
000 THE ENSEMBLE INVERSE PROBLEM: APPLICATIONS 001 002 AND METHODS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 We introduce a new multivariate statistical problem that we refer to as the En-
011 semble Inverse Problem (EIP). The aim of EIP is to invert for an ensemble that
012 is distributed according to the pushforward of a prior under a forward process. In
013 high energy physics (HEP), this is related to a widely known problem called un-
014 folding, which aims to reconstruct the true physics distribution of quantities, such
015 as momentum and angle, from measurements that are distorted by detector ef-
016 fects. In recent applications, the EIP also arises in inverse imaging with unknown
017 priors. We propose *non-iterative inference-time methods* that construct posterior
018 samplers based on a new class of conditional generative models, which we call
019 ensemble inverse generative models. For the posterior modeling, these models
020 additionally use the ensemble information contained in the observation set on top
021 of single measurements. Unlike existing methods, our proposed methods avoid
022 explicit and iterative use of the forward operator at inference time via training
023 across several sets of truth-observation pairs that are consistent with the same for-
024 ward operator, but originate from a wide range of priors. We demonstrate that this
025 training procedure implicitly encodes the likelihood model. The use of ensemble
026 information helps posterior inference and enables generalization to unseen priors.
027 We benchmark the proposed method on several synthetic and real datasets in HEP
028 and inverse imaging.

029 030 1 INTRODUCTION 031

032 Let $x \in \mathbb{R}^d$ be a random variable with a prior distribution $p(x)$. We make an observation y about
033 the truth x via a *forward model*:

$$034 y = F(x) + n(x), \quad (\text{Fwd-Model})$$

035 where F is a forward (measurement) operator and $n(x)$ represents an additive noise, which can in
036 general depend on x . Within this setup, we consider the following problem that we refer to as the
037 Ensemble Inverse Problem (EIP). We are given a dataset $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_M\}$ consisting of multiple
038 truth-observation pairs arising from sampling observations via equation Fwd-Model from M prior
039 distributions $p_m, m \in [1 : M]$.

$$040 \mathcal{D}_m = \{(x^{m,j}, y^{m,j})\}_{j=1}^{N_m} \stackrel{i.i.d.}{\sim} p_m(x)p(y|x), \quad (1)$$

042 where $(x^{m,j}, y^{m,j})$ denotes the j -th truth-observation pair in \mathcal{D}_m , and the size of \mathcal{D}_m is N_m . The
043 pair $(x^{m,j}, y^{m,j})$ is independently and identically distributed (i.i.d.) according to the joint distri-
044 bution $p_m(x)p(y|x)$, and the conditional distribution $p(y|x)$ is determined via equation Fwd-Model
045 and is the same for all datasets $\{\mathcal{D}_1, \dots, \mathcal{D}_M\}$. We assume that we only have access to \mathcal{D} and no
046 direct knowledge about equation Fwd-Model.

047 **Problem statement (EIP-I for the prior):** Given training data \mathcal{D} , and given a new set of observa-
048 tions $\mathcal{Y} = \{y^1, \dots, y^N\}$ obtained from an unknown prior $p(x)$ and the same (as \mathcal{D} , but unknown)
049 forward model, generate samples $x^1, \dots, x^{N'} | \mathcal{Y}$ such that for a given $\lambda > 0$,

$$050 \rho(\hat{p}(x|\mathcal{Y}), p(x)) < \lambda,$$

051 where $\hat{p}(x|\mathcal{Y}) = \lim_{N' \rightarrow \infty} \frac{1}{N'} \sum_{n=1}^{N'} \delta_{x^n|\mathcal{Y}}$ is the limiting empirical measure corresponding to
052 the generated samples. $\rho(\cdot, \cdot)$ denotes a discrepancy measure between distributions, such as the

054 Kullback-Liebler divergence, total Variation Cover & Thomas (2006), or Wasserstein distance Vil-
 055 lani (2009) ,and the Dirac delta function δ_{x^n} denotes the probability density of a distribution con-
 056 centrated at the n -th generated sample x^n . In other words, the aim of EIP-I is to generate samples
 057 whose distribution comes close to the prior distribution that lead to the observations. For practical
 058 utility that will become clear in the exposition later, we restrict the EIP-I problem further to learn to
 059 generate samples via posterior sampling, given observations from a prior.
 060

061 **Problem statement (EIP-II for the posterior):** Given training data \mathcal{D} , and given a new set of
 062 *i.i.d.* observations $\mathcal{Y} = \{y^1, \dots, y^{N'}\}$ obtained from an unknown prior $p(x)$ and the same (as \mathcal{D})
 063 but unknown forward model, for any given y , generate conditional samples $x^1, \dots, x^{N'}|y, \mathcal{Y}$ such
 064 that for a given $\lambda > 0$,

$$\rho(\hat{p}(x|y, \mathcal{Y}), p(x|y)) < \lambda,$$

065 where $\hat{p}(x|y, \mathcal{Y}) = \lim_{N' \rightarrow \infty} \frac{1}{N'} \sum_{n=1}^{N'} \delta_{x^n|y, \mathcal{Y}}, p(x|y) = \frac{p(x)p(y|x)}{p(y)}$.
 066

067 It is evident that the integration of the solution to EIP-II yields a good approximation of the solution
 068 to EIP-I. However, the integration of posteriors that are not the solution to EIP-II can still be the
 069 solution to EIP-I. We refer the readers to the Gaussian example in Sec. 3 in Butter et al. (2025) and
 070 our example in Fig. 1.
 071

072 Figure 1: Consider a forward process in Fig. 1a, Fig. 1b shows EIP-II's solution, with its integration
 073 corresponding to EIP-I's solution. Fig. 1c shows an incorrect posterior; however, the integration of
 074 this incorrect posterior can lead to the correct prior.
 075

076 Owing to the success of the generative models in modeling complex distributions with provable
 077 theoretical guarantees Ho et al. (2020); Chen et al. (2023); Albergo & Vanden-Eijnden (2023), in
 078 this paper, we aim to solve EIP-II by modeling the posterior via generative models.
 079

080 **Where does EIP arise?** An important application of EIP arises in the high-energy physics (HEP)
 081 domain, where one *unfolds* to remove detector effects D'Agostini (2010); Andreassen et al. (2020).
 082 A point of distinction in our problem statement and the traditional unfolding setup is that EIP-
 083 I & II do not make explicit use of the forward operator at inference time. The primary reason
 084 to deviate from such a setting is that typically forward models are computationally expensive to
 085 simulate. So EIP-I & II provide for an avenue where this model is implicit in the dataset \mathcal{D} . In the
 086 context of unfolding, EIP-II setting has recently been considered directly in Pazos et al. (2025) using
 087 conditional generative models.
 088

089 Another domain where EIP-II arises naturally is the inverse imaging problem setting, where one
 090 wants to recover a corrupted image with an unknown prior Daras et al. (2023); Hu et al. (2024). A
 091 set of recent works has considered EIP-like problems arising in contexts of Large-Language Models
 092 and the In-Context Learning Geshkovski et al. (2024); Teh et al. (2025); Adu & Gharesifard (2024).
 093 In Geshkovski et al. (2024); Adu & Gharesifard (2024) the main problem is to understand if given
 094 pairs of measures whether there exists a transformer architecture that can map a given input to its
 095 corresponding output, thus learning a measure to measure map. The setting of Teh et al. (2025) also
 096 comes close to EIP. Teh et al. (2025) proposes to use a transformer to infer the hidden parameters in
 097 a Poisson forward process, provided with a set of observations.
 098

099 We now summarize related work in terms of the methods that have been proposed in the literature
 100 and which can potentially be used to address the EIP problem.
 101

	Method	Requirements	Objective	Iterative	Tunable Regularization	Designed to recover unseen priors
Non-ML	IBU	equation Fwd-Model	$p(x)$	Yes	Yes	Yes
	SVD Unfolding	equation Fwd-Model	$p(x)$	Partial	Yes	Yes
	Measure decomposition	equation Fwd-Model	$p(x y)$	Yes	Yes	Yes
ML-based	Measure-to-measure interpolation	\mathcal{D}	$p(x)$	No	No	No
	OmniFold	\mathcal{D} or equation Fwd-Model	$p(x)$	Yes	Yes	Yes
	GANs	equation Fwd-Model	$p(x)$	No	No	Yes
	DPnP	$\{x^j\}_{j=1}^N$ and equation Fwd-Model	$p(x y)$	No	No	No
	Ambient diffusion	$\{y^j\}_{j=1}^N$ and equation Fwd-Model	$p(x y)$	No	No	No
	cINN	equation Fwd-Model	$p(x y)$	No	No	No
	SBUnfold	\mathcal{D}	$p(x y)$	No	No	Yes
	DDRM	Pretrained model and equation Fwd-Model	$p(x y)$	No	No	No
	GDDPM	\mathcal{D}	$p(x y)$	No	No	Yes
	Ours	\mathcal{D}	$p(x y)$	No	No	Yes

Table 1: Comparison of methods for solving EIP-I (objective: $p(x)$) & EIP-II (objective: $p(x|y)$) and their key characteristics. Iterative Bayesian unfolding (IBU) appears in D’Agostini (2010). Singular value decomposition (SVD) Unfolding appears in Höcker & Kartvelishvili (1996). Measure decomposition method for posterior sampling appears in Montanari & Wu (2025). Measure-to-measure interpolation approaches appear in Geshkovski et al. (2024); Adu & Gharesifard (2024). OmniFold appears in Andreassen et al. (2020). Generative adversarial networks (GANs) for inverse problems appear in Bellagente et al. (2020b); Datta et al. (2018). Diffusion plug-and-play (DPnP) method appears in Xu & Chi (2025). Ambient diffusion appears in Daras et al. (2023). Conditional invertible neural networks (cINN) approaches appear in Backes et al. (2024); Heimel et al. (2024); Bellagente et al. (2020a). SBUnfold appears in Diefenbacher et al. (2023). Denoising diffusion restoration model (DDRM) appears in Kawar et al. (2022). Generalizable conditional denoising diffusion probabilistic model (GDDPM) appears in Pazos et al. (2025).

1.1 RELATED WORKS

Table 1 provides a summary of key features among non-ML, theoretical, and ML-based methods for solving the EIP and / or classical inverse problem.

- Non-ML methods:** Traditional methods designed for unfolding reconstruct the prior via iterative probabilistic updates IBU D’Agostini (2010) and suppression of contributions with small singular values Höcker & Kartvelishvili (1996). Common features of them include relying on explicit modeling of the forward process and requiring the data to be binned. In a more general setting, Montanari & Wu (2025) proposes an iterative posterior measure decomposition method that enables efficient sampling for sparse Bayesian inverse problems.
- Theoretical methods:** Geshkovski et al. (2024); Adu & Gharesifard (2024) provide mathematical frameworks for understanding transformers as measure-to-measure maps and prove that a single transformer can approximate the transport maps and velocity fields between multiple distribution pairs. The depth and complexity of the transformer depend on the structure and the number of pairs. However, the problem of generalization to unseen measures was not considered, and no algorithm was proposed for solving the EIP. Teh et al. (2025) proves that transformers can approximate classical empirical Bayes estimators and proposes a training algorithm. Nevertheless, this method is limited to the one-dimensional Poisson–EB setting.
- ML-based methods:** Omnidfold Andreassen et al. (2020) is a representative iterative re-weighting method for unfolding that shapes a given prior to the target prior. Generative methods have also become successful tools for addressing inverse problems, leading to a surge of approaches, including GANs Bellagente et al. (2020b); Datta et al. (2018), DPnP Xu & Chi (2025), ambient diffusion, and SBUnfold Diefenbacher et al. (2023). In particular, GDDPM Pazos et al. (2025) aims to solve EIP-II via posterior modeling and sampling. Built based on conditional DDPM (cDDPM), GDDPM additionally utilizes moment information of observations to ensure generalization ability across different physics processes. With the objective of avoiding computationally costly iterative inference, bypassing the difficulty of obtaining the forward operator, and effectively incorporating distributional information embedded in observations, this work provides a framework for solving EIP-II via generative models.

1.2 CONTRIBUTIONS

We list the contributions of this work as follows,

162 1. This work proposes a novel non-iterative framework for solving EIP-II, called ensemble
 163 generative models, which models the posterior sampling process and is conditioned on both mea-
 164 surements and observation sets.
 165 2. With the ensemble information extracted via a permutation invariant structure from the obser-
 166 vation set, the proposed method demonstrates a superior posterior inference ability and a strong
 167 generalization ability to unseen priors.
 168 3. Under several synthetic settings and real applications, including HEP unfolding and image inver-
 169 sion tasks, we demonstrate that the proposed methods outperform baselines without relying on
 170 explicit knowledge about the priors and the forward model.

171

172 **2 METHOD**

173

174 We address EIP-II via a non-iterative posterior sampling method. Specifically, generative models
 175 that are conditioned on not only the single measurement y but also the observation set \mathcal{Y} , are utilized
 176 to model the posterior and serve as a posterior sampler. With the aid of ensemble information
 177 extracted from the observation set \mathcal{Y} , the proposed method is shown to have a strong inductive bias
 178 to unseen priors. To state the methods, we refer the readers to two successful generative models,
 179 viz., generative models, Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) and
 180 Flow Matching (FM) Lipman et al. (2023) for backgrounds, and we provide more details for the
 181 conditional version of them in Sec. A.

182

183 **2.1 ENSEMBLE INVERSE GENERATIVE MODELS FOR EIP-II**

184

185 Our main idea behind addressing EIP-II is that the observation set \mathcal{Y} , in which all observations yield
 186 from a single prior distribution $p(x)$, contains information about $p(x)$. This prior information is not
 187 directly available, but can contribute towards a valid posterior inference for any given y yielding
 188 from $p(x)$. Inspired by Teh et al. (2025); Pazos et al. (2025) and with the objective of utilizing the
 189 ensemble information contained in \mathcal{Y} , our recovery model is conditioned on not only the measure-
 190 ment y but also the observation set \mathcal{Y} . The size of \mathcal{Y} should generally be large in order to reflect the
 191 underlying ensemble information. However, in conditional generative modeling, directly condition-
 192 ing on a large input set can be computationally inefficient and statistically unstable, as the model
 193 must process high-dimensional and unordered data. To address this, one can first encode the set
 194 using a *permutation invariant* structure, such as using the moment function as in Pazos et al. (2025).
 195 For a more versatile and adaptive representation, we propose to extract the ensemble information
 196 via $\phi_w : \mathbb{R}^{N \times d} \rightarrow \mathbb{R}^k$, a permutation invariant neural network (NN) parameterized with w , that
 197 maps an observation set \mathcal{Y} containing N d -dimensional samples into a k -dimensional representation
 198 that reflects the ensemble information. Formally, let S_N denote the set of all permutation of indices
 $\{1, 2, \dots, N\}$. ϕ_w should satisfy

$$\forall s \in S_N, \quad \phi_w(s\mathcal{Y}) = \phi_w(\mathcal{Y}), \quad \mathcal{Y} = \{y^1, \dots, y^N\}. \quad (2)$$

199 This allows ϕ_w to process \mathcal{Y} as a set, focusing on the group feature and ignoring the order informa-
 200 tion. Optional choices for implementing ϕ_w include deep set Zaheer et al. (2017) and set transformer
 202 Lee et al. (2019).

203 Based on this insight, we propose an algorithm for solving EIP-II, named ensemble inverse denoising
 204 diffusion probabilistic model (EI-DDPM) / ensemble inverse flow matching (EI-FM), as presented in
 205 Alg. 1 and Alg. 2. EI-DDPM / EI-FM is based on conditional-DDPM / conditional-FM frameworks,
 206 wherein an NN denoted by ε_θ , parameterized by θ is employed to predict the noise / velocity field
 207 at each step. In addition to the intermediate states x_t and time information t , ε_θ accepts single
 208 measurements y , as well as the ensemble information $\phi_w(\mathcal{Y})$ as inputs in order to model the posterior
 209 $p(x|y, \mathcal{Y})$ in EIP-II. Although the dimension of the ensemble information k is determined by the
 210 user, we emphasize here that k should be generally set close to d for a balanced input of $y \in \mathbb{R}^d$
 211 and $\phi_w(\mathcal{Y}) \in \mathbb{R}^k$ into the generative models. The incorporation of $\phi_w(\mathcal{Y})$ facilitates the posterior
 212 inference for measurements y . Provided with truth-observation pairs resulting from sufficiently
 213 diverse priors, ε_θ and ϕ_w combined is able to generalize for posteriors induced by previously unseen
 214 priors. We numerically illustrate these features in Sec. 3.

215 The stability of the learned representation of ensemble information $\phi_w(\mathcal{Y})$ depends on an extra
 216 hyperparameter N – the number of samples in \mathcal{Y} . First, N should be large enough for \mathcal{Y} to have

216 the capability to represent the distributional information of $p(y)$, thus being able to contain valid
 217 ensemble information. Second, considering that N is fixed during the training stage in Alg. 1, the
 218 input observation set size for Alg. 2 of inference should remain N for robustness. Therefore, it is
 219 important to discuss cases in which the available observation set size $N' \neq N$, at inference time.
 220 For the case $N' > N$, subsets of size N can be picked repeatedly to perform Alg. 2 until the union
 221 of the subsets fully covers the target observation set. For the case $N' < N$, one can randomly
 222 duplicate $N - N'$ samples so that the set size is expanded to N . For target sets with $N' \ll N$,
 223 Alg. 2 with duplication strategy may perform in a bad way since a set with too many duplicates will
 224 reflect highly incorrect ensemble information. The effects of N and N' are further discussed and
 225 numerically investigated in Sec. B.2.

Algorithm 1 EI-DDPM's and EI-FM's Training algorithm

226 **Input:** $\varepsilon_\theta, \phi_w, N, \mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_M\}$, EI-DDPM's schedule parameters $\{\beta_t, \alpha_t, \bar{\alpha}_t, T\}$, learning
 227 rate η
 228 **Output:** Trained $\varepsilon_\theta, \phi_w$

229 **repeat**
 230 Choose $m \sim \text{Uniform}(\{1, \dots, M\})$
 231 Draw a N pairs subset $\{(x^{m,j}, y^{m,j})\}_{j=1}^N$ from \mathcal{D}_m , $\mathcal{Y} \leftarrow \{y^{m,j}\}_{j=1}^N$
 232 **for** each (x, y) pair in the subset **do**
 233 $\mathcal{L}(\theta, w) \leftarrow 0$
 234 **if** using EI-DDPM **then**
 235 $t \sim \text{Uniform}(\{1, \dots, T\})$, $\xi \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 236 $\mathcal{L}(\theta, w) \leftarrow \mathcal{L}(\theta, w) + \|\varepsilon_\theta(\sqrt{\bar{\alpha}_t}x + \sqrt{1 - \bar{\alpha}_t}\xi, t, y, \phi_w(\mathcal{Y})) - \xi\|_2^2$
 237 **else if** using EI-FM **then**
 238 $t \sim \mathcal{U}[0, 1]$, $\xi \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 239 $\mathcal{L}(\theta, w) \leftarrow \mathcal{L}(\theta, w) + \|\varepsilon_\theta(tx + (1 - t)\xi, t, y, \phi_w(\mathcal{Y})) - (x - \xi)\|_2^2$
 240 **end if**
 241 **end for**
 242 $(\theta, w) \leftarrow (\theta, w) - \eta \nabla \mathcal{L}(\theta, w)$
 243 **until** converged
 244 **Return** $\varepsilon_\theta, \phi_w$

245 **3 EXPERIMENTS**

246 **3.1 BASELINES FOR COMPARISON**

247 **Conditional DDPM (cDDPM) and conditional FM (cFM):** cDDPM and cFM model the posterior $p(x|y)$ with the conditional variable incorporating only a single measurement. No ensemble
 248 information is included.

249 **GDDPM Pazos et al. (2025):** GDDPM is built upon cDDPM and it incorporates additional moment information computed from \mathcal{Y} .

250 **Omnifold Andreassen et al. (2020):** Omnidfold is a reweighting-based unfolding method that
 251 reweights a given initial distribution towards the prior. The initial distribution is a critical factor
 252 in recovery performance. Since in the EIP setup, we are provided with $\{(x^{m,j}, y^{m,j})\}_{j=1}^{N_m}, m =$
 253 $1, \dots, M$, we consider two ways of selecting the initial distribution to invert for a set of observations \mathcal{Y}' . a) **Omnifold-best:** Picking m^* , such that $\{y^{m^*,j}\}_{j=1}^{N_{m^*}}$ has the minimum sliced Wasserstein
 254 distance (SWD)¹ Bonneel et al. (2014) from \mathcal{Y}' , and $\{x^{m^*,j}\}_{j=1}^{N_{m^*}}$ serves as the initial distribution;
 255 b) **Omnifold-combine:** Using the mixture of all available priors $\{x^{m,j}\}_{j=1}^{N_m}, m = 1, \dots, M$ as
 256 the initial distribution.

257
 258 ¹SWD measures the similarity between two distributions, with smaller values indicating greater similarity.

270 **Algorithm 2** EI-DDPM's and EI-FM's sampling algorithm
271
272 **Input:** $\varepsilon_\theta, \phi_w, \mathcal{Y} = \{y^j\}_{j=1}^N$, EI-DDPM's schedule parameters $\{\alpha_t, \bar{\alpha}_t, \sigma_t, T\}$, EI-FM's dis-
273 cretization interval Δt
274 **Output:** $\{\hat{x}^j\}_{j=1}^N$

275 $z = \phi_w(\mathcal{Y})$
276 **for** $j = 1, 2, \dots, N$ **do**
277 **if** using EI-DDPM **then**
278 $x_T \leftarrow \mathcal{N}(\mathbf{0}, \mathbf{I})$
279 **for** $t = T \dots, 1$ **do**
280 $\xi \leftarrow \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\xi \leftarrow 0$
281 $x_{t-1} \leftarrow \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{1-\bar{\alpha}_t} \varepsilon_\theta(x_t, t, y^j, z) \right) + \sigma_t \xi$
282 **end for**
283 $\hat{x}^j \leftarrow x_0$
284 **else if** using EI-FM **then**
285 $x_0 \leftarrow \mathcal{N}(\mathbf{0}, \mathbf{I}), t \leftarrow 0$
286 **repeat**
287 $t \leftarrow t + \Delta t$
288 $x_t \leftarrow x_{t-\Delta t} + \varepsilon_\theta(x_{t-\Delta t}, t, y^j, z) \Delta t$
289 **until** $t = 1$
290 $\hat{x}^j \leftarrow x_1$
291 **end if**
292 **end for**
293 **Return** $\{\hat{x}^j\}_{j=1}^N$

294
295 **SBUnfold Diefenbacher et al. (2023):** SBUnfold leverages Schrodinger Bridges with diffusion
296 models to map measurements to their truth.
297

298 **Sourcerer Vetter et al. (2024):** Sourcerer is a sample-based method for inverse problems that
299 jointly maximizes entropy and minimizes sample-based distance, e.g., SWD, between simulations
300 and data. It requires an available differentiable forward operator or a differentiable surrogate of
301 it. In our cases, an available differentiable forward operator is not directly accessible; however, a
302 surrogate can be trained based on the truth-observation pairs.
303

304 The NN structures for cDDPM, cFM, SBUnfold, and ε_θ used in EI-DDPM / EI-FM are kept the
305 same (with input dimensions adjusted to match their respective inputs) for a fair comparison. We
306 use the set transformer Lee et al. (2019) structure for the implementation of ϕ_w .

307 3.2 2-D GAUSSIAN EIP

309 We first present a toy example of inverting for a perturbed 2-D Gaussian distribution to demonstrate
310 the effectiveness of the proposed method. The prior is a bivariate Gaussian distribution with mean
311 $[0, 0]^\top$ and covariance matrix $\begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}$, where $\gamma \in [-1, 1]$ represents the the correlation coefficient
312 between the two dimensions. Let $x = [x_1, x_2]^\top \in \mathbb{R}^2$ denote a sample from the prior. The prior is
313 given as
314

$$316 \quad x | \gamma \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix} \right). \quad (3)$$

318 In this EIP, we consider that x undergoes a linear transformation by a matrix $A \in \mathbb{R}^{2 \times 2}$, and is
319 perturbed by an additive noise term $n(x) \in \mathbb{R}^2$. The observed signal $y \in \mathbb{R}^2$ is given by
320

$$321 \quad y = Ax + n(x), \quad A = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 2 \end{bmatrix}, \quad n(x) \sim \mathcal{N} \left(\begin{bmatrix} 0.2x_1 \\ 0.2x_2 \end{bmatrix}, \begin{bmatrix} 0.25\|x\|_2^2 & 0 \\ 0 & 0.25\|x\|_2^2 \end{bmatrix} \right). \quad (4)$$

322 The objective is to recover the prior given its observation set \mathcal{Y} corresponding to an unknown γ .
323

324
325
326
327
328
329
330
331
332
333 Figure 2: Visualization of 40000 samples in the prior ($\gamma = 0.9$) and recovered distributions via
334 various methods.
335

336 During the training stage, truth-observation pairs resulting from priors with $\gamma \in [-0.75, -0.25] \cup$
337 $[0.25, 0.75]$ are provided. In the inference time, we evaluate the recovery performance for priors
338 with $\gamma \in [-1, 1]$ perturbed by equation 4. We mainly focus on FM-based models for comparison
339 to avoid overcrowded results. Observation set size $N = 4000$ and ensemble information dimension
340 $k = 3$ are set for EI-FM, i.e., $\phi_w : \mathbb{R}^{4000 \times 2} \rightarrow \mathbb{R}^3$. Besides the mentioned baselines, we also
341 evaluate cFM- γ , which is built based on cFM, but additionally conditioned on the latent information
342 γ . cFM- γ assumes direct knowledge of the priors.
343

344 Fig. 2 visualizes the distribution of the prior
345 with $\gamma = 0.9$ and the recovered distributions by
346 3 representative methods to illustrate EI-FM’s
347 generalization ability for recovering priors in
348 the same parameter family as in the training set.
349 The true prior with $\gamma = 0.9$ is a “thin” distribution,
350 which is unseen during the training time.
351 cFM’s recovery is much “wider” than the prior
352 since it performs an element-wise generation
353 without considering the ensemble information.
354 EI-FM, which incorporates the ensemble in-
355 formation from observed samples, can achieve
356 similar performance to cFM- γ with direct prior
357 knowledge, illustrating its capability to gener-
358 alize to unseen distributions.
359

360 In Fig. 3, we compare the SWD be-
361 tween the prior and the recovered distribu-
362 tions w.r.t. 40000 samples for each γ in
363 $\{-1, -0.99, \dots, 0.99, 1\}$. EI-FM displays su-
364 perior recovery performance among all com-
365 pared methods and behaves close to cFM- γ , for $\gamma \in [-1, 1]$. Omnidfold-best’s initial distribution
366 is exact the priors for $\gamma \in [-0.75, -0.25] \cup [0.25, 0.75]$, leading to low SWD. However, Omnidfold
367 displays weaker generalization ability than EI-FM for $\gamma \in [-0.25, 0.25]$. Therefore, we can con-
368 clude that the EI-FM is able to effectively utilize the ensemble information of observations to help
369 infer the posterior and generalize to unseen distributions with performance comparable to models
370 directly provided with prior information.
371

3.3 PARTICLE PHYSICS DATA UNFOLDING

372 In this section, we evaluate the proposed methods on simulated particle physics data. The data con-
373 sists of quantum chromodynamics (QCD) jets, which are collimated sprays of particles produced
374 when partons (the constituent particles within protons) fragment in high-energy collisions. These
375 datasets are generated using the PYTHIA 8.3 event generator Bierlich et al. (2022) for various
376 physics processes such as $t\bar{t}$, W +jets, Z +jets, dijet, and leptoquark processes. The jet kinemat-
377 ics include transverse momentum (p_T), pseudorapidity (η), azimuthal angle (ϕ), and 4-momentum
378 components (E, p_x, p_y, p_z). These jets are presented at 2 stages: the truth-level (x) representation is
379 constructed from the direct output of the Monte Carlo event generator, while the detector-level (y)
380 is the representation after the jets pass through the detector simulation. The training data consists
381

375 Figure 3: Average sample-wise SWD(\downarrow) between
376 the truth and the recovery vs. γ , evaluated over
377 40000 samples. Grey areas denote the priors con-
378 tained in the training data.
379

378 of pairs of truth-level and detector-level jet vector pairs. The truth-level jet vectors come from 18
379 different physics processes, including various parton distribution functions and parton shower mod-
380 els, and the detector effects are identical across all truth-level jet vectors. We refer readers to Pazos
381 et al. (2025) for more details on this dataset. During inference time, we compare the distribution
382 similarity between the recovered data from 4 unseen physics processes and their truth-level data.

383 GDDPM Pazos et al. (2025) proposes to incorporate the first 6 moment information of the p_T to
384 help unfolding. However, this implicitly assumes that p_T contains the complete distributional infor-
385 mation of the 7-component vector. Therefore, we also consider a more general variant, referred to as
386 GDDPM-v, in which this assumption is not made and moments of all 7 components are taken as the
387 conditional information. The Wasserstein-1 distance (WD) Villani (2009) for each jet kinematics
388 between the true distributions and the recovered distributions is selected as the metric for measuring
389 the distribution similarity following Pazos et al. (2025).

390 $N = 2000$ and $\phi_w : \mathbb{R}^{2000 \times 7} \rightarrow \mathbb{R}^6$ are fixed in both EI-DDPM and EI-FM in this particle physics
391 unfolding task. Fig. 4 showcases the EI-FM’s reconstruction of p_T , E and p_x distributions from a
392 $t\bar{t}$ process. The detector effects cause a great difference between the truth and the detector-level
393 distributions. EI-FM is able to recover distributions with small WDs to the truth. Table 2 shows
394 the recovery performances of p_T , E and p_x for 4 unseen physics processes. The proposed methods
395 display superior performances across all 4 unseen physics processes, illustrating the effectiveness of
396 the proposed methods in utilizing latent ensemble information for unfolding without knowledge of
397 the priors. It is worth mentioning that GDDPM outperforms GDDPM-v, suggesting that redundant
398 moment information in GDDPM-v impairs recovery. Nevertheless, our proposed methods achieve
399 comparable or superior performance to GDDPM, indicating that $\phi_w(\cdot)$ can automatically extract the
400 core ensemble information from \mathcal{Y} and eliminate redundant information.

412
413 Figure 4: Unfolding results of jet kinematics from a $t\bar{t}$ process (modeled with the CT14lo PDF and
414 Vincia parton showers) from the data-driven detector smearing using EI-FM.

WD (↓)	Name	Detector	EI-DDPM	EI-FM	cDDPM	cFM	GDDPM-v	GDDPM	Omnifold -best	Omnifold -combine	SBUnfold	Sourcerer
p_T	Leptoquark	31.85	0.44	0.44	1.08	2.65	0.73	0.44	0.19	0.82	18.10	7.96
	$t\bar{t}$ (CT14lo, Vincia)	24.18	0.44	0.23	1.01	3.36	1.36	0.55	0.60	0.52	1.88	15.14
	$W+jets$ (CT14lo)	18.60	0.60	0.44	2.41	4.14	0.53	0.48	0.11	0.37	21.07	25.96
	$Z+jets$ (CTEQ6L1)	15.81	0.51	0.45	2.55	5.55	2.25	1.98	0.48	0.64	25.18	19.59
E	Leptoquark	83.87	0.46	0.76	4.70	2.66	1.47	0.63	1.08	0.47	13.99	57.42
	$t\bar{t}$ (CT14lo, Vincia)	69.70	0.77	0.66	2.96	3.29	1.54	0.89	0.83	1.41	4.83	104.13
	$W+jets$ (CT14lo)	90.42	1.08	1.60	4.56	4.64	3.38	1.60	0.56	3.05	23.67	94.95
	$Z+jets$ (CTEQ6L1)	83.18	0.81	1.19	6.83	12.62	6.25	7.04	1.44	2.22	40.67	79.37
p_x	Leptoquark	20.26	0.21	0.26	0.95	1.39	0.73	0.25	0.41	0.43	10.53	5.89
	$t\bar{t}$ (CT14lo, Vincia)	15.40	0.19	0.13	0.65	1.03	0.82	0.31	0.41	0.30	1.00	11.22
	$W+jets$ (CT14lo)	11.84	0.26	0.21	1.07	0.90	0.75	0.21	0.24	0.22	8.75	11.04
	$Z+jets$ (CTEQ6L1)	10.06	0.23	0.19	1.19	0.66	1.22	1.07	0.35	0.31	16.08	10.74

424 Table 2: Result of data recovery performances on 4 unseen physics distributions. We report the 1-D
425 Wasserstein distance between the truth-level data and detector-level data / recovered data via various
426 methods for p_T , E and p_x (complete results in Sec. B.4). The best results are noted in red.

428 3.4 IMAGE INVERSION OF MNIST DIGITS MIXTURE 429

430 In this section, we apply the proposed methods to a high-dimensional image EIP. The images of
431 MNIST digit “9” continuously transform into MNIST digit “6” over time $t \in [0, 1]$. The images are
432 all “9” at $t = 0$ and become “6” at $t = 1$. For $0 < t < 1$, the images are mixtures of the two digits,

432 resembling “6” more and “9” less as t approaches 1. Details of the process of generating the digits
 433 are described in Sec. B.6. At the inference stage, given a set of blurred images, which come from
 434 a common prior at an unknown interpolation time t , the objective is to recover the corresponding
 435 clean images for each blurred image in the set.

436 Let $x_{a,b}$ denote the a -th rows’ b -th pixel value in a MNIST image $x \in \mathbb{R}^{28 \times 28}$. The images are
 437 blurred in an element-wise way, and the forward process is given as,
 438

$$439 \quad y_{a,b} = x_{a,b} + n(x_{a,b}), \quad n(x_{a,b}) \sim \begin{cases} \delta(-x_{a,b}), & \text{with probability 0.9;} \\ \mathcal{N}(0, 2), & \text{with probability 0.1.} \end{cases} \quad (5)$$

442 Setting $N = 128$ and $\phi_w : \mathbb{R}^{128 \times 28 \times 28} \rightarrow \mathbb{R}^{28 \times 28}$ for EI-DDPM and EI-FM, we compare our
 443 proposed methods with cFM, DDPM, and SBUnfold for the image inversion task. Each method is
 444 provided with pairs of clean images and blurred images resulting from priors with $t \in [0.1, 0.4] \cup$
 445 $[0.6, 0.9]$. At the inference time, each method aims to recover the original images from a set of
 446 images with the same but unknown t .

447 First, we visualize the recovery performance for $t = 0.5$ in Fig. 5. We can observe that EI-FM and
 448 EI-DDPM capture the structure of the truth more precisely. While other baselines’ recoveries have
 449 visually greater differences with the truth’s structures. Then we sweep $t \in [0, 1]$ with an interval
 450 0.01 and evaluate the pixel-wise mean squared error (MSE) and structural similarity index measure
 451 (SSIM) between the recovered images and the truth for each method. Results in Fig. 6 shows EI-FM and
 452 EI-DDPM’s superior performance in both MSE and SSIM, indicating that EI-FM and EI-DDPM
 453 can scale up to high-dimensional settings and effectively incorporate the ensemble information for
 454 posterior inferences and generalizations.

472 Figure 5: Upper: the recovered images via different methods, the truth ($t = 0.5$), and the blurred
 473 images. Lower: the transformation process from digit “9” to “6”.
 474

4 CONCLUSIONS AND FUTURE DIRECTIONS

477 We introduce EIP, in which one aims to invert for an ensemble that is distributed according to the
 478 pushforward of a prior under a forward process. To address this problem, we propose a posterior
 479 sampling framework, i.e., the ensemble inverse generative model, that is conditioned on both the
 480 measurements and the ensemble information extracted from an observation set via a permutation
 481 invariant NN. The proposed EI-DDPM and EI-FM demonstrate superior posterior inference and
 482 generalization abilities across several cases, including unfolding and inverse imaging. Future research
 483 directions include provable guarantees on the discrepancy between the recovered distributions and
 484 the prior, and optimal structures for ensemble information extraction.

486
487
488
489
490
491
492
493
494
495
496
497

498 Figure 6: Pixel-wise MSE(\downarrow) and SSIM(\uparrow) in latent space vs. t . Grey areas denote the priors that
499 are included in the training data.

500
501

5 ETHICS STATEMENT

502
503

This work does not raise any specific ethical concerns.

504

5 REPRODUCIBILITY STATEMENT

505
506

We provide a detailed description of the experiment implementation in Sec. B in the appendix. We also provide the code in the supplementary materials. We will publish the code on GitHub if this paper is accepted.

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Daniel Owusu Adu and Bahman Gharesifard. Approximate controllability of continuity equation of
543 transformers. *IEEE Control Systems Letters*, 8:964–969, 2024.

544 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
545 interpolants. In *The Eleventh International Conference on Learning Representations*, 2023. URL
546 <https://arxiv.org/abs/2209.15571>.

547 Anders Andreassen, Patrick Komiske, Eric Metodiev, Benjamin Nachman, and Jesse Thaler. Omnid
548 fold: A method to simultaneously unfold all observables. *Physical Review Letters*, 124, 05 2020.
549 doi: 10.1103/PhysRevLett.124.182001.

550 Mathias Backes, Anja Butter, Monica Dunford, and Bogdan Malaescu. An unfolding method based
551 on conditional invertible neural networks (cinn) using iterative training, 2024. URL <https://arxiv.org/abs/2212.08674>.

552 Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rousselot, Ramon Win
553 terhalder, Lynton Ardizzone, and Ullrich Köthe. Invertible networks or partons to detector and
554 back again. *SciPost Physics*, 9(5), November 2020a. ISSN 2542-4653. doi: 10.21468/scipostphys.
555 9.5.074. URL <http://dx.doi.org/10.21468/SciPostPhys.9.5.074>.

556 Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, and Ramon Winterhalder. How to
557 gan away detector effects. *SciPost Physics*, 8(4), April 2020b. ISSN 2542-4653. doi: 10.21468/
558 scipostphys.8.4.070. URL <http://dx.doi.org/10.21468/SciPostPhys.8.4.070>.

559 Christian Bierlich, Smita Chakraborty, Nishita Desai, Leif Gellersen, Ilkka Helenius, Philip Ilten,
560 Leif Lönnblad, Stephen Mrenna, Stefan Prestel, Christian T. Preuss, Torbjörn Sjöstrand, Peter
561 Skands, Marius Utheim, and Rob Verheyen. A comprehensive guide to the physics and usage of
562 PYTHIA 8.3. *SciPost Phys. Codebases*, pp. 8, 2022. doi: 10.21468/SciPostPhysCodeb.8. URL
563 <https://scipost.org/10.21468/SciPostPhysCodeb.8>.

564 Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
565 barycenters of measures. *Journal of Mathematical Imaging and Vision*, 51, 01 2014. doi: 10.
566 1007/s10851-014-0506-3.

567 Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia
568 Palacios Schweitzer, and Tilman Plehn. Generative unfolding with distribution mapping. *SciPost*
569 *Physics*, 18(6):200, 2025.

570 Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative mod
571eling: user-friendly bounds under minimal smoothness assumptions. In *Proceedings of the 40th*
572 *International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

573 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecom
574 munication and Signal Processing)*. Wiley-Interscience, USA, 2006. ISBN 0471241954.

575 G. D’Agostini. Improved iterative bayesian unfolding, 2010. URL <https://arxiv.org/abs/1010.0632>.

576 Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Kli
577 vans. Ambient diffusion: Learning clean distributions from corrupted data. In A. Oh,
578 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in*
579 *Neural Information Processing Systems*, volume 36, pp. 288–313. Curran Associates, Inc.,
580 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/012af729c5d14d279581fc8a5db975a1-Paper-Conference.pdf.

581 Kaustuv Datta, Deepak Kar, and Debarati Roy. Unfolding with generative adversarial networks,
582 2018. URL <https://arxiv.org/abs/1806.00433>.

583 Sascha Diefenbacher, Guan-Horng Liu, Vinicius Mikuni, Benjamin Nachman, and Weili Nie.
584 Improving generative model-based unfolding with schrödinger bridges, 2023. URL <https://arxiv.org/abs/2308.12351>.

594 Borjan Geshkovski, Philippe Rigollet, and Domènec Ruiz-Balet. Measure-to-measure interpolation
595 using transformers, 11 2024.
596

597 Doron Haviv, Aram-Alexandre Pooladian, Dana Pe'er, and Brandon Amos. Wasserstein flow
598 matching: Generative modeling over families of distributions. In *Proceedings of the 42nd In-*
599 *ternational Conference on Machine Learning (ICML)*, May 2025. URL <https://icml.cc/Conferences/2025/Schedule?showEvent=13287>.
600

601 Theo Heimel, Nathan Huetsch, Ramon Winterhalder, Tilman Plehn, and Anja Butter. Precision-
602 machine learning for the matrix element method, 2024. URL <https://arxiv.org/abs/2310.07752>.
603

604 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.
605

606 Yuyang Hu, Mauricio Delbracio, Peyman Milanfar, and Ulugbek S. Kamilov. A restoration network
607 as an implicit prior. 2024. Proc. ICLR.
608

609 Andreas Höcker and Vakhtang Kartvelishvili. Svd approach to data unfolding. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 372(3):469–481, 1996. ISSN 0168-9002. doi: [https://doi.org/10.1016/0168-9002\(95\)01478-0](https://doi.org/10.1016/0168-9002(95)01478-0). URL <https://www.sciencedirect.com/science/article/pii/0168900295014780>.
610

611 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
612 models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
613

614 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
615 transformer: A framework for attention-based permutation-invariant neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 3744–3753. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/lee19d.html>.
616

617 Pablo Lemos, Adam Coogan, Yashar Hezaveh, and Laurence Perreault-Levasseur. Sampling-
618 based accuracy testing of posterior estimators for general inference. In Andreas Krause, Emma
619 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
620 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19256–19273. PMLR, 23–29 Jul 2023. URL
621 <https://proceedings.mlr.press/v202/lemos23a.html>.
622

623 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
624 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.
625

626 Andrea Montanari and Yuchen Wu. Provably efficient posterior sampling for sparse linear regression
627 via measure decomposition. *Journal of the American Statistical Association*, 0(ja):1–22, 2025.
628 doi: 10.1080/01621459.2025.2537461. URL <https://doi.org/10.1080/01621459.2025.2537461>.
629

630 Camila Pazos, Shuchin Aeron, Pierre-Hugues Beauchemin, Vincent Croft, Zhengyan Huan, Martin
631 Klassen, and Taritree Wongjirad. Towards universal unfolding of detector effects in high-energy
632 physics using denoising diffusion probabilistic models. *SciPost Physics*, 2025. URL https://scipost.org/submissions/scipost_202410_00060v2.
633

634 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
635 image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.
636

637 Anzo Teh, Mark Jabbour, and Yury Polyanskiy. Solving empirical bayes via transformers. *arXiv preprint arXiv:2502.09844*, 2025. doi: 10.48550/arXiv.2502.09844.
638

648 Julius Vetter, Guy Moss, Cornelius Schr”oder, Richard Gao, and Jakob H. Macke. Sourcerer:
649 Sample-based maximum entropy source distribution estimation. In *The Thirty-eighth Annual*
650 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=0cgDDa4OFr>.

652 Cédric Villani. *The Wasserstein distances*, pp. 93–111. Springer Berlin Heidelberg, Berlin, Hei-
653 delberg, 2009. ISBN 978-3-540-71050-9. doi: 10.1007/978-3-540-71050-9_6. URL https://doi.org/10.1007/978-3-540-71050-9_6.

655 Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior sampling for plug-
656 and-play image reconstruction. In *Proceedings of the 38th International Conference on Neural*
657 *Information Processing Systems*, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc.
658 ISBN 9798331314385.

659 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
660 dinov, and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg,
661 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
662 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
663 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A AN INTRODUCTION TO DDPM AND FM**
 703

704 Here we provide a brief introduction for the conditional version of DDPM and FM.
 705

706 **DDPM:** DDPM learns to reverse a forward noising process and generate data by applying the
 707 learned reverse process to map samples from a Gaussian distribution $q_0 = \mathcal{N}(\mathbf{0}, \mathbf{I})$ to the target
 708 distribution q_1 . In the forward process, a sample starting from $x_0 \sim q_1$ is gradually corrupted:
 709

$$710 \quad q(x_t | x_{t-1}) = \mathcal{N}(x_t, \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}), \quad t = 1, \dots, T, \quad (6)$$

711 in which T is the number of total steps and β_1, \dots, β_T are pre-defined schedules. $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 712 when T is sufficiently large. Next, with $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$, DDPM models the
 713 reverse process as

$$714 \quad p_\theta(x_{t-1} | x_t, z) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t, z), \sigma_t^2 \mathbf{I}), \quad \mu_\theta(x_t, t, z) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_\theta(x_t, t, z) \right) \quad (7)$$

715 in which z is the conditional information, which is a function of y, \mathcal{Y} in EIP-II. ε_θ is a neural
 716 network(NN) parameterized with θ , and σ_t^2 is the variance in the reverse process derived from the
 717 forward process. With the objective of minimizing the expected MSE between a noise $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 718 and the model's prediction, i.e.,

$$719 \quad \arg \min_{\theta} \mathbb{E}_{x_0, z, t, \varepsilon} [\|\varepsilon_\theta(x_t, t, z) - \varepsilon\|^2], \quad x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, \quad (8)$$

720 DDPM model learns the reverse process in equation 7.

721 **FM:** FM aims to learn continuous flows between an initial distribution q_0 and the target distribution
 722 q_1 by learning the velocity fields across time. Consider d -dimensional data, define a stochastic
 723 process $x_t = \Psi_t(x_0, x_1) : [0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ with $x_0 \sim q_0$ and $x_1 \sim q_1$ that are twice differentiable
 724 in space and time and uniformly Lipschitz in time satisfying $\Psi_0(x_0, x_1) = x_0, \Psi_1(x_0, x_1) = x_1$. The velocity field is defined via $v^\Psi(x, t) = \mathbb{E}[\frac{d}{dt} \Psi_t | X_t = x]$. FM aims to learn the velocity
 725 field with an NN $\varepsilon_\theta(x_t, t, z)$ parameterized by θ . Similarly, z is the conditional information, which
 726 stands for a function of y, \mathcal{Y} in EIP-II. FM's objective minimize the MSE between the $v^\Psi(x, t)$
 727 and $\varepsilon_\theta(x_t, t, z)$. Although $v^\Psi(x, t)$ is intractable since it is an average over all possible trajectories
 728 crossing x , one can optimize the objective via the following equivalence Lipman et al. (2023),
 729

$$730 \quad \arg \min_{\theta} \int_0^1 \mathbb{E}[\|\varepsilon_\theta(x_t, t, z) - v^\Psi(x_t, t)\|^2] dt = \arg \min_{\theta} \int_0^1 \mathbb{E}[\|\varepsilon_\theta(x_t, t, z) - \frac{d}{dt} \Psi_t(x_0, x_1)\|^2] dt, \quad (9)$$

731 where we recall $x_t = \Psi_t(x_0, x_1)$. Note that $\Psi_t(x_0, x_1)$ can be picked by the user. One common and
 732 simple choice is the linear interpolants $\Psi_t(x_0, x_1) = tx_1 + (1-t)x_0$, with $\frac{d}{dt} \Psi_t(x_0, x_1) = x_1 - x_0$,
 733 leading to a concrete objective in equation 9 that can be efficiently estimated via Monte-Carlo.
 734

735 **B EXPERIMENT DETAILS**

736 **B.1 MODEL CONFIGURATION**

737 All experiments are run on an NVIDIA L40 GPU with 46 GB memory. The configuration for each
 738 experiment is described as follows.
 739

740 **2-D Gaussian EIP:** $\phi_w : \mathbb{R}^{4000 \times 2} \rightarrow \mathbb{R}^3$ is implemented according to Lee et al. (2019) and
 741 consists of an encoder using a single Induced Set Attention Block (ISAB) encoder to capture set-
 742 element interactions with linear-time attention via trainable inducing points, and a decoder that per-
 743 forms Pooling by Multihead Attention (PMA), followed by a Set Attention Block (SAB) to model
 744 correlations among the pooled outputs, and a final linear projection to the 3-D ensemble in-
 745 formation. Specifically, ISAB, which uses multihead attention with 4 heads, takes an unordered set
 746 $\mathcal{Y} \in \mathbb{R}^{4000 \times 2}$ as the input and maps the input to 128-D embeddings. PMA and SAB both apply
 747 multihead attention with 4 heads and have embedding sizes of 128. The final linear projection is a
 748 linear layer mapping from 128-D embeddings to 3-D ensemble information.
 749

756 ε_θ for EI-DDPM and EI-FM consists of Multi-Layer Perceptrons (MLPs), incorporating a time
757 embedding. The network first takes the concatenation of intermediate data $x_t \in \mathbb{R}^2$, the single
758 measurement $y \in \mathbb{R}^2$, and the ensemble information $\phi_w(\mathcal{Y}) \in \mathbb{R}^3$ as the input and processes it
759 through a 64-unit hidden layer. The outputs are added with a learned time embedding with time
760 t as an input, and then processed through 64-unit hidden layers. Skip connections are employed
761 between the input and output of the main block. The final outputs are 2-D variables representing
762 the predicted noise / velocity field at time t for EI-DDPM / EI-FM. EI-DDPM has a total number of
763 steps $T = 100$. The noise schedule is defined linearly from an initial noise level of $\beta_1 = 1 \times 10^{-4}$
764 to a final noise level of $\beta_T = 0.02$ across timesteps $t = 1, \dots, T$. The discretization interval for
765 EI-FM during inference time is set as $\Delta t = 0.01$.

766 **Particle Physics Data Unfolding:** $\phi_w : \mathbb{R}^{2000 \times 7} \rightarrow \mathbb{R}^6$ shares the same structure as in 2-D
767 Gaussian EIP, with input and output dimension adapted. ε_θ also share similar structures as in 2-D
768 Gaussian EIP, with the number of units in hidden layers changed. The input of the concatenation of
769 intermediate data $x_t \in \mathbb{R}^7$, the single measurement $y \in \mathbb{R}^7$, and the ensemble information $\phi_w(\mathcal{Y}) \in$
770 \mathbb{R}^6 first goes through a 256-unit hidden layer and the added with a learned time embedding. The
771 subsequent layers for mapping into 7-D noise / velocity field consist of 256-unit and 512-unit linear
772 layers. The total time steps for EI-DDPM is set as $T = 500$, and noise schedule for EI-DDPM
773 remains the same as in 2-D Gaussian EIP. The discretization interval for EI-FM during inference
774 time is set as $\Delta t = 0.002$.

775 **Image inversion of MNIST Digits Mixture:** The structures of ε_θ and ϕ_w are modified to facilitate
776 processing images in this case. For a set of images, $\phi_w : \mathbb{R}^{128 \times 28 \times 28} \rightarrow \mathbb{R}^{28 \times 28}$ first process each
777 image in \mathcal{Y} with a four-stage convolutional encoder with 3×3 convolution kernels for image feature
778 representations. The representation for each image is flattened into 128-dim variables. Then the
779 representation set is mapped into the ensemble information $\phi_w(\mathcal{Y}) \in \mathbb{R}^{28 \times 28}$ via a set transformer
780 with the same structure as in 2-D Gaussian EIP (input and output dimension adapted).

781 ε_θ employs an U-net structure Ronneberger et al. (2015), which accepts a matrix of 3 channels and
782 time t as inputs. The 3 channels in the matrix are $x_t \in \mathbb{R}^{28 \times 28}$, $y \in \mathbb{R}^{28 \times 28}$ and $\phi_w(\mathcal{Y}) \in \mathbb{R}^{28 \times 28}$.
783 The final outputs are $\mathbb{R}^{28 \times 28}$ variables representing the predicted noise / velocity field at time t for
784 EI-DDPM / EI-FM. The total time steps for EI-DDPM is set as $T = 500$, and the noise schedule for
785 EI-DDPM remains the same as in 2-D Gaussian EIP. The discretization interval for EI-FM during
786 inference time is set as $\Delta t = 0.002$.

788 B.2 EFFECT OF N, N' IN 2-D GAUSSIAN EIP

789 Note that we assume $N' \gg N$ in most cases, i.e., the available sample number is sufficient to form
790 observation sets that can contain the ensemble information. Fixing the observation set size N for
791 training can contribute to a simpler training pipeline and a more stable optimization process. And
792 this does not impact the inference since size N observation sets are available. However, a fixed N
793 for training is not strictly required. If the number of available observations for inference stays close
794 to N , and yet is not fixed, we recommend that users employ random N s within a range aligning with
795 the inference requirements during training. In this way, the inference algorithm can automatically
796 work for changeable set sizes, as in the training range.

797 Next we numerically investigate the effect of N and N' under the setting of 2-D Gaussian inverse
798 problem in Sec. 3.2. First for the effect of N , we train EI-FM with observation set size N from 5 to
799 32000. The results in Fig. 7a show that for small $N \leq 10$, the recovery performance is even worse
800 than the baseline cFM without any group information. \mathcal{Y} with too small set sizes cannot represent
801 the ensemble information and even mislead the model in both training and inference. As N grows
802 larger, EI-FM displays its advantage over cFM by leveraging valid ensemble information from \mathcal{Y} .
803 The recovery performance evaluated by SWD increases with the growth of N and stabilizes when
804 N reaches a sufficiently large value.

805 Next we consider the cases such that the number of samples to recover N' is smaller than N . Take
806 an EI-FM model trained with $N = 4000$. Assuming that only N' samples are available during the
807 inference time, these N' samples are duplicated until the set has N samples to perform Alg. 2. To
808 evaluate the SWD metric, this process is repeated several times until 40000 samples are recovered.
809 The results shown in Fig. 7b indicate that SWD decreases as N' grows up to 4000. For N' that

810 are not significantly less than N , such as $N' = 1000$, the duplication strategy can still yield an
 811 SWD close to the $N' = 4000$ case, since the sets after duplication can still effectively represent
 812 the ensemble information. Notably, even with N' as small as 10, EI-FM slightly outperforms cFM,
 813 which performs a sample-wise recovery. This highlights the effect of ensemble information in EIP-
 814 II.

815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829 Figure 7: Average SWD between the truth and the recovery vs. γ . The horizontal dashed lines
 830 represent the performance of cFM baselines. (a) is for EI-FM trained with different N , evaluated
 831 over 40000 samples. We also provide the stats of cFM as a baseline. (b) is for EI-FM trained with
 832 $N = 4000$, evaluated over 40000 samples. It is assumed that only N' samples are available during
 833 the inference time and Alg. 2 is implemented via the duplication strategy.

834 835 B.3 EXTENSION OF 2-D GAUSSIAN EIP 836

837 Here we present an extension of the 2-D Gaussian EIP, in which the number of parameters deter-
 838 mining the prior increases from 1 to 3. Consider the prior
 839

$$840 \quad x|\gamma \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} 1 & \gamma_1 \\ \gamma_1 & 1 \end{bmatrix} \right), \quad \gamma = (\mu_1, \mu_2, \gamma_1), \quad (10)$$

843 in which μ_1, μ_2, γ_1 are 3 independent parameters. Samples from this prior undergo the same forward
 844 process as equation 4. One still aims to recover the prior given its observation set \mathcal{Y} corresponding
 845 to an unknown γ .

846 During the training stage, truth-observation pairs resulting from priors with $\gamma_1 \in [-0.75, -0.25] \cup$
 847 $[0.25, 0.75]$ and $\mu_1, \mu_2 \in [-1.5, -0.5] \cup [0.5, 1.5]$ are provided. In the inference time, we evaluate
 848 the recovery performance for priors with $\gamma_1 \in [-1, 1]$ and $\mu_1, \mu_2 \in [-2, 2]$ perturbed by equation 4.
 849 We compare EI-FM with $\phi_w : \mathbb{R}^{4000 \times 2} \rightarrow \mathbb{R}^5$, cFM without any ensemble information and cFM-
 850 γ , which is directly provided with $\gamma = (\mu_1, \mu_2, \gamma_1)$. To illustrate the recovery performance vs. 3
 851 parameters, we make 3-D figures, in which x,y axes stand for μ_1, μ_2 respectively, and each figure
 852 corresponds to a specific γ_1 . The z axis stands for the metric of measuring the distribution similarity,
 853 i.e., SWD. The results in Fig. 8 show that EI-FM can achieve comparable performances to cFM- γ
 854 across all ranges of $\gamma = (\mu_1, \mu_2, \gamma_1)$ and achieves much better performances than cFM. EI-FM's
 855 close performance to cFM- γ (with direct knowledge of the prior) further illustrates that EI-FM can
 856 still extract valid ensemble information for posterior inference and generalization as the number of
 857 parameters determining the prior increases.

858 B.4 COMPLETE RESULTS OF PARTICLE PHYSICS DATA UNFOLDING 859

860 In this section, we present the complete result of the 1-D Wasserstein distance between the truth-
 861 level data and detector-level data / recovered data via various methods for all 7 components in the
 862 physics process in Table 3. The detector-level distortion for η and ϕ is small, and their detector-level
 863 distributions have already come close to the true prior. Therefore, some best performances for η, ϕ
 appear in the detector-level data, i.e., before unfolding.

Figure 8: Average sample-wise SWD(\downarrow) between the truth and the recovery vs. (μ_1, μ_2) for $\gamma_1 = \{-0.9, -0.5, 0, 0.5, 0.9\}$, evaluated over 40000 samples.

WD (\downarrow)	Name	Detector	EI-DDPM	EI-FM	cDDPM	cFM	GDDPM-v	GDDPM	Omnifold-best	Omnifold-combine	SBUnfold	Sourcerer
p_T	Leptoquark	31.85	0.44	0.44	1.08	2.65	0.73	0.44	0.19	0.82	18.10	7.96
	$t\bar{t}$ (CT14lo, Vincia)	24.18	0.44	0.23	1.01	3.36	1.36	0.55	0.60	0.52	1.88	15.14
	$W+jets$ (CT14lo)	18.60	0.60	0.44	2.41	4.14	0.53	0.48	0.11	0.37	21.07	25.96
	$Z+jets$ (CTEQ6L1)	15.81	0.51	0.45	2.55	5.55	2.25	1.98	0.48	0.64	25.18	19.59
η	Leptoquark	0.00074	0.00079	0.00096	0.00182	0.00272	0.00255	0.00056	0.01936	0.00758	0.04350	0.02079
	$t\bar{t}$ (CT14lo, Vincia)	0.00080	0.00075	0.00095	0.00128	0.00298	0.00363	0.00071	0.00689	0.00979	0.03795	0.01997
	$W+jets$ (CT14lo)	0.00060	0.00096	0.00109	0.00186	0.00406	0.00375	0.00808	0.01945	0.01596	0.06352	0.00728
	$Z+jets$ (CTEQ6L1)	0.00065	0.00093	0.00111	0.00202	0.00466	0.00298	0.00072	0.00934	0.02069	0.07880	0.03140
ϕ	Leptoquark	0.00140	0.00091	0.00069	0.00662	0.00379	0.00342	0.00142	0.01492	0.00534	0.01452	0.01891
	$t\bar{t}$ (CT14lo, Vincia)	0.00144	0.00096	0.00078	0.00718	0.00381	0.00383	0.00158	0.00609	0.00397	0.01493	0.01137
	$W+jets$ (CT14lo)	0.00153	0.00092	0.00074	0.00803	0.00401	0.00373	0.00159	0.00689	0.00625	0.01426	0.01482
	$Z+jets$ (CTEQ6L1)	0.00153	0.00107	0.00071	0.00836	0.00427	0.00396	0.00177	0.03053	0.00388	0.01552	0.03828
E	Leptoquark	83.87	0.46	0.76	4.70	2.66	1.47	0.63	1.08	0.47	13.99	57.42
	$t\bar{t}$ (CT14lo, Vincia)	69.70	0.77	0.66	2.96	3.29	1.54	0.89	0.83	1.41	4.83	104.13
	$W+jets$ (CT14lo)	90.42	1.08	1.60	4.56	4.64	3.38	1.60	0.56	3.05	23.67	94.95
	$Z+jets$ (CTEQ6L1)	83.18	0.81	1.19	6.83	12.62	6.25	7.04	1.44	2.22	40.67	79.37
p_x	Leptoquark	20.26	0.21	0.26	0.95	1.39	0.73	0.25	0.41	0.43	10.53	5.89
	$t\bar{t}$ (CT14lo, Vincia)	15.40	0.19	0.13	0.65	1.03	0.82	0.31	0.41	0.30	1.00	11.22
	$W+jets$ (CT14lo)	11.84	0.26	0.21	1.07	0.90	0.75	0.21	0.24	0.22	8.75	11.04
	$Z+jets$ (CTEQ6L1)	10.06	0.23	0.19	1.19	0.66	1.22	1.07	0.35	0.31	16.08	10.74
p_y	Leptoquark	20.29	0.25	0.25	0.95	1.63	0.36	0.25	0.53	0.56	10.81	7.41
	$t\bar{t}$ (CT14lo, Vincia)	15.39	0.23	0.13	0.90	1.47	0.65	0.31	0.45	0.27	0.89	10.80
	$W+jets$ (CT14lo)	11.84	0.28	0.18	1.51	1.54	0.28	0.19	0.22	0.26	8.86	14.32
	$Z+jets$ (CTEQ6L1)	10.06	0.25	0.19	1.87	1.44	1.28	1.09	0.52	0.27	15.72	11.77
p_z	Leptoquark	70.72	0.67	0.56	6.78	5.04	0.99	0.86	3.15	1.00	17.94	45.64
	$t\bar{t}$ (CT14lo, Vincia)	60.38	0.86	0.52	6.22	4.21	0.87	1.06	2.09	2.28	11.53	74.01
	$W+jets$ (CT14lo)	84.96	1.18	1.41	7.48	5.82	3.83	1.57	4.25	3.52	12.38	70.12
	$Z+jets$ (CTEQ6L1)	78.70	1.06	1.15	6.50	7.09	5.89	6.89	2.90	2.96	33.05	62.07

Table 3: Result of data recovery performances on 4 unseen physics distributions. We report the 1-D Wasserstein distance between the truth-level data and detector-level data / recovered data via various methods for $p_T, \eta, \phi, E, p_x, p_y, p_z$. The best results are noted in red.

B.5 TARP COVERAGE AS AN ADDITIONAL METRIC FOR POSTERIOR ACCURACY

To further assess the accuracy of posterior samplers, we employ the Test of Accuracy with Random Points (TARP) expected coverage metric that is introduced in Lemos et al. (2023). Let (x^*, y) denote the truth-observation pairs, TARP assesses whether an estimated posterior $\hat{p}(y|x)$ correctly

918 approximates the true posterior $p(y|x)$ by examining how often credible regions constructed from \hat{p}
919 contain the truth x^* . For each truth-observation pair (x^*, y) , a reference point x_r is randomly drawn,
920 and the TARP region is defined as

$$D_{x_r}(\hat{p}, \alpha, y, d) = \{x : d(x, x_r) \leq d(x^*, x_r)\}, \quad (11)$$

921 in which $d(\cdot, \cdot)$ is a distance function and $1 - \alpha$ is the credibility level. The expected coverage for
922 credibility level $1 - \alpha$ is

$$ECP(\hat{p}, \alpha, D_{x_r}) = \mathbb{E}_{(x^*, y)}[1\{x^* \in D_{x_r}(\hat{p}, \alpha, y)\}]. \quad (12)$$

923 It is proven in Lemos et al. (2023) that matching the identity $\forall \alpha \in (0, 1), ECP(\hat{p}, \alpha, D_{x_r}) = 1 - \alpha$
924 indicates that \hat{p} is the true posterior p . In practice, one evaluates this metric by scanning over
925 credibility levels $1 - \alpha$ and plotting the ECP vs. credibility level curve for examining the posterior's
926 correctness. For each curve, we also let α follow a uniform distribution in $(0, 1)$ and report $e = \mathbb{E}_\alpha[|ECP(\hat{p}, \alpha, D_{x_r}) - (1 - \alpha)|]$ for each estimated posterior \hat{p} to measure its deviation from the
927 ideal case.

928 The ECP vs. credibility level results for various posterior samplers in the 2-D Gaussian EIP at
929 Sec. 3.2 and in the HEP unfolding at Sec. 3.3 are shown in Fig. 9 and Fig. 10 respectively. While all
930 posterior samples' ECP vs. credibility level curves are close to the ideal case, those with ensemble
931 information (e.g., EI-FM, EI-DDPM, cFM- γ , GDDPMs) display slightly smaller deviations e from the
932 ideal case, illustrating the effectiveness of ensemble information in modeling posteriors.

933 Figure 9: ECP vs. credibility level curves for different models in the 2-D Gaussian EIP at Sec. 3.2.
934 Left: $\rho = -0.9$. Middle: $\rho = 0$. Right: $\rho = 0.9$.

935 Figure 10: ECP vs. credibility level curves for different models in the particle physics unfolding
936 task at Sec. 3.3. Left: Leptoquark process. Right: $t\bar{t}$ (CT14lo, Vincia) process.

937 B.6 PROCESS OF GENERATING MNIST DIGITS MIXTURE

938 The process of creating the mixture of two MNIST digits following Haviv et al. (2025) is described
939 as follows. First, the MNIST digit images are converted to point clouds. Then an entropically reg-
940 ularized optimal transport (OT) plan between two weighted point clouds is computed using OTT's

972 Sinkhorn solver, producing a soft matching matrix. Based on the matrix, greedy “rounded match-
973 ing” is applied by repeatedly selecting the maximum probability entry in the matrix, assigning that
974 source to the corresponding target, and zeroing out the associated row and column to prevent reuse.
975 This process iterates until all points are matched, leading to a permutation-like hard assignment that
976 approximates the true optimal permutation matrix implied by the OT solution. The resulting hard
977 assignment defines a transport path parameterized by time t , where $t = 0$ corresponds to the initial
978 point clouds and $t = 1$ corresponds to the target point clouds. The intermediate t interpolates each
979 point along its assigned displacement toward its target. Finally, the point clouds are converted back
980 to images.
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025