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Abstract

Deep Neural Networks (DNNs) trained for classi-
fication tasks are vulnerable to adversarial attacks.
But not all the classes are equally vulnerable. Ad-
versarial training does not make all classes or
groups equally robust as well. For example, in
classification tasks with long-tailed distributions,
classes are asymmetrically affected during adver-
sarial training, with lower robust accuracy for
less frequent classes. In this regard, we propose a
provable robustness method by leveraging the con-
tinuous piecewise-affine (CPA) nature of DNNs.
Our method can impose linearity constraints on
the decision boundary, as well as the DNN CPA
partition, without requiring any adversarial train-
ing. Using such constraints, we show that the
margin between the decision boundary and minor-
ity classes can be increased in a provable man-
ner. We also present qualitative and quantita-
tive validation of our method for class-specific
robustness. Our code is available at https:
//github.com/Josuelmet/CROP

1. Introduction

Deep Neural Networks (DNNs) while ubiquitous, have a
concerning vulnerability to adversarial attacks. Recent stud-
ies (Zhao et al., 2022; Kim et al., 2019) have shown that
subgroups within the data can be affected by adversarial
attacks in a non-uniform manner. For example, minority
classes have been shown to be more susceptible to adver-
sarial attacks as well as less robust even when adversarial
training is performed (Wu et al., 2021). Similar phenomenon
can be seen for subgroups within the data, e.g., demographic
groups (Xu et al., 2021). Based on the application of choice,
one might require a DNN to be robust for a minority class,
a subgroup or specific samples.
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Figure 1: SplineCam (Humayun et al., 2023) visualization
of DNN trained on 2D two moons classification task with
(bottom) and without (top) our proposed constraint. Our
method termed CROP, is applied to the minority class sam-
ples (yellow) which are undersampled by 20 : 1. The dark
red line represents the decision boundary exactly, whereas
light red lines represent boundaries of each ReLU neuron
from the network. Blue dots represent constraint points as
described in Sec. 3. Without the constraint, we see that the
decision boundary is biased towards the majority class, i.e.,
the decision boundary has a larger margin from the majority
class samples.

We present CROP, or linear Constraints for Provable
RObustness. CROP can ensure robustness in an instance
specific or point-wise manner, i.e., the user can constrain the
network to be provably robust in the locality of any given
sample or set of samples. For a region prescribed in the in-
put space as the convex hull of a set of vertices, our method
can provably ensure that the decision boundary does not in-
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Figure 2: SplineCam (Humayun et al., 2023) visualizations of the input space for an MLP trained on a MNIST classification
task without constraints (left), with constraints only on the decision boundary (middle) and with constraints on all the
neurons of the network (right). Two training samples are shown with white markers, belonging to classes 9 and 8. An
adversarial example generated using PGD attack with epsilon 8/255 and 10 steps is shown with a red marker. Constraining
either the decision boundary or the network ensures that the adversarial example is on the digit 9 side of the boundary,
ensuring robustness. For this example, we only use 20 vertices around the digit 9 to constrain the network.

tersect the region. By prescribing such regions centered on
training samples, we show how the network can be forced
to increase its margin for minority classes while improving
the robustness for out-of-training samples within the group
as well. CROP is exact for DNNs with CPA non-linearities,
and can provably defend against data poisoning attacks as
well.

Our contributions can be listed as follows:

• We present a provable method to guarantee robustness
in an instance specific manner against adversarial at-
tacks as well as data poisoning attacks,

• We provide qualitative visualizations representing the
exact spline partition of a DNN with and without ro-
bustness constraints,

• We present quantitative results showing superior per-
formance against a number of state-of-the-art attacks
in a class-specific robustness task.

2. Background

2.1. Adversarial Robustness
Adversarial attacks fool a classifier fθ by starting with a
real data sample x and adding optimized perturbations to
produce an adversarial example xi such that the real and
adversarial examples have different predicted labels but look
similar, fθ(x) ̸= fθ(xi). (Szegedy et al., 2014; Papernot
et al., 2017; Yuan et al., 2019; Schott et al., 2019). Adver-
sarial attacks are particularly concerning in long-tailed (i.e.,
imbalanced) datasets (Wu et al., 2021), since it has been
empirically shown that neural network training dynamics

incentivize the learned decision boundary to be closer to
minority samples. In line with other literature, we define
ϵ-robustness as successful classification of all potential ad-
versarial examples within an ϵ-ball around a data sample
x.

Several adversarial attack methods exist with which to eval-
uate the robustness of a network fθ. In this paper, we
quantitatively validate the performance of our proposed
method, against the following attacks. First is the Fast Gra-
dient Sign Method (FGSM), which calculates the gradient
in the direction of the decision boundary once, then ap-
plies noise in the direction of the gradient to generate an
adversarial sample (Goodfellow et al., 2014). Next is the
Projected Gradient Descent (PGD) attack and its Kullback-
Leibler variant Trades’ PGD (TPGD) (Madry et al., 2017;
Zhang et al., 2019). While FGSM calculates the adversar-
ial gradient once, PGD and TPGD iteratively descend the
adversarial gradient while ensuring that the resulting adver-
sarial example remains within the specified ℓ∞ ball of the
original sample, thus performing a constrained adversarial
optimization. Finally, AutoAttack uses an ensemble of four
parameter-free attacks, including two step size-free versions
of PGD (Croce & Hein, 2020).

2.2. Deep Networks are Continuous Piecewise-Affine
Operators

The core operation of DNNs primarily consists of sequen-
tially mapping an input vector x to a sequence of L feature
maps zℓ, ℓ = 1, . . . , L by successively applying simple
nonlinear transformations, as in

zℓ = σ
(
W ℓzℓ−1 + bℓ

)
, ℓ = 1, . . . , L (1)
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Algorithm 1 CROP Forward Pass

Input: Mini-batch X ∈ RN×D

Constraints C ∈ RR×V×D, where R is the number of constraint regions, and V is the number of vertices per region
L-layer neural network fθ with weights W ℓ and biases bℓ at layer ℓ
Numerical error tolerance constant τ = 0.001
Output: Xℓ

Initialize X1 ←X , C1 ← C ▷ X1 and C1 are the inputs to layer ℓ = 1
for layer ℓ = 1 to L do

Initialize c← 0 ▷ c is the extra bias
H ← Cℓ(W ℓ)T + (bℓ)T ▷ Calculate the constraints’ pre-activations, with shape (R, V,−1)
if layer ℓ should be constrained then

d← where (|sgn(H).sum(axis = 1)| ≠ V ) .any(0) ▷ Find which dimensions need extra bias
s← sgn(sgn(H).sum(axis = 0, 1))[d] ▷ Get the majority sign of each dimension in d
c[d]← (1 + τ)ReLU(H[:, :,d]⊙ s).max(axis = 0, 1)⊙ s ▷ Calculate bias for non-agreement.

▷ ⊙ is elementwise multiplication.
end if
Xℓ+1 ← σ

(
Xℓ+1(W ℓ)T + 1N (bℓ − c)T

)
▷ Pass X through layer ℓ with extra bias c

Cℓ+1 ← σ
(
H − cT

)
▷ Pass C through layer ℓ with extra bias c

end for
Return XL to evaluate loss and perform back-propagation

starting with z0 = x. Here W ℓ and bℓ denotes the weight
matrix and the bias vector for layer ℓ, and σ is an activation
operator that applies an element-wise nonlinear activation
function. One popular choice for σ is the Rectified Linear
Unit (ReLU) (Glorot et al., 2011) that takes the elementwise
maximum between its entry and 0. The parametrization of
W ℓ, bℓ controls the type of layer, e.g., circulant matrix for
convolutional layer.

Let S be a DNN with L layers and parameters {W ℓ, bℓ}Lℓ=1.
S employs continuous piecewise affine (CPA) activation σ
at each layer, i.e., layer ℓ outputs are given by Eq. 1, with
z0 equal to input x ∈ RS .

The layer 1 to ℓ composition of a DNN S, denoted as Sℓ

with output space Rℓ, can be expressed as:

Sℓ(x) =
∑
ω∈Ω

(
Aℓ

ωx+ bℓω
)
1{x∈ω}, (2)

with indicator function 1{.} and per-region affine parameters
given by,

Aℓ
ω=

ℓ∏
i=1

diag
(
qi
ω

)
W i, (3)

bℓω=diag
(
qℓ
ω

)
bℓ+

ℓ−1∑
i=1

 ℓ∏
j=i+1

diag
(
qj
ω

)
W j

diag
(
qi
ω

)
bi.

(4)

Here, qℓ
ω is the point-wise derivative of σ at pre-activation

W ℓzℓ−1+bℓ, and diag(.) operator given a vector argument
creates a matrix with the vector values along the diagonal.
As a consequence of Thm. 1 from Balestriero & Baraniuk,
qℓ
ω is unique for any region ω ∈ Ω.

Such formulations of DNNs have previously been employed
to make theoretical studies amenable to actual DNNs, e.g.
in generative modeling (Humayun et al., 2022a;b), DNN
complexity analysis (Hanin & Rolnick, 2019) and network
pruning (You et al., 2021). The spline formulation of DNNs
allow leveraging the rich literature on spline theory, e.g.,
in approximation theory (Cheney & Light, 2009), optimal
control (Egerstedt & Martin, 2009), statistics (Fantuzzi et al.,
2002) and related fields.

3. Provable Constraints on the Decision
Boundary

Suppose, wℓ
i ,bℓi are the i-th rows of W ℓ, bℓ. Therefore,

there exists a hyperplane hℓ
i ∈ Rℓ−1 from layer ℓ with

parameters wℓ
i , b

ℓ
i , expressed as,

hℓ
i ≜ {z ∈ Rℓ−1 : ⟨wℓ

i , z⟩+ bℓi = 0 }. (5)

Let, S is a binary classifier DNN therefore with a single
output neuron with sigmoid activation. In the input space
of the last layer, RL−1, the decision boundary is also a
hyperplane hL

1 , that can be expressed as:

hL
1 ≜ {z ∈ RL−1 : ⟨wL

1 , z⟩+ bL1 = 0 }. (6)

Suppose we have an arbitrarily ordered set of vertices V =
[v1, . . .vp]

T in the input space of the network. The vertices
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Figure 3: SplineCam visualizations of the DNN decision boundary (red) and neurons for a 2D toy binary classification task
with four Gaussian distributions. One of the distributions (yellow) is under sampled with the ratio 20 : 1. Top row shows
models trained without constraints. Bottom row presents visualizations for DNNs trained with constraints. Bottom left
presents results for smaller ϵ constraints and constraints applied to every layer. Bottom right presents constraints applied to
only the decision boundary with larger ϵs.

lie on the surface of a sphere with radius ϵ centered on the
input vector x.

Consider the set of pre-activation signs of the output neuron:

{sign(⟨wL
1 ,S

L−1(v)⟩+ bL1 ) : ∀v ∈ V }. (7)

Therefore, a sufficient condition for the decision boundary
to not intersect the convex hull of V in the input space, is
for all the elements of the set in Eq. 7 to be the same. This
is a direct result of Thm 1. by Balestriero & LeCun.

The above discussions give us the necessary framework to
define robustness for an input sample x and provide the
following Theorem for robustness.

Definition 1. A binary classifier DNN S is ϵ-robust for
input x if the minimum ℓ2 distance from x to the decision
boundary, i.e., the margin, is lower bounded by ϵ.

Theorem 1. Let, there exists a S-polytope containing an
arbitrary input vector x ∈ RS , with vertices V = {vi}pi=1

where p > S. A binary classifier S is at least ϵ-robust if the
following is satisfied,

||vi − x||2 > ϵ ∀vi ∈ V , (8)

|
p∑

i=1

sign(⟨wL
1 ,S

L−1(vi)⟩+ bL1 )| = p, (9)

where, |.| is the absolute value operation.

The proof of Thm 1. is direct, since Eq. 9 ensures that the
decision boundary in the input space of the final layer RL−1

does not intersect the S-polytope embedded in RL−1 and
Eq. 8 ensures that all the vertices of the polytope are at least
ϵ distance away.

Our proposed algorithm, CROP can be summarized as fol-
lows. To make a network epsilon robust for a given sample,
we first define a polytope in terms of its vertices, such that
the vertices are at least ϵ distance away from x. We call
these the constraint vertices. Following that we compute the
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Table 1: Performance comparison between our proposed method and standard adversarial training methods. We pre-train an
MLP on MNIST without constraints and then fine-tune the network for 5 epochs using our proposed constraints or with
adversarial training. We use the least robust class for the pre-trained model (digit 9) as our target class.

Evaluation Pre-training Fine-tuning (5 epochs)

Ours
Constr.

Gaussian w\
RandSmooth FGSM PGD-10 PGD-100 TPGD-100

All Class Clean Train 100 91.28 99.44 99.65 99.28 99.12 99.19
Clean Test 97.88 90.18 97.02 97.05 96.83 96.66 96.73

Target Class Clean Test 97.52 99.81 98.21 98.91 99.11 99.01 98.91
FGSM 68.88 93.65 68.28 89.39 92.66 92.47 92.66

PGD-10 40.93 88.61 65.23 77.66 86.22 85.47 84.55
PGD-100 40.83 88.40 64.73 77.26 85.88 84.87 83.98

TPGD-100 44.79 91.77 65.74 81.80 91.06 88.22 88.82
AutoAttack 28.34 86.81 69.18 72.25 82.95 81.56 81.57

pre-activations for each of these vertices for the neuron we
want to constrain (e.g., the output neuron). We compute the
majority vote of the signs of the pre-activation and add an
extra bias to the learned bias of the neuron to ensure that the
signs of the pre-activation for all the vertices are the same.
We perform this during training for every iteration while the
network is being trained. This way, for every forward pass,
it is ensured that the constrained vertices have the same
sign. Our method can be applied to constrain any neuron,
therefore ensuring that features are also robust to ϵ perturba-
tion of the input. In Algorithm 1, we present our proposed
algorithm for sample specific robust training. Note that we
can easily apply multiple constraints on multiple samples
as well, as long as we want the signs for all the constraints
to be identical. Our proposed method can be viewed as
a method of constraining the continuous piecewise affine
spline learned by the DNN (as discussed in Sec. 2.2) to be
linear in a prescribed region for either the whole network or
only the layer we wish to constrain (e.g., output layer).

4. Evaluation

Qualitative Validation. We start evaluation of our method
by qualitative validation. To qualitatively validate the effect
of CROP, we us SplineCam (Humayun et al., 2023) to vi-
sualize the exact decision boundaries of the network on a
2D subspace of the input space. SplineCam computes the
decision boundary analytically therefore it does not perform
any approximations, allowing us to qualitatively assess the
effect of the constraints on the decision boundary. In Fig. 1
and Fig. 3 we present SplineCam visualizations on toy 2D
tasks with imbalanced data. We present results for con-
straints applied on all the layers as well as only the decision
boundary. We see that applying the constraints visibly shifts
the decision boundary to ensure that the constraints are met.

In Fig. 2, we present qualitative visualizations of the con-
straint applied on a single sample from MNIST. We use
20 vertices to define a constraint region around a training
sample, as well as generate an adversarial sample using the
same training sample. We also take the nearest neighbor
to the training sample in the training dataset, that belongs
to class the adv. sample is misclassified to by the network.
Using these three samples, we define a square 2D input
domain in the input space of the network and compute the
spline partition induced by the network via SplineCam. This
allows us to visualize individual neurons that intersect the
2D plane as well as the decision boundary. We see that
applying constraint visibly shifts the decision boundary as
well as intermediate layer neurons when all the layers are
constrained. This is visual proof that even with a smaller
number of constrain points, CROP can increase the margin
in a locality of the input space.

Quantitative Validation. We quantitatively validate the
performance of CROP on a single class robustness task on
MNIST. We first start by training a 5 layer MLP with width
64 on MNIST. We train the network until interpolation with-
out any constraints. We refer to this as the base network.
After training, we perform PGD attack and find that the
most susceptible class is the digit 9. Choosing the digit
9 as our target class, we fine-tune the base network for 5
epochs with a learning rate of 10−5 using CROP constraints
or with standard adversarial training methods. We apply
CROP on the pre-trained model and fine-tune for 3 training
epochs. We use 50 vertices, an ℓ2 distance of 1 away from
each training sample from the digit 9 class to define the con-
strained regions. Following this we remove the constraint
and fine-tune the network on the original training dataset
for 2 epochs as a cooldown step.

In Table 1 we present performance of CROP for single class
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robustness and compare with standard adversarial attacks
and defenses. For all the adversarial attacks, we use ℓ∞
as the distance metric with a step size of 2/255, attack
epsilon of 8/255. We use FGSM (Goodfellow et al., 2014)
PGD with 10 and 100 steps (Madry et al., 2017), TPGD
with 100 steps (Zhang et al., 2019) and AutoAttack (Croce
& Hein, 2020) to measure the single class robustness of
CROP. For defense, we fine-tune the base network on the
training set with only the target class samples augmented via
adversarial attacks. We use FGSM, PGD and TPGD during
adversarial training in this setting. We also compare with
Randomized Smoothing (Cohen et al., 2019), for which we
first fine-tune the base model with Gaussian noise (variance
1) augmentation for the target class. During inference, we
evaluate the fine-tuned network on 50 noisy versions of each
test sample and do a majority vote.

We see that even with 5 fine-tuning epochs, CROP surpasses
all the other adversarial defense methods on the single class
robustness task. This is possible because CROP constraints
are analytic and can be instantaneously applied, whereas
the adversarial training methods require longer training runs
to acquire robustness. We see that PGD based adversarial
training methods acquire robustness performance closest to
CROP. The overall test accuracy for CROP is lower com-
pared to others.

5. Conclusion and future works
We provide a provable way to constraint samples to be robust
towards adversarial attacks. Our proposed method CROP,
can be applied to all samples from a specific class to ensure
robustness towards targeted attacks, as well as, ensure ro-
bustness for minority classes in an imbalance dataset. CROP
also ensures robustness against data poisoning attacks since
the constraints are always ensured regardless of training.
Future work includes applying constraints to all the classes
in an iterative manner where the constraints are applied by
alternating target classes.
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