior collapses to a point-like estimate at the maximum admissible
value of kub, as exemplified in Fig. 9.
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Figure 16: KDEs of 4,000 parameter posterior samples for kub of the MICP model obtained with low-budget
ABI, Point, E-Post, SABI and UA-SABI using the original parameter prior.

F.3 Sensitivity Analysis

We conducted a sensitivity analysis on the surrogate to identify the parameters to which the surrogate output
is most sensitive. Sobol indices (Sobol’, 1990) decompose the output variance into contributions from each
parameter (including their interactions), with the total Sobol index of a parameter quantifying its overall
influence on the output variance. Figure 17 presents the distributions of the total Sobol indices (Le Gratiet
et al., 2017) for each parameter at each location, noting that each location has its own surrogate. Since the
Bayesian PCE yields samples of the coefficients, the corresponding Sobol indices are also obtained in the
form of distributions. Figure 17 clearly shows that almost all the variance in the output at all locations is
determined by kub.

F.4 Parameter Posterior for Remaining Parameters

Figure 18 shows the KDEs of 4,000 parameter samples for the 3 remaining parameters, ca,1, ca,2, and ρf ,
obtained with low-budget ABI, Point, E-Post, SABI, and UA-SABI. Two distinct scenarios emerge: 1) the
posterior collapses to a point estimate (often at the boundary of the prior), or 2) the posterior remains close to
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Figure 17: Distribution of total Sobol indices over all locations for the four parameters ca,1, ca,2, ρf , kub of
the MICP model.
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the prior distribution. Point-like posteriors are produced by low-budget ABI or Point, while surrogate-based
methods yield posteriors resembling the prior. Both outcomes can be explained by the lack of sensitivity
of the output to these parameters, as shown by the total Sobol indices in Fig. 17. This missing sensitivity
makes reliable inference very difficult.
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Figure 18: KDEs of 4,000 parameter posterior samples for the remaining parameters ca,1, ca,2, and ρf of the
MICP model obtained with low-budget ABI, Point, E-Post, SABI, and UA-SABI.

F.5 Runtime Comparison

To compare runtimes as in case studies 1 and 2, inference must be performed on multiple datasets. Since only
one dataset of real measurements is available, we conducted the runtime analysis on synthetic datasets. The
experiments were also run on a computing cluster with two AMD EPYC 7551 CPUs (totaling 64 physical
cores) to speed up E-Post through parallelization.

Figure 19 shows the measured runtimes of UA-SABI and E-Post for 2, 3, 4, 5 inference runs, with E-Post
parallelized across 16 cores. We observe a break-even point between 3 and 4 runs, meaning that UA-SABI
becomes advantageous starting from 4 runs. Despite E-Post leveraging more cores, the training costs of
UA-SABI are amortized earlier when the model is more expensive.
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Figure 19: Comparison of runtimes for MICP for {2,3,4,5} runs for UA-SABI (training and inference) and
E-Post (inference) with break-even point.
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