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ABSTRACT

Human perception for effective object tracking in a 2D video stream arises from
the implicit use of prior 3D knowledge combined with semantic reasoning. In
contrast, most generic object tracking (GOT) methods primarily rely on 2D fea-
tures of the target and its surroundings while neglecting 3D geometric cues, which
makes them susceptible to partial occlusion, distractors, and variations in geome-
try and appearance. To address this limitation, we introduce GOT-Edit, an online
cross-modality model editing approach that integrates geometry-aware cues into
a generic object tracker from a 2D video stream. Our approach leverages features
from a pre-trained Visual Geometry Grounded Transformer to enable geometric
cue inference from only a few 2D images. To tackle the challenge of seamlessly
combining geometry and semantics, GOT-Edit performs online model editing with
null-space constrained updates that incorporate geometric information while pre-
serving semantic discrimination, yielding consistently better performance across
diverse scenarios. Extensive experiments on multiple GOT benchmarks demon-
strate that GOT-Edit achieves superior robustness and accuracy, particularly under
occlusion and clutter, establishing a new paradigm for combining 2D semantics
with 3D geometric reasoning for generic object tracking.

1 INTRODUCTION

Generic object tracking (GOT) (Bhat et al., 2019; Li et al., 2019; Javed et al., 2022) aims to track
an arbitrary user-specified target object, identified by its initially bounding box in the first frame,
and to predict the locations of this target in subsequent frames. However, learning a robust tracker
from limited visual information remains a significant challenge, especially in adverse conditions like
partial occlusion, cluttered scenes with distractors, and significant object deformations.

Most contemporary GOT trackers are trained on 2D datasets, e.g., (Muller et al., 2018; Fan et al.,
2019; Huang et al., 2019; Peng et al., 2024). As a result, their 2D-based representations limited their
ability to reason about contextual relationships between a target and its surroundings, such as dis-
tinguishing a target under partial occlusion or separating it from background distractors. In contrast,
incorporating 3D information provides geometric cues for object boundaries, enabling more precise
reasoning to mitigate challenges such as partial occlusion and inter-object discrimination.

Although several studies (Tan et al., 2025a;b; Chen et al., 2025b; Feng et al., 2025; Hu et al., 2025;
Xu et al., 2025b; Zhang et al., 2024a) have attempted to leverage 3D information for enhanced track-
ing, they often rely on additional 3D data, such as objects represented in RGB-D or backgrounds in
point clouds. This reliance is impractical, as GOT is primarily performed on 2D video streams. Hu-
mans, by contrast, can track targets from the background, near or far, even when observing only 2D
videos or single images. This is because our prior 3D knowledge allows for perception that extends
beyond the flat image plane (Koch et al., 2018; Gregory, 1997).

Emerging techniques in geometric 3D vision (Wang et al., 2024; 2025a; Zhang et al., 2025; Wang
et al., 2025b; Yang et al., 2025) offer a promising direction for advancing GOT. Among these,
we adopt the Visual Geometry Grounded Transformer (VGGT) (Wang et al., 2025a) for its strong
performance and generalization, in alignment with the GOT objectives. Given one or a few 2D
images as input, VGGT learns features for camera pose, point map, and depth estimation, as well
as point tracking, While VGGT has shown effectiveness in point tracking (Karaev et al., 2024),
perception from 2D semantics remains essential for GOT. This is because point tracking operates
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Figure 1: The GOT-Edit Framework. GOT-Edit facilitates the understanding of 3D geometry to
aid generic object tracking from 2D streaming inputs. It predicts semantic and geometric weights
concurrently to incrementally adapt the tracking model. Through online model editing, it ensures
geometry-aware, semantic-preserving updates to the tracking model. The solid red box marks the
ground-truth target in the input reference frames. The dashed red boxes indicate these same an-
notations utilized for the online knowledge update within the geometry branch. The green box
represents the final predicted tracking result.

at the pixel level and does not require an understanding of object semantics, whereas a robust GOT
tracker benefits from both geometric and semantic information.

While geometric information is potentially beneficial for GOT, effectively balancing its contribution
with crucial or even dominant semantic information remains a key challenge. As evidenced by
our later experiment, a naive fusion strategy improves geometry attributes in tracking but degrades
semantic attributes. To address this issue, we propose a novel online model editing technique that
better integrates 3D geometric features from VGGT with 2D semantic features (Oquab et al., 2023)
for GOT. Our approach is inspired by the null-space model editing from AlphaEdit (Fang et al.,
2025), which is designed to introduce new knowledge into the null space of a trained model while
preserving the semantic knowledge for optimal performance. However, AlphaEdit performs offline
model editing, whereas GOT requires online updates to handle dynamically varying targets and
backgrounds in both seen and unseen scenarios. To bridge this gap, we develop an online editing
technique that enables a tracker to adaptively complement 2D semantics with 3D geometric features.

As illustrated in Figure 1, our system begins by extracting both semantic and geometric features
from the current and reference frames. These features are then aligned and fused to create an en-
riched representation, which serves as new knowledge for online tracker adaptation. Built upon
the ToMP (Mayer et al., 2022), our approach employs two model predictors: one for the semantic
branch and one for the geometric branch. These predictors generate the model weights for the local-
ization head. During tracking, the reference labels, which provide correspondences for the reference
frames and act as few-shot examples of previously predicted and observed information, are dynam-
ically updated to guide a tracker toward the target object. This process guides the model predictors
to forecast model weights for the current frame in an online manner. Namely, the semantic model
predictor estimates the semantic weights, while the geometry predictor generates complementary
weights. A null-space constraint is applied before combining these two sets of weights to preserve
the semantic information. Finally, the combined model weights are used by the localization head to
localize the target in the current frame.

Our main contributions are threefold. First, we integrate semantic and geometric knowledge into
generic object tracking without relying on additional 3D input data. This integration enriches 2D
tracking with geometry-aware reasoning, strengthening target discrimination in complex environ-
ments. Second, we propose an online model editing method with a null-space constraint, which
adaptively incorporates additional 3D geometric knowledge into GOT without degrading the dom-
inant semantic features. Finally, extensive experiments on multiple benchmarks validate the effec-
tiveness of our approach, demonstrating that it unlocks most of the geometric knowledge lacking in
existing 2D trackers, resulting in superior performance.
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2 RELATED WORK

Generic Object Tracking. Existing methods for Generic Object Tracking (GOT) task are typ-
ically derived from two pipelines (Javed et al., 2022): matching-based trackers and tracking-by-
detection trackers. The matching-based paradigm formulates tracking as a similarity learning task
followed by matching (Bertinetto et al., 2016; Li et al., 2018; Guo et al., 2020; Xu et al., 2020;
Voigtlaender et al., 2020; Yu et al., 2020; Zhang et al., 2020; Yan et al., 2021a; Cheng et al., 2021;
Chen et al., 2021; Ye et al., 2022; Guo et al., 2022; Cai et al., 2023; Gao et al., 2022; He et al., 2023;
Zhou et al., 2023; Li et al., 2023; Chen et al., 2023; Jinxia et al., 2024; Bai et al., 2024; Shi et al.,
2024; Cai et al., 2024; Song et al., 2023; Wu et al., 2023; Zhao et al., 2023; Zhang et al., 2024b; Xie
et al., 2024; Zhu et al., 2025). These methods focus on training a deep network to learn a function
that can distinguish and match a template of the object to a search region in the current frame. This
trained network is then used for tracking. Recent matching-based trackers (Guo et al., 2025; Xu
et al., 2025a; Li et al., 2025; Kang et al., 2025; Xie et al., 2025) further improve their robustness by
propagating chronological contextual information from predicted hidden states.

Another paradigm, tracking-by-detection, frames generic object tracking as an online detection
task (Bolme et al., 2010; Henriques et al., 2012; Nam & Han, 2016; Kiani Galoogahi et al., 2017; Yao
et al., 2018; Lukezic et al., 2017; Danelljan et al., 2017; 2016; Nai & Chen, 2023; Jia et al., 2024).
Recent trackers under this paradigm employ a model predictor that generates a target-specific track-
ing model from paired reference images and labels, allowing more accurate object localization in
the current frame (Bhat et al., 2019; Mayer et al., 2022; Chen et al., 2025a). The model predictor
is dynamically updated for each incoming frame by referring to previous tracking results and hence
enhances the tracker’s robustness and adaptivity. A separate localization head then uses this updated
model to pinpoint the target.

Despite progress in the above two paradigms, they remain limited by their reliance solely on two-
dimensional spatial and structural knowledge. To overcome this, our method integrates 2D semantic
information with 3D geometric features, enabling a 2D tracker to exploit 3D geometry information
through online tracking model editing.

3D Features for Tracking. Existing trackers that utilize 3D features fall into two primary cate-
gories: those that augment RGB images with additional modalities (RGB+X) (Yan et al., 2021b;
Yang et al., 2022; Zhu et al., 2023; Hou et al., 2024; Cao et al., 2024; Tan et al., 2025a;b; Chen et al.,
2025b; Feng et al., 2025; Hu et al., 2025) and those that operate directly on point cloud data (Wu
et al., 2024; Nie et al., 2024; Liu et al., 2024a; Zhang et al., 2024a; Seidenschwarz et al., 2024;
Xu et al., 2025b). These approaches require auxiliary inputs during tracking, such as pre-computed
depth maps or scene point clouds, which are generally unavailable in real-world scenarios where
scenes and objects may be arbitrary and even previously unseen. Another line of research (Doersch
et al., 2022; Harley et al., 2022; Doersch et al., 2023; Wang et al., 2023; Karaev et al., 2024; Kim
et al., 2025), known as point tracking, explores tracking any pixel. Recent extensions (Xiao et al.,
2025; Lai & Vedaldi, 2025; Rajič et al., 2025; Wang et al., 2025a; Harley et al., 2025) incorporate
3D information for point tracking.

Unlike these methods, our tracker adaptively integrates 3D geometric knowledge with 2D semantic
knowledge for GOT through online model editing. Specifically, we embed VGGT (Wang et al.,
2025a) into a 2D tracker, where a sequence of RGB frames is used to derive complementary 3D
information. While geometric features from VGGT have proved effective for point tracking (Wang
et al., 2025a; Karaev et al., 2024), our method departs from this line of work by embedding these fea-
tures into a 2D GOT tracker via model editing, thereby establishing a direct connection between 3D
geometric representations and object-level semantics for tracking. In this way, our formulation op-
erates directly on RGB streams and extracts geometric cues from them, yielding a geometry–aware
and semantics–preserving GOT formulation that matches the intrinsic nature of the task and aligns
with the way human observers infer scene structure from two-dimensional imagery.

3 METHOD

Geometry inferred from 2D visual streams benefits GOT by enabling a tracker to move beyond flat
representations, but it must be balanced with semantic knowledge. Driven by this insight, we aim to
enhance tracking with geometry-aware reasoning while preserving semantic discrimination.

3
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In the following sections, we introduce null-space model editing in AlphaEdit and explain how it
links geometry and semantics (Section 3.1.1). We then justify the track-by-detection paradigm as a
natural fit for model editing (Section 3.1.2). Finally, we provide a step-by-step description of our
pipeline, highlighting our online model editing approach and objective function (Section 3.2).

3.1 PRELIMINARY

3.1.1 NULL-SPACE CONSTRAINED KNOWLEDGE EDITING

Model editing updates the knowledge stored in a model by adjusting its learned weights. Among
existing model editing algorithms, we adopt the AlphaEdit (Fang et al., 2025) because it excels at
fusing unbalanced features while avoiding catastrophic forgetting. AlphaEdit treats the feed-forward
network (FFN) as a linear associative memory, where input features serve as keys and are mapped
to output features through model parameters W ∈ Rdb×da :

V = WK, where K = [k1 | k2 | . . . | ku] ∈ Rda×u and V = [v1 | v2 | . . . | vu] ∈ Rdb×u. (1)

In Eq. 1, u is the number of features to be updated, da and db are the dimensions of the respective
FFN layers, and ki ∈ Rda and vi ∈ Rdb jointly represent the i-th key-value pair.

One representative optimization objective for model editing is defined by:

∆ = argmin
∆̃

(∥∥∥(W + ∆̃)K1 −V1

∥∥∥2 + ∥∥∥(W + ∆̃)K0 −V0

∥∥∥2) , (2)

where K0 and V0 represent originally learned knowledge, while K1 and V1 encode newly intro-
duced knowledge. This objective seeks an optimal perturbation ∆, obtained by optimizing over
candidate perturbations ∆̃, to edit the model to account for both original and new knowledge.

In practice, new edits often degrade performance on the learned knowledge, as original associations
are disrupted. AlphaEdit addresses this by introducing a null-space constraint: the perturbation ∆
is required to lie in the null space of K0, i.e., ∆K0 = 0. It follows that

(W +∆)K0 = WK0 = V0. (3)

This additional constraint ensures preservation of the learned knowledge when adapting the model
to new knowledge. Thus, AlphaEdit is highly suitable for our proposed GOT-Edit, where dominant
2D semantic features serve as the knowledge to be preserved, while auxiliary 3D geometric features
represent the newly introduced knowledge. Specifically, the tracker predicts the semantic model
weights online and the perturbation weights from 3D features concurrently. These geometry-aware
perturbation weights are projected into the null space of the semantic knowledge to preserve seman-
tics. The semantic weights and the projected perturbation weights are then combined, enabling a
dedicated integration of both semantic and geometric information for object tracking.

3.1.2 TRACK-BY-DETECTION PARADIGM

The track-by-detection paradigm (Henriques et al., 2012; Javed et al., 2022) forms the foundational
framework for our GOT-Edit tracker. In this paradigm, a tracker predicts a target-specific tracking
model (or filters), updates it dynamically online, and employs this model to localize the target in the
current frame, thereby performing tracking by detection in an online manner.

Recent trackers (Bhat et al., 2019; Mayer et al., 2022; Chen et al., 2025a) in this paradigm employ a
model predictor to generate the weights W for the localization head of the tracker. The weights are
applied to the current frame features zcur through convolution or matrix multiplication to produce a
classification score map p, which highlights the target’s location in the current frame at the feature
resolution:

p = W ∗ zcur . (4)

Our GOT-Edit framework aims to adapt the W with the new knowledge through online model
editing. As the formulation in Eq. 4 shares a similar form to the linear equation of AlphaEdit, it
allows GOT-Edit with AlphaEdit-like online model editing to make the fused knowledge semantics-
preserved and geometry-aware, thereby improving the generalization of the tracker.

4
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3.2 GOT-EDIT

By combining 2D semantic understanding with 3D geometric reasoning, GOT-Edit enables trackers
to preserve semantic knowledge while adaptively incorporating geometric cues. In the following,
we first present the pipeline that fuses semantics and geometry for GOT, and then describe the
model-editing mechanism that regulates their interaction and ensures coherent cooperation between
semantic and geometric modalities.

Feature Extraction. Given the reference frames (from previous frames) and the current frame
(to be localized), we extract their semantic features (Oquab et al., 2023), vsref ∈ RC×H×W and
vscur ∈ RC×H×W , and geometric features (Wang et al., 2025a), vgref ∈ RC′×H′×W ′

and vgcur ∈
RC′×H′×W ′

. Note that two reference frames are used, but only one is shown here for brevity.

Alignment and Fusion. The geometric features are aligned to match the dimensionality and res-
olution of semantic features using a convolutional network Align(·) and then fused with semantic
features via a gating mechanism:

Fref = vsref +mref ⊙Align(vgref ) and Fcur = vscur +mcur ⊙Align(vgcur), (5)

where ⊙ denotes point-wise multiplication; mref ∈ [0, 1]C×H×W and mcur ∈ [0, 1]C×H×W are
spatial gating masks predicted from the paired semantic and geometric features via a lightweight
convolution and a sigmoid function, for both of the reference and current frames, respectively.

Model Predictor. After fusing the semantic and geometric features, they are spatially concatenated
with positional encodings and fed into the model predictor, a Transformer encoder-decoder (Mayer
et al., 2022; Carion et al., 2020). The encoder Tenc performs feature interaction, i.e.,

(zref , zcur ) = Tenc([F
′
ref ,Fcur ]), where F ′

ref = Fref + (Lref · efg). (6)

In Eq. 6, Lref denotes the reference labels from past predictions, which indicate the correspondence
of the target coordinates to the reference frame. efg is a learned foreground embedding (Mayer et al.,
2022), and the operator · denotes point-wise multiplication with broadcasting.

The resulting features from Eq. 6, together with the learned foreground embedding efg serving as
the query, are fed into a Transformer decoder (Mayer et al., 2022; Carion et al., 2020) Tdec, which
generates the weights ∆ ∈ RC of the localization head via:

∆ = Tdec([zref , zcur ], efg). (7)

Localization Head. The fused features of the current frame are then passed to the updated localiza-
tion head for target localization:

p = ∆ ∗ zcur . (8)

It is important to note that F ′
ref in Eq. 6 provides important information to differentiate the spatial

and geometric properties of the target from the background in the reference frames and can serve as
few-shot examples to guide target prediction in the current frame.

Online Model Editing. Integrating 3D features enhances GOT by enabling geometric reasoning.
However, their influence must be carefully balanced with semantic information, as naive fusion can
degrade semantic discrimination, as shown in Table 5. Semantic cues remain the primary signal for
distinguishing the target from distractors, whereas geometric cues provide complementary robust-
ness. GOT-Edit therefore performs online model editing that projects geometry-induced perturba-
tions into the null space of semantic features, resulting in an asymmetric interaction that preserves
semantic knowledge while still leveraging geometric information.

Specifically, we develop a mechanism that preserves semantic knowledge while incorporating geo-
metric cues by reformulating Eq. 8 as follows:

p = (Wsem +∆′) ∗ zcur , (9)

where Wsem ∈ RC denotes the semantic weights, obtained by passing semantic features through
the semantic model predictor. This process is analogous to those described in Eq. 6 and Eq. 7,
but uses only semantic features as input. zcur ∈ RC×HW represents the fused semantic-geometric

5
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features of the current frame, as defined in Eq. 6. The perturbation weights ∆′ complement the
semantic weights with geometric information and are defined as:

∆′ = Pnull∆, (10)
where ∆ is obtained from Eq. 7 using the geometry model predictor, and Pnull ∈ RC×C is the
null-space projection matrix computed from the semantic features.

Inspired by AlphaEdit, we use Singular Value Decomposition (SVD) to compute the null space pro-
jector Pnull for semantic features. Rank deficiency frequently arises in feature representations in the
GOT setting, which leads to ill conditioning and must be handled carefully. To ensure stability prior
to SVD, we first apply whitening (Kessy et al., 2018) to the semantic features to obtain normalized
features Z and then compute the regularized correlation matrix M:

M = ZZ⊤ + λI, (11)

where λ is a ridge regularization term (Hoerl & Kennard, 1970).

We then construct the raw projector P̂ = UnullU
⊤
null by selecting the eigenvectors Unull of M

corresponding to low-energy eigenvalues (identifying the subspace with minimal semantic informa-
tion). To mitigate numerical drift during online inference, we explicitly symmetrize (Ammari et al.,
2012a;b) the projector:

Pnull =
1

2
(P̂+ P̂⊤). (12)

This stabilized projector is then utilized in Eq. 10 to compute the geometry-aware perturbation
weights.

Unlike AlphaEdit, which performs offline model editing by collecting all preserved knowledge as in
Eq. 1, our GOT-Edit predicts both preserved weights and perturbation weights in an online manner,
enabling adaptive integration of geometric knowledge into the semantic model.

Box Regression. A regression decoder RegDec takes the semantic–geometry enriched classifica-
tion score map and the current frame features as input to predict a regression score map that provides
the target bounding box in image resolution:

d = RegDec (p · zcur ) , (13)
where the operator · denotes channel-wise broadcasting multiplication, and the regression decoder
RegDec, as used in (Mayer et al., 2022; Chen et al., 2025a), employs four convolutional layers to
produce four feature maps d in the ltrb (left, top, right, bottom) bounding box representation (Tian
et al., 2019). The coordinates with the highest classification score in p are mapped onto the regres-
sion score map d for final bounding box prediction.

Objective Function. The training objective is identical to that of previous work (Mayer et al., 2022;
Bhat et al., 2019), i.e.,

L = λclsLcls(p̂, p) + λgiouLgiou(d̂, d), (14)

where p̂ and d̂ are the ground-truth labels. The target classification loss Lcls is a compound hinge
loss as described in (Bhat et al., 2019), while the GIoU loss (Rezatofighi et al., 2019) Lgiou is used
to supervise bounding box regression. λcls and λgiou are scalar weights that control the contribution
of each loss, and these hyperparameters are identical to those in (Mayer et al., 2022).

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

Training Data. Like most trackers, e.g. (Mayer et al., 2022; Chen et al., 2025a; 2023; Lin et al.,
2024), we adopt the training splits of LaSOT, GOT10k, TrackingNet, and COCO for model training.

Since some recent trackers (Kang et al., 2025; Liang et al., 2025) include VastTrack (Peng et al.,
2024) for training, we provide a variant of our tracker trained with this new dataset. The training
data rigorously follows the VOT2022 (Kristan et al., 2022) challenge and GOT-10K guidelines.

6
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Test Data. We use the following datasets for tracker performance evaluation:
• AVisT (Noman et al., 2022): Designed for testing without a training set, it encompasses 120 short

and long sequences, each averaging 664 frames under adverse visibility conditions.

• NfS (Galoogahi et al., 2017) and OTB (Wu et al., 2015): Used for testing without a training set,
each dataset contains 100 sequences, with an average of 534 frames per sequence.

• GOT-10k (Huang et al., 2019): It has 420 short sequences with an average of 149 frames per
sequence, featuring non-overlapping object classes in the training and test sets.

• LaSOT (Fan et al., 2019) and TrackingNet (Fan et al., 2019): They provide training data where
test classes fully overlap with training classes. LaSOT has 280 long sequences with an average of
2k frames per sequence, and TrackingNet offers 511 short sequences, averaging 471 frames each.

• VOT2020 (Kristan et al., 2020) and VOT2022 (Kristan et al., 2022): These are the 2020 and
2022 editions of the Visual Object Tracking challenge (VOT-ST2020 and VOT-STb2022).

Evaluation Metrics. We evaluate trackers using the following metrics:

• SUC (success rate): The percentage of frames in which the predicted bounding box overlaps the
ground truth by at least an IoU threshold or the average of all thresholds.

• SR75: It refers to SUC with an IoU threshold of 75%.

• OP50: The percentage of frames where the predicted and ground truth IoU exceed 50%.

• Pr (precision): It measures the percentage of frames where the predicted target center is within T
pixels of the ground-truth center. T is set to 20 in this work.

• NPr (normalized precision): It is the percentage of frames where the center location error, nor-
malized by the target’s box diagonal, is less than the threshold of 0.2.

• AO (average overlap): The mean IoU between the predicted and ground-truth bounding boxes.

Implementation Details. Our method is implemented using PyTorch 2.0.0 and CUDA 11.7. We
train the model on four A6000 GPUs (48 GB each). DeepSpeed (Rasley et al., 2020) is integrated to
accelerate training. We also validate that when activation checkpointing is applied to the tracker, it
further reduces memory consumption, enabling training of the tracker at high resolution (378 × 378)
on four 24 GB GPUs (e.g., NVIDIA RTX 4090 GPU). Inference is performed on a single NVIDIA
RTX 4090 GPU and consumes approximately 9 GB of GPU memory during evaluation.

Following PiVOT (Chen et al., 2025a) and LoRAT (Lin et al., 2024), we utilize ViT-L as the back-
bone for image feature extraction, using weights pretrained with DINOv2 (Oquab et al., 2023). The
backbone remains frozen during training with the tracker. For integrating geometric information,
we extract intermediate features from the DPT head of VGGT (Wang et al., 2025a), which is kept
frozen during training. Similar to PiVOT (Chen et al., 2025a), the model predictors and the local-
ization head of our tracker are initialized with weights from ToMP-L, a DINOv2-L variant of ToMP.
For an efficient design, the dual model predictors share the same architecture and weights, but two
independent lightweight convolutional layers are appended in parallel to the predictors, serving as
task-specific heads for semantic weight prediction and perturbation weight prediction, respectively.

We sample 200K subsequences per epoch and train for 30 epochs. Each subsequence consists of two
reference frames and one current frame, randomly selected from a 200-frame window within a video
sequence. The frames to VGGT are concatenated spatially, which allows better geometric features
through multi-frame interaction. Following ToMP (Mayer et al., 2022), PiVOT (Chen et al., 2025a),
we set the search area scale factor to 5.0 and perform data augmentation. The initial learning rate
is set to 10−4 with a StepLR scheduler that decays it by a factor of 0.2 at epochs 10, 15, and 20.
AdamW (Loshchilov & Hutter, 2019) is used as the optimizer.

To mitigate the computational cost of higher image resolutions, as in recent works (Xie et al., 2025;
Li et al., 2025; Chen et al., 2023; Lin et al., 2024), we use smaller resolutions for most ablations
and higher resolutions for comparison with the state of the art: 1) GOT-Edit-252, where the frame
resolution and the patch token size are 252 × 252 and 18 × 18, respectively; 2) GOT-Edit-378,
where the frame resolution and the token size are 378 × 378 and 27 × 27, respectively. We also
employ mixed-precision training with BFloat16 and Float32 (or TFloat32) for efficiency.
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Table 1: Comparison with state-of-the-art methods. Each tracker is followed by its input reso-
lution. The term ‘Base’ in the column ‘Training Data of Tracker’ refers to trackers trained on the
classical four datasets. ‘Frames’ denotes the number of frames a tracker uses on each frame during
evaluation. ‘*‘ denotes a tracker trained solely on the specific GOT-10k set (Huang et al., 2019).

Training-Test Class Overlap Low or No Overlap Full Overlap
Dataset AVisT NfS OTB GOT-10k* LaSOT TrackingNet

Tracker Semantic
Feature

Geometry
Feature

Training Data
of Tracker Frames Trainable

Parameters SUC SUC SUC AO SR75 NPr Pr SUC NPr SUC

GOT-Edit-378 (Ours) DiNOv2-L VGGT Base+VastTrack 3 53M 64.5 71.1 75.0 80.2* 79.8* 84.8 82.9 75.0 91.0 86.7
GOT-Edit-378 (Ours) DiNOv2-L VGGT Base 3 53M 63.7 69.9 73.0 85.2 83.2 75.3 90.6 86.4
PiVOT-378 (Chen et al., 2025a) DiNOv2-L - Base 3 34M 62.2 68.2 71.2 76.9 75.5 84.7 82.1 73.4 90.0 85.3
LoRAT-378 (Lin et al., 2024) DiNOv2-L - Base 3 32M 62.0 66.7 72.0 77.5 78.1 84.1 82.0 75.1 89.7 85.6
ToMP-378 (Chen et al., 2025a) DiNOv2-L - Base 3 25M 61.5 67.8 71.0 - - 83.6 80.8 72.6 - -
ToMP-378 (Reproduced) DiNOv2-L - Base+VastTrack 3 25M 62.0 69.0 71.5 77.5 75.8 83.7 80.8 72.7 89.0 84.2
MCITrack-384 (Kang et al., 2025) Fast-iTPN-L - Base+VastTrack 5 287M 62.9 70.6 72.0 80.0 80.2 86.1 85.0 76.6 92.1 87.9
ARPTrack-384 (Liang et al., 2025) ViT-ARP-L - Base+VastTrack+K700 7 460M - - - 81.5 80.5 83.4 81.7 74.2 91.1 86.6
SeqTrack-384 (Chen et al., 2023) ViT-MAE-L - Base 3 309M 57.8 66.7 - 74.8 72.2 81.5 79.3 72.5 89.8 85.5
GRM-320 (Gao et al., 2023) ViT-MAE-L - Base 3 308M 54.5 66.9 68.9 73.4 70.4 81.2 77.9 71.4 88.9 84.0
SATrack-384 (Ma et al., 2025) SAViT - Base 6 310M 58.4 67.5 - 75.4 73.5 81.4 78.4 72.0 89.0 84.7
DeTrack-384 (Zhou et al., 2024) Denoising ViT - Base 3 - 60.2 - - 77.9 74.9 81.7 79.1 72.9 - -
SAMITE-1024 (Xu et al., 2025c) SAM 2 - SA-1B 7 - - 69.2 69.9 78.9 72.5 83.4 81.4 74.9 - 84.5
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Figure 2: From left to right, success plots of competing methods on OTB, AVisT, and NfS are shown.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART METHODS

Table 1 compares our GOT-Edit with the SOTAs on several benchmark datasets. When compared
with trackers that use semantic backbones based on DINOv2 (Oquab et al., 2023), our tracker
demonstrates superior performance, generalizes well to out-of-distribution targets, and achieves
competitive results on in-distribution targets.

GOT-Edit shows a performance gain of about 2–3% across datasets compared with ToMP-378,
which is a DINOv2 variant of ToMP (Mayer et al., 2022) and serves as the baseline tracker. Compar-
ing against trackers that employ different semantic backbones, our tracker outperforms all trackers
on out-of-distribution targets, except MCITrack-384 (Kang et al., 2025) on in-distribution targets,
which uses a different semantic backbone and involves more trainable parameters and frames during
training and evaluation. In addition to SUC, NPr, and Pr, we compare trackers using OP50 (Table 3),
where all trackers share the same semantic backbone. Our tracker outperforms all others by a clear
margin in this metric. We also provide the success AUC curve in Figure 2. On OTB, our method
consistently shows the best results. Our tracker outperforms all trackers when T > 0.2 on AVisT,
while outperforming MCITrack when T < 0.7 on NfS. Additionally, we provide an evaluation on
the VOT challenge in Table 2.

4.3 ABLATION STUDIES

Table 4 presents ablation studies on each GOT-Edit component under image resolution 252, trained
using four classical datasets. Row (1) shows the baseline method trained using only semantic fea-
tures. Row (2) shows that the GOT tracker takes features from the DPT head of VGGT. Even though
these features are used to finetune the tracker with GOT data, performance still drops dramatically
due to the limited discriminative ability of the geometric information. Row (3) shows the fusion of
semantic features from VGGT’s DINO head and geometric features from VGGT’s DPT head, which
yields a moderate improvement compared with using geometric features alone. Row (4) shows se-
mantic features extracted from an independent DINO backbone, which perform better than semantic
features from the DINO head of VGGT. This is because VGGT fine-tunes its DINO backbone with
large-scale 3D data, distorting the original semantic representations of the DINO backbone. Row
(5) shows semantic–geometry fusion under the null-space constraint, which improves performance
compared with fusion without the constraint. Row (6) shows that whitening and regularization ap-
plied to input features before SVD further improve overall performance.
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Table 2: Comparisons among trackers on the VOT challenge using Robustness as the metric.

GOT-Edit PiVOT MixFormerL OSTrackSTB TransT M ToMP
VOT-STb2022 89.8 87.3 85.9 86.7 84.9 81.8
VOT-ST2020 90.3 – 85.5 – – 78.9

Table 3: Comparison with trackers
using DINO features under OP50.

Dataset AVisT NfS LaSOT
Tracker / Metric OP50

GOT-Edit-378 Vast 74.4 89.3 85.9
GOT-Edit-378 73.7 88.7 86.4
ToMP-378 72.6 85.7 84.8
LoRAT-378 72.4 85.6 85.1

Table 4: Ablation studies on GOT-Edit with several design
choices compared across multiple datasets under SUC.

Semantic
(DINO)

Semantic
(VGGT’s DINO)

Geometry
(VGGT)

Null Space
Constrain

Regulari-
zation AVisT NfS LaSOT

(1) ✓ 59.2 68.5 70.7
(2) ✓ 55.8 66.3 67.6
(3) ✓ ✓ 59.9 67.5 70.9
(4) ✓ ✓ 60.2 68.5 71.3
(5) ✓ ✓ ✓ 61.5 69.3 72.7
(6) ✓ ✓ ✓ ✓ 62.0 70.2 73.8

Illumination
Variation

Scale
Variation

Occlusion
Deformation

Motion
Blur

Fast
Motion

In-Plane
Rotation

Out-of-Plane
Rotation

Out-of-View

Background
Clutter

Low
Resolution

20 40 60

GOT-Edit_L378 [74.8]
LORAT_L378 [71.9]

ROMTrack_L384 [70.7]
ToMP_L378 [70.4]

TrDiMP [69.9]
PiVOT_L378 [69.5]

Weather
Conditions

Obstruction
Effects

Imaging
Effects

Target
Effects

Camouflage

20 40 60

GOT-Edit_L378 [61.0]
PiVOT_L378 [58.9]

ToMP_L378 [57.0]
MixFormer_L320 [53.1]

UVLTrack_L384 [52.7]
GRM_L320 [52.3]

Illumination
Variation

Partial
Occlusion

Deformation

Motion
Blur

Camera
Motion

Rotation

Background
Clutter

Viewpoint
Change

Scale
Variation

Full
Occlusion

Fast
Motion Out-of-View

Low
Resolution

Aspect
Ratio

Change

20 40 60

GOT-Edit_L378 [72.4]
ODTrack_L384 [71.5]

PiVOT_L378 [70.5]
ToMP_L378 [69.8]

SeqTrack_L384 [69.3]
CSWinTT_L384 [63.6]

Figure 3: Attribute analysis of OTB, AVisT, and LaSOT from left to right, with average scores below.

Overall, our online model editing strategy for geometry–semantics combination improves the base-
line by an average of 2.5%, while the null space constraint with regularization effectively enhances
fusion, yielding notable gains across datasets: 1.8% on AVisT, 1.7% on NfS, and 2.5% on LaSOT.
These results demonstrate the superiority of GOT-Edit.

Our method freezes semantic and geometry feature extractors and fuses them using the proposed
knowledge-editing approach during training, enabling seamless cooperation between the two modal-
ities and further complements the semantic distortion in VGGT, where semantic features tend to be
dominated by geometry, and complements existing GOT trackers, which lack geometric knowledge.

Table 5 shows the ablation studies of GOT-Edit-252 components with regard to attributes. Row
(1) presents the baseline performance. Row (2) reports the results of incorporating semantic and
geometric information under a naive fusion method. For attributes related to 3D (e.g., occlusion,
visibility, background clutter), the performance improves. However, for non-3D-related attributes
(e.g., distractor, fast motion, illumination), the performance degrades. By addressing the fusion bal-
ancing problem through the null-space constraint, as adopted in our GOT-Edit, the tracker achieves
not only geometric benefits but also semantic consistency, as demonstrated in row (3).

4.4 COMPARISON OF ATTRIBUTES AMONG SOTA

We conduct an attribute-based analysis by comparing our GOT-Edit with several trackers like (Song
et al., 2022; Zheng et al., 2024; Ma et al., 2024; Cui et al., 2022; Wang et al., 2021) using large reso-
lution input, as shown in Figure 3. This analysis provides insights into the strengths and weaknesses
of different methods and highlights potential areas for improvement. Note that attribute-based plot-
ting requires the raw results of a tracker. If the raw data of a tracker is unavailable or if datasets lack
an attribute analysis protocol (e.g., those hosted on third-party servers without attribute results), we
exclude those trackers from the attribute analysis.

OTB: As the left column of Figure 3 illustrates, our tracker achieves a considerable performance
gain on attributes such as background clutter, occlusion, and rotation, compared with the baseline
ToMP-L378. These improvements result from the geometry information that aids the understanding
of the scene and the object itself, while other attributes still outperform competing trackers.
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Table 5: Ablation studies of GOT-Edit components with regard to the attributes.
Semantic
(DINO)

Geometry
(VGGT)

Null Space
Constrain

AVisT LaSOT
Weather Conditions
(Target Visibility)

Obstruction Effects
(Occlusion)

Camouflage
(Background Clutter)

Target Effects
(Distractor)

Partial
Occlusion

Full
Occlusion

Background
Clutter

Fast
Motion Illumination

(1) ✓ 64.32 57.14 42.21 49.38 68.97 62.93 64.25 60.39 72.02
(2) ✓ ✓ 66.58 59.83 44.37 47.18 70.08 63.74 65.45 58.73 71.13
(3) ✓ ✓ ✓ 67.95 62.67 46.93 50.27 71.60 66.33 67.85 62.90 73.23

Figure 4: Visual comparisons of tracking results from GOT-Edit, PiVOT, and LoRAT across diverse
video sequences under adverse scenarios are shown. The three left columns illustrate object tracking
evaluation on AVisT, while the three right columns present tracking results on LaSOT.

AVisT: As shown in the middle column of Figure 3, our tracker achieves improvements across
most attributes compared with other trackers. Although it falls behind PiVOT in Imaging Effects
(low-light images), it still outperforms the baseline ToMP-L378 across attributes, demonstrating its
effectiveness in handling unseen data.

LaSOT: The right column of Figure 3 demonstrates that our tracker outperforms most attributes
compared with other trackers; however, in viewpoint change and fast motion, it performs similarly
or slightly drops below some trackers. This is because visual geometry becomes less effective when
the scene or object moves rapidly or undergoes significant viewpoint changes.

Limitations. While improved in most attributes, our tracker still requires enhancement in handling
moving objects and scenes, as evidenced in the LaSOT benchmark. The ‘Target Effects’ attribute
in the AVisT benchmark, which contains both distractors and fast-moving objects, also provides
evidence for improvement. Additionally, handling out-of-distribution data, as in AVisT, presents
opportunities for further advancement.

5 VISUALIZATION RESULTS

We present visual comparisons among trackers in Figure 4. Our tracker exhibits greater robustness
under occlusion and superior discrimination against distractors. These advantages arise from the
proposed method for semantic and geometric reasoning. More detailed tracking results are demon-
strated in the video provided in the appendix of the submission platform.

6 CONCLUSION

We present GOT-Edit, the first framework to embed geometry-grounded reasoning into generic ob-
ject tracking via online model editing without explicit 3D inputs. By constraining updates to pre-
serve semantics, GOT-Edit prevents degradation while incorporating geometric cues overlooked by
conventional 2D trackers. Through online model editing with null-space constraint, it retains se-
mantic knowledge while adaptively integrating geometric information, achieving robustness under
occlusion, clutter, and visual ambiguity. The framework generalizes across datasets, targets, and en-
vironments while maintaining stability and robustness. Beyond surpassing state-of-the-art trackers
in generalization, the results demonstrate that principled model editing can bridge modality gaps
and recover geometry information missed by purely 2D approaches. These advances chart a path
toward reliability, safety, and social responsibility in vision systems.
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ETHICS STATEMENT

The proposed GOT-Edit framework improves generic object tracking by adaptively integrating se-
mantic and geometric reasoning through online model editing. This capability offers potential so-
cietal benefits, including greater reliability of autonomous and robotic systems and improved as-
sistance in challenging visual environments. However, the method may be misused for intrusive
surveillance or other applications that compromise privacy and security. Deployment must there-
fore comply with legal and ethical standards, particularly in contexts involving personal data or
sensitive environments. The tracker is trained solely on publicly available datasets, consistent with
existing methods and in accordance with established ethical standards. Responsible use requires
transparency, rigorous validation, and adherence to established ethical guidelines.

REPRODUCIBILITY

To ensure reproducibility, detailed implementation instructions for GOT-Edit are provided in 4.1.
The source code will be publicly available upon acceptance. These measures are intended to facili-
tate the verification and replication of the results by other researchers.
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A APPENDIX

This document supplements the main paper with details on GOT-Edit, including comparisons with
state-of-the-art trackers using NPr, Pr, and SUC plots, ablation on model complexity, and a video
appendix for qualitative visualisation on LaSOT and AVisT, available as a zipped file from the
paper submission forum.

B COMPUTATIONAL COST ANALYSIS

Table 6: The analysis quantifies the computational costs of each component of the GOT-Edit in
terms of runtime per frame (milliseconds, ms).

Frame Resolution Backbone Align and
Fuse

Model
Predictors

Reg/Cls
Decoders TotalVGGT DINO

252 × 252 65.6 8.7 2.3 6.8 0.7 84.1
378 × 378 91.9 17.6 2.7 14.5 0.7 127.4

The computational cost of each tracker component is reported in Table 6 as per-frame runtime (ms).
The primary computational overhead is dominated by geometric feature extraction (VGGT). Our
core contribution, the online model editing modules (Align and Fuse and Model Predictors), is
highly efficient, with a runtime of only 9.1 ms at a 252 × 252 frame resolution or 17.2 ms at a
378× 378 resolution. The evaluation model uses BFloat16 for VGGT.

Table 7: Runtime and FLOPs breakdown for VGGT, DINO, and the tracker component.

Frame Resolution Metric VGGT DINO Tracker Excluding
VGGT & DINO

252 × 252 Runtime (ms) 65.6 8.7 9.8
FLOPs (G) 1000 105 32

378 × 378 Runtime (ms) 91.9 17.6 17.9
FLOPs (G) 2253 251 73

We also provide the model complexity in terms of FLOPs (Floating-Point Operations), as shown in
Table 7. FLOPs are agnostic to device and precision, and we compute MACs (multiply–accumulate
operations and multiply) and multiply the result by two to obtain FLOPs.

C MORE EXPERIMENTS

Analysis of Alternate Geometry Backbone Choices

To enhance speed performance, we utilize StreamVGG (Zhuo et al., 2025) to replace VGGT for
geometric feature extraction and report the results in Table 8. In this table, ‘GlobalAttn FineTune’
refers to using DoRA (Liu et al., 2024b) to fine-tune the linear layers of the global attention layer
in the geometry model, where the global attention layer is the key mechanism for handling cross-
frame information. ‘MemCache’ refers to the number of historical K/V caches used for tracking.
‘Frequency’ denotes the frequency for geometric feature extraction. The DoRA rank is set to 16,
and only 2.4 M parameters are fine-tuned for the geometry model. The experimental results in
the table demonstrate that optimized geometric variants and selective feature application (we set the
memory cache to 3 and apply geometric information every 3 frames in the StreamVGGT variant) can
significantly increase the speed (e.g., runtime is reduced by approximately 40% when StreamVGGT
replaces VGGT, while competitive accuracy is maintained.

Analysis of Attribute-Wise Performance under Semantic and Geometry Configurations

To explicitly evaluate the influence of both the geometric and semantic backbones, we conduct addi-
tional experiments 9 at the consistent resolution of 378× 378. These extended experiments validate
our method by varying both the semantic backbone (DiNOv2 vs. MAE (He et al., 2022)) and the
geometric backbone (VGGT vs. StreamVGGT). Experiments (1) and (3) in Table 9 establish the
baselines using only the semantic backbones MAE-L and DiNOv2-L, respectively. Once additional
geometric backbones, VGGT and StreamVGGT, are adopted, our GOT-Edit can leverage the geo-
metric features and substantially improve performance across various challenging attributes, such as
occlusion, background clutter, and distractors.
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Table 8: Efficiency in runtime (ms per frame) and accuracy (%) for VGGT and StreamVGGT with
varying cache and update frequency.

Tracker Geometry
Method

GloabalAttn
FineTune

Mem
Cache Frequency Runtime LaSOT AVisT NfS

GOT-Edit-252

VGGT - - Every Frame 84.1 73.8 62.0 70.2

StreamVGGT

- 1 Every Frame 72.5 72.8 61.4 69.7

✓

1 Every Frame 72.9 73.5 61.6 70.0
2 Every 2 Frames 59.4 72.3 61.8 69.5
2 Every 3 Frames 53.9 72.7 62.0 69.2
3 Every 2 Frames 67.8 73.1 62.7 70.0
3 Every 3 Frames 56.2 73.4 61.9 69.8

GOT-Edit-378

VGGT - - Every Frame 127.4 75.0 64.5 71.1

StreamVGGT

- 2 Every 2 Frames 84.6 74.3 63.2 69.5

✓

2 Every 2 Frames 84.0 74.9 64.1 70.9
2 Every 3 Frames 72.4 74.8 64.3 70.7
3 Every 2 Frames 92.1 74.8 63.2 71.2
3 Every 3 Frames 78.4 75.2 63.3 71.4

Table 9: Attribute-wise performance with different semantic and geometry configurations.

Semantic Geometry AVisT

DiNO MAE VGGT StreamVGGT Weather Conditions
(Target Visibility)

Obstruction Effects
(Occlusion)

Camouflage
(Background Clutter)

Target Effects
(Distractor)

(1) ✓ 65.07 56.69 62.07 44.58
(2) ✓ ✓ 65.81 60.10 66.21 45.93
(3) ✓ 65.31 58.89 66.94 45.79
(4) ✓ ✓ 68.54 61.41 68.33 48.86
(5) ✓ ✓ 68.39 61.31 68.73 49.68

NPr, Pr, and Suc Plots

We report NPr, Pr, and SUC plots on four datasets: NfS, AVisT, LaSOT, and OTB. Other datasets,
such as TrackingNet and GOT-10K, are evaluated on online servers without plots and thus excluded.

Overview Guidelines for NPr, Pr, and Suc Plots:

In the Precision (Pr) and Normalized Precision (NPr) plots, the x-axis denotes pixel or normalized
distance thresholds, while the y-axis indicates the percentage of frames in which the distance be-
tween the predicted and ground-truth target centers falls within the specified threshold. A balance
is typically sought between higher precision and lower localization error. Trackers are commonly
ranked by their performance at a threshold of 0.2 in NPr or 20 pixels in Pr.

In the Success (SUC) plot, the x-axis represents the IoU thresholds (measuring the overlap between
the predicted bounding box and the ground truth), while the y-axis indicates the percentage of frames
in which the IoU meets or exceeds the corresponding threshold. Trackers are commonly ranked by
their performance, measured as the average precision across all thresholds.

We analyze the plots for each dataset as follows:

• NfS: In Figure 5, our tracker outperforms others once the threshold exceeds 0.1 in NPr or
10 pixels in Pr. For SUC, it consistently surpasses all baselines across thresholds.

• AVisT: As shown in Figure 6, AVisT, a training-free dataset with diverse adverse scenar-
ios. Under conditions NPr with T < 0.3, our tracker outperforms all baselines. For PR,
our tracker outperforms competitors across thresholds. For SUC, our tracker outperforms
competitors when T > 0.4.

• OTB: In Figure 7, our tracker consistently outperforms competitors e.g., (Lin et al., 2024;
Chen et al., 2025a; Mayer et al., 2021; Wang et al., 2021) in SUC. For Pr and NPr, most
trackers perform similarly, while our method remains significantly competitive.

• LaSOT: In Figure 8, on this in-distribution dataset, our tracker outperforms SOTA meth-
ods, e.g., (Zheng et al., 2024; Cai et al., 2023; Song et al., 2023; 2022) when NPr T > 0.1,
Pr T > 10 pixels, and SUC < 0.7. LoRAT surpasses our tracker only under very strict con-
ditions, such as NPr T < 0.1, Pr T < 10 pixels, and SUC > 0.8. Nevertheless, our method
consistently outperforms other trackers with the same backbone, including PiVOT-L378
and ToMP-L378.
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Figure 5: Comparison of methods using NPr, Pr, and SUC on NfS, left to right.
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Figure 6: Comparison of methods using NPr, Pr, and SUC on AVisT, left to right.
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Figure 7: Comparison of methods using NPr, Pr, and SUC on OTB, left to right.
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Figure 8: Comparison of methods using NPr, Pr, and SUC on LaSOT, left to right.

D THE USE OF LARGE LANGUAGE MODELS

The research is original, and large language models were used only for polishing the writing.
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