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Abstract

As Large Language Models (LLMs) demonstrate increasingly sophisticated code
processing capabilities, evaluating their performance on engineering-level code
remains challenging. Existing repository-level benchmarks primarily focus on
single scenarios, such as code generation or bug fixing, without adequately cap-
turing the diversity and complexity of real-world software or project engineering
workflows. Furthermore, these benchmarks suffer from limited controllability
in question positioning and reliability issues in their generated test cases. To
address these limitations, we present CorePipe, a fully automated pipeline that
converts repositories into comprehensive benchmark test cases, and introduce
CORECODEBENCH, a configurable multi-scenario repository-level benchmark.
To simulate real engineering scenarios, CorePipe generates three types of atomic
questions (Development, BugFix, and Test-Driven Development) specifically tar-
geting core code segments. These atomic questions are further combined into three
types of composite questions, with difficulty levels flexibly adjusted through hyper-
parameter tuning. CORECODEBENCH provides a comprehensive and extensive
repository-level benchmark to investigate the applicability of LLMs in real-world
engineering projects. Experiments with 16 LLMs across diverse scenarios reveal
varying capabilities and offer multi-dimensional insights into LLM performance
in engineering contexts. Code of CorePipe|and data of CORECODEBENCH]/are
available.

1 Introduction

With the continuous improvement in the code processing capabilities of Large Language Mod-
els (LLMs), more researchers are starting to focus on their applications in engineering-level code.
Engineering-level code often involves complex dependencies and long-context interactions, posing
unique challenges for LLMs. Specialized code LLMs, such as QwenCoder [16] and DeepSeek-
Coder [13]], have demonstrated exceptional programming capabilities in software engineering. LLM-
based products such as Copilot, Windsurf, and Cursor, significantly reduce the complexity program-
mers face in engineering-level projects. As the code processing capabilities of LLMs continue to
evolve, there is a growing need to systematically understand their strengths and limitations across dif-
ferent engineering scenarios. To assess the programming capabilities of these tools at an engineering
level, it is crucial to establish an effective and fair evaluation standard.

Several benchmarks have been proposed, such as SWEBench [17], REPOEXEC [14], and Big-
CodeBench [38]], to evaluate the ability of LLMs in implementing engineering-level code. These
benchmarks are derived and refined from real-world repositories, ensuring a high degree of alignment
with real engineering code development. They focus on tasks such as natural language to code
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Development

def convert_tokens_to_string(self, tokens:
List[str]) ->

# Functionality explanation:

# 1. ** purpose **

# Convert a sequence of tokens output by
Connectionist Temporal Classification (CTC
into a string.

<complete code here>

Wav2Vec2CTCTokenizer: :convert_tokens_to_string
Wav2Vec2CTCTokenizer: :decode

BugFix

def convert_tokens_to_string(self, tokens:

List[str]) -> str:
<buggy code begin>
if (tokens) =
return {"text"

}

return {"text": string}
<buggy code end>

Multi-Function Problems

Tokenizer::nested_vocab
CTokenizer: : convert_tokens_to_string

TDD

def test_convert_tokens_to_string (self):
tokenizers = self.get_tokenizers()
for t in tokenizers:
tokens = ["T", "H", "I"]

assert t.convert_tokens_to_string(tokens)=="thi"

def convert_tokens_to_string(self,
tokens: List[str]) ->
<complete code here>

Wav2Vec2CTCTokenizer: : convert_tokens_to_string
Wav2Vec2CTCTokenizer: : decode

Figure 1: Overview of CORECODEBENCH.

(NL2Code) translation and bug fix within the scope of engineering code development. Although
existing benchmarks provide an initial reference for evaluating the programming capabilities of LLMs
in engineering environments, the current evaluation framework faces two critical challenges.

Challenge 1: Single Scenario. Prevailing repository-level benchmarks primarily focus on the code
generation task, and do not adequately encompass the diverse scenarios present in engineering
development. In real-world engineering practice, developers not only need to complete function-level
code completion but also engage in bug fixies for unit tests. Additionally, within modular development
paradigms, engineers often need to simultaneously implement main functions alongside supporting
utility functions. These scenarios require the LLMs to display not only code generation capabilities
but also cross-file contextual reasoning and implementation planning abilities—skills that current
evaluation systems fail to systematically assess.

Challenge 2: Lack of Controllability and Reliability. Existing automated generation methods exhibit
significant shortcomings in both controlling the positioning of generated questions and ensuring
their reliability, directly impacting benchmark’s effectiveness. The random masking approach, while
achieving positional randomness, lacks logical constraints in mask selection, which might result
in overlooking critical code segments or excessively testing non-essential areas [37]]. Alternative
approaches such as those based on cleaning pull requests, fix testing locations to historical revision
points, limiting evaluation scenario diversity [17, 29]. These methods also suffer from low data
reliability, with numerous pull requests not being self-contained and requiring substantial manual
cleaning [28]. Neither method effectively ensures flexible control over test positioning while maintain-
ing core code relevance and data quality, hindering comprehensive assessment of LLMs’ performance
in engineering-level tasks.

To address these limitations, we design a fully automated pipeline CorePipe that converts GitHub
repositories into repository-level benchmark test cases. CorePipe generates three types of atomic
questions (Development, Bugfix, Test-Driven Development) on core code segments, and further
composes multiple composite question types with adjustable difficulty. Quality inspection and
analysis show that the generated data are of high quality and reliability. As shown in Figure [T
we release a meticulously Configurable Repository-level benchmark, CORECODEBENCH, which
effectively evaluates the actual capabilities and adaptability of LLMs in engineering-level code
development. Through comprehensive evaluation of general-purpose and code-specific LLMs, we
gain insights into the performance and characteristics of these models across diverse repository-
level scenarios. CORECODEBENCH not only enables coarse-grained differentiation of LLM code
abilities, but also provides fine-grained analysis of their potential. Flexible control of CorePipe
over question difficulty enables CORECODEBENCH to offer a promising platform for future LLM
evaluation. Our experiments further highlight several areas for improvement in LLMs’ performance
on engineering-level projects, paving the way for future advancements in model capabilities.

The contributions are summarized as follows:
* We design CorePipe, a fully automated pipeline for generating LLM engineering code capability

tests from repository source code without any human intervention. CorePipe can be adapted to any
programming language and any repository.

* We release the analysis and quality inspection results of the test data generated by CorePipe. The
results demonstrate that CorePipe can produce high-quality and highly flexible test cases.



78
79
80

81
82

83

84

85
86
87
88
89
90
91
92
93
94
95

96

97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112

113

114
115
116

Benchmark Multi-Task Automatic Difficulty Level Flexible Position Quality Inspection Avg. Lines

SWEBench [17] X v X X X 38.01
DevBench [19] v X X X X -

ExecRepoBench [37] X v X X X 242
Codev-Bench [29] X v X X X 43.69
EvoCodeBench [20] X X X X X 14.86
RepoMasterEval [34] X v X X X -

BigCodeBench [38] X X X X X 13.55
REPOEXEC [14] X v X X v 21.9
CORECODEBENCH v 4 4 v v 34.14

Table 1: Comparison between existing repository-level benchmarks and CORECODEBENCH.

* We provide CORECODEBENCH, a repository-level benchmark that includes three atomic tasks
and three composite tasks. CORECODEBENCH features various question types and characteristics,
offering new insights and analytical perspectives for evaluating LLM coding.

* We present the evaluation results on several state-of-the-art LLMs and conduct multifaceted
analyses of their performance on repository-level scenarios.

2 Background and Related Work

2.1 Large Language Models for Code

General-purpose LLMs have demonstrated remarkable performance not only in natural language
processing but also in code-related tasks. In recent years, LLMs tailored for code generation
and reasoning have consistently achieved high scores in benchmark tests. On the HumanEval
benchmark [7], the closed-source models Claude-3.5-Sonnet [3]] and GPT-40-0513 [24] have reached
Pass@1 scores of 92.0% and 91.0%, respectively. Among open-source models, DeepSeek-Coder-
V2-Instruct [9] and Qwen2.5-Coder-Instruct [[16] have achieved Pass@1 scores of 90.2% and 88.4%.
On other algorithmic problem benchmarks like MBPP [[6], LLMs have surpassed Pass@1 scores of
85%, showcasing their strong performance in this domain. LLMs have also played a crucial role
in engineering tasks, as demonstrated by products like Copilot [12], supporting code writing and
debugging in extended context scenarios. To further advance coding LLMs, there is an urgent need
for repository-level code benchmarks to evaluate performance in engineering contexts.

2.2 Existing Repository-level Benchmarks

Over the years, various benchmarks have been created to evaluate models on code-related tasks.
Popular benchmarks focus on evaluating code generation (HumanEval [7], MBPP [6]), debugging
(DebugBench [33]], QuixBugs [15]]), and code translation (CodeTransOcean [36]]) capabilities. How-
ever, these benchmarks primarily target short code snippets and do not sufficiently address longer
code generation or complex software engineering challenges.

Recently, with the enhanced code capabilities of LLMs and the support for larger context windows,
several repository-level benchmarks have emerged. As demonstrated in Table[T, these benchmarks
can automatically extract or generate test cases from real repositories to evaluate the performance of
LLMs on repository-level code tasks. However, due to the random masking [37] or cleaning from
pull requests [[17} 29], the positioning, difficulty, and quality of the test cases are not consistently
controlled. Some benchmarks [20! [38] require manual intervention to generate and validate test cases,
thus preventing full automation. Furthermore, aside from DevBench [19], which evaluates LLMs’
capabilities in software development through multi-stage tasks, most benchmarks [34} [14] have
primarily concentrated on code generation within repository-level projects. Consequently, there is a
clear need for a configurable, multi-scenario repository-level benchmark to fully assess the potential
of LLMs in more complex software engineering contexts.

3 Method

In this section, we introduce the design of the CorePipe, including repository preprocessing, single-
function problem generation, and multi-function problem generation. CorePipe is capable of identify-
ing and rewriting core code segments to generate 6 types of problems, simulating various situations
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Figure 2: Overview of CorePipe. (a) Repository Preprocessing selects high-quality repositories
based on three criteria, ensuring a diverse and representative codebase collection. (b) Single-Function
Problem Generation creates three distinct types of problems focusing on individual function under-
standing and modification, targeting critical code segments. (c) Multi-Function Problem Generation
constructs complex scenarios requiring an understanding of interactions between multiple functions.

in engineering development scenarios. For both single-function and multi-function problems, our
pipeline ensures that the questions are generated from critical and representative locations, maintains
the reliability of the generated problems, and allows for controllable difficulty levels.

3.1 Repository Preprocessing

Repository Selection. The PyPI library is a widely used public repository that offers a vast array
of Python packages. We select open-source projects from PyPI based on the following criteria: (1)
Activeness: the project has been updated or maintained within the past six months; (2) Test Coverage:
the project contains unit tests, with test files accounting for more than 30% of the codebase; (3)
Technical Complexity: the project has more than 5,000 lines of code and involves cross-module
development. This selection process ensures that the chosen repositories not only reflect real-world
engineering practices but also provide a solid testing infrastructure to support subsequent problem
generation.

Test File-Source File Mapping Generation. We establish the mapping between source files and
test files through a process that combines LLM-based analysis and automated rules. Specifically, we
(1) use an LLM to analyze the repository’s file tree structure; (2) apply automated rules to generate
<source, test> pairs; and (3) perform executability checks and retain passing tests. The resulting
mapping serves as a foundational data structure for subsequent problem generation, ensuring a strong
semantic connection between test cases and target source code.

Function Call Tree Generation. For each validated test file and source file pair, we perform dynamic
tracing on the test file to construct a cross-file function call tree. This process is implemented based
on a customized version of the pycallgraph library [18]. Each node in the function call tree represents
a function, annotated with its corresponding file and precise location. Every node serves as a potential
candidate for Single-Function Problem generation, while the complete function call tree provides the
structural foundation for composing multi-function Problems.

Prompts used in repository preprocessing stage is illustrated in Appendix [Al

3.2 Single-Function Problems Generation

We first generate single-function problems as foundational atomic tasks, encompassing three types:
Development, BugFix, and Test-Driven Development (TDD). These atomic tasks are designed
to systematically evaluate the abilities of LLMs in long-context comprehension and local code
implementation. Throughout the generation process, we dynamically monitor the quality of the
questions, ultimately filtering out effective problems that meet the requirements of engineering
practice.
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Core Code Identification. Given that some functions in engineering code are simply basic condition
checks or auxiliary utilities without core business logic, we first filter all function nodes in the function
call tree to identify core functions as problem candidates. For each core function, we automatically
select consecutive AST blocks as core code blocks by prompting LLMs to identify key segments,
ensuring the completeness and centrality of the extracted segments. The retesting process verifies
whether these core code blocks can be effectively detected by unit tests. All core functions and
their associated core code blocks that pass the retesting process are considered as candidate problem
locations.

Development Problem. We mask the identified core code blocks to generate development type
problem. We then utilize the GPT-40 [24ﬂ to generate structured functional descriptions for the
masked parts, ensuring that the descriptions cover key information such as input-output specifications,
core logic, and boundary conditions. To further enhance the quality of the generated descriptions,
we introduce Claude-3.5-Sonnet [4] as a discriminator model to score and provide feedback on the
generated paragraphs. If deficiencies are detected, the generation model refines the descriptions based
on the feedback. This iterative process is conducted twice. The specific prompt settings for this
generation process are detailed in Appendix

BugFix Problem. Bug fixing is a common scenario faced by developers in real-world engineering
projects. For current LLMs, the ability to fix syntactic errors is generally stronger than other
error types [21l]. Thus we focus more on constructing code snippets that contain logical errors.
Specifically, we first use an LLM to rewrite development-oriented problems, generating erroneous
logic descriptions for the masked code segments. Then, we employ a smaller-parameter LLM to
produce buggy code for these masked segments. In our framework, large models are used to simulate
more complex logical errors, while smaller models are used to generate more common and basic
errors.

Test-Driven Development Problem. Test-Driven Development (TDD) is a software development
approach where unit tests are written for target functionality before implementing the actual code.
Following the methodology outlined in [22, [1]], our TDD problems provide unit tests and require
LLMs to implement the corresponding functionality based on these tests. TDD is a promising
paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
Specifically, we (1) select unit test code that directly tests specific functions based on the function
call tree, (2) mask the core code block, (3) include the unit test code segments in the prompt. With
the assistance of the function call tree, we ensure that the source code can be properly reconstructed
using contextual information and the unit test.

3.3 Multi-Function Problem Generation

In engineering-level software projects, developers often extract parts of an implementation into
separate utility functions for reuse. In such cases, a programmer may need to implement several sub-
functions while developing a main function. Similarly, during bug fixing, it is sometimes necessary
to address bugs across multiple related functions simultaneously. To simulate these real-world
scenarios, we design Multi-Function Problems. Each Multi-Function Problem consists of multiple
atomic problems, where an atomic problem refers to a single function that needs to be completed or
corrected. Atomic problems include four types: development, BugFix, TDD, and empty-function.
The Development, BugFix and TDD atomic problems are generated during the single-problem
generation stage. For empty-function problems, the contents of utility functions in the repository are
removed, leaving only the function signature and declaration. Empty-function problems are used
exclusively within multi-function problems.

Each atomic problem corresponds to a node in the function call tree. The combination of atomic
problems follows four basic rules: (1) at least one single-function problem is included; (2) the
corresponding functions must have a call relationship (i.e., a parent-child relationship in the function
call tree); (3) the maximum depth of the call tree is limited to d, where d is a hyperparameter; (4)
the total number of atomic problems n satisfies 2 < n < v, with v as another hyperparameter. By
adjusting the hyperparameters d and v, we can control the complexity and difficulty of the generated
problems. Specific generation rules for different subtypes are provided in Appendix D!

! Analysis of model selection for data generation is provided in Appendix
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4 CoreCodeBench

4.1 Data Statistics

CORECODEBENCH encompasses a diverse col-
lection of 12 repositories covering 6 distinct
repository-level coding tasks, with a total of

Problem Type # Function # Lines # Problem

. . . . Devel t 1 17 422

1,545 valid problems. Detailed information Bﬁ;;&pmen 1 38 433
1 1 1 1 TDD 1 14 276

about the repositories and illustration of CORE- MomiDev. 285 5300 T
CODEBENCH can be found in the Appendix [E Multi-BugFix 2.0 62.34 10
and[F. In Table[2] we present the key statistics of hmToD st o o

CORECODEBENCH, including the average num-
ber of functions, average lines of gold solutions,  Table 2: Data Statistics of CORECODEBENCH.
and the number of problems for each problem

type. The dataset encompasses a diverse range of problem complexities across different categories.

Each problem type contains specific contextual information to facilitate solution generation. Devel-
opment problems include explanations of the masked code segments along with surrounding file
context. BugFix problems contain the buggy code implementation, contextual information, and
optional unit test details to aid in identifying and resolving errors. TDD problems provide file context
and unit test code that defines the expected behavior of the implementation. For Multi-Function
problems, we include code snippets of all relevant functions from the function call tree, offering a
comprehensive view of the interdependent components. Examples of prompts for different problem
types are presented in Appendix[G.

4.2 Evaluation Metric

We assess the quality of generated code by executing unit tests corresponding to the source code.
Following the method in [7]], we adopt Pass@1 as our primary metric. For a given problem, Pass@ 1
indicates whether the first solution generated by a model successfully passes all associated unit
tests. Additionally, we introduce PassRate as a complementary metric that measures the relative
improvement over the retest baseline. PassRate is calculated as

Npass - Nretest
)
N, total — Nrelest

where Np,qs represents the number of test cases passed by the solution of model, Nees is the number
of test cases that pass without any modifications to the code, and Ny is the total number of test cases.
While Pass@1 reflects the ability of a model to generate a fully correct solution in a single attempt,
PassRate provides a finer-grained assessment by measuring the model’s incremental improvement
over the baseline, capturing partial correctness across all test cases.

PassRate =

For the overall CORECODEBENCH, both the Pass@1 score and PassRate are calculated as the
average of their respective values across all repositories, providing a comprehensive measure of
model performance across diverse codebases.

4.3 Quality Inspection

CorePipe utilizes an LLM supervisor to conduct preliminary quality assessment and filtering of
generated problems. To further ensure problem quality, we implement additional quality inspection
mechanisms specifically for Development-type problems.

IG Filter. For LLM-generated explanation texts, we introduce an Information Gain (IG) Score to
measure the informational value provided by the explanations. Specifically,

IGpase = PassRatecyp, — PassRateno exp

IGpase > 0 indicates that the explanation provides additional effective information, while IGp,se < 0
suggests that the explanation information is redundant or incorrect. We select commonly used LLMs
including GPT-40 [24], Claude-3.5-Sonnet [4]], Doubao-pro-4k [11]], and qwen-plus-latest [2] as
baseline models. Based on the IG scores from these baseline LLMs, we retained only problems with
IGpase > 0 and problems that none of the models could solve (i.e., difficult problems). After applying
the IG filter, 48.56% of the problems are retained.
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Single Function Development BugFix TDD

Models AC Rate AC@1 AC Rate AC@1l AC Rate AC@1

GPT-4o [24] 82.09 57.47 57.95 34.42 84.09 46.38

GPT-4.1 [26] 84.13 61.90 71.87 50.90 88.56 60.96

ol-mini* [25] 76.85 47.02 57.28 32.68 78.92 54.74

o4-mini (high)* [27] 86.66 59.29 69.51 50.65 87.13 70.21
Claude-3.5-Sonnet [4] 86.83 61.41 63.80 40.47 85.88 60.56

API Claude-3.7-Sonnet ™ [5 85.75 63.59 64.68 43.51 85.50 61.37
Gemini-2.5-Pro-Preview [8] 73.21 48.06 30.79 22.67 74.50 51.60

Grok-3* [35] 80.53 56.16 54.16 33.93 84.32 53.68
Doubao-pro-4k [11] 76.25 43.54 63.19 39.43 76.10 31.24
Doubao-1.5-pro [30] 84.22 57.70 64.69 4143 83.26 45.50
qwen-plus-latest |2E] 78.82 52.96 39.91 22.05 80.96 40.02
Qwen2.5-max [31] 83.06 57.85 50.87 28.18 82.83 47.65
DeepSeek-Coder-V2-Lite-Instruct-16B [9] 64.85 16.53 27.31 12.28 65.85 27.8
Open-Source DeepSeek-R1* [10] 84.58 58.81 66.48 45.07 79.23 56.66
Llama3.1-70B 23] 71.53 41.00 51.93 28.64 79.42 37.33

Qwen3-8B [32] 53.62 8.25 23.83 6.18 59.97 18.91

Table 3: Leaderboard of Single-Function Scenarios. Models using thinking mode are marked with *.

Manual Inspection. We further enlist experienced code engineers to annotate the problems. These
annotators conducted quality checks on problems that had passed the IG filter. The quality assessment
evaluated three aspects: readability, accuracy, and completeness, with flawed test cases being marked
as unqualified. We randomly sampled 30 problems from each repository for inspection. Ultimately,
the qualification rate for CORECODEBENCH (Development Problems) is 78.55%. This high qualifi-
cation rate demonstrates that the problems originally generated by CorePipe are inherently reliable.
Additionally, we have released the manually verified subset as CoreCodeBench-Dev-Verified
alongside the main benchmark. We list the detailed experience of three human annotators in Ap-
pendix [H, where all of them have a bachelor’s degree in computer-related major, and at least 3 years
of Python development experience.

5 Experiments

5.1 Setups

Models. We present a comprehensive evaluation of a diverse set of LLMs on our proposed CORE-
CODEBENCH. The selected models represent a wide spectrum of architectures and parameter sizes,
ranging from 7B to 70B parameters. Our evaluation covers both open-source models and proprietary
API-based models released by leading Al research organizations. For models that support chain-of-
thought (CoT) reasoning, we explicitly enable their reasoning capabilities during inference in order
to fully assess their potential for complex reasoning tasks.

Implementation Details. All evaluations are performed using the officially recommended inference
parameters for each model, including temperature, top_p, and top_k, whenever such recommendations
are available. For models without specific recommendations, we employ deterministic sampling set-
tings (temperature= 0, top_k= 1, top_p= 0.0) to ensure reproducible outputs. Other Implementation
details specific to other question types are provided in Appendix [I.

5.2 Main Result of Single-Function Problems

Table[3] presents the performance of various LLMs on the CORECODEBENCH-Single benchmark. We
draw the following conclusions: (1) Model Performance: Claude-3.7 and o4-mini (high) consistently
achieve leading results across all three problem types, demonstrating the strong capabilities of recent
proprietary models. Among open-source models, DeepSeek-R1 stands out with comparatively better
results. Generally, models with larger parameter sizes outperform their smaller counterparts, and
newer model versions exhibit clear advancements over previous generations, indicating continuous
progress in model architecture and training techniques. (2) Metric Comparison: The differing
rankings produced by AC Rate and AC@1 indicate that these metrics provide complementary insights
into model performance. AC@]1 evaluates coarse-grained absolute performance, offering a clear

2Claude-3.7-Sonnet is a hybrid reasoning model.
3In this paper, we use qwen-plus-latest-2025-01-25.
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Multi Function Development BugFix TDD

Models AC Rate AC@1 AC Rate AC@1l AC Rate AC@1

GPT-4o [24] 17.31 5.69 0.21 0 18.44 6.78
GPT-4.1 [26] 12.85 3.77 44.00 20.00 2222 8.11
ol-mini* [25] 16.92 2.62 41.40 20.00 2222 8.11

o4-mini (high)* [27] 20.85 6.62 42.60 20.00 34.11 20.22
Claude-3.5-Sonnet [4] 24.38 7.77 41.40 20.00 2438 7.77

API Claude-3.7-Sonnet™ [5] 35.54 13.85 41.60 20.00 31.56 17.11
Gemini-2.5-Pro-Preview [8] 22.74 6.85 2.20 0 20.22 6.89

Grok-3* [35] 25.62 14.46 15.40 0 15.44 7.44
Doubao-pro-4k [L1] 3.85 0 19.80 0 3.00 1.56

Doubao-1.5-pro [30] 3.08 0 36.40 20.00 0.22 0

qwen-plus-latest [2]] 21.31 8.00 27.60 0 19.22 6.89
Qwen2.5-max [31] 23.46 9.31 49.20 40.00 23.89 8.22
DeepSeek-Coder-V2-Lite-Instruct-16B [9] 0 0 0 0 1.22 1.22
Open-Source DeepSeek-R17* [10] 20.23 5.54 22.40 0 23.56 9.56
Llama3.1-70B [23] 19.00 4.92 37.60 20.00 19.44 6.56

Qwen3-8B [32] 0 0 13.8 0 1.78 1.22

Table 4: Leaderboard of Multi-Function Scenarios. Models using thinking mode are marked with *.

stratification of code generation capabilities among models. In contrast, AC Rate is able to capture
performance differences within the same tier, serving as a finer-grained indicator of a model’s
potential to pass individual test cases. (3) Task Comparison: The relatively lower scores in the
BugFix scenario across all models highlight the increased complexity and difficulty of debugging
tasks, suggesting valuable directions for future model improvement and research. More detailed
results and repository-level breakdowns are provided in Appendix

5.3 Main Results of Multi-function Problems

Tabled summarizes the performance
of various models on the CORE-

CODEBENCH-Multi benchmark. -
Compared to the single-function N

setting, scores for multi-function 9. 2189
problems are significantly lower 2 gy 1521
across all models and scenarios, <" wyy B2 RS
highlighting the increased com- o O

plexity and challenges posed by s 352

multi-function code  generation oL 2 °F i A
tasks. Claude-3.7-Sonnet achieves A Q@\L &S A &f 6{\'“0 & & &
the highest performance among all &% & & & & ¢ & & ¢ &N
evaluated models, particularly ex- & F T M & o S
celling in the Development and TDD & ¢

scenarios, which demonstrates its

strong generalization and reasoning  Figure 3: CORECODEBENCH-Difficult Performance.
abilities in more complex contexts.

Notably, in the BugFix scenario, due to stricter generation rules and a smaller number of available
problems, the differences in AC@1 scores among models are less pronounced. However, AC Rate
remains effective in distinguishing model performance, as it captures more granular improvements
even when absolute success rates are low. More detailed results and repository-level breakdowns are
provided in Appendix [K

In the multi-function scenario, models are required to provide completions for multiple functions
within a single response (see Appendix [G for prompt details). Ideally, an LLM would demonstrate
planning in its implementation order, such as first completing simple utility functions and then
implementing functions that invoke them, or vice versa—-reflecting the diverse habits of human
engineers.Our analysis reveals that, with the exception of DeepSeek16B-Coder-V2-Lite, most models
tend to output answers strictly following the order of the functions as presented in the input prompt.
This observation suggests that current models lack flexible planning and hierarchical reasoning
abilities when generating multi-function code, often defaulting to a sequential approach rather than
optimizing for logical or functional dependencies.
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CORECODEBENCH-Difficult To further guide the development of future LLMs and to push the
boundaries of current code generation capabilities, we introduce the CORECODEBENCH-Difficult
dataset. Specifically, we generate this benchmark by setting the multi-problem generation hyperpa-
rameter v = oo (while keeping d = 3 to mimic real-world development environments). Figure|3
presents the AC Rate of various models on CORECODEBENCH-Difficult. Notably, the pass rates
for all models remain below 30%, underscoring the substantial challenges posed by this dataset.
These results highlight the effectiveness of the CORECODEBENCH-Multi benchmark in revealing the
limitations of current models and providing a rigorous testbed for driving future advancements in
code understanding and generation.

5.4 Coding Capabilities of LLLMs

We claim that CORECODEBENCH enables compre-

hensive evaluation of multiple coding capabilities of evelopment
ingle

LLMs. To visualize these capabilities, in Figure E
we select nine representative model series and plot | BugFi (ST

radar charts based on their performance across the — ®ut) (Single) — otmini (ghy
six distinct scenarios defined in CORECODEBENCH. —— Gemini-2.5-Pro-Preview
Each scenario is designed to assess a different aspect " Dotbaort5p10

of coding ability, thus providing a multi-faceted view Deepsentnts

of model strengths and weaknesses. For clearer and

more intuitive comparison, we normalize the results

DD —— DeepSeek-R1*

(Multi) (Single) Llama3.1-708

Development

for each scenario, allowing us to better highlight the (Mut)
differences and relative rankings among models.

) Figure 4: Performance of LLMs on CORE-
Several key observations can be drawn from the CoDEBENCH across scenarios.

radar charts. (1) The relative ranking of models dif-

fers across the six scenarios, indicating that CORE-

CODEBENCH effectively evaluates multiple dimensions of LLMs’ coding capabilities rather than
a single aspect. (2) For Development and TDD problems, model performance in multi-function
scenario does not always correlate with that in single-function scenario. This suggests that developing
multiple interrelated functions requires additional abilities, such as deeper contextual understanding
and implementation order planning. (3) For BugFix problems, model performance in single-function
and multi-function scenarios is strongly correlated. This reflects the distinct nature of debugging
tasks compared to development tasks, where debugging may rely more on local error correction
skills that generalize across different granularities. Overall, these findings demonstrate the value of
CORECODEBENCH as a multi-dimensional evaluation framework and highlight the necessity for
continued research to develop LLMs with robust and versatile coding skills.

6 Conclusions & Limitations

In this paper, we present CorePipe, a fully automated pipeline for generating high-quality, diverse, and
controllable repository-level benchmark test cases, and introduce CORECODEBENCH, a configurable
benchmark that comprehensively evaluates LLMs’ capabilities in real-world engineering scenarios.
Through extensive experiments, we demonstrate that CORECODEBENCH enables both coarse and
fine grained analysis of LLMs’ coding abilities, revealing significant performance differences across
various tasks and highlighting areas where current models still fall short, especially in complex
and multi-function engineering contexts. Our work provides a scalable and rigorous testbed for the
systematic assessment and future improvement of LLMs in engineering-level code development,
paving the way for more robust and adaptable Al-driven software engineering tools.

Despite the automated generation of six types of questions from GitHub repositories achieved by
CorePipe, our pipeline currently relies on the presence of comprehensive unit tests within the reposi-
tories. Repositories lacking sufficient unit tests cannot be processed by our current framework. In
future work, we plan to enhance CorePipe by incorporating techniques for generating or augmenting
unit tests, thereby expanding its applicability to a broader range of projects. Additionally, CORE-
CODEBENCH currently focuses exclusively on Python repositories. We aim to extend support to
other major programming languages, such as Java and C++, to enable more comprehensive evaluation
of engineering capabilities.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes an automated pipeline for generating LLM engineering
code, which is reflected in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the work in Section[6l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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589 Justification: There are no theoretical results in the paper.

590 Guidelines:

591 * The answer NA means that the paper does not include theoretical results.

592 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
593 referenced.

594 * All assumptions should be clearly stated or referenced in the statement of any theorems.
595 * The proofs can either appear in the main paper or the supplemental material, but if
596 they appear in the supplemental material, the authors are encouraged to provide a short
597 proof sketch to provide intuition.

598 * Inversely, any informal proof provided in the core of the paper should be complemented
599 by formal proofs provided in appendix or supplemental material.

600 * Theorems and Lemmas that the proof relies upon should be properly referenced.

601 4. Experimental result reproducibility

602 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
603 perimental results of the paper to the extent that it affects the main claims and/or conclusions
604 of the paper (regardless of whether the code and data are provided or not)?

605 Answer: [Yes]

606 Justification: All essential details regarding data generation, experimental setup, evaluation
607 metrics, and hyperparameters are fully described in the Section[5.1 and Appendix|[[, ensuring
608 reproducibility of the main results.

609 Guidelines:

610 * The answer NA means that the paper does not include experiments.

611 * If the paper includes experiments, a No answer to this question will not be perceived
612 well by the reviewers: Making the paper reproducible is important, regardless of
613 whether the code and data are provided or not.

614 * If the contribution is a dataset and/or model, the authors should describe the steps taken
615 to make their results reproducible or verifiable.

616 * Depending on the contribution, reproducibility can be accomplished in various ways.
617 For example, if the contribution is a novel architecture, describing the architecture fully
618 might suffice, or if the contribution is a specific model and empirical evaluation, it may
619 be necessary to either make it possible for others to replicate the model with the same
620 dataset, or provide access to the model. In general. releasing code and data is often
621 one good way to accomplish this, but reproducibility can also be provided via detailed
622 instructions for how to replicate the results, access to a hosted model (e.g., in the case
623 of a large language model), releasing of a model checkpoint, or other means that are
624 appropriate to the research performed.

625 * While NeurIPS does not require releasing code, the conference does require all submis-
626 sions to provide some reasonable avenue for reproducibility, which may depend on the
627 nature of the contribution. For example

628 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
629 to reproduce that algorithm.

630 (b) If the contribution is primarily a new model architecture, the paper should describe
631 the architecture clearly and fully.

632 (c) If the contribution is a new model (e.g., a large language model), then there should
633 either be a way to access this model for reproducing the results or a way to reproduce
634 the model (e.g., with an open-source dataset or instructions for how to construct
635 the dataset).

636 (d) We recognize that reproducibility may be tricky in some cases, in which case
637 authors are welcome to describe the particular way they provide for reproducibility.
638 In the case of closed-source models, it may be that access to the model is limited in
639 some way (e.g., to registered users), but it should be possible for other researchers
640 to have some path to reproducing or verifying the results.

641 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source data in Huggingface (CORECODEBENCH-Single, CORE-
CODEBENCH-Multi).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We list the details in Section[5.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not perform statistical significance tests, as our conclusions focus on
overall performance trends rather than asserting significant superiority of one model over
another.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]
Justification: We mainly rely on API-based models, and provide the details in |5.1
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The data is constructed under NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As a coding benchmark and pipeline, the paper has no societal impacts as we
might expect.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As a coding benchmark and pipeline, the paper has no such risk as we might
expect.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all models used in the paper via citation.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The assets is included in the HuggingFace/GitHub Repo.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide human annotators with detailed task instructions, inform them of
data open-source plans, and compensate them in accordance with local labor regulations.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The crowdsourcing do not study human as subjects in the paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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847 * We recognize that the procedures for this may vary significantly between institutions

848 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
849 guidelines for their institution.

850 * For initial submissions, do not include any information that would break anonymity (if
851 applicable), such as the institution conducting the review.

852 16. Declaration of LLM usage

853 Question: Does the paper describe the usage of LLMs if it is an important, original, or
854 non-standard component of the core methods in this research? Note that if the LLM is used
855 only for writing, editing, or formatting purposes and does not impact the core methodology,
856 scientific rigorousness, or originality of the research, declaration is not required.

857 Answer: [NA]

858 Justification: We use LLM only for writing, editing, or formatting purposes.

859 Guidelines:

860 * The answer NA means that the core method development in this research does not
861 involve LLMs as any important, original, or non-standard components.

862 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
863 for what should or should not be described.
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