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ABSTRACT

We introduce a new multivariate statistical problem that we refer to as the En-
semble Inverse Problem (EIP). The aim of EIP is to invert for an ensemble that
is distributed according to the pushforward of a prior under a forward process. In
high energy physics (HEP), this is related to a widely known problem called un-
folding, which aims to reconstruct the true physics distribution of quantities, such
as momentum and angle, from measurements that are distorted by detector ef-
fects. In recent applications, the EIP also arises in inverse imaging with unknown
priors. We propose non-iterative inference-time methods that construct posterior
samplers based on a new class of conditional generative models, which we call
ensemble inverse generative models. For the posterior modeling, these models
additionally use the ensemble information contained in the observation set on top
of single measurements. Unlike existing methods, our proposed methods avoid
explicit and iterative use of the forward operator at inference time via training
across several sets of truth-observation pairs that are consistent with the same for-
ward operator, but originate from a wide range of priors. We demonstrate that this
training procedure implicitly encodes the likelihood model. The use of ensemble
information helps posterior inference and enables generalization to unseen priors.
We benchmark the proposed method on several synthetic and real datasets in HEP
and inverse imaging.

1 INTRODUCTION

Let 2 € R? be a random variable with a prior distribution p(z). We make an observation y about
the truth x via a forward model:

y = F(x) + n(x), (Fwd-Model)
where F' is a forward (measurement) operator and n(x) represents an additive noise, which can in
general depend on x. Within this setup, we consider the following problem that we refer to as the
Ensemble Inverse Problem (EIP). We are given a dataset D = {Dy, - - - , Dy} consisting of multiple
truth-observation pairs arising from sampling observations via equation from M prior
distributions p,,,,m € [1 : M].

i Ny Ny deied
Dm:{($ Ty ’J)}j‘V:1 ~ pm(iﬁ)p(y\ﬂf)7 (1)

where (a:mj , ymﬂ ) denotes the j-th truth-observation pair in D,,, and the size of D,, is N,,. The
pair (z™7,y™7) is independently and identically distributed (i.i.d.) according to the joint distri-

bution p,,, (2)p(y|z), and the conditional distribution p(y|x) is determined via equation [Fwd-Model
and is the same for all datasets {D1,--- ,Das}. We assume that we only have access to D and no

direct knowledge about equation

Problem statement (EIP-I for the prior): Given training data D, and given a new set of observa-

tions ) = {y', -,y } obtained from an unknown prior p(x) and the same (as D, but unknown)
forward model, generate samples z*, - - -, zV / |V such that for a given A > 0,

p(p(z]Y), p(x)) <A,
where p(z|Y) = lmpy/—oo 7 ZTJ:/:/I dgnjy is the limiting empirical measure corresponding to

the generated samples. p(-,-) denotes a discrepancy measure between distributions, such as the



Kullback-Liebler divergence, total Variation |Cover & Thomas| (2006), or Wasserstein distance |Vil-
lani| (2009) ,and the Dirac delta function d,~» denotes the probability density of a distribution con-
centrated at the n-th generated sample x™. In other words, the aim of EIP-I is to generate samples
whose distribution comes close to the prior distribution that lead to the observations. For practical
utility that will become clear in the exposition later, we restrict the EIP-I problem further to learn to
generate samples via posterior sampling, given observations from a prior.

Problem statement (EIP-II for the posterior): Given training data D, and given a new set of
i.i.d. observations ) = {y',--- 4™} obtained from an unknown prior p(z) and the same (as D)
but unknown forward model, for any given y, generate conditional samples z', - - - ,HCN, ly, Y such
that for a given A > 0,

p(P(xly, V), p(xly)) < A,

where p(2[y, V) = Hmns oo 37 Soney Janjyy, plaly) = EE2UL),

It is evident that the integration of the solution to EIP-II yields a good approximation of the solution
to EIP-I1. However, the integration of posteriors that are not the solution to EIP-II can still be the
solution to EIP-I. We refer the readers to the Gaussian example in Sec. 3 in Butter et al.| (2025) and
our example in Fig.

<
<

(a) Forward process (b) EIP-II's solution (c) An incorrect posterior

Figure 1: Consider a forward process in Fig.[Ia] Fig.[1b|shows EIP-II’s solution, with its integration
corresponding to EIP-I's solution. Fig.[Ic|shows an incorrect posterior; however, the integration of
this incorrect posterior can lead to the correct prior.

Owing to the success of the generative models in modeling complex distributions with provable
theoretical guarantees |Ho et al| (2020); [Chen et al.|(2023); |Albergo & Vanden-Eijnden| (2023), in
this paper, we aim to solve EIP-II by modeling the posterior via generative models.

Where does EIP arise? An important application of EIP arises in the high-energy physics (HEP)
domain, where one unfolds to remove detector effects D’ Agostini/ (2010); |/Andreassen et al.| (2020).
A point of distinction in our problem statement and the traditional unfolding setup is that EIP-
I & II do not make explicit use of the forward operator at inference time. The primary reason
to deviate from such a setting is that typically forward models are computationally expensive to
simulate. So EIP-I & II provide for an avenue where this model is implicit in the dataset D. In the
context of unfolding, EIP-II setting has recently been considered directly in/Pazos et al.|(2025) using
conditional generative models.

Another domain where EIP-II arises naturally is the inverse imaging problem setting, where one
wants to recover a corrupted image with an unknown prior Daras et al.|(2023); [Hu et al.| (2024). A
set of recent works has considered EIP-like problems arising in contexts of Large-Language Models
and the In-Context Learning |Geshkovski et al.[(2024); [Teh et al.|(2025));|/Adu & Gharesitard|(2024).
In|Geshkovski et al.| (2024); |Adu & Gharesifard| (2024)) the main problem is to understand if given
pairs of measures whether there exists a transformer architecture that can map a given input to its
corresponding output, thus learning a measure to measure map. The setting of [Teh et al.|(2025) also
comes close to EIP.|Teh et al.| (2025) proposes to use a transformer to infer the hidden parameters in
a Poisson forward process, provided with a set of observations.

We now summarize related work in terms of the methods that have been proposed in the literature
and which can potentially be used to address the EIP problem.



Method Requirements Objective | Iterative R Tunegblg Designed to recover
egularization unseen priors
1BU equation|Fwd-Model p(x) Yes Yes Yes
Non-ML SVD Unfolding equation|Fwd-Model p(x) Partial Yes Yes
Measure decomposition equation[Fwd-Model p(zly) Yes Yes Yes
Thoretical | Mcasure-to-measure D p(z) No No No
interpolation
OmniFold D or equation|Fwd-Model| p(x) Yes Yes Yes
GANs equation|Fwd-Model| p(x) No No Yes
DPnP {7}, and equation|Fwd-Model[ | p(z[y) No No No
Ambient diffusion {y’}}_, and equation|Fwd-Model| | p(z]y) No No No
ML-based cINN equation|Fwd-Model| p(z]y) No No No
SBUnfold D p(z]y) No No Yes
Pretrained model and

DDRM equation [Fwd-Model| p(zly) No No No
GDDPM D p(z]y) No No Yes
Ours D p(z]y) No No Yes

Table 1: Comparison of methods for solving EIP-I (objective: p(x)) & EIP-II (objective: p(z|y))
and their key characteristics. Iterative Bayesian unfolding (IBU) appears in/D’ Agostini| (2010). Sin-
gular value decomposition (SVD) Unfolding appears in Hocker & Kartvelishvili| (1996)). Measure
decomposition method for posterior sampling appears in [Montanari & Wu| (2025)). Measure-to-
measure interpolation approaches appear in |Geshkovski et al.| (2024); |Adu & Gharesifard| (2024).
OmniFold appears in|/Andreassen et al.|(2020). Generative adversarial networks (GANs) for inverse
problems appear in Bellagente et al.| (2020b)); |Datta et al.[(2018). Diffusion plug-and-play (DPnP)
method appears in|[Xu & Chil(2025). Ambient diffusion appears in|Daras et al.|(2023). Conditional
invertible neural networks (cINN) approaches appear in |Backes et al.| (2024); Heimel et al.| (2024);
Bellagente et al| (2020a). SBUnfold appears in |Diefenbacher et al.| (2023). Denoising diffusion
restoration model (DDRM) appears in | Kawar et al.[(2022). Generalizable conditional denoising dif-
fusion probabilistic model (GDDPM) appears in [Pazos et al.[(2025).

1.1 RELATED WORKS

Table[T|provides a summary of key features among non-ML, theoretical, and ML-based methods for
solving the EIP and / or classical inverse problem.

1. Non-ML methods: Traditional methods designed for unfolding reconstruct the prior via iter-
ative probabilistic updates IBU |D’ Agostini| (2010) and suppression of contributions with small
singular values |Hocker & Kartvelishvili| (1996). Common features of them include relying on
explicit modeling of the forward process and requiring the data to be binned. In a more general
setting, Montanari & Wul (2025) proposes an iterative posterior measure decomposition method
that enables efficient sampling for sparse Bayesian inverse problems.

2. Theoretical methods: |Geshkovski et al.| (2024));/Adu & Gharesifard| (2024) provide mathematical
frameworks for understanding transformers as measure-to-measure maps and prove that a single
transformer can approximate the transport maps and velocity fields between multiple distribution
pairs. The depth and complexity of the transformer depend on the structure and the number of
pairs. However, the problem of generalization to unseen measures was not considered, and no
algorithm was proposed for solving the EIP. [Teh et al.| (2025) proves that transformers can ap-
proximate classical empirical Bayes estimators and proposes a training algorithm. Nevertheless,
this method is limited to the one-dimensional Poisson—EB setting.

3. ML-based methods: Omnifold /Andreassen et al.|(2020) is a representative iterative re-weighting
method for unfolding that shapes a given prior to the target prior. Generative methods have also
become successful tools for addressing inverse problems, leading to a surge of approaches, in-
cluding GANs [Bellagente et al.| (2020b); Datta et al.| (2018), DPnP Xu & Chi| (2025), ambient
diffusion, and SBUfold |Diefenbacher et al.[ (2023). In particular, GDDPM |Pazos et al.| (2025)
aims to solve EIP-II via posterior modeling and sampling. Built based on conditional DDPM
(cDDPM), GDDPM additionally utilizes moment information of observations to ensure general-
ization ability across different physics processes. With the objective of avoiding computationally
costly iterative inference, bypassing the difficulty of obtaining the forward operator, and effec-
tively incorporating distributional information embedded in observations, this work provides a
framework for solving EIP-II via generative models.

1.2 CONTRIBUTIONS

We list the contributions of this work as follows,



1. This work proposes a novel non-iterative framework for solving EIP-II, called ensemble inverse
generative models, which models the posterior sampling process and are conditioned on both
measurements and observation sets.

2. With the ensemble information extracted via a permutation invariant structure from the obser-
vation set, the proposed method demonstrates a superior posterior inference ability and a strong
generalization ability to unseen priors.

3. Under several synthetic settings and real applications, including HEP unfolding and image inver-
sion tasks, we demonstrate that the proposed methods outperform baselines without relying on
explicit knowledge about the priors and the forward model.

2 METHOD

We address EIP-II via a non-iterative posterior sampling method. Specifically, generative models
that are conditioned on not only the single measurement y but also the observation set ), are utilized
to model the posterior and serve as a posterior sampler. With the aid of ensemble information
extracted from the observation set ), the proposed method is shown to have a strong inductive bias
to unseen priors. To state the methods, we refer the readers to two successful generative models,
viz., generative models, Denoising Diffusion Probabilistic Models (DDPM) Ho et al.| (2020) and
Flow Matching (FM) [Lipman et al.| (2023) for backgrounds, and we provide more details for the
conditional version of them in Sec.

2.1 ENSEMBLE INVERSE GENERATIVE MODELS FOR EIP-II

Our main idea behind addressing EIP-II is that the observation set ), in which all observations yield
from a single prior distribution p(x), contains information about p(z). This prior information is not
directly available, but can contribute towards a valid posterior inference for any given y yielding
from p(zx). Inspired by [Teh et al.[(2025); Pazos et al|(2025) and with the objective of utilizing the
ensemble information contained in )/, our recovery model is conditioned on not only the measure-
ment y but also the observation set ). The size of ) should generally be large in order to reflect the
underlying ensemble information. However, in conditional generative modeling, directly condition-
ing on a large input set can be computationally inefficient and statistically unstable, as the model
must process high-dimensional and unordered data. To address this, one can first encode the set
using a permutation invariant structure, such as using the moment function as in|Pazos et al.[(2025).
For a more versatile and adaptive representation, we propose to extract the ensemble information
via ¢y, : RNxd _y RE g permutation invariant neural network (NN) parameterized with w, that
maps an observation set Y containing N d-dimensional samples into a k-dimensional representation
that reflects the ensemble information. Formally, let S denote the set of all permutation of indices
{1,2,---, N}. ¢, should satisfy

VSGSN, ¢w(3y):¢w(y)v y:{yl’ 7yN} (2)
This allows ¢,, to process ) as a set, focusing on the group feature and ignoring the order informa-
tion. Optional choices for implementing ¢,, include deep set|Zaheer et al.|(2017) and set transformer
Lee et al.| (2019).

Based on this insight, we propose an algorithm for solving EIP-II, named ensemble inverse denoising
diffusion probabilistic model (EI-DDPM) / ensemble inverse flow matching (EI-FM), as presented in
Alg.[Tand Alg.]2] EI-DDPM / EI-FM is based on conditional-DDPM / conditional-FM frameworks,
wherein an NN denoted by 4, parameterized by 6 is employed to predict the noise / velocity field
at each step. In addition to the intermediate states x; and time information ¢, £¢ accepts single
measurements y, as well as the ensemble information ¢,,()) as inputs in order to model the posterior
p(z|y,Y) in EIP-II. Although the dimension of the ensemble information k is determined by the
user, we emphasize here that & should be generally set close to d for a balanced input of y € R¢
and ¢,,()) € R* into the generative models. The incorporation of ¢,,()) facilitates the posterior
inference for measurements y. Provided with truth-observation pairs resulting from sufficiently
diverse priors, €9 and ¢,, combined is able to generalize for posteriors induced by previously unseen
priors. We numerically illustrate these features in Sec. [3]

The stability of the learned representation of ensemble information ¢,,()) depends on an extra
hyperparameter N — the number of samples in ). First, N should be large enough for ) to have



the capability to represent the distributional information of p(y), thus being able to contain valid
ensemble information. Second, considering that N is fixed during the training stage in Alg. |1} the
input observation set size for Alg. [2] of inference should remain N for robustness. Therefore, it is
important to discuss cases in which the available observation set size N’ # N, at inference time.
For the case N/ > N, subsets of size N can be picked repeatedly to perform Alg. 2| until the union
of the subsets fully covers the target observation set. For the case N’ < N, one can randomly
duplicate N — N’ samples so that the set size is expanded to N. For target sets with N/ < N,
Alg. 2| with duplication strategy may perform in a bad way since a set with too many duplicates will
reflect highly incorrect ensemble information. The effects of N and N’ are further discussed and
numerically investigated in Sec.[B.2]

Algorithm 1 EI-DDPM’s and EI-FM’s Training algorithm
Input:
€9y G, N, D ={Ds,--- , Dy}, EI-DDPM’s schedule parameters {3, o, &, T'}, learning
rate n
Output: Trained €¢, ¢y,

repeat
Choose m ~ Uniform({1,--- , M})
Draw a N pairs subset { (<7, y"7)}}L, from D,,, Y « {y™7} 7,
for each (x, y) pair in the subset do
L(O,w) 0
if using EI-DDPM then
t ~ Uniform({1,--- ,T}), & ~ N(0,1)
L(0,w) + L(O,w) + ||eo (Varz + VT —aik, t,y, (V) — €|
else if using EI-FM then
t~U[0,1],£ ~ N(0,1)
L(O,w)  L(0,w) + [[eo(tz + (1= )&, t,y,60(P)) = (& = )3
end if
end for
(97 ’LU) — (97 ’U)) - nv‘c(oa IU)
until converged
Return ¢y, ¢,

3 EXPERIMENTS

3.1 BASELINES FOR COMPARISON

Conditional DDPM (¢cDDPM) and conditional FM (cFM): c¢DDPM and cFM model the pos-
terior p(x|y) with the conditional variable incorporating only a single measurement. No ensemble
information is included.

GDDPM Pazos et al. (2025): GDDPM is built upon cDDPM and it incorporates additional mo-
ment information computed from ).

Omnifold Andreassen et al| (2020): Omnifold is a reweighting-based unfolding method that
reweighs a given initial distribution towards the prior. The initial distribution is a critical factor
in recovery performance. Since in the EIP setup, we are provided with {(z™7, y™7)}Nm m =
1,---, M, we consider two ways of selecting the initial distribution to invert for a set of observa-

tions )'. a) Omnifold-best: Picking m*, such that {ym* J };V:’”f has the minimum sliced Wasserstein

distance (SWD Bonneel et al.| (2014) from ), and {Jim*’j };V:f serves as the initial distribution;

and b) Omnifold-combine: Using the mixture of all available priors {z"7} ?’:’”1, m=1,--- M as
the initial distribution.

SBUnfold Diefenbacher et al. (2023): SBUnfold leverages Schrodinger Bridges with diffusion
models to map measurements to their truth.

'SWD measures the similarity between two distributions, with smaller values indicating greater similarity.



Algorithm 2 EI-DDPM’s and EI-FM’s sampling algorithm

Input: g, ¢, YV = {3/ ;V:p EI-DDPM’s schedule parameters {c, ay, o, T}, EI-FM’s dis-
cretization interval At
Output: {27}

Z:¢w(y)
for j=1,2,--- ,Ndo
if using EI-DDPM then
TT <—N(O,I)
fort=T---,1do
E—N(,I)ift >1,else £ 0

Ti—1 < \/%T Tt — i:—%:sg(xt,t,yﬁz)) + Ut€
end for
39— xo
else if using EI-FM then
xg  N(0,I),t+ 0
repeat
t«t+ At ‘
T — Tp—ar +eo(Tenae, By, 2) At
untilt =1
ij — I
end if
end for
Return {i;}*,

The NN structures for cDDPM, cFM, SBUnfold, and ¢y used in EI-DDPM / EI-FM are kept the
same (with input dimensions adjusted to match their respective inputs) for a fair comparison. We
use the set transformer |Lee et al.[|(2019) structure for the implementation of ¢,,.

3.2 2-D GAUSSIAN EIP

We first present a toy example of inverting for a perturbed 2-D Gaussian distribution to demonstrate
the effectiveness of the proposed method. The prior is a bivariate Gaussian distribution with mean
8l

1 9

[0,0] T and covariance matrix B where v € [—1, 1] represents the the correlation coefficient

between the two dimensions. Let z = [z, 75] " € R? denote a sample from the prior. The prior is

given as
= (3] F 1)), ®

In this EIP, we consider that « undergoes a linear transformation by a matrix A € R2%2, and is
perturbed by an additive noise term n(x) € R2. The observed signal y € R? is given by

- _[1 05 0.2z,] [0.25]«3 0
pmarsato, A=l G (] P o)) @

The objective is to recover the prior given its observation set ) corresponding to an unknown +.

During the training stage, truth-observation pairs resulting from priors with v € [—0.75, —0.25] U
[0.25,0.75] are provided. In the inference time, we evaluate the recovery performance for priors
with 4 € [—1, 1] perturbed by equation 4l We mainly focus on FM-based models for comparison
to avoid overcrowded results. Observation set size N = 4000 and ensemble information dimension
k = 3 are set for EI-FM, i.e., ¢, : R#000x2 _, R3  Besides the mentioned baselines, we also
evaluate cFM-v, which is built based on cFM, but additionally conditioned on the latent information
~. cFM-v assumes direct knowledge of the priors.
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Figure 2: Visualization of 40000 samples in the prior (y = 0.9) and recovered distributions via
various methods.

Fig. 2] visualizes the distribution of the prior 0.10

with v = 0.9 and the recovered distributions by El-FM

3 representative methods to illustrate EI-FM’s 0.08 Eimy
generalization ability for recovering priors in Omnifold-best
the same parameter family as in the training set. 0.06 ormitpid-comiiS
The true prior with v = 0.9 is a “thin” distribu- o

tion, which is unseen during the training time. z

cFM’s recovery is much “wider” than the prior 0.04

since it performs an element-wise generation

without considering the ensemble information. 0.02

EI-FM, which incorporates the ensemble in-

formation from observed samples, can achieve 0.00
similar performance to cFM-v with direct prior
knowledge, illustrating its capability to gener-
alize to unseen distributions.

Figure 3: Average sample-wise SWD({) between

In Fig. B} we compare the SWD be- the truth and the recovery vs. <, evaluated over
tween the prior and the recovered distribu- 40000 samples. Grey areas denote the priors con-
tions w.r.t. 40000 samples for each ~ in tained in the training data.
{-1,-0.99,---,0.99,1}. EI-FM displays su-

perior recovery performance among all compared methods and behaves close to cFM-v, for v €
[—1, 1]. Omnifold-best’s initial distribution is exact the priors for v € [—0.75, —0.25] U [0.25, 0.75],
leading to low SWD. However, Omnifold displays weaker generalization ability than EI-FM for
v € [-0.25,0.25]. Therefore, we can conclude that the EI-FM is able to effectively utilize the en-
semble information of observations to help infer the posterior and generalize to unseen distributions
with performance comparable to models directly provided with prior information.

3.3 PARTICLE PHYSICS DATA UNFOLDING

In this section, we evaluate the proposed methods on simulated particle physics data. The data con-
sists of quantum chromodynamics (QCD) jets, which are collimated sprays of particles produced
when partons (the constituent particles within protons) fragment in high-energy collisions. These
datasets are generated using the PYTHIA 8.3 event generator Bierlich et al.| (2022) for various
physics processes such as tt, W-+jets, Z-+jets, dijet, and leptoquark processes. The jet kinemat-
ics include transverse momentum (pr), pseudorapidity (), azimuthal angle (¢), and 4-momentum
components (E, pz, py,p-). These jets are presented at 2 stages: the truth-level () representation
is constructed from the direct output of the Monte Carlo event generator, while the detector-level
(y) is the representation after the jets pass through the detector simulation. The training data con-
sists of pairs of truth-level and detector-level jet vector pairs from 18 different physics processes,
including various parton distribution functions and parton shower models. We refer readers to|Pazos
et al.| (2025) for more details on this dataset. During inference time, we compare the distribution
similarity between the recovered data from 4 unseen physics processes and their truth-level data.

GDDPM [Pazos et al| (2025) proposes to incorporate the first 6 moment information of the pr to
help unfolding. However, this implicitly assumes that pp contains the complete distributional infor-
mation of the 7-component vector. Therefore, we also consider a more general variant, referred to as
GDDPM-v, in which this assumption is not made and moments of all 7 components are taken as the



conditional information. The Wasserstein-1 distance (WD) |Villani| (2009) for each jet kinematics
between the true distributions and the recovered distributions is selected as the metric for measuring
the distribution similarity following |Pazos et al.| (2025).

N = 2000 and ¢,, : R2990%7 3 RS are fixed in both EI-DDPM and EI-FM in this particle physics
unfolding task. Fig. 4| showcases the EI-FM’s reconstruction of pr, E and p, distributions from a
tt process. The detector effects cause a great difference between the truth and the detector-level
distributions. EI-FM is able to recover distributions with small WDs to the truth. Table 2] shows
the recovery performances of pr, E and p, for 4 unseen physics processes. The proposed methods
display superior performances across all 4 unseen physics processes, illustrating the effectiveness of
the proposed methods in utilizing latent ensemble information for unfolding without knowledge of
the priors. It is worth mentioning that GDDPM outperforms GDDPM-v, suggesting that redundant
moment information in GDDPM-v impairs recovery. Nevertheless, our proposed methods achieve
comparable or superior performance to GDDPM, indicating that ¢, (-) can automatically extract the
core ensemble information from ) and eliminate redundant information.
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Figure 4: Unfolding results of jet kinematics from a t¢ process (modeled with the CT14lo PDF and
Vincia parton showers) from the data-driven detector smearing using EI-FM.

WD (}) Name Detector | EI-DDPM | EI-FM | cDDPM | ¢cFM | GDDPM-v | GDDPM O’f‘;‘e‘ifld (1‘::5:’;2 SBUnfold
Leptoquark 31.85 0.44 0.44 108 | 2.6 0.73 0.44 0.19 0.82 18.10
# (CTI4lo, Vincia) | 24.18 0.44 023 | 1.0 | 3.36 1.36 0.55 0.60 0.52 1.88
pr TWjets (CT14lo) | 18.60 0.60 0.44 241 | 414 0.53 0.48 0.11 0.37 21.07
Z+jets (CTEQGLI) | 15.81 0.51 045 | 255 | 555 225 798 0.48 0.64 25.18
Leptoquark 33.87 0.46 0.76 170 | 2.66 147 0.63 1.08 0.47 13.99
5 # (CTI4lo, Vincia) | 69.70 0.77 0.66 | 2.96 | 3.29 154 0.89 0.83 141 133
WHets (CT14lo) | 90.42 T.08 1.60 156 | 4.64 3.38 1.60 0.56 3.05 23.67
Z+jets (CTEQGLI) | 83.18 0.81 119 633 | 12.62 6.25 704 144 2.22 10.67
Leptoquark 20.26 021 0.26 0.95 | 1.39 0.73 0.25 041 0.43 10.53
# (CTI4lo, Vincia) | 15.40 0.19 0.13 | 065 | 1.03 0.82 0.31 041 0.30 1.00
P WHets (CT14lo) | 11.84 0.26 0.21 1.07 | 0.90 0.75 0.21 0.24 0.22 375
Z+jets (CTEQGLI) | 10.06 0.23 019 | 119 | 0.66 1.22 T.07 0.35 0.31 16.08

Table 2: Result of data recovery performances on 4 unseen physics distributions. We report the 1-D
Wasserstein distance between the truth-level data and detector-level data / recovered data via various
methods for pr, E and p,; (complete results in Sec.[B.4). The best results are noted in red.

3.4 IMAGE INVERSION OF MNIST DIGITS MIXTURE

In this section, we apply the proposed methods to a high-dimensional image EIP. The images of
MNIST digit “9” continuously transform into MNIST digit “6” over time ¢ € [0, 1]. The images are
all “9” att = 0 and become “6” at t = 1. For 0 < ¢t < 1, the images are mixtures of the two digits,
resembling “6” more and “9” less as ¢ approaches 1. Details of the process of generating the digits
are described in Sec.

Let z,5, denote the a-th rows’ b-th pixel value in a MNIST image x € R?8*?8. The images are
blurred in an element-wise way, and the forward process is given as,
0(—xq,p), with probability 0.9;

a,b = La a,b)s a ~ . .1 5
Ya = Tap +1lTas), lTas) {N(0,2), with probability 0.1. )

Setting N = 128 and ¢,, : R128%28x28 _, R28X28 for EI-DDPM and EI-FM, we compare our
proposed methods with cFM, DDPM, and SBUnfold for the image inversion task. Each method is



provided with pairs of clean images and blurred images resulting from priors with ¢ € [0.1,0.4] U
[0.6,0.9]. At the inference time, each method aims to recover the original images from a set of
images with the same but unknown ¢.

First, we visualize the recovery performance for ¢ = 0.5 in Fig.[5] We can observe that EI-FM and
EI-DDPM capture the structure of the truth more precisely. While other baselines’ recoveries have
visually greater differences with the truth’s structures. Then we sweep ¢ € [0, 1] with an interval
0.01 and evaluate the pixel-wise mean squared error (MSE) and structural similarity index measure
(SSIM) between the recovered images and the truth for each method. Results in Fig. @ shows EI-FM
and EI-DDPM’s superior performance in both MSE and SSIM, indicating that EI-FM and EI-DDPM
can scale up to high-dimensional settings and effectively incorporate the ensemble information for
posterior inferences and generalizations.

EI-FM EI-DDPM cFM cDDPM SBUnfold Truth Blurred

t=0 t=01 t=021¢t=03 t=04 t=05 t=06 t=0.7

Figure 5: Upper: the recovered images via different methods, the truth (f = 0.5), and the blurred
images. Lower: the transformation process from digit “9” to “6”.

0.060 0.62
EI-DDPM

EI-FM 0.60 1
cDDPM

cFM 0.581
4 0.050 SBUNfold

EI-DDPM
EI-FM
cDDPM
cFM
SBUnfold

0.055

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t

Figure 6: Pixel-wise MSE({) and SSIM(?) in latent space vs. t. Grey areas denote the priors that
are included in the training data.

4 CONCLUSIONS AND FUTURE DIRECTIONS

We introduce EIP, in which one aims to invert for an ensemble that is distributed according to the
pushforward of a prior under a forward process. To address this problem, we propose a posterior
sampling framework, i.e., the ensemble inverse generative model, that is conditioned on both the
measurements and the ensemble information extracted from an observation set via a permutation in-
variant NN. The proposed EI-DDPM and EI-FM demonstrate superior posterior inference and gen-
eralization abilities across several cases, including unfolding and inverse imaging. Future research
directions include provable guarantees on the discrepancy between the recovered distributions and
the prior, and optimal structures for ensemble information extraction.



5 ETHICS STATEMENT

This work does not raise any specific ethical concerns.

6 REPRODUCIBILITY STATEMENT
We provide a detailed description of the experiment implementation in Sec. |[B|in the appendix. We

also provide the code in the supplementary materials. We will publish the code on GitHub if this
paper is accepted.
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A AN INTRODUCTION TO DDPM AND FM
Here we provide a brief introduction for the conditional version of DDPM and FM.

DDPM: DDPM learns to reverse a forward noising process and generate data by applying the
learned reverse process to map samples from a Gaussian distribution ¢ = A(0, I) to the target
distribution ¢; . In the forward process, a sample starting from xy ~ ¢; is gradually corrupted:

q(mt‘zt—l):N(fEt? V I_tht75t1)7 t:17 5T7 (6)
in which T is the number of total steps and 31, - - - , O are pre-defined schedules. zr ~ N(0, 1)

when T is sufficiently large. Next, with a; := 1 — §; and a; = Hi:l «g, DDPM models the
reverse process as

1(33 _LE (x tz))
\/OTt t 1= & o\ Lty Ly

(7
in which z is the conditional information, which is a function of y,) in EIP-II. ¢y is a neural
network(NN) parameterized with 6, and o7 is the variance in the reverse process derived from the
forward process. With the objective of minimizing the expected MSE between a noise € ~ N(0, I)
and the model’s prediction, i.e.,

arglneinExo,z,t,E[HE@(xtata 2)—¢el?], x = Vauwo + V1 — aye, ®)

p@(xtflktth) = N(xtfl;lue(whtaz)ao’fl-% ue(mtat>z) =

DDPM model learns the reverse process in equation

FM: FM aims to learn continuous flows between an initial distribution ¢y and the target distribu-
tion g; by learning the velocity fields across time. Consider d-dimensional data, define a stochastic
process z; = Wy (z0,71) : [0,1] x R x R? — R? with g ~ qg and 71 ~ ¢; that are twice differen-
tiable in space and time and uniformly Lipschitz in time satisfying Wo(xo,z1) = xo, Y1 (20, 21) =
z1. The velocity field is defined via v"¥ (z,t) = E[4W|X, = z]. FM aims to learn the velocity
field with an NN egy (x4, t, z) parameterized by 6. Similarly, z is the conditional information, which
stands for a function of y,) in EIP-Il. FM’s objective minimize the MSE between the v"¥ (x,t)
and e¢(x,t, z). Although v?¥ (z, 1) is intractable since it is an average over all possible trajectories
crossing x, one can optimize the objective via the following equivalence |Lipman et al.|(2023),

1

1
d
arg m@in/ Ellleo (x4, t, 2) — vq'(a:t,t)\|2]dt = arg m@in/ Ellleo (x4, t, 2) — —\Ilt(xo,xl)||2]dt7
0 0

dt
9
where we recall x; = ¥ (z¢, z1). Note that ¥;(z, 21 ) can be picked by the user. One common and
simple choice is the linear interpolants W, (zg, 1) = tx1 + (1 —t)xzo, with i\Il,g(aso, x1) = x1 — X,

dt
leading to a concrete objective in equation [9] that can be efficiently estimated via Monte-Carlo.

B EXPERIMENT DETAILS

B.1 MODEL CONFIGURATION

All experiments are run on an NVIDIA L40 GPU with 46 GB memory. The configuration for each
experiment is described as follows.

2-D Gaussian EIP: ¢, : R*000%2 5 R3 js implemented according to [Lee et al| (2019) and
consists of an encoder using a single Induced Set Attention Block (ISAB) encoder to capture set-
element interactions with linear-time attention via trainable inducing points, and a decoder that per-
forms Pooling by Multihead Attention (PMA), followed by a Set Attention Block (SAB) to model
correlations among the pooled outputs, and a final linear projection to the 3-D ensemble infor-
mation. Specifically, ISAB, which uses multihead attention with 4 heads, takes an unordered set
Y € R*00%2 35 the input and maps the input to 128-D embeddings. PMA and SAB both apply
multihead attention with 4 heads and have embedding sizes of 128. The final linear projection is a
linear layer mapping from 128-D embeddings to 3-D ensemble information.
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ep for EI-DDPM and EI-FM consists of Multi-Layer Perceptrons (MLPs), incorporating a time
embedding. The network first takes the concatenation of intermediate data z; € R2, the single
measurement y € R?, and the ensemble information (YY) € R? as the input and processes it
through a 64-unit hidden layer. The outputs are added with a learned time embedding with time
t as an input, and then processed through 64-unit hidden layers. Skip connections are employed
between the input and output of the main block. The final outputs are 2-D variables representing
the predicted noise / velocity field at time ¢ for EI-DDPM / EI-FM. EI-DDPM has a total number of
steps T' = 100. The noise schedule is defined linearly from an initial noise level of 31 = 1 x 10™*
to a final noise level of S = 0.02 across timesteps t = 1,...,7T. The discretization interval for
EI-FM during inference time is set as At = 0.01.

Particle Physics Data Unfolding: ¢, : R2990%7 _ RS shares the same structure as in 2-D
Gaussian EIP, with input and output dimension adapted. 4 also share similar structures as in 2-D
Gaussian EIP, with the number of units in hidden layers changed. The input of the concatenation of
intermediate data z; € R7, the single measurement y € R7, and the ensemble information D (V) €
RS first goes through a 256-unit hidden layer and the added with a learned time embedding. The
subsequent layers for mapping into 7-D noise / velocity field consist of 256-unit and 512-unit linear
layers. The total time steps for EI-DDPM is set as ' = 500, and noise schedule for EI-DDPM
remains the same as in 2-D Gaussian EIP. The discretization interval for EI-FM during inference
time is set as At = 0.002.

Image inversion of MNIST Digits Mixture: The structures of €y and ¢,, are modified to facilitate
processing images in this case. For a set of images, ¢, : R128%28x28 _ R28%28 firqt process each
image in ) with a four-stage convolutional encoder with 3 x 3 convolution kernels for image feature
representations. The representation for each image is flattened into 128-dim variables. Then the
representation set is mapped into the ensemble information ¢,,()) € R?8%28 via a set transformer
with the same structure as in 2-D Gaussian EIP (input and output dimension adapted).

€p employs an U-net structure Ronneberger et al.| (2015), which accepts a matrix of 3 channels and
time ¢ as inputs. The 3 channels in the matrix are z; € R?$x28 y € R?8%28 and ¢,,()) € R8>,
The final outputs are R?8*28 variables representing the predicted noise / velocity field at time ¢ for
EI-DDPM / EI-FM. The total time steps for EI-DDPM is set as 1" = 500, and the noise schedule for
EI-DDPM remains the same as in 2-D Gaussian EIP. The discretization interval for EI-FM during
inference time is set as At = 0.002.

B.2 EFFECT OF N, N’ IN 2-D GAUSSIAN EIP

Note that we assume N’ >> N in most cases, i.e., the available sample number is sufficient to form
observation sets that can contain the ensemble information. Fixing the observation set size N for
training can contribute to a simpler training pipeline and a more stable optimization process. And
this does not impact the inference since size N observation sets are available. However, a fixed [NV
for training is not strictly required. If the number of available observations for inference stays close
to NV, and yet is not fixed, we recommend that users employ random N's within a range aligning with
the inference requirements during training. In this way, the inference algorithm can automatically
work for changeable set sizes, as in the training range.

Next we numerically investigate the effect of NV and N’ under the setting of 2-D Gaussian inverse
problem in Sec.[3.2] First for the effect of N, we train EI-FM with observation set size N from 5 to
32000. The results in Fig.[7a|show that for small N < 10, the recovery performance is even worse
than the baseline cFM without any group information. ) with too small set sizes cannot represent
the ensemble information and even mislead the model in both training and inference. As N grows
larger, EI-FM displays its advantage over cFM by leveraging valid ensemble information from ).
The recovery performance evaluated by SWD increases with the growth of N and stabilizes when
N reaches a sufficiently large value.

Next we consider the cases such that the number of samples to recover N’ is smaller than N. Take
an EI-FM model trained with N = 4000. Assuming that only N’ samples are available during the
inference time, these N’ samples are duplicated until the set has N samples to perform Alg.[2l To
evaluate the SWD metric, this process is repeated several times until 40000 samples are recovered.
The results shown in Fig. [7b| indicate that SWD decreases as N’ grows up to 4000. For N’ that
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are not significantly less than N, such as N’ = 1000, the duplication strategy can still yield an
SWD close to the N’ = 4000 case, since the sets after duplication can still effectively represent
the ensemble information. Notably, even with N’ as small as 10, EI-FM slightly outperforms cFM,
which performs a sample-wise recovery. This highlights the effect of ensemble information in EIP-
1L
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Figure 7: Average SWD between the truth and the recovery vs. <. The horizontal dashed lines
represent the performance of cFM baselines. (a) is for EI-FM trained with different NV, evaluated
over 40000 samples. We also provide the stats of cFM as a baseline. (b) is for EI-FM trained with
N = 4000, evaluated over 40000 samples. It is assumed that only N’ samples are available during
the inference time and Alg. [2] is implemented via the duplication strategy.

B.3 EXTENSION OF 2-D GAUSSIAN EIP

Here we present an extension of the 2-D Gaussian EIP, in which the number of parameters deter-
mining the prior increases from 1 to 3. Consider the prior

x””N([ZQ] , H 711D7 5 = (1, iz ), (10)

in which pi1, pt2, 1 are 3 independent parameters. Samples from this prior undergo the same forward
process as equation 4] One still aims to recover the prior given its observation set ) corresponding
to an unknown 7.

During the training stage, truth-observation pairs resulting from priors with ; € [—0.75, —0.25] U
[0.25,0.75] and g1, po € [—1.5,—0.5] U [0.5, 1.5] are provided. In the inference time, we evaluate
the recovery performance for priors with v; € 4—1, 1] and p11, po € [—2, 2] perturbed by equation[4}
We compare EI-FM with ¢,,, : R¥090%2 5 R5 ¢FM without any ensemble information and cFM-
~, which is directly provided with v = (p1, i2,v1). To illustrate the recovery performance vs. 3
parameters, we make 3-D figures, in which x,y axes stand for p;, o respectively, and each figure
corresponds to a specific ;. The z axis stands for the metric of measuring the distribution similarity,
i.e., SWD. The results in Fig. [§ show that EI-FM can achieve comparable performances to cFM-y
across all ranges of v = (u1, p2,71) and achieves much better performances than cFM. EI-FM’s
close performance to cFM-v (with direct knowledge of the prior) further illustrates that EI-FM can
still extract valid ensemble information for posterior inference and generalization as the number of
parameters determining the prior increases.

B.4 COMPLETE RESULTS OF PARTICLE PHYSICS DATA UNFOLDING

In this section, we present the complete result of the 1-D Wasserstein distance between the truth-
level data and detector-level data / recovered data via various methods for all 7 components in the
physics process in Table[3] The detector-level distortion for 7 and ¢ is small, and their detector-level
distributions have already come close to the true prior. Therefore, some best performances for 7, ¢
appear in the detector-level data, i.e., before unfolding.
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Figure 8: Average sample-wise SWD(]) between the truth and the recovery vs. (p1, po) for v =
{-0.9,-0.5,0,0.5,0.9}, evaluated over 40000 samples.

WD (1) Name Detector | ELDDPM | EI-FM | ¢cDDPM | ¢FM | GDDPM-v | GDDPM O‘f‘;‘e‘g’ld OC'(‘)‘T‘:I‘;:’;: SBUnfold
Leptoquark 31.85 0.44 0.44 1.08 2.65 0.73 0.44 0.19 0.82 18.10
# (CTl4lo, Vincia) | 24.18 0.44 0.23 T.01 3.36 1.36 0.55 0.60 0.52 1.88
pr Wjets (CTT4lo) | 18.60 0.60 0.44 2.41 114 0.53 0.43 0.11 0.37 21.07
Z+jets (CTEQGLI) | 15.81 0.51 0.45 2.55 5.55 2.25 T.08 0.43 0.64 25.18
Leptoquark 0.00074 | 0.00079 | 0.00096 | 0.00182 | 0.00272 | 0.00255 | 0.00056 | 0.01936 | 0.00758 | 0.04350
, # (CTI4lo, Vincia) | 0.00080 | 0.00075 | 0.00095 | 0.00128 | 0.00298 | 0.00363 | 0.00071 | 0.00680 | 0.00979 | 0.03795
! TWHjets (CT14lo) | 0.00060 | 0.00096 | 0.00109 | 0.00186 | 0.00406 | 0.00375 | 0.00080 | 0.01945 | 0.01596 | 0.06352
Z+jets (CTEQ6LI) | 0.00065 | 0.00093 | 0.00111 | 0.00202 | 0.00466 | 0.00298 | 0.00072 | 0.00934 | 0.02069 | 0.07380
Leptoquark 0.00140 | 0.00091 | 0.00069 | 0.00662 | 0.00379 | 0.00342 | 0.00142 | 0.01492 | 0.00534 | 0.01452
A # (CTI4lo, Vincia) | 0.00144 | 0.00096 | 0.00078 | 0.00718 | 0.00381 | 0.00383 | 0.00158 | 0.00609 | 0.00397 | 0.01493
TWjets (CT14lo) | 0.00153 | 0.00092 | 0.00074 | 0.00803 | 0.00401 | 0.00373 | 0.00159 | 0.00689 | 0.00625 | 0.01426
Z+jets (CTEQ6LI) | 0.00153 | 0.00107 | 0.00071 | 0.00836 | 0.00427 | 0.00396 | 0.00177 | 0.03053 | 0.00388 | 0.01552
Leptoquark 33.87 0.46 0.76 170 2.66 147 0.63 1.08 0.47 13.99
5 # (CTl4lo, Vincia) | 69.70 0.77 0.66 2.96 3.20 154 0.39 0.83 141 183
TWjets (CTT4lo) | 90.42 1.08 1.60 156 1.61 3.38 1.60 0.56 3.05 23.67
Z+jets (CTEQOLI) | 83.18 0.81 119 6.83 12.62 6.25 7.04 T.A4 2.22 10.67
Leptoquark 20.26 0.21 0.26 0.95 1.39 0.73 0.25 041 0.43 10.53
# (CTl4lo, Vincia) | 15.40 0.19 0.13 0.65 1.03 0.82 0.31 041 0.30 1.00
P Wjets (CTT4lo) | 11.84 0.26 0.21 1.07 0.90 0.75 0.21 0.21 0.22 375
Z+jets (CTEQGLI) | 10.06 0.23 0.19 T.19 0.66 122 T.07 0.35 0.31 16.08
Leptoquark 20.29 0.25 0.25 0.95 1.63 0.36 0.25 0.53 0.56 10.81
# (CTI4lo, Vincia) | 15.39 0.23 0.13 0.90 TA7 0.65 0.31 0.45 0.27 0.89
Py WHets (CT14lo) | 11.84 0.28 0.18 151 .54 0.28 0.19 0.22 0.26 3.36
Z+jets (CTEQGLI) | 10.06 0.25 0.19 187 T.41 128 T.09 0.52 0.27 15.72
Leptoquark 70.72 0.67 0.56 6.78 5.04 0.99 0.36 3.15 .00 17.04
# (CTI4lo, Vincia) | 60.38 0.86 0.52 6.22 1.21 0.87 1.06 2.09 2.28 11.53
P= W Hjets (CT14lo) | 84.96 1.18 TAI 7.43 532 3.83 157 1.25 352 12.38
Z+jets (CTEQOLI) | 78.70 1.06 115 6.50 7.09 5.89 6.89 2.90 2.96 33.05

Table 3: Result of data recovery performances on 4 unseen physics distributions. We report the 1-D
Wasserstein distance between the truth-level data and detector-level data / recovered data via various
methods for pr,n, ¢, &, pz, py, p.. The best results are noted in red.

B.5 PROCESS OF GENERATING MNIST DIGITS MIXTURE

The process of creating the mixture of two MNIST digits following [Haviv et al.| (2025)) is described
as follows. First, the MNIST digit images are converted to point clouds. Then an entropically reg-
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ularized optimal transport (OT) plan between two weighted point clouds is computed using OTT’s
Sinkhorn solver, producing a soft matching matrix. Based on the matrix, greedy “rounded match-
ing” is applied by repeatedly selecting the maximum probability entry in the matrix, assigning that
source to the corresponding target, and zeroing out the associated row and column to prevent reuse.
This process iterates until all points are matched, leading to a permutation-like hard assignment that
approximates the true optimal permutation matrix implied by the OT solution. The resulting hard
assignment defines a transport path parameterized by time ¢, where ¢ = 0 corresponds to the initial
point clouds and ¢ = 1 corresponds to the target point clouds. The intermediate ¢ interpolates each
point along its assigned displacement toward its target. Finally, the point clouds are converted back
to images.
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