

000 GOT-EDIT: GEOMETRY-AWARE GENERIC 001 OBJECT TRACKING VIA ONLINE MODEL EDITING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

011 Human perception for effective object tracking in a 2D video stream arises from
012 the implicit use of prior 3D knowledge combined with semantic reasoning. In
013 contrast, most generic object tracking (GOT) methods primarily rely on 2D fea-
014 tures of the target and its surroundings while neglecting 3D geometric cues, which
015 makes them susceptible to partial occlusion, distractors, and variations in geom-
016 etry and appearance. To address this limitation, we introduce GOT-Edit, **an online**
017 **cross-modality model editing approach that integrates geometry-aware cues into**
018 **a generic object tracker from a 2D video stream. Our approach leverages features**
019 **from a pre-trained Visual Geometry Grounded Transformer to enable geometric**
020 **cue inference from only a few 2D images.** To tackle the challenge of seamlessly
021 combining geometry and semantics, GOT-Edit performs online model editing with
022 null-space constrained updates that incorporate geometric information while pre-
023 serving semantic discrimination, yielding consistently better performance across
024 diverse scenarios. Extensive experiments on multiple GOT benchmarks demon-
025 strate that GOT-Edit achieves superior robustness and accuracy, particularly under
026 occlusion and clutter, establishing a new paradigm for combining 2D semantics
027 with 3D geometric reasoning for generic object tracking.

028 1 INTRODUCTION

030 Generic object tracking (GOT) (Bhat et al., 2019; Li et al., 2019; Javed et al., 2022) aims to track
031 an arbitrary user-specified target object, identified by its initially bounding box in the first frame,
032 and to predict the locations of this target in subsequent frames. However, learning a robust tracker
033 from limited visual information remains a significant challenge, especially in adverse conditions like
034 partial occlusion, cluttered scenes with distractors, and significant object deformations.

035 Most contemporary GOT trackers are trained on 2D datasets, e.g., (Muller et al., 2018; Fan et al.,
036 2019; Huang et al., 2019; Peng et al., 2024). As a result, their 2D-based representations limited their
037 ability to reason about contextual relationships between a target and its surroundings, such as dis-
038 tinguishing a target under partial occlusion or separating it from background distractors. In contrast,
039 incorporating 3D information provides geometric cues for object boundaries, enabling more precise
040 reasoning to mitigate challenges such as partial occlusion and inter-object discrimination.

041 Although several studies (Tan et al., 2025a;b; Chen et al., 2025b; Feng et al., 2025; Hu et al., 2025;
042 Xu et al., 2025b; Zhang et al., 2024a) have attempted to leverage 3D information for enhanced track-
043 ing, they often rely on additional 3D data, such as objects represented in RGB-D or backgrounds in
044 point clouds. This reliance is impractical, as GOT is primarily performed on 2D video streams. Hu-
045 mans, by contrast, can track targets from the background, near or far, even when observing only 2D
046 videos or single images. This is because our prior 3D knowledge allows for perception that extends
047 beyond the flat image plane (Koch et al., 2018; Gregory, 1997).

048 Emerging techniques in geometric 3D vision (Wang et al., 2024; 2025a; Zhang et al., 2025; Wang
049 et al., 2025b; Yang et al., 2025) offer a promising direction for advancing GOT. Among these,
050 we adopt the Visual Geometry Grounded Transformer (VGGT) (Wang et al., 2025a) for its strong
051 performance and generalization, in alignment with the GOT objectives. Given one or a few 2D
052 images as input, VGGT learns features for camera pose, point map, and depth estimation, as well
053 as point tracking. While VGGT has shown effectiveness in point tracking (Karaev et al., 2024),
perception from 2D semantics remains essential for GOT. This is because point tracking operates

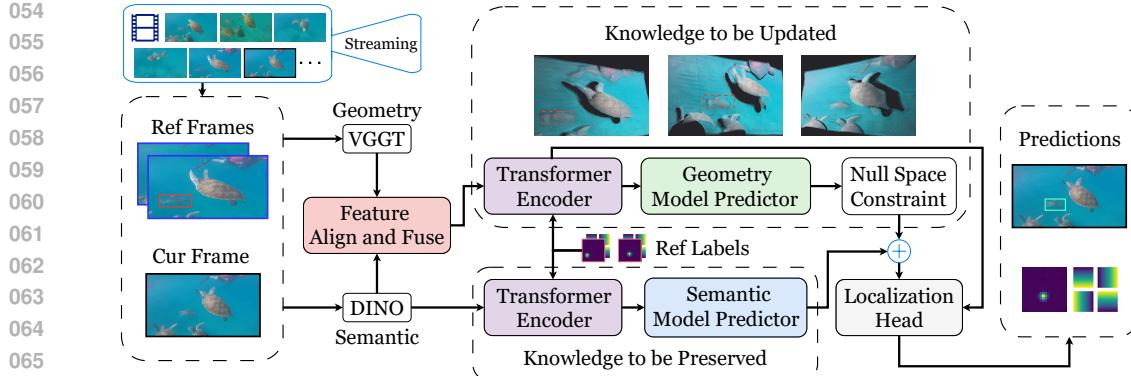


Figure 1: **The GOT-Edit Framework.** GOT-Edit facilitates the understanding of 3D geometry to aid generic object tracking from 2D streaming inputs. It predicts semantic and geometric weights concurrently to incrementally adapt the tracking model. Through online model editing, it ensures geometry-aware, semantic-preserving updates to the tracking model. The **solid red box** marks the ground-truth target in the input reference frames. The **dashed red boxes** indicate these same annotations utilized for the online knowledge update within the geometry branch. The **green box** represents the final predicted tracking result.

at the pixel level and does not require an understanding of object semantics, whereas a robust GOT tracker benefits from both geometric and semantic information.

While geometric information is potentially beneficial for GOT, effectively balancing its contribution with crucial or even dominant semantic information remains a key challenge. As evidenced by our later experiment, a naive fusion strategy improves geometry attributes in tracking but degrades semantic attributes. To address this issue, we propose a novel online model editing technique that better integrates 3D geometric features from VGTT with 2D semantic features (Oquab et al., 2023) for GOT. Our approach is inspired by the *null-space model editing* from AlphaEdit (Fang et al., 2025), which is designed to introduce new knowledge into the null space of a trained model while preserving the semantic knowledge for optimal performance. However, AlphaEdit performs offline model editing, whereas GOT requires online updates to handle dynamically varying targets and backgrounds in both seen and unseen scenarios. To bridge this gap, we develop an online editing technique that enables a tracker to adaptively complement 2D semantics with 3D geometric features.

As illustrated in Figure 1, our system begins by extracting both semantic and geometric features from the current and reference frames. These features are then aligned and fused to create an enriched representation, which serves as new knowledge for online tracker adaptation. Built upon the ToMP (Mayer et al., 2022), our approach employs two model predictors: one for the semantic branch and one for the geometric branch. These predictors generate the model weights for the localization head. During tracking, the reference labels, which provide correspondences for the reference frames and act as few-shot examples of previously predicted and observed information, are dynamically updated to guide a tracker toward the target object. This process guides the model predictors to forecast model weights for the current frame in an online manner. Namely, the semantic model predictor estimates the semantic weights, while the geometry predictor generates complementary weights. A null-space constraint is applied before combining these two sets of weights to preserve the semantic information. Finally, the combined model weights are used by the localization head to localize the target in the current frame.

Our main contributions are threefold. First, we integrate semantic and geometric knowledge into generic object tracking without relying on additional 3D input data. This integration enriches 2D tracking with geometry-aware reasoning, strengthening target discrimination in complex environments. Second, we propose an online model editing method with a null-space constraint, which adaptively incorporates additional 3D geometric knowledge into GOT without degrading the dominant semantic features. Finally, extensive experiments on multiple benchmarks validate the effectiveness of our approach, demonstrating that it unlocks most of the geometric knowledge lacking in existing 2D trackers, resulting in superior performance.

108 **2 RELATED WORK**

109
110 **Generic Object Tracking.** Existing methods for Generic Object Tracking (GOT) task are typ-
111 ically derived from two pipelines (Javed et al., 2022): matching-based trackers and tracking-by-
112 detection trackers. The matching-based paradigm formulates tracking as a similarity learning task
113 followed by matching (Bertinetto et al., 2016; Li et al., 2018; Guo et al., 2020; Xu et al., 2020;
114 Voigtlaender et al., 2020; Yu et al., 2020; Zhang et al., 2020; Yan et al., 2021a; Cheng et al., 2021;
115 Chen et al., 2021; Ye et al., 2022; Guo et al., 2022; Cai et al., 2023; Gao et al., 2022; He et al., 2023;
116 Zhou et al., 2023; Li et al., 2023; Chen et al., 2023; Jinxia et al., 2024; Bai et al., 2024; Shi et al.,
117 2024; Cai et al., 2024; Song et al., 2023; Wu et al., 2023; Zhao et al., 2023; Zhang et al., 2024b; Xie
118 et al., 2024; Zhu et al., 2025). These methods focus on training a deep network to learn a function
119 that can distinguish and match a template of the object to a search region in the current frame. This
120 trained network is then used for tracking. Recent matching-based trackers (Guo et al., 2025; Xu
121 et al., 2025a; Li et al., 2025; Kang et al., 2025; Xie et al., 2025) further improve their robustness by
122 propagating chronological contextual information from predicted hidden states.

123 Another paradigm, tracking-by-detection, frames generic object tracking as an online detection
124 task (Bolme et al., 2010; Henriques et al., 2012; Nam & Han, 2016; Kiani Galoogahi et al., 2017; Yao
125 et al., 2018; Lukezic et al., 2017; Danelljan et al., 2017; 2016; Nai & Chen, 2023; Jia et al., 2024).
126 Recent trackers under this paradigm employ a model predictor that generates a target-specific track-
127 ing model from paired reference images and labels, allowing more accurate object localization in
128 the current frame (Bhat et al., 2019; Mayer et al., 2022; Chen et al., 2025a). The model predictor
129 is dynamically updated for each incoming frame by referring to previous tracking results and hence
130 enhances the tracker’s robustness and adaptivity. A separate localization head then uses this updated
131 model to pinpoint the target.

132 Despite progress in the above two paradigms, they remain limited by their reliance solely on two-
133 dimensional spatial and structural knowledge. To overcome this, our method integrates 2D semantic
134 information with 3D geometric features, enabling a 2D tracker to exploit 3D geometry information
135 through online tracking model editing.

136 **3D Features for Tracking.** Existing trackers that utilize 3D features fall into two primary cate-
137 gories: those that augment RGB images with additional modalities (RGB+X) (Yan et al., 2021b;
138 Yang et al., 2022; Zhu et al., 2023; Hou et al., 2024; Cao et al., 2024; Tan et al., 2025a;b; Chen et al.,
139 2025b; Feng et al., 2025; Hu et al., 2025) and those that operate directly on point cloud data (Wu
140 et al., 2024; Nie et al., 2024; Liu et al., 2024a; Zhang et al., 2024a; Seidenschwarz et al., 2024;
141 Xu et al., 2025b). These approaches require auxiliary inputs during tracking, such as pre-computed
142 depth maps or scene point clouds, which are generally unavailable in real-world scenarios where
143 scenes and objects may be arbitrary and even previously unseen. Another line of research (Doersch
144 et al., 2022; Harley et al., 2022; Doersch et al., 2023; Wang et al., 2023; Karaev et al., 2024; Kim
145 et al., 2025), known as point tracking, explores tracking any pixel. Recent extensions (Xiao et al.,
146 2025; Lai & Vedaldi, 2025; Rajič et al., 2025; Wang et al., 2025a; Harley et al., 2025) incorporate
147 3D information for point tracking.

148 Unlike these methods, our tracker adaptively integrates 3D geometric knowledge with 2D semantic
149 knowledge for GOT through online model editing. Specifically, we embed VGGT (Wang et al.,
150 2025a) into a 2D tracker, where a sequence of RGB frames is used to derive complementary 3D
151 information. While geometric features from VGGT have proved effective for point tracking (Wang
152 et al., 2025a; Karaev et al., 2024), our method departs from this line of work by embedding these
153 features into a 2D GOT tracker via model editing, thereby establishing a direct connection between 3D
154 geometric representations and object-level semantics for tracking. **In this way, our formulation op-
155 erates directly on RGB streams and extracts geometric cues from them, yielding a geometry-aware
156 and semantics-preserving GOT formulation that matches the intrinsic nature of the task and aligns
157 with the way human observers infer scene structure from two-dimensional imagery.**

158 **3 METHOD**

159
160 Geometry inferred from 2D visual streams benefits GOT by enabling a tracker to move beyond flat
161 representations, but it must be balanced with semantic knowledge. Driven by this insight, we aim to
162 enhance tracking with geometry-aware reasoning while preserving semantic discrimination.

162 In the following sections, we introduce null-space model editing in AlphaEdit and explain how it
 163 links geometry and semantics (Section 3.1.1). We then justify the track-by-detection paradigm as a
 164 natural fit for model editing (Section 3.1.2). Finally, we provide a step-by-step description of our
 165 pipeline, highlighting our online model editing approach and objective function (Section 3.2).
 166

167 **3.1 PRELIMINARY**

169 **3.1.1 NULL-SPACE CONSTRAINED KNOWLEDGE EDITING**

171 Model editing updates the knowledge stored in a model by adjusting its learned weights. Among
 172 existing model editing algorithms, we adopt the AlphaEdit (Fang et al., 2025) because it excels at
 173 fusing unbalanced features while avoiding catastrophic forgetting. AlphaEdit treats the feed-forward
 174 network (FFN) as a linear associative memory, where input features serve as keys and are mapped
 175 to output features through model parameters $\mathbf{W} \in \mathbb{R}^{d_b \times d_a}$:

176 $\mathbf{V} = \mathbf{W}\mathbf{K}$, where $\mathbf{K} = [\mathbf{k}_1 \mid \mathbf{k}_2 \mid \dots \mid \mathbf{k}_u] \in \mathbb{R}^{d_a \times u}$ and $\mathbf{V} = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \dots \mid \mathbf{v}_u] \in \mathbb{R}^{d_b \times u}$. (1)

177 In Eq. 1, u is the number of features to be updated, d_a and d_b are the dimensions of the respective
 178 FFN layers, and $\mathbf{k}_i \in \mathbb{R}^{d_a}$ and $\mathbf{v}_i \in \mathbb{R}^{d_b}$ jointly represent the i -th key-value pair.
 179

180 One representative optimization objective for model editing is defined by:

181
$$\Delta = \arg \min_{\tilde{\Delta}} \left(\left\| (\mathbf{W} + \tilde{\Delta})\mathbf{K}_1 - \mathbf{V}_1 \right\|^2 + \left\| (\mathbf{W} + \tilde{\Delta})\mathbf{K}_0 - \mathbf{V}_0 \right\|^2 \right), \quad (2)$$

184 where \mathbf{K}_0 and \mathbf{V}_0 represent originally learned knowledge, while \mathbf{K}_1 and \mathbf{V}_1 encode newly intro-
 185 duced knowledge. This objective seeks an optimal perturbation Δ , obtained by optimizing over
 186 candidate perturbations $\tilde{\Delta}$, to edit the model to account for both original and new knowledge.
 187

188 In practice, new edits often degrade performance on the learned knowledge, as original associations
 189 are disrupted. AlphaEdit addresses this by introducing a null-space constraint: the perturbation Δ
 190 is required to lie in the *null space* of \mathbf{K}_0 , i.e., $\Delta\mathbf{K}_0 = \mathbf{0}$. It follows that

191
$$(\mathbf{W} + \Delta)\mathbf{K}_0 = \mathbf{W}\mathbf{K}_0 = \mathbf{V}_0. \quad (3)$$

192 This additional constraint ensures preservation of the learned knowledge when adapting the model
 193 to new knowledge. Thus, AlphaEdit is highly suitable for our proposed GOT-Edit, where dominant
 194 2D semantic features serve as the knowledge to be preserved, while auxiliary 3D geometric features
 195 represent the newly introduced knowledge. Specifically, the tracker predicts the semantic model
 196 weights online and the perturbation weights from 3D features concurrently. These geometry-aware
 197 perturbation weights are projected into the null space of the semantic knowledge to preserve seman-
 198 tics. The semantic weights and the projected perturbation weights are then combined, enabling a
 199 dedicated integration of both semantic and geometric information for object tracking.
 200

201 **3.1.2 TRACK-BY-DETECTION PARADIGM**

203 The track-by-detection paradigm (Henriques et al., 2012; Javed et al., 2022) forms the foundational
 204 framework for our GOT-Edit tracker. In this paradigm, a tracker predicts a target-specific tracking
 205 model (or filters), updates it dynamically online, and employs this model to localize the target in the
 206 current frame, thereby performing tracking by detection in an online manner.

207 Recent trackers (Bhat et al., 2019; Mayer et al., 2022; Chen et al., 2025a) in this paradigm employ a
 208 model predictor to generate the weights \mathbf{W} for the localization head of the tracker. The weights are
 209 applied to the current frame features z_{cur} through convolution or matrix multiplication to produce a
 210 classification score map p , which highlights the target’s location in the current frame at the feature
 211 resolution:

212
$$p = \mathbf{W} * z_{cur}. \quad (4)$$

213 Our GOT-Edit framework aims to adapt the \mathbf{W} with the new knowledge through online model
 214 editing. As the formulation in Eq. 4 shares a similar form to the linear equation of AlphaEdit, it
 215 allows GOT-Edit with AlphaEdit-like online model editing to make the fused knowledge semantics-
 preserved and geometry-aware, thereby improving the generalization of the tracker.

216 3.2 GOT-EDIT
217

218 By combining 2D semantic understanding with 3D geometric reasoning, GOT-Edit enables trackers
219 to preserve semantic knowledge while adaptively incorporating geometric cues. In the following,
220 we first present the pipeline that fuses semantics and geometry for GOT, and then describe the
221 model-editing mechanism that regulates their interaction and ensures coherent cooperation between
222 semantic and geometric modalities.

223 **Feature Extraction.** Given the reference frames (from previous frames) and the current frame
224 (to be localized), we extract their semantic features (Oquab et al., 2023), $v_{ref}^s \in \mathbb{R}^{C \times H \times W}$ and
225 $v_{cur}^s \in \mathbb{R}^{C \times H \times W}$, and geometric features (Wang et al., 2025a), $v_{ref}^g \in \mathbb{R}^{C' \times H' \times W'}$ and $v_{cur}^g \in$
226 $\mathbb{R}^{C' \times H' \times W'}$. Note that two reference frames are used, but only one is shown here for brevity.
227

228 **Alignment and Fusion.** The geometric features are aligned to match the dimensionality and res-
229 olution of semantic features using a convolutional network $Align(\cdot)$ and then fused with semantic
230 features via a gating mechanism:

$$231 F_{ref} = v_{ref}^s + m_{ref} \odot Align(v_{ref}^g) \quad \text{and} \quad F_{cur} = v_{cur}^s + m_{cur} \odot Align(v_{cur}^g), \quad (5)$$

233 where \odot denotes point-wise multiplication; $m_{ref} \in [0, 1]^{C \times H \times W}$ and $m_{cur} \in [0, 1]^{C \times H \times W}$ are
234 spatial gating masks predicted from the paired semantic and geometric features via a lightweight
235 convolution and a sigmoid function, for both of the reference and current frames, respectively.

236 **Model Predictor.** After fusing the semantic and geometric features, they are spatially concatenated
237 with positional encodings and fed into the model predictor, a Transformer encoder-decoder (Mayer
238 et al., 2022; Carion et al., 2020). The encoder T_{enc} performs feature interaction, i.e.,
239

$$240 (z_{ref}, z_{cur}) = T_{enc}([F'_{ref}, F_{cur}]), \quad \text{where} \quad F'_{ref} = F_{ref} + (L_{ref} \cdot e_{fg}). \quad (6)$$

241 In Eq. 6, L_{ref} denotes the reference labels from past predictions, which indicate the correspondence
242 of the target coordinates to the reference frame. e_{fg} is a learned foreground embedding (Mayer et al.,
243 2022), and the operator \cdot denotes point-wise multiplication with broadcasting.

244 The resulting features from Eq. 6, together with the learned foreground embedding e_{fg} serving as
245 the query, are fed into a Transformer decoder (Mayer et al., 2022; Carion et al., 2020) T_{dec} , which
246 generates the weights $\Delta \in \mathbb{R}^C$ of the localization head via:
247

$$248 \Delta = T_{dec}([z_{ref}, z_{cur}], e_{fg}). \quad (7)$$

250 **Localization Head.** The fused features of the current frame are then passed to the updated localiza-
251 tion head for target localization:

$$252 p = \Delta * z_{cur}. \quad (8)$$

253 It is important to note that F'_{ref} in Eq. 6 provides important information to differentiate the spatial
254 and geometric properties of the target from the background in the reference frames and can serve as
255 few-shot examples to guide target prediction in the current frame.
256

257 **Online Model Editing.** Integrating 3D features enhances GOT by enabling geometric reasoning.
258 However, their influence must be carefully balanced with semantic information, as naive fusion can
259 degrade semantic discrimination, as shown in Table 5. Semantic cues remain the primary signal for
260 distinguishing the target from distractors, whereas geometric cues provide complementary robust-
261 ness. GOT-Edit therefore performs online model editing that projects geometry-induced perturba-
262 tions into the null space of semantic features, resulting in an asymmetric interaction that preserves
263 semantic knowledge while still leveraging geometric information.

264 Specifically, we develop a mechanism that preserves semantic knowledge while incorporating geo-
265 metric cues by reformulating Eq. 8 as follows:

$$266 p = (\mathbf{W}_{sem} + \Delta') * z_{cur}, \quad (9)$$

268 where $\mathbf{W}_{sem} \in \mathbb{R}^C$ denotes the semantic weights, obtained by passing semantic features through
269 the **semantic model predictor**. This process is analogous to those described in Eq. 6 and Eq. 7,
but uses only semantic features as input. $z_{cur} \in \mathbb{R}^{C \times H \times W}$ represents the fused semantic-geometric

270 features of the current frame, as defined in Eq. 6. The perturbation weights Δ' complement the
 271 semantic weights with geometric information and are defined as:
 272

$$\Delta' = P_{\text{null}} \Delta, \quad (10)$$

273 where Δ is obtained from Eq. 7 using the *geometry model predictor*, and $P_{\text{null}} \in \mathbb{R}^{C \times C}$ is the
 274 null-space projection matrix computed from the semantic features.
 275

276 Inspired by AlphaEdit, we use Singular Value Decomposition (SVD) to compute the null space pro-
 277 jector P_{null} for semantic features. Rank deficiency frequently arises in feature representations in the
 278 GOT setting, which leads to ill conditioning and must be handled carefully. To ensure stability prior
 279 to SVD, we first apply whitening (Kessy et al., 2018) to the semantic features to obtain normalized
 280 features \mathbf{Z} and then compute the regularized correlation matrix \mathbf{M} :
 281

$$\mathbf{M} = \mathbf{Z} \mathbf{Z}^\top + \lambda \mathbf{I}, \quad (11)$$

282 where λ is a ridge regularization term (Hoerl & Kennard, 1970).
 283

284 We then construct the raw projector $\hat{\mathbf{P}} = U_{\text{null}} U_{\text{null}}^\top$ by selecting the eigenvectors U_{null} of \mathbf{M}
 285 corresponding to low-energy eigenvalues (identifying the subspace with minimal semantic infor-
 286 mation). To mitigate numerical drift during online inference, we explicitly symmetrize (Ammari et al.,
 287 2012a;b) the projector:
 288

$$P_{\text{null}} = \frac{1}{2}(\hat{\mathbf{P}} + \hat{\mathbf{P}}^\top). \quad (12)$$

289 This stabilized projector is then utilized in Eq. 10 to compute the geometry-aware perturbation
 290 weights.
 291

292 Unlike AlphaEdit, which performs offline model editing by collecting all preserved knowledge as in
 293 Eq. 1, our GOT-Edit predicts both preserved weights and perturbation weights in an online manner,
 294 enabling adaptive integration of geometric knowledge into the semantic model.
 295

296 **Box Regression.** A regression decoder $RegDec$ takes the semantic–geometry enriched classifica-
 297 tion score map and the current frame features as input to predict a regression score map that provides
 298 the target bounding box in image resolution:
 299

$$d = RegDec(p \cdot z_{\text{cur}}), \quad (13)$$

300 where the operator \cdot denotes channel-wise broadcasting multiplication, and the regression decoder
 301 $RegDec$, as used in (Mayer et al., 2022; Chen et al., 2025a), employs four convolutional layers to
 302 produce four feature maps d in the *ltrb* (left, top, right, bottom) bounding box representation (Tian
 303 et al., 2019). The coordinates with the highest classification score in p are mapped onto the regres-
 304 sion score map d for final bounding box prediction.
 305

306 **Objective Function.** The training objective is identical to that of previous work (Mayer et al., 2022;
 307 Bhat et al., 2019), i.e.,
 308

$$\mathcal{L} = \lambda_{\text{cls}} L_{\text{cls}}(\hat{p}, p) + \lambda_{\text{giou}} L_{\text{giou}}(\hat{d}, d), \quad (14)$$

309 where \hat{p} and \hat{d} are the ground-truth labels. The target classification loss L_{cls} is a compound hinge
 310 loss as described in (Bhat et al., 2019), while the GIoU loss (Rezatofighi et al., 2019) L_{giou} is used
 311 to supervise bounding box regression. λ_{cls} and λ_{giou} are scalar weights that control the contribution
 312 of each loss, and these hyperparameters are identical to those in (Mayer et al., 2022).
 313

314 4 EXPERIMENTAL RESULTS

315 4.1 EXPERIMENTAL SETTING

316 **Training Data.** Like most trackers, e.g. (Mayer et al., 2022; Chen et al., 2025a; 2023; Lin et al.,
 317 2024), we adopt the training splits of LaSOT, GOT10k, TrackingNet, and COCO for model training.
 318

319 Since some recent trackers (Kang et al., 2025; Liang et al., 2025) include VastTrack (Peng et al.,
 320 2024) for training, we provide a variant of our tracker trained with this new dataset. The training
 321 data rigorously follows the VOT2022 (Kristan et al., 2022) challenge and GOT-10K guidelines.
 322

324 **Test Data.** We use the following datasets for tracker performance evaluation:
 325

- 326 • **AVisT** (Noman et al., 2022): Designed for testing without a training set, it encompasses 120 short
 327 and long sequences, each averaging 664 frames under adverse visibility conditions.
- 328 • **NFS** (Galoogahi et al., 2017) and **OTB** (Wu et al., 2015): Used for testing without a training set,
 329 each dataset contains 100 sequences, with an average of 534 frames per sequence.
- 330 • **GOT-10k** (Huang et al., 2019): It has 420 short sequences with an average of 149 frames per
 331 sequence, featuring non-overlapping object classes in the training and test sets.
- 332 • **LaSOT** (Fan et al., 2019) and **TrackingNet** (Fan et al., 2019): They provide training data where
 333 test classes fully overlap with training classes. LaSOT has 280 long sequences with an average of
 334 2k frames per sequence, and TrackingNet offers 511 short sequences, averaging 471 frames each.
- 335 • **VOT2020 (Kristan et al., 2020) and VOT2022 (Kristan et al., 2022)**: These are the 2020 and
 336 2022 editions of the Visual Object Tracking challenge (VOT-ST2020 and VOT-STb2022).

338 **Evaluation Metrics.** We evaluate trackers using the following metrics:
 339

- 340 • **SUC** (success rate): The percentage of frames in which the predicted bounding box overlaps the
 341 ground truth by at least an IoU threshold or the average of all thresholds.
- 342 • **SR75**: It refers to SUC with an IoU threshold of 75%.
- 343 • **OP50**: The percentage of frames where the predicted and ground truth IoU exceed 50%.
- 344 • **Pr** (precision): It measures the percentage of frames where the predicted target center is within T
 345 pixels of the ground-truth center. T is set to 20 in this work.
- 346 • **NPr** (normalized precision): It is the percentage of frames where the center location error, nor-
 347 malized by the target’s box diagonal, is less than the threshold of 0.2.
- 348 • **AO** (average overlap): The mean IoU between the predicted and ground-truth bounding boxes.

351 **Implementation Details.** Our method is implemented using PyTorch 2.0.0 and CUDA 11.7. We
 352 train the model on four A6000 GPUs (48 GB each). DeepSpeed (Rasley et al., 2020) is integrated to
 353 accelerate training. We also validate that when activation checkpointing is applied to the tracker, it
 354 further reduces memory consumption, enabling training of the tracker at high resolution (378×378)
 355 on four 24 GB GPUs (e.g., NVIDIA RTX 4090 GPU). Inference is performed on a single NVIDIA
 356 RTX 4090 GPU and consumes approximately 9 GB of GPU memory during evaluation.

357 Following PiVOT (Chen et al., 2025a) and LoRAT (Lin et al., 2024), we utilize ViT-L as the back-
 358 bone for image feature extraction, using weights pretrained with DINOv2 (Oquab et al., 2023). The
 359 backbone remains frozen during training with the tracker. For integrating geometric information,
 360 we extract intermediate features from the DPT head of VGGT (Wang et al., 2025a), which is kept
 361 frozen during training. Similar to PiVOT (Chen et al., 2025a), the model predictors and the local-
 362 ization head of our tracker are initialized with weights from ToMP-L, a DINOv2-L variant of ToMP.
 363 For an efficient design, the dual model predictors share the same architecture and weights, but two
 364 independent lightweight convolutional layers are appended in parallel to the predictors, serving as
 365 task-specific heads for semantic weight prediction and perturbation weight prediction, respectively.

366 We sample 200K subsequences per epoch and train for 30 epochs. Each subsequence consists of two
 367 reference frames and one current frame, randomly selected from a 200-frame window within a video
 368 sequence. The frames to VGGT are concatenated spatially, which allows better geometric features
 369 through multi-frame interaction. Following ToMP (Mayer et al., 2022), PiVOT (Chen et al., 2025a),
 370 we set the search area scale factor to 5.0 and perform data augmentation. The initial learning rate
 371 is set to 10^{-4} with a StepLR scheduler that decays it by a factor of 0.2 at epochs 10, 15, and 20.
 372 AdamW (Loshchilov & Hutter, 2019) is used as the optimizer.

373 To mitigate the computational cost of higher image resolutions, as in recent works (Xie et al., 2025;
 374 Li et al., 2025; Chen et al., 2023; Lin et al., 2024), we use smaller resolutions for most ablations
 375 and higher resolutions for comparison with the state of the art: 1) **GOT-Edit-252**, where the frame
 376 resolution and the patch token size are 252×252 and 18×18 , respectively; 2) **GOT-Edit-378**,
 377 where the frame resolution and the token size are 378×378 and 27×27 , respectively. We also
 employ mixed-precision training with BFloat16 and Float32 (or TFloat32) for efficiency.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 1: **Comparison with state-of-the-art methods.** Each tracker is followed by its input resolution. The term ‘Base’ in the column ‘Training Data of Tracker’ refers to trackers trained on the classical four datasets. ‘Frames’ denotes the number of frames a tracker uses on each frame during evaluation. ‘*’ denotes a tracker trained solely on the specific GOT-10k set (Huang et al., 2019).

Tracker	Semantic Feature	Geometry Feature	Training Data of Tracker	Frames	Trainable Parameters	Training-Test Class Overlap					Low or No Overlap			Full Overlap		
						Dataset		AVisT			NFS		OTB		GOT-10k*	
						SUC	SUC	SUC	AO	SR75	NPr	Pr	SUC	NPr	SUC	
GOT-Edit-378 (Ours)	DINOv2-L	VGGT	Base+VastTrack	3	53M	64.5	71.1	75.0	80.2*	79.8*	84.8	82.9	75.0	91.0	86.7	
GOT-Edit-378 (Ours)	DINOv2-L	VGGT	Base	3	53M	63.7	69.9	73.0	80.2*	79.8*	85.2	83.2	75.3	90.6	86.4	
PIVOT-378 (Chen et al., 2025a)	DINOv2-L	-	Base	3	34M	62.2	68.2	71.2	76.9	75.5	84.7	82.1	73.4	90.0	85.3	
LoRAT-378 (Lin et al., 2024)	DINOv2-L	-	Base	3	32M	62.0	66.7	72.0	77.5	78.1	84.1	82.0	75.1	89.7	85.6	
ToMP-378 (Chen et al., 2025a)	DINOv2-L	-	Base	3	25M	61.5	67.8	71.0	-	-	83.6	80.8	72.6	-	-	
ToMP-378 (Reproduced)	DINOv2-L	-	Base+VastTrack	3	25M	62.0	69.0	71.5	77.5	75.8	83.7	80.8	72.7	89.0	84.2	
MCITrack-384 (Kang et al., 2025)	Fast-ITPN-L	-	Base+VastTrack	5	287M	62.9	70.6	72.0	80.0	80.2	86.1	85.0	76.6	92.1	87.9	
ARPTrack-384 (Liang et al., 2025)	ViT-ARP-L	-	Base+VastTrack+K700	7	460M	-	-	-	81.5	80.5	83.4	81.7	74.2	91.1	86.6	
SeqTrack-384 (Chen et al., 2023)	ViT-MAE-L	-	Base	3	309M	57.8	66.7	-	74.8	72.2	81.5	79.3	72.5	89.8	85.5	
GRM-320 (Gao et al., 2023)	-	-	Base	3	308M	54.5	66.9	68.9	73.4	70.4	81.2	77.9	71.4	88.9	84.0	
SATrack-384 (Ma et al., 2025)	SAViT	-	Base	6	310M	58.4	67.5	-	75.4	73.5	81.4	78.4	72.0	89.0	84.7	
DeTrack-384 (Zhou et al., 2024)	Denoising ViT	-	Base	3	-	60.2	-	-	77.9	74.9	81.7	79.1	72.9	-	-	
SAMITE-1024 (Xu et al., 2025c)	SAM 2	-	SA-1B	7	-	-	69.2	69.9	78.9	72.5	83.4	81.4	74.9	-	84.5	

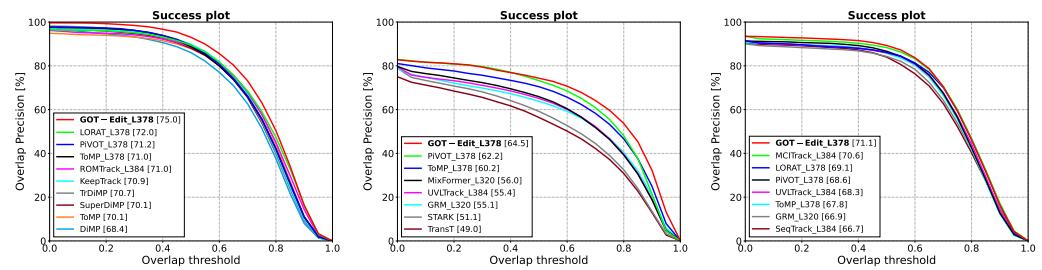


Figure 2: From left to right, success plots of competing methods on OTB, AVisT, and Nfs are shown.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART METHODS

Table 1 compares our GOT-Edit with the SOTAs on several benchmark datasets. When compared with trackers that use semantic backbones based on DINOv2 (Oquab et al., 2023), our tracker demonstrates superior performance, generalizes well to out-of-distribution targets, and achieves competitive results on in-distribution targets.

GOT-Edit shows a performance gain of about 2–3% across datasets compared with ToMP-378, which is a DINOv2 variant of ToMP (Mayer et al., 2022) and serves as the baseline tracker. Comparing against trackers that employ different semantic backbones, our tracker outperforms all trackers on out-of-distribution targets, except MCITrack-384 (Kang et al., 2025) on in-distribution targets, which uses a different semantic backbone and involves more trainable parameters and frames during training and evaluation. In addition to SUC, NPr, and Pr, we compare trackers using OP50 (Table 3), where all trackers share the same semantic backbone. Our tracker outperforms all others by a clear margin in this metric. We also provide the success AUC curve in Figure 2. On OTB, our method consistently shows the best results. Our tracker outperforms all trackers when $T > 0.2$ on AVisT, while outperforming MCITrack when $T < 0.7$ on Nfs. Additionally, we provide an evaluation on the VOT challenge in Table 2.

4.3 ABLATION STUDIES

Table 4 presents ablation studies on each GOT-Edit component under image resolution 252, trained using four classical datasets. Row (1) shows the baseline method trained using only semantic features. Row (2) shows that the GOT tracker takes features from the DPT head of VGGT. Even though these features are used to finetune the tracker with GOT data, performance still drops dramatically due to the limited discriminative ability of the geometric information. Row (3) shows the fusion of semantic features from VGGT’s DINO head and geometric features from VGGT’s DPT head, which yields a moderate improvement compared with using geometric features alone. Row (4) shows semantic features extracted from an independent DINO backbone, which perform better than semantic features from the DINO head of VGGT. This is because VGGT fine-tunes its DINO backbone with large-scale 3D data, distorting the original semantic representations of the DINO backbone. Row (5) shows semantic–geometry fusion under the null-space constraint, which improves performance compared with fusion without the constraint. Row (6) shows that whitening and regularization applied to input features before SVD further improve overall performance.

432 Table 2: Comparisons among trackers on the VOT challenge using Robustness as the metric.
433

	GOT-Edit	PiVOT	MixFormerL	OSTrackSTB	TransT_M	ToMP
VOT-STB2022	89.8	87.3	85.9	86.7	84.9	81.8
VOT-ST2020	90.3	—	85.5	—	—	78.9

437 Table 3: Comparison with trackers
438 using DINO features under OP50.
439

Dataset	AVisT	NfS	LaSOT
Tracker / Metric	OP50		
GOT-Edit-378-Vast	74.4	89.3	85.9
GOT-Edit-378	73.7	88.7	86.4
ToMP-378	72.6	85.7	84.8
LoRAT-378	72.4	85.6	85.1

437 Table 4: Ablation studies on GOT-Edit with several design
438 choices compared across multiple datasets under SUC.
439

	Semantic (DINO)	Semantic (VGGT's DINO)	Geometry (VGGT)	Null Space Constrain	Regularization	AVisT	NfS	LaSOT
(1)	✓					59.2	68.5	70.7
(2)		✓				55.8	66.3	67.6
(3)			✓			59.9	67.5	70.9
(4)	✓			✓		60.2	68.5	71.3
(5)	✓			✓	✓	61.5	69.3	72.7
(6)	✓		✓	✓	✓	62.0	70.2	73.8

445 Figure 3: Attribute analysis of OTB, AVisT, and LaSOT from left to right, with average scores below.
446

447 Overall, our online model editing strategy for geometry–semantics combination improves the base-
448 line by an average of 2.5%, while the null space constraint with regularization effectively enhances
449 fusion, yielding notable gains across datasets: 1.8% on AVisT, 1.7% on NfS, and 2.5% on LaSOT.
450 These results demonstrate the superiority of GOT-Edit.
451

452 Our method freezes semantic and geometry feature extractors and fuses them using the proposed
453 knowledge-editing approach during training, enabling seamless cooperation between the two modal-
454 ities and further complements the semantic distortion in VGGT, where semantic features tend to be
455 dominated by geometry, and complements existing GOT trackers, which lack geometric knowledge.
456

457 Table 5 shows the ablation studies of GOT-Edit-252 components with regard to attributes. Row
458 (1) presents the baseline performance. Row (2) reports the results of incorporating semantic and
459 geometric information under a naive fusion method. For attributes related to 3D (e.g., occlusion,
460 visibility, background clutter), the performance improves. However, for non-3D-related attributes
461 (e.g., distractor, fast motion, illumination), the performance degrades. By addressing the fusion bal-
462 ancing problem through the null-space constraint, as adopted in our GOT-Edit, the tracker achieves
463 not only geometric benefits but also semantic consistency, as demonstrated in row (3).
464

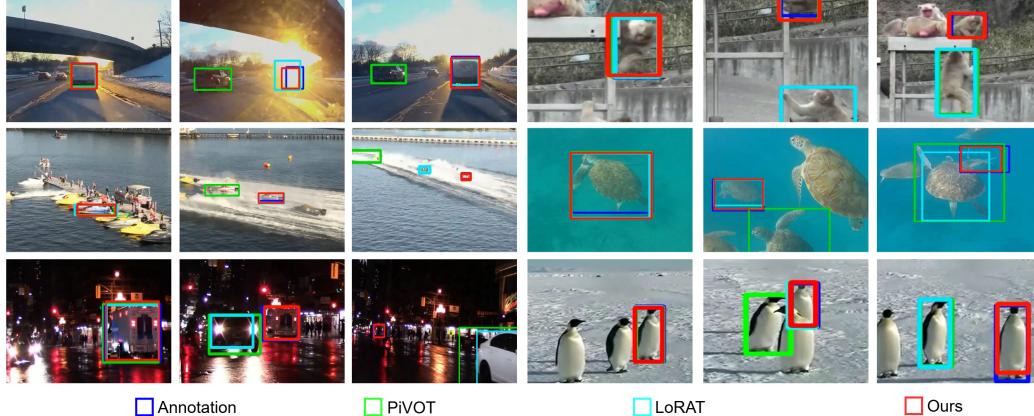
465 4.4 COMPARISON OF ATTRIBUTES AMONG SOTA

466 We conduct an attribute-based analysis by comparing our GOT-Edit with several trackers like (Song
467 et al., 2022; Zheng et al., 2024; Ma et al., 2024; Cui et al., 2022; Wang et al., 2021) using large reso-
468 lution input, as shown in Figure 3. This analysis provides insights into the strengths and weaknesses
469 of different methods and highlights potential areas for improvement. Note that attribute-based plot-
470 ting requires the raw results of a tracker. If the raw data of a tracker is unavailable or if datasets lack
471 an attribute analysis protocol (e.g., those hosted on third-party servers without attribute results), we
472 exclude those trackers from the attribute analysis.
473

474 **OTB:** As the left column of Figure 3 illustrates, our tracker achieves a considerable performance
475 gain on attributes such as background clutter, occlusion, and rotation, compared with the baseline
476 ToMP-L378. These improvements result from the geometry information that aids the understand-
477 ing of the scene and the object itself, while other attributes still outperform competing trackers.
478

486 Table 5: Ablation studies of GOT-Edit components with regard to the attributes.
487

	Semantic (DINO)	Geometry (VG GT)	Null Space Constrain	AVisT	LaSOT				
	Weather Conditions (Target Visibility)	Obstruction Effects (Occlusion)	Camouflage (Background Clutter)	Target Effects (Distractor)	Partial Occlusion	Full Occlusion	Background Clutter	Fast Motion	Illumination
(1)	✓			64.32	57.14	42.21	49.38	68.97	62.93
(2)	✓	✓		66.58	59.83	44.37	47.18	70.08	63.74
(3)	✓	✓	✓	67.95	62.67	46.93	50.27	71.60	66.33
								67.85	62.90
									73.23

505 Figure 4: Visual comparisons of tracking results from GOT-Edit, PiVOT, and LoRAT across diverse
506 video sequences under adverse scenarios are shown. The three left columns illustrate object tracking
507 evaluation on AVisT, while the three right columns present tracking results on LaSOT.
508509 **AVisT:** As shown in the middle column of Figure 3, our tracker achieves improvements across
510 most attributes compared with other trackers. Although it falls behind PiVOT in Imaging Effects
511 (low-light images), it still outperforms the baseline ToMP-L378 across attributes, demonstrating its
512 effectiveness in handling unseen data.513 **LaSOT:** The right column of Figure 3 demonstrates that our tracker outperforms most attributes
514 compared with other trackers; however, in viewpoint change and fast motion, it performs similarly
515 or slightly drops below some trackers. This is because visual geometry becomes less effective when
516 the scene or object moves rapidly or undergoes significant viewpoint changes.517 **Limitations.** While improved in most attributes, our tracker still requires enhancement in handling
518 moving objects and scenes, as evidenced in the LaSOT benchmark. The ‘Target Effects’ attribute
519 in the AVisT benchmark, which contains both distractors and fast-moving objects, also provides
520 evidence for improvement. Additionally, handling out-of-distribution data, as in AVisT, presents
521 opportunities for further advancement.522

5 VISUALIZATION RESULTS

523 We present visual comparisons among trackers in Figure 4. Our tracker exhibits greater robustness
524 under occlusion and superior discrimination against distractors. These advantages arise from the
525 proposed method for semantic and geometric reasoning. [More detailed tracking results are demonstrated in the video provided in the appendix of the submission platform.](#)
526527

6 CONCLUSION

528 We present GOT-Edit, the first framework to embed geometry-grounded reasoning into generic ob-
529 ject tracking via online model editing without explicit 3D inputs. By constraining updates to pre-
530 serve semantics, GOT-Edit prevents degradation while incorporating geometric cues overlooked by
531 conventional 2D trackers. Through online model editing with null-space constraint, it retains se-
532 mantic knowledge while adaptively integrating geometric information, achieving robustness under
533 occlusion, clutter, and visual ambiguity. The framework generalizes across datasets, targets, and en-
534 vironments while maintaining stability and robustness. Beyond surpassing state-of-the-art trackers
535 in generalization, the results demonstrate that principled model editing can bridge modality gaps
536 and recover geometry information missed by purely 2D approaches. These advances chart a path
537 toward reliability, safety, and social responsibility in vision systems.
538

540 ETHICS STATEMENT
541

542 The proposed GOT-Edit framework improves generic object tracking by adaptively integrating semantic
543 and geometric reasoning through online model editing. This capability offers potential societal benefits, including greater reliability of autonomous and robotic systems and improved assistance in challenging visual environments. However, the method may be misused for intrusive surveillance or other applications that compromise privacy and security. Deployment must therefore comply with legal and ethical standards, particularly in contexts involving personal data or sensitive environments. The tracker is trained solely on publicly available datasets, consistent with existing methods and in accordance with established ethical standards. Responsible use requires transparency, rigorous validation, and adherence to established ethical guidelines.

551
552 REPRODUCIBILITY
553

554 To ensure reproducibility, detailed implementation instructions for GOT-Edit are provided in 4.1.
555 The source code will be publicly available upon acceptance. These measures are intended to facilitate
556 the verification and replication of the results by other researchers.

557
558 REFERENCES
559

560 Habib Ammari, Josselin Garnier, Hyeonbae Kang, Mikyoung Lim, and Knut Sølna. Multistatic
561 imaging of extended targets. *SIAM Journal on Imaging Sciences (SIIMS)*, 2012a.

562 Habib Ammari, Josselin Garnier, and Knut Sølna. A statistical approach to target detection and
563 localization in the presence of noise. *Waves in Random and Complex Media (WRCM)*, 2012b.

564 Yifan Bai, Zeyang Zhao, Yihong Gong, and Xing Wei. Attrackv2: Prompting autoregressive tracker
565 where to look and how to describe. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*
(CVPR), 2024.

566 Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
567 convolutional siamese networks for object tracking. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,
568 2016.

569 Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model
570 prediction for tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2019.

571 David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object tracking using
572 adaptive correlation filters. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
573 2010.

574 Wenrui Cai, Qingjie Liu, and Yunhong Wang. Hiptrack: Visual tracking with historical prompts. In
575 *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2024.

576 Yidong Cai, Jie Liu, Jie Tang, and Gangshan Wu. Robust object modeling for visual tracking. In
577 *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2023.

578 Bing Cao, Junliang Guo, Pengfei Zhu, and Qinghua Hu. Bi-directional adapter for multimodal
579 tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2024.

580 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
581 Sergey Zagoruyko. End-to-end object detection with transformers. In *Proc. Eur. Conf. Com-
582 put. Vis. (ECCV)*, 2020.

583 Shih-Fang Chen, Jun-Cheng Chen, I-Hong Jhuo, and Yen-Yu Lin. Improving visual object tracking
584 through visual prompting. *IEEE Transactions on Multimedia (TMM)*, 2025a.

585 Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer track-
586 ing. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2021.

594 Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. Seqtrack: Sequence to sequence
 595 learning for visual object tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*
 596 (*CVPR*), 2023.

597 Xin Chen, Ben Kang, Wanting Geng, Jiawen Zhu, Yi Liu, Dong Wang, and Huchuan Lu. Sutrack:
 598 Towards simple and unified single object tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*,
 599 2025b.

600 Siyuan Cheng, Bineng Zhong, Guorong Li, Xin Liu, Zhenjun Tang, Xianxian Li, and Jing Wang.
 601 Learning to filter: Siamese relation network for robust tracking. In *Proc. IEEE/CVF Conf. Com-
 602 put. Vis. Pattern Recognit. (CVPR)*, 2021.

603 Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with
 604 iterative mixed attention. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
 605 2022.

606 Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Felsberg. Beyond corre-
 607 lation filters: Learning continuous convolution operators for visual tracking. In *Proc. Eur. Conf.
 608 Comput. Vis. (ECCV)*, 2016.

609 Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Eco: Efficient convo-
 610 lution operators for tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
 611 2017.

612 Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Joao
 613 Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a
 614 video. In *Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)*, 2022.

615 Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
 616 and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
 617 refinement. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2023.

618 Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan
 619 Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking.
 620 In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2019.

621 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
 622 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
 623 *Proc. Int. Conf. Learn. Represent. (ICLR)*, 2025.

624 Xiaokun Feng, Dailing Zhang, Shiyu Hu, Xuchen Li, Meiqi Wu, Jing Zhang, Xiaotang Chen, and
 625 Kaiqi Huang. Cstrack: Enhancing rgb-x tracking via compact spatiotemporal features. In *Proc.
 626 Int. Conf. Mach. Learn. (ICML)*, 2025.

627 Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey. Need for
 628 speed: A benchmark for higher frame rate object tracking. In *Proc. IEEE/CVF Int. Conf. Comput.
 629 Vis. (ICCV)*, 2017.

630 Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang, and Junsong Yuan. Aiatrack: Attention
 631 in attention for transformer visual tracking. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2022.

632 Shenyuan Gao, Chunluan Zhou, and Jun Zhang. Generalized relation modeling for transformer
 633 tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2023.

634 Richard L Gregory. Knowledge in perception and illusion. *Philosophical Transactions of the Royal
 635 Society of London. Series B: Biological Sciences (PHILOS T R SOC B)*, 1997.

636 Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. Siamcar: Siamese fully
 637 convolutional classification and regression for visual tracking. In *Proc. IEEE/CVF Conf. Comput.
 638 Vis. Pattern Recognit. (CVPR)*, 2020.

639 Mingzhe Guo, Zhipeng Zhang, Heng Fan, Liping Jing, Yilin Lyu, Bing Li, and Weiming Hu. Learn-
 640 ing target-aware representation for visual tracking via informative interactions. In *Proc. Eur. Conf.
 641 Comput. Vis. (ECCV)*, 2022.

648 Mingzhe Guo, Weiping Tan, Wenyu Ran, Liping Jing, and Zhipeng Zhang. Dreamtrack: Dreaming
 649 the future for multimodal visual object tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*
 650 *Recognit. (CVPR)*, 2025.

651 Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking
 652 through occlusions using point trajectories. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2022.

653 Adam W Harley, Yang You, Xinglong Sun, Yang Zheng, Nikhil Raghuraman, Yunqi Gu, Sheldon
 654 Liang, Wen-Hsuan Chu, Achal Dave, Pavel Tokmakov, et al. Alltracker: Efficient dense point
 655 tracking at high resolution. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2025.

656 Kaijie He, Canlong Zhang, Sheng Xie, Zhixin Li, and Zhiwen Wang. Target-aware tracking with
 657 long-term context attention. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2023.

658 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 659 autoencoders are scalable vision learners. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*,
 660 2022.

661 Joao F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. Exploiting the circulant structure
 662 of tracking-by-detection with kernels. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2012.

663 Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
 664 problems. *Technometrics (Technometrics)*, 1970.

665 Xiaojun Hou, Jiazheng Xing, Yijie Qian, Yaowei Guo, Shuo Xin, Junhao Chen, Kai Tang, Meng-
 666 meng Wang, Zhengkai Jiang, Liang Liu, et al. Sdstrack: Self-distillation symmetric adapter
 667 learning for multi-modal visual object tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*
 668 *Recognit. (CVPR)*, 2024.

669 Xiantao Hu, Ying Tai, Xu Zhao, Chen Zhao, Zhenyu Zhang, Jun Li, Bineng Zhong, and Jian Yang.
 670 Exploiting multimodal spatial-temporal patterns for video object tracking. In *Proc. AAAI Conf.*
 671 *Artif. Intell. (AAAI)*, 2025.

672 Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for
 673 generic object tracking in the wild. *IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)*, 2019.

674 Sajid Javed, Martin Danelljan, Fahad Shahbaz Khan, Muhammad Haris Khan, and Jiri Matas. Visual
 675 object tracking with discriminative filters and siamese networks: a survey and outlook. *IEEE*
 676 *Trans. Pattern Anal. Mach. Intell. (TPAMI)*, 2022.

677 Shuai Jia, Chao Ma, Yibing Song, and Xiaokang Yang. Robust tracking against adversarial attacks.
 678 In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2024.

679 Xie Jinxia, Zhong Bineng, Mo Zhiyi, Zhang Shengping, Shi Liangtao, Song Shuxiang, and Ji Ron-
 680 grong. Autoregressive queries for adaptive tracking with spatio-temporal transformers. In *Proc.*
 681 *IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2024.

682 Ben Kang, Xin Chen, Simiao Lai, Yang Liu, Yi Liu, and Dong Wang. Exploring enhanced contextual
 683 information for video-level object tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2025.

684 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
 685 Rupprecht. Cotracker: It is better to track together. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,
 686 2024.

687 Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. *The*
 688 *American Statistician (Am. Stat.)*, 2018.

689 Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey. Learning background-aware correlation
 690 filters for visual tracking. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2017.

691 Inès Hyeonsu Kim, Seokju Cho, Jiahui Huang, Jung Yi, Joon-Young Lee, and Seungryong Kim.
 692 Exploring temporally-aware features for point tracking. In *Proc. IEEE/CVF Int. Conf. Comput.*
 693 *Vis. (ICCV)*, 2025.

702 Erin Koch, Fanya Baig, and Qasim Zaidi. Picture perception reveals mental geometry of 3d scene
 703 inferences. *Proceedings of the National Academy of Sciences of the United States of America*
 704 (*PNAS*), 2018.

705 Matej Kristan, Aleš Leonardis, Jiří Matas, Michael Felsberg, Roman Pflugfelder, Joni-Kristian
 706 Kämäräinen, Martin Danelljan, Luka Čehovin Zajc, Alan Lukežić, Ondrej Drbohlav, et al. The
 707 eighth visual object tracking vot2020 challenge results. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,
 708 2020.

710 Matej Kristan, Aleš Leonardis, Jiří Matas, Michael Felsberg, Martin Danelljan, Alan Lukežić, et al.
 711 The tenth visual object tracking vot2022 challenge results. In *Proc. Eur. Conf. Comput. Vis.*
 712 (*ECCV*), 2022.

713 Zihang Lai and Andrea Vedaldi. Tracktention: Leveraging point tracking to attend videos faster and
 714 better. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2025.

716 Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with
 717 siamese region proposal network. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*
 718 (*CVPR*), 2018.

719 Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution
 720 of siamese visual tracking with very deep networks. In *Proc. IEEE/CVF Conf. Comput. Vis.*
 721 *Pattern Recognit. (CVPR)*, 2019.

723 Xiaohai Li, Bineng Zhong, Qihua Liang, Guorong Li, Zhiyi Mo, and Shuxiang Song. Mambalet:
 724 Boosting tracking via long-term context state space model. In *Proc. AAAI Conf. Artif. Intell.*
 725 (*AAAI*), 2025.

726 Xin Li, Yuqing Huang, Zhenyu He, Yaowei Wang, Huchuan Lu, and Ming-Hsuan Yang. Citetracker:
 727 Correlating image and text for visual tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*,
 728 2023.

729 Shiyi Liang, Yifan Bai, Yihong Gong, and Xing Wei. Autoregressive sequential pretraining for
 730 visual tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2025.

732 Liting Lin, Heng Fan, Zhipeng Zhang, Yaowei Wang, Yong Xu, and Haibin Ling. Tracking meets
 733 lora: Faster training, larger model, stronger performance. In *Proc. Eur. Conf. Comput. Vis.*
 734 (*ECCV*), 2024.

735 Jiaming Liu, Yue Wu, Maoguo Gong, Qiguang Miao, Wenping Ma, Cai Xu, and Can Qin. M3sot:
 736 Multi-frame, multi-field, multi-space 3d single object tracking. In *Proc. AAAI Conf. Artif. Intell.*
 737 (*AAAI*), 2024a.

739 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 740 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Proc. Int.*
 741 *Conf. Mach. Learn. (ICML)*, 2024b.

742 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proc. Int. Conf. Learn.*
 743 *Represent. (ICLR)*, 2019.

745 Alan Lukežić, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas, and Matej Kristan. Discriminative
 746 correlation filter with channel and spatial reliability. In *Proc. IEEE/CVF Conf. Comput. Vis.*
 747 *Pattern Recognit. (CVPR)*, 2017.

748 Yinчhao Ma, Yuyang Tang, Wenfei Yang, Tianzhu Zhang, Jinpeng Zhang, and Mengxue Kang.
 749 Unifying visual and vision-language tracking via contrastive learning. In *Proc. AAAI Conf. Artif.*
 750 *Intell. (AAAI)*, 2024.

751 Yinчhao Ma, Qianjin Yu, Wenfei Yang, Tianzhu Zhang, and Jinpeng Zhang. Learning discriminative
 752 features for visual tracking via scenario decoupling. *Int. J. Comput. Vis. (IJCV)*, 2025.

754 Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and Luc Van Gool. Learning target candi-
 755 date association to keep track of what not to track. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*
 756 *Recognit. (CVPR)*, 2021.

756 Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda Pani Paudel, Fisher Yu,
 757 and Luc Van Gool. Transforming model prediction for tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2022.

759

760 Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Trackingnet:
 761 A large-scale dataset and benchmark for object tracking in the wild. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2018.

762

763 Ke Nai and Shaomiao Chen. Learning a novel ensemble tracker for robust visual tracking. *IEEE Trans. Multimedia (TMM)*, 2023.

765

766 Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for vi-
 767 sual tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2016.

768

769 Jiahao Nie, Zhiwei He, Xudong Lv, Xueyi Zhou, Dong-Kyu Chae, and Fei Xie. Towards category
 770 unification of 3d single object tracking on point clouds. In *Proc. Int. Conf. Learn. Represent. (ICLR)*, 2024.

771

772 Mubashir Noman, Wafa Al Ghallabi, Daniya Najiha, Christoph Mayer, Akshay Dudhane, Martin
 773 Danelljan, Hisham Cholakkal, Salman Khan, Luc Van Gool, and Fahad Shahbaz Khan. Avist: A
 774 benchmark for visual object tracking in adverse visibility. In *Proc. Brit. Mach. Vis. Conf. (BMVC)*,
 775 2022.

776

777 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 778 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 779 robust visual features without supervision. *Trans. Mach. Learn. Res. (TMLR)*, 2023.

780

781 Liang Peng, Junyuan Gao, Xinran Liu, Weihong Li, Shaohua Dong, Zhipeng Zhang, Heng Fan, and
 782 Libo Zhang. Vasttrack: Vast category visual object tracking. In *Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)*, 2024.

783

784 Frano Rajič, Haofei Xu, Marko Mihajlovic, Siyuan Li, Irem Demir, Emircan Gündoğdu, Lei Ke,
 785 Sergey Prokudin, Marc Pollefeys, and Siyu Tang. Multi-view 3d point tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2025.

786

787 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 788 mizations enable training deep learning models with over 100 billion parameters. In *Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD)*, 2020.

789

790 Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
 791 Generalized intersection over union: A metric and a loss for bounding box regression. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2019.

792

793 Jenny Seidenschwarz, Aljosa Osep, Francesco Ferroni, Simon Lucey, and Laura Leal-Taixé. Semoli:
 794 what moves together belongs together. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2024.

795

796 Liangtao Shi, Bineng Zhong, Qihua Liang, Ning Li, Shengping Zhang, and Xianxian Li. Explicit
 797 visual prompts for visual object tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2024.

798

799 Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Transformer tracking with cyclic
 800 shifting window attention. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
 801 2022.

802

803 Zikai Song, Run Luo, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Compact transformer
 804 tracker with correlative masked modeling. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2023.

805

806 Yuedong Tan, Jiawei Shao, Eduard Zamfir, Ruanjun Li, Zhaochong An, Chao Ma, Danda Paudel,
 807 Luc Van Gool, Radu Timofte, and Zongwei Wu. What you have is what you track: Adaptive and
 808 robust multimodal tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2025a.

809

810 Yuedong Tan, Zongwei Wu, Yuqian Fu, Zhuyun Zhou, Guolei Sun, Eduard Zamfi, Chao Ma,
 811 Danda Pani Paudel, Luc Van Gool, and Radu Timofte. Xtrack: Multimodal training boosts rgb-x
 812 video object trackers. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2025b.

810 Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
 811 detection. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2019.

812

813 Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, and Bastian Leibe. Siam r-cnn: Visual tracking
 814 by re-detection. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2020.

815

816 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 817 Novotny. Vggt: Visual geometry grounded transformer. In *Proc. IEEE/CVF Conf. Comput. Vis.
 818 Pattern Recognit. (CVPR)*, 2025a.

819 Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li. Transformer meets tracker: Exploit-
 820 ing temporal context for robust visual tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern
 821 Recognit. (CVPR)*, 2021.

822 Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski,
 823 and Noah Snavely. Tracking everything everywhere all at once. In *Proc. IEEE/CVF Int. Conf.
 824 Comput. Vis. (ICCV)*, 2023.

825

826 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
 827 tinuous 3d perception model with persistent state. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern
 828 Recognit. (CVPR)*, 2025b.

829 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 830 ometric 3d vision made easy. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
 831 2024.

832 Qiangqiang Wu, Tianyu Yang, Ziquan Liu, Baoyuan Wu, Ying Shan, and Antoni B Chan. Dropmae:
 833 Masked autoencoders with spatial-attention dropout for tracking tasks. In *Proc. IEEE/CVF Conf.
 834 Comput. Vis. Pattern Recognit. (CVPR)*, 2023.

835

836 Qiao Wu, Kun Sun, Pei An, Mathieu Salzmann, Yanning Zhang, and Jiaqi Yang. 3d single-object
 837 tracking in point clouds with high temporal variation. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,
 838 2024.

839 Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. *IEEE Trans. Pattern
 840 Anal. Mach. Intell. (TPAMI)*, 2015.

841

842 Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun
 843 Bao, Yujun Shen, and Xiaowei Zhou. Spatialtrackerv2: 3d point tracking made easy. In *Proc.
 844 IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2025.

845 Fei Xie, Zhongdao Wang, and Chao Ma. Diffusiontrack: Point set diffusion model for visual object
 846 tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2024.

847

848 Jinxia Xie, Bineng Zhong, Qihua Liang, Ning Li, Zhiyi Mo, and Shuxiang Song. Robust tracking
 849 via mamba-based context-aware token learning. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2025.

850 Chenlong Xu, Bineng Zhong, Qihua Liang, Yaozong Zheng, Guorong Li, and Shuxiang Song. Less
 851 is more: Token context-aware learning for object tracking. In *Proc. AAAI Conf. Artif. Intell.
 852 (AAAI)*, 2025a.

853 Mengjie Xu, Yitao Zhu, Haotian Jiang, Jiaming Li, Zhenrong Shen, Sheng Wang, Haolin Huang,
 854 Xinyu Wang, Han Zhang, Qing Yang, et al. Mitracker: Multi-view integration for visual object
 855 tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2025b.

856

857 Qianxiong Xu, Lanyun Zhu, Chenxi Liu, Guosheng Lin, Cheng Long, Ziyue Li, and Rui Zhao.
 858 Samite: Position prompted sam2 with calibrated memory for visual object tracking. *arXiv preprint
 859 arXiv:2507.21732*, 2025c.

860 Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. Siamfc++: Towards robust and accurate
 861 visual tracking with target estimation guidelines. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2020.

862

863 Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal
 864 transformer for visual tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2021a.

864 Song Yan, Jinyu Yang, Jani Käpylä, Feng Zheng, Aleš Leonardis, and Joni-Kristian Kämäräinen.
 865 Depthtrack: Unveiling the power of rgbd tracking. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2021b.
 866

867 Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
 868 Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one
 869 forward pass. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2025.
 870

871 Jinyu Yang, Zhongqun Zhang, Zhe Li, Hyung Jin Chang, Aleš Leonardis, and Feng Zheng. Towards
 872 generic 3d tracking in rgbd videos: Benchmark and baseline. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2022.
 873

874 Yingjie Yao, Xiaohe Wu, Shiguang Shan, and Wangmeng Zuo. Joint representation and truncated
 875 inference learning for correlation filter based tracking. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,
 876 2018.
 877

878 Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning
 879 and relation modeling for tracking: A one-stream framework. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2022.
 880

881 Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R Scott. Deformable siamese attention
 882 networks for visual object tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2020.
 883

884 Jingwen Zhang, Zikun Zhou, Guangming Lu, Jiandong Tian, and Wenjie Pei. Robust 3d tracking
 885 with quality-aware shape completion. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2024a.
 886

887 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
 888 qing Sun, and Ming-Hsuan Yang. MonST3r: A simple approach for estimating geometry in the
 889 presence of motion. In *Proc. Int. Conf. Learn. Represent. (ICLR)*, 2025.
 890

891 Zhengbo Zhang, Li Xu, Duo Peng, Hossein Rahmani, and Jun Liu. Diff-tracker: Text-to-image
 892 diffusion models are unsupervised trackers. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2024b.
 893

894 Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware
 895 anchor-free tracking. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, 2020.
 896

897 Haojie Zhao, Dong Wang, and Huchuan Lu. Representation learning for visual object tracking by
 898 masked appearance transfer. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,
 899 2023.
 900

901 Yaozong Zheng, Bineng Zhong, Qihua Liang, Zhiyi Mo, Shengping Zhang, and Xianxian Li.
 902 Odtrack: Online dense temporal token learning for visual tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2024.
 903

904 Xinyu Zhou, Pinxue Guo, Lingyi Hong, Jinglun Li, Wei Zhang, Weifeng Ge, and Wenqiang Zhang.
 905 Reading relevant feature from global representation memory for visual object tracking. In *Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)*, 2023.
 906

907 Xinyu Zhou, Jinglun Li, Lingyi Hong, Kaixun Jiang, Pinxue Guo, Weifeng Ge, and Wenqiang
 908 Zhang. Detrack: In-model latent denoising learning for visual object tracking. In *Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)*, 2024.
 909

910 Jiawen Zhu, Simiao Lai, Xin Chen, Dong Wang, and Huchuan Lu. Visual prompt multi-modal
 911 tracking. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2023.
 912

913 Jiawen Zhu, Huayi Tang, Xin Chen, Xinying Wang, Dong Wang, and Huchuan Lu. Two-stream
 914 beats one-stream: asymmetric siamese network for efficient visual tracking. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, 2025.
 915

916 Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, and Jiwen Lu. Streaming 4d visual
 917 geometry transformer. *arXiv preprint arXiv:2507.11539*, 2025.

918 A APPENDIX

920 This document supplements the main paper with details on GOT-Edit, including comparisons with
 921 state-of-the-art trackers using NPr, Pr, and SUC plots, ablation on model complexity, and a **video**
 922 **appendix** for qualitative visualisation on LaSOT and AViT, available as a zipped file **from the**
 923 **paper submission forum**.

925 B COMPUTATIONAL COST ANALYSIS

927 Table 6: The analysis quantifies the computational costs of each component of the GOT-Edit in
 928 terms of runtime per frame (milliseconds, ms).

Frame Resolution	Backbone	Align and	Model	Reg/Cls	Total
	VGTT	DINO	Predictors	Decoders	
252 × 252	65.6	8.7	2.3	6.8	84.1
378 × 378	91.9	17.6	2.7	14.5	127.4

933 The computational cost of each tracker component is reported in Table 6 as per-frame runtime (ms).
 934 The primary computational overhead is dominated by geometric feature extraction (VGTT). Our
 935 core contribution, the online model editing modules (Align and Fuse and Model Predictors), is
 936 highly efficient, with a runtime of only 9.1 ms at a 252 × 252 frame resolution or 17.2 ms at a
 937 378 × 378 resolution. The evaluation model uses BFLOAT16 for VGTT.

938 Table 7: Runtime and FLOPs breakdown for VGTT, DINO, and the tracker component.

Frame Resolution	Metric	VGTT	DINO	Tracker Excluding VGTT & DINO
252 × 252	Runtime (ms)	65.6	8.7	9.8
	FLOPs (G)	1000	105	32
378 × 378	Runtime (ms)	91.9	17.6	17.9
	FLOPs (G)	2253	251	73

945 We also provide the model complexity in terms of FLOPs (Floating-Point Operations), as shown in
 946 Table 7. FLOPs are agnostic to device and precision, and we compute MACs (multiply–accumulate
 947 operations and multiply) and multiply the result by two to obtain FLOPs.

949 C MORE EXPERIMENTS

952 Analysis of Alternate Geometry Backbone Choices

953 To enhance speed performance, we utilize StreamVGG (Zhuo et al., 2025) to replace VGTT for
 954 geometric feature extraction and report the results in Table 8. In this table, ‘GlobalAttn FineTune’
 955 refers to using DoRA (Liu et al., 2024b) to fine-tune the linear layers of the global attention layer
 956 in the geometry model, where the global attention layer is the key mechanism for handling cross-
 957 frame information. ‘MemCache’ refers to the number of historical K/V caches used for tracking.
 958 ‘Frequency’ denotes the frequency for geometric feature extraction. The DoRA rank is set to 16,
 959 and only 2.4 M parameters are fine-tuned for the geometry model. The experimental results in
 960 the table demonstrate that optimized geometric variants and selective feature application (we set the
 961 memory cache to 3 and apply geometric information every 3 frames in the StreamVGG variant) can
 962 significantly increase the speed (e.g., runtime is reduced by approximately 40% when StreamVGG
 963 replaces VGTT, while competitive accuracy is maintained).

964 Analysis of Attribute-Wise Performance under Semantic and Geometry Configurations

965 To explicitly evaluate the influence of both the geometric and semantic backbones, we conduct addi-
 966 tional experiments 9 at the consistent resolution of 378 × 378. These extended experiments validate
 967 our method by varying both the semantic backbone (DiNOv2 vs. MAE (He et al., 2022)) and the
 968 geometric backbone (VGTT vs. StreamVGTT). Experiments (1) and (3) in Table 9 establish the
 969 baselines using only the semantic backbones MAE-L and DiNOv2-L, respectively. Once additional
 970 geometric backbones, VGTT and StreamVGTT, are adopted, our GOT-Edit can leverage the geo-
 971 metric features and substantially improve performance across various challenging attributes, such as
 972 occlusion, background clutter, and distractors.

972 Table 8: Efficiency in runtime (ms per frame) and accuracy (%) for VGGT and StreamVGGT with
973 varying cache and update frequency.
974

975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999
975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999
975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999
975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999

986 Table 9: Attribute-wise performance with different semantic and geometry configurations.
987

	Semantic	Geometry		AVisT				
	DINO	MAE	VGGT	StreamVGGT	Weather Conditions (Target Visibility)	Obstruction Effects (Occlusion)	Camouflage (Background Clutter)	Target Effects (Distractor)
(1)	✓				65.07	56.69	62.07	44.58
(2)	✓	✓	✓		65.81	60.10	66.21	45.93
(3)	✓				65.31	58.89	66.94	45.79
(4)	✓			✓	68.54	61.41	68.33	48.86
(5)	✓		✓		68.39	61.31	68.73	49.68

994 **NPr, Pr, and Suc Plots**995 We report NPr, Pr, and SUC plots on four datasets: NfS, AVisT, LaSOT, and OTB. Other datasets,
996 such as TrackingNet and GOT-10K, are evaluated on online servers without plots and thus excluded.997 **Overview Guidelines for NPr, Pr, and Suc Plots:**998 In the Precision (Pr) and Normalized Precision (NPr) plots, the x-axis denotes pixel or normalized
999 distance thresholds, while the y-axis indicates the percentage of frames in which the distance
1000 between the predicted and ground-truth target centers falls within the specified threshold. A balance
1001 is typically sought between higher precision and lower localization error. Trackers are commonly
1002 ranked by their performance at a threshold of 0.2 in NPr or 20 pixels in Pr.
10031004 In the Success (SUC) plot, the x-axis represents the IoU thresholds (measuring the overlap between
1005 the predicted bounding box and the ground truth), while the y-axis indicates the percentage of frames
1006 in which the IoU meets or exceeds the corresponding threshold. Trackers are commonly ranked by
1007 their performance, measured as the average precision across all thresholds.
10081009 We analyze the plots for each dataset as follows:
1010

- 1011 • **NfS:** In Figure 5, our tracker outperforms others once the threshold exceeds 0.1 in NPr or
1012 10 pixels in Pr. For SUC, it consistently surpasses all baselines across thresholds.
- 1013 • **AVisT:** As shown in Figure 6, AVisT, a training-free dataset with diverse adverse scenar-
1014 ios. Under conditions NPr with $T < 0.3$, our tracker outperforms all baselines. For PR,
1015 our tracker outperforms competitors across thresholds. For SUC, our tracker outperforms
1016 competitors when $T > 0.4$.
- 1017 • **OTB:** In Figure 7, our tracker consistently outperforms competitors e.g., (Lin et al., 2024;
1018 Chen et al., 2025a; Mayer et al., 2021; Wang et al., 2021) in SUC. For Pr and NPr, most
1019 trackers perform similarly, while our method remains significantly competitive.
- 1020 • **LaSOT:** In Figure 8, on this in-distribution dataset, our tracker outperforms SOTA meth-
1021 ods, e.g., (Zheng et al., 2024; Cai et al., 2023; Song et al., 2023; 2022) when NPr $T > 0.1$,
1022 Pr $T > 10$ pixels, and SUC < 0.7 . LoRAT surpasses our tracker only under very strict con-
1023 ditions, such as NPr $T < 0.1$, Pr $T < 10$ pixels, and SUC > 0.8 . Nevertheless, our method
1024 consistently outperforms other trackers with the same backbone, including PiVOT-L378
1025 and ToMP-L378.

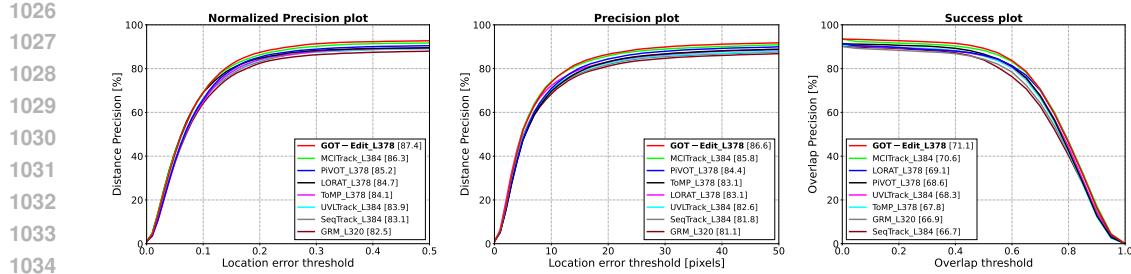


Figure 5: Comparison of methods using NPr, Pr, and SUC on NfS, left to right.

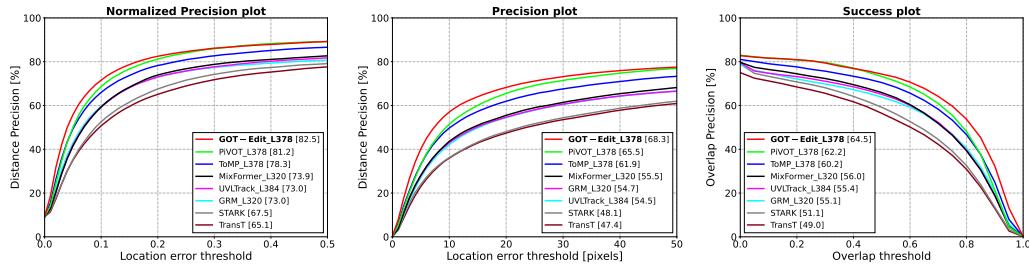


Figure 6: Comparison of methods using NPr, Pr, and SUC on AVisT, left to right.

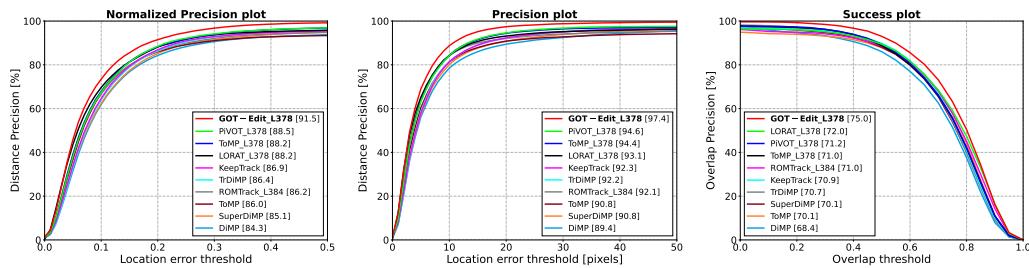


Figure 7: Comparison of methods using NPr, Pr, and SUC on OTB, left to right.

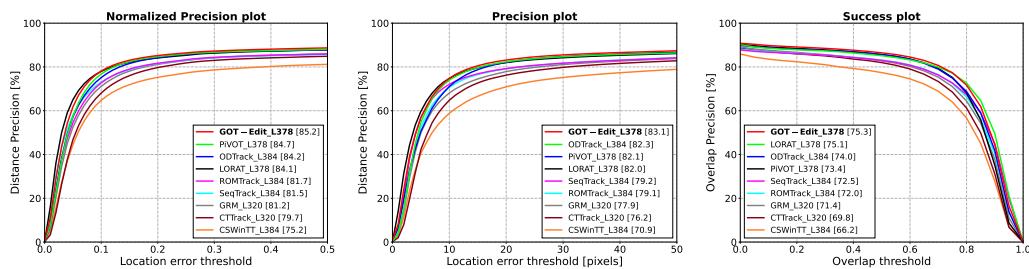


Figure 8: Comparison of methods using NPr, Pr, and SUC on LaSOT, left to right.

D THE USE OF LARGE LANGUAGE MODELS

The research is original, and large language models were used only for polishing the writing.