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Abstract

As Large Language Models (LLMs) demonstrate increasingly sophisticated code1

processing capabilities, evaluating their performance on engineering-level code2

remains challenging. Existing repository-level benchmarks primarily focus on3

single scenarios, such as code generation or bug fixing, without adequately cap-4

turing the diversity and complexity of real-world software or project engineering5

workflows. Furthermore, these benchmarks suffer from limited controllability6

in question positioning and reliability issues in their generated test cases. To7

address these limitations, we present CorePipe, a fully automated pipeline that8

converts repositories into comprehensive benchmark test cases, and introduce9

CORECODEBENCH, a configurable multi-scenario repository-level benchmark.10

To simulate real engineering scenarios, CorePipe generates three types of atomic11

questions (Development, BugFix, and Test-Driven Development) specifically tar-12

geting core code segments. These atomic questions are further combined into three13

types of composite questions, with difficulty levels flexibly adjusted through hyper-14

parameter tuning. CORECODEBENCH provides a comprehensive and extensive15

repository-level benchmark to investigate the applicability of LLMs in real-world16

engineering projects. Experiments with 16 LLMs across diverse scenarios reveal17

varying capabilities and offer multi-dimensional insights into LLM performance18

in engineering contexts. Code of CorePipe and data of CORECODEBENCH are19

available.20

1 Introduction21

With the continuous improvement in the code processing capabilities of Large Language Mod-22

els (LLMs), more researchers are starting to focus on their applications in engineering-level code.23

Engineering-level code often involves complex dependencies and long-context interactions, posing24

unique challenges for LLMs. Specialized code LLMs, such as QwenCoder [16] and DeepSeek-25

Coder [13], have demonstrated exceptional programming capabilities in software engineering. LLM-26

based products such as Copilot, Windsurf, and Cursor, significantly reduce the complexity program-27

mers face in engineering-level projects. As the code processing capabilities of LLMs continue to28

evolve, there is a growing need to systematically understand their strengths and limitations across dif-29

ferent engineering scenarios. To assess the programming capabilities of these tools at an engineering30

level, it is crucial to establish an effective and fair evaluation standard.31

Several benchmarks have been proposed, such as SWEBench [17], REPOEXEC [14], and Big-32

CodeBench [38], to evaluate the ability of LLMs in implementing engineering-level code. These33

benchmarks are derived and refined from real-world repositories, ensuring a high degree of alignment34

with real engineering code development. They focus on tasks such as natural language to code35
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Development BugFix
def convert_tokens_to_string(self, tokens: 
List[str]) -> str:
  # Functionality explanation:
  # 1. ** purpose **
# Convert a sequence of tokens output by 

Connectionist Temporal Classification (CTC) 
into a string.
……
<complete code here>

def convert_tokens_to_string(self, tokens: 
List[str]) -> str:
<buggy code begin>
if len(tokens) == 0:
return {"text":""}

……

return {"text": string}
<buggy code end>

TDD

def convert_tokens_to_string(self, 
tokens: List[str]) -> str:
<complete code here>

def test_convert_tokens_to_string (self):
tokenizers = self.get_tokenizers()
for t in tokenizers:
tokens = ["T", "H", "I"]
assert t.convert_tokens_to_string(tokens)=="thi"

Multi-Function	Problems
Wav2Vec2CTCTokenizer::convert_tokens_to_string
Wav2Vec2CTCTokenizer::decode

Tokenizer::nested_vocab
CTokenizer::convert_tokens_to_string

Wav2Vec2CTCTokenizer::convert_tokens_to_string
Wav2Vec2CTCTokenizer::decode

Figure 1: Overview of CORECODEBENCH.

(NL2Code) translation and bug fix within the scope of engineering code development. Although36

existing benchmarks provide an initial reference for evaluating the programming capabilities of LLMs37

in engineering environments, the current evaluation framework faces two critical challenges.38

Challenge 1: Single Scenario. Prevailing repository-level benchmarks primarily focus on the code39

generation task, and do not adequately encompass the diverse scenarios present in engineering40

development. In real-world engineering practice, developers not only need to complete function-level41

code completion but also engage in bug fixies for unit tests. Additionally, within modular development42

paradigms, engineers often need to simultaneously implement main functions alongside supporting43

utility functions. These scenarios require the LLMs to display not only code generation capabilities44

but also cross-file contextual reasoning and implementation planning abilities—skills that current45

evaluation systems fail to systematically assess.46

Challenge 2: Lack of Controllability and Reliability. Existing automated generation methods exhibit47

significant shortcomings in both controlling the positioning of generated questions and ensuring48

their reliability, directly impacting benchmark’s effectiveness. The random masking approach, while49

achieving positional randomness, lacks logical constraints in mask selection, which might result50

in overlooking critical code segments or excessively testing non-essential areas [37]. Alternative51

approaches such as those based on cleaning pull requests, fix testing locations to historical revision52

points, limiting evaluation scenario diversity [17, 29]. These methods also suffer from low data53

reliability, with numerous pull requests not being self-contained and requiring substantial manual54

cleaning [28]. Neither method effectively ensures flexible control over test positioning while maintain-55

ing core code relevance and data quality, hindering comprehensive assessment of LLMs’ performance56

in engineering-level tasks.57

To address these limitations, we design a fully automated pipeline CorePipe that converts GitHub58

repositories into repository-level benchmark test cases. CorePipe generates three types of atomic59

questions (Development, Bugfix, Test-Driven Development) on core code segments, and further60

composes multiple composite question types with adjustable difficulty. Quality inspection and61

analysis show that the generated data are of high quality and reliability. As shown in Figure 1,62

we release a meticulously Configurable Repository-level benchmark, CORECODEBENCH, which63

effectively evaluates the actual capabilities and adaptability of LLMs in engineering-level code64

development. Through comprehensive evaluation of general-purpose and code-specific LLMs, we65

gain insights into the performance and characteristics of these models across diverse repository-66

level scenarios. CORECODEBENCH not only enables coarse-grained differentiation of LLM code67

abilities, but also provides fine-grained analysis of their potential. Flexible control of CorePipe68

over question difficulty enables CORECODEBENCH to offer a promising platform for future LLM69

evaluation. Our experiments further highlight several areas for improvement in LLMs’ performance70

on engineering-level projects, paving the way for future advancements in model capabilities.71

The contributions are summarized as follows:72

• We design CorePipe, a fully automated pipeline for generating LLM engineering code capability73

tests from repository source code without any human intervention. CorePipe can be adapted to any74

programming language and any repository.75

• We release the analysis and quality inspection results of the test data generated by CorePipe. The76

results demonstrate that CorePipe can produce high-quality and highly flexible test cases.77
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Benchmark Multi-Task Automatic Difficulty Level Flexible Position Quality Inspection Avg. Lines

SWEBench [17] ✁ ✂ ✁ ✁ ✁ 38.01
DevBench [19] ✂ ✁ ✁ ✁ ✁ -
ExecRepoBench [37] ✁ ✂ ✁ ✁ ✁ 2.42
Codev-Bench [29] ✁ ✂ ✁ ✁ ✁ 43.69
EvoCodeBench [20] ✁ ✁ ✁ ✁ ✁ 14.86
RepoMasterEval [34] ✁ ✂ ✁ ✁ ✁ -
BigCodeBench [38] ✁ ✁ ✁ ✁ ✁ 13.55
REPOEXEC [14] ✁ ✂ ✁ ✁ ✂ 21.9

CORECODEBENCH ✂ ✂ ✂ ✂ ✂ 34.14

Table 1: Comparison between existing repository-level benchmarks and CORECODEBENCH.

• We provide CORECODEBENCH, a repository-level benchmark that includes three atomic tasks78

and three composite tasks. CORECODEBENCH features various question types and characteristics,79

offering new insights and analytical perspectives for evaluating LLM coding.80

• We present the evaluation results on several state-of-the-art LLMs and conduct multifaceted81

analyses of their performance on repository-level scenarios.82

2 Background and Related Work83

2.1 Large Language Models for Code84

General-purpose LLMs have demonstrated remarkable performance not only in natural language85

processing but also in code-related tasks. In recent years, LLMs tailored for code generation86

and reasoning have consistently achieved high scores in benchmark tests. On the HumanEval87

benchmark [7], the closed-source models Claude-3.5-Sonnet [3] and GPT-4o-0513 [24] have reached88

Pass@1 scores of 92.0% and 91.0%, respectively. Among open-source models, DeepSeek-Coder-89

V2-Instruct [9] and Qwen2.5-Coder-Instruct [16] have achieved Pass@1 scores of 90.2% and 88.4%.90

On other algorithmic problem benchmarks like MBPP [6], LLMs have surpassed Pass@1 scores of91

85%, showcasing their strong performance in this domain. LLMs have also played a crucial role92

in engineering tasks, as demonstrated by products like Copilot [12], supporting code writing and93

debugging in extended context scenarios. To further advance coding LLMs, there is an urgent need94

for repository-level code benchmarks to evaluate performance in engineering contexts.95

2.2 Existing Repository-level Benchmarks96

Over the years, various benchmarks have been created to evaluate models on code-related tasks.97

Popular benchmarks focus on evaluating code generation (HumanEval [7], MBPP [6]), debugging98

(DebugBench [33], QuixBugs [15]), and code translation (CodeTransOcean [36]) capabilities. How-99

ever, these benchmarks primarily target short code snippets and do not sufficiently address longer100

code generation or complex software engineering challenges.101

Recently, with the enhanced code capabilities of LLMs and the support for larger context windows,102

several repository-level benchmarks have emerged. As demonstrated in Table 1, these benchmarks103

can automatically extract or generate test cases from real repositories to evaluate the performance of104

LLMs on repository-level code tasks. However, due to the random masking [37] or cleaning from105

pull requests [17, 29], the positioning, difficulty, and quality of the test cases are not consistently106

controlled. Some benchmarks [20, 38] require manual intervention to generate and validate test cases,107

thus preventing full automation. Furthermore, aside from DevBench [19], which evaluates LLMs’108

capabilities in software development through multi-stage tasks, most benchmarks [34, 14] have109

primarily concentrated on code generation within repository-level projects. Consequently, there is a110

clear need for a configurable, multi-scenario repository-level benchmark to fully assess the potential111

of LLMs in more complex software engineering contexts.112

3 Method113

In this section, we introduce the design of the CorePipe, including repository preprocessing, single-114

function problem generation, and multi-function problem generation. CorePipe is capable of identify-115

ing and rewriting core code segments to generate 6 types of problems, simulating various situations116
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Combine
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Function Call Tree

based on Rules

LLM Supervisor
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Figure 2: Overview of CorePipe. (a) Repository Preprocessing selects high-quality repositories
based on three criteria, ensuring a diverse and representative codebase collection. (b) Single-Function
Problem Generation creates three distinct types of problems focusing on individual function under-
standing and modification, targeting critical code segments. (c) Multi-Function Problem Generation
constructs complex scenarios requiring an understanding of interactions between multiple functions.

in engineering development scenarios. For both single-function and multi-function problems, our117

pipeline ensures that the questions are generated from critical and representative locations, maintains118

the reliability of the generated problems, and allows for controllable difficulty levels.119

3.1 Repository Preprocessing120

Repository Selection. The PyPI library is a widely used public repository that offers a vast array121

of Python packages. We select open-source projects from PyPI based on the following criteria: (1)122

Activeness: the project has been updated or maintained within the past six months; (2) Test Coverage:123

the project contains unit tests, with test files accounting for more than 30% of the codebase; (3)124

Technical Complexity: the project has more than 5,000 lines of code and involves cross-module125

development. This selection process ensures that the chosen repositories not only reflect real-world126

engineering practices but also provide a solid testing infrastructure to support subsequent problem127

generation.128

Test File-Source File Mapping Generation. We establish the mapping between source files and129

test files through a process that combines LLM-based analysis and automated rules. Specifically, we130

(1) use an LLM to analyze the repository’s file tree structure; (2) apply automated rules to generate131

<source, test> pairs; and (3) perform executability checks and retain passing tests. The resulting132

mapping serves as a foundational data structure for subsequent problem generation, ensuring a strong133

semantic connection between test cases and target source code.134

Function Call Tree Generation. For each validated test file and source file pair, we perform dynamic135

tracing on the test file to construct a cross-file function call tree. This process is implemented based136

on a customized version of the pycallgraph library [18]. Each node in the function call tree represents137

a function, annotated with its corresponding file and precise location. Every node serves as a potential138

candidate for Single-Function Problem generation, while the complete function call tree provides the139

structural foundation for composing multi-function Problems.140

Prompts used in repository preprocessing stage is illustrated in Appendix A.141

3.2 Single-Function Problems Generation142

We first generate single-function problems as foundational atomic tasks, encompassing three types:143

Development, BugFix, and Test-Driven Development (TDD). These atomic tasks are designed144

to systematically evaluate the abilities of LLMs in long-context comprehension and local code145

implementation. Throughout the generation process, we dynamically monitor the quality of the146

questions, ultimately filtering out effective problems that meet the requirements of engineering147

practice.148
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Core Code Identification. Given that some functions in engineering code are simply basic condition149

checks or auxiliary utilities without core business logic, we first filter all function nodes in the function150

call tree to identify core functions as problem candidates. For each core function, we automatically151

select consecutive AST blocks as core code blocks by prompting LLMs to identify key segments,152

ensuring the completeness and centrality of the extracted segments. The retesting process verifies153

whether these core code blocks can be effectively detected by unit tests. All core functions and154

their associated core code blocks that pass the retesting process are considered as candidate problem155

locations.156

Development Problem. We mask the identified core code blocks to generate development type157

problem. We then utilize the GPT-4o [24]1 to generate structured functional descriptions for the158

masked parts, ensuring that the descriptions cover key information such as input-output specifications,159

core logic, and boundary conditions. To further enhance the quality of the generated descriptions,160

we introduce Claude-3.5-Sonnet [4] as a discriminator model to score and provide feedback on the161

generated paragraphs. If deficiencies are detected, the generation model refines the descriptions based162

on the feedback. This iterative process is conducted twice. The specific prompt settings for this163

generation process are detailed in Appendix C.164

BugFix Problem. Bug fixing is a common scenario faced by developers in real-world engineering165

projects. For current LLMs, the ability to fix syntactic errors is generally stronger than other166

error types [21]. Thus we focus more on constructing code snippets that contain logical errors.167

Specifically, we first use an LLM to rewrite development-oriented problems, generating erroneous168

logic descriptions for the masked code segments. Then, we employ a smaller-parameter LLM to169

produce buggy code for these masked segments. In our framework, large models are used to simulate170

more complex logical errors, while smaller models are used to generate more common and basic171

errors.172

Test-Driven Development Problem. Test-Driven Development (TDD) is a software development173

approach where unit tests are written for target functionality before implementing the actual code.174

Following the methodology outlined in [22, 1], our TDD problems provide unit tests and require175

LLMs to implement the corresponding functionality based on these tests. TDD is a promising176

paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.177

Specifically, we (1) select unit test code that directly tests specific functions based on the function178

call tree, (2) mask the core code block, (3) include the unit test code segments in the prompt. With179

the assistance of the function call tree, we ensure that the source code can be properly reconstructed180

using contextual information and the unit test.181

3.3 Multi-Function Problem Generation182

In engineering-level software projects, developers often extract parts of an implementation into183

separate utility functions for reuse. In such cases, a programmer may need to implement several sub-184

functions while developing a main function. Similarly, during bug fixing, it is sometimes necessary185

to address bugs across multiple related functions simultaneously. To simulate these real-world186

scenarios, we design Multi-Function Problems. Each Multi-Function Problem consists of multiple187

atomic problems, where an atomic problem refers to a single function that needs to be completed or188

corrected. Atomic problems include four types: development, BugFix, TDD, and empty-function.189

The Development, BugFix and TDD atomic problems are generated during the single-problem190

generation stage. For empty-function problems, the contents of utility functions in the repository are191

removed, leaving only the function signature and declaration. Empty-function problems are used192

exclusively within multi-function problems.193

Each atomic problem corresponds to a node in the function call tree. The combination of atomic194

problems follows four basic rules: (1) at least one single-function problem is included; (2) the195

corresponding functions must have a call relationship (i.e., a parent-child relationship in the function196

call tree); (3) the maximum depth of the call tree is limited to d, where d is a hyperparameter; (4)197

the total number of atomic problems n satisfies 2 → n → ω, with ω as another hyperparameter. By198

adjusting the hyperparameters d and ω, we can control the complexity and difficulty of the generated199

problems. Specific generation rules for different subtypes are provided in Appendix D.200

1Analysis of model selection for data generation is provided in Appendix B.
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4 CoreCodeBench201

4.1 Data Statistics202

Problem Type # Function # Lines # Problem

Development 1 17 422
BugFix 1 38 433
TDD 1 14 276
Multi-Dev. 3.85 53.92 167
Multi-BugFix 2.0 62.34 10
Mult-TDD 4.07 67.3 152
Difficult 4.75 65.66 91

Table 2: Data Statistics of CORECODEBENCH.

CORECODEBENCH encompasses a diverse col-203

lection of 12 repositories covering 6 distinct204

repository-level coding tasks, with a total of205

1,545 valid problems. Detailed information206

about the repositories and illustration of CORE-207

CODEBENCH can be found in the Appendix E208

and F. In Table 2, we present the key statistics of209

CORECODEBENCH, including the average num-210

ber of functions, average lines of gold solutions,211

and the number of problems for each problem212

type. The dataset encompasses a diverse range of problem complexities across different categories.213

Each problem type contains specific contextual information to facilitate solution generation. Devel-214

opment problems include explanations of the masked code segments along with surrounding file215

context. BugFix problems contain the buggy code implementation, contextual information, and216

optional unit test details to aid in identifying and resolving errors. TDD problems provide file context217

and unit test code that defines the expected behavior of the implementation. For Multi-Function218

problems, we include code snippets of all relevant functions from the function call tree, offering a219

comprehensive view of the interdependent components. Examples of prompts for different problem220

types are presented in Appendix G.221

4.2 Evaluation Metric222

We assess the quality of generated code by executing unit tests corresponding to the source code.223

Following the method in [7], we adopt Pass@1 as our primary metric. For a given problem, Pass@1224

indicates whether the first solution generated by a model successfully passes all associated unit225

tests. Additionally, we introduce PassRate as a complementary metric that measures the relative226

improvement over the retest baseline. PassRate is calculated as227

PassRate =
Npass ↑Nretest

Ntotal ↑Nretest
,

where Npass represents the number of test cases passed by the solution of model, Nretest is the number228

of test cases that pass without any modifications to the code, and Ntotal is the total number of test cases.229

While Pass@1 reflects the ability of a model to generate a fully correct solution in a single attempt,230

PassRate provides a finer-grained assessment by measuring the model’s incremental improvement231

over the baseline, capturing partial correctness across all test cases.232

For the overall CORECODEBENCH, both the Pass@1 score and PassRate are calculated as the233

average of their respective values across all repositories, providing a comprehensive measure of234

model performance across diverse codebases.235

4.3 Quality Inspection236

CorePipe utilizes an LLM supervisor to conduct preliminary quality assessment and filtering of237

generated problems. To further ensure problem quality, we implement additional quality inspection238

mechanisms specifically for Development-type problems.239

IG Filter. For LLM-generated explanation texts, we introduce an Information Gain (IG) Score to
measure the informational value provided by the explanations. Specifically,

IGbase = PassRateexp ↑ PassRateno-exp

IGbase > 0 indicates that the explanation provides additional effective information, while IGbase → 0240

suggests that the explanation information is redundant or incorrect. We select commonly used LLMs241

including GPT-4o [24], Claude-3.5-Sonnet [4], Doubao-pro-4k [11], and qwen-plus-latest [2] as242

baseline models. Based on the IG scores from these baseline LLMs, we retained only problems with243

IGbase > 0 and problems that none of the models could solve (i.e., difficult problems). After applying244

the IG filter, 48.56% of the problems are retained.245
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Single Function Development BugFix TDD

Models AC Rate AC@1 AC Rate AC@1 AC Rate AC@1

API

GPT-4o [24] 82.09 57.47 57.95 34.42 84.09 46.38
GPT-4.1 [26] 84.13 61.90 71.87 50.90 88.56 60.96
o1-mini→ [25] 76.85 47.02 57.28 32.68 78.92 54.74
o4-mini (high)→ [27] 86.66 59.29 69.51 50.65 87.13 70.21
Claude-3.5-Sonnet [4] 86.83 61.41 63.80 40.47 85.88 60.56
Claude-3.7-Sonnet→ [5]2 85.75 63.59 64.68 43.51 85.50 61.37
Gemini-2.5-Pro-Preview [8] 73.21 48.06 30.79 22.67 74.50 51.60
Grok-3→ [35] 80.53 56.16 54.16 33.93 84.32 53.68
Doubao-pro-4k [11] 76.25 43.54 63.19 39.43 76.10 31.24
Doubao-1.5-pro [30] 84.22 57.70 64.69 41.43 83.26 45.50
qwen-plus-latest [2]3 78.82 52.96 39.91 22.05 80.96 40.02
Qwen2.5-max [31] 83.06 57.85 50.87 28.18 82.83 47.65

Open-Source

DeepSeek-Coder-V2-Lite-Instruct-16B [9] 64.85 16.53 27.31 12.28 65.85 27.8
DeepSeek-R1→ [10] 84.58 58.81 66.48 45.07 79.23 56.66
Llama3.1-70B [23] 71.53 41.00 51.93 28.64 79.42 37.33
Qwen3-8B [32] 53.62 8.25 23.83 6.18 59.97 18.91

Table 3: Leaderboard of Single-Function Scenarios. Models using thinking mode are marked with *.

Manual Inspection. We further enlist experienced code engineers to annotate the problems. These246

annotators conducted quality checks on problems that had passed the IG filter. The quality assessment247

evaluated three aspects: readability, accuracy, and completeness, with flawed test cases being marked248

as unqualified. We randomly sampled 30 problems from each repository for inspection. Ultimately,249

the qualification rate for CORECODEBENCH (Development Problems) is 78.55%. This high qualifi-250

cation rate demonstrates that the problems originally generated by CorePipe are inherently reliable.251

Additionally, we have released the manually verified subset as CoreCodeBench-Dev-Verified252

alongside the main benchmark. We list the detailed experience of three human annotators in Ap-253

pendix H, where all of them have a bachelor’s degree in computer-related major, and at least 3 years254

of Python development experience.255

5 Experiments256

5.1 Setups257

Models. We present a comprehensive evaluation of a diverse set of LLMs on our proposed CORE-258

CODEBENCH. The selected models represent a wide spectrum of architectures and parameter sizes,259

ranging from 7B to 70B parameters. Our evaluation covers both open-source models and proprietary260

API-based models released by leading AI research organizations. For models that support chain-of-261

thought (CoT) reasoning, we explicitly enable their reasoning capabilities during inference in order262

to fully assess their potential for complex reasoning tasks.263

Implementation Details. All evaluations are performed using the officially recommended inference264

parameters for each model, including temperature, top_p, and top_k, whenever such recommendations265

are available. For models without specific recommendations, we employ deterministic sampling set-266

tings (temperature= 0, top_k= 1, top_p= 0.0) to ensure reproducible outputs. Other Implementation267

details specific to other question types are provided in Appendix I.268

5.2 Main Result of Single-Function Problems269

Table 3 presents the performance of various LLMs on the CORECODEBENCH-Single benchmark. We270

draw the following conclusions: (1) Model Performance: Claude-3.7 and o4-mini (high) consistently271

achieve leading results across all three problem types, demonstrating the strong capabilities of recent272

proprietary models. Among open-source models, DeepSeek-R1 stands out with comparatively better273

results. Generally, models with larger parameter sizes outperform their smaller counterparts, and274

newer model versions exhibit clear advancements over previous generations, indicating continuous275

progress in model architecture and training techniques. (2) Metric Comparison: The differing276

rankings produced by AC Rate and AC@1 indicate that these metrics provide complementary insights277

into model performance. AC@1 evaluates coarse-grained absolute performance, offering a clear278

2Claude-3.7-Sonnet is a hybrid reasoning model.
3In this paper, we use qwen-plus-latest-2025-01-25.
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Multi Function Development BugFix TDD

Models AC Rate AC@1 AC Rate AC@1 AC Rate AC@1

API

GPT-4o [24] 17.31 5.69 0.21 0 18.44 6.78
GPT-4.1 [26] 12.85 3.77 44.00 20.00 22.22 8.11
o1-mini→ [25] 16.92 2.62 41.40 20.00 22.22 8.11
o4-mini (high)→ [27] 20.85 6.62 42.60 20.00 34.11 20.22
Claude-3.5-Sonnet [4] 24.38 7.77 41.40 20.00 24.38 7.77
Claude-3.7-Sonnet→ [5] 35.54 13.85 41.60 20.00 31.56 17.11
Gemini-2.5-Pro-Preview [8] 22.74 6.85 2.20 0 20.22 6.89
Grok-3→ [35] 25.62 14.46 15.40 0 15.44 7.44
Doubao-pro-4k [11] 3.85 0 19.80 0 3.00 1.56
Doubao-1.5-pro [30] 3.08 0 36.40 20.00 0.22 0
qwen-plus-latest [2] 21.31 8.00 27.60 0 19.22 6.89
Qwen2.5-max [31] 23.46 9.31 49.20 40.00 23.89 8.22

Open-Source

DeepSeek-Coder-V2-Lite-Instruct-16B [9] 0 0 0 0 1.22 1.22
DeepSeek-R1→ [10] 20.23 5.54 22.40 0 23.56 9.56
Llama3.1-70B [23] 19.00 4.92 37.60 20.00 19.44 6.56
Qwen3-8B [32] 0 0 13.8 0 1.78 1.22

Table 4: Leaderboard of Multi-Function Scenarios. Models using thinking mode are marked with *.

stratification of code generation capabilities among models. In contrast, AC Rate is able to capture279

performance differences within the same tier, serving as a finer-grained indicator of a model’s280

potential to pass individual test cases. (3) Task Comparison: The relatively lower scores in the281

BugFix scenario across all models highlight the increased complexity and difficulty of debugging282

tasks, suggesting valuable directions for future model improvement and research. More detailed283

results and repository-level breakdowns are provided in Appendix J.284

5.3 Main Results of Multi-function Problems285

Figure 3: CORECODEBENCH-Difficult Performance.

Table 4 summarizes the performance286

of various models on the CORE-287

CODEBENCH-Multi benchmark.288

Compared to the single-function289

setting, scores for multi-function290

problems are significantly lower291

across all models and scenarios,292

highlighting the increased com-293

plexity and challenges posed by294

multi-function code generation295

tasks. Claude-3.7-Sonnet achieves296

the highest performance among all297

evaluated models, particularly ex-298

celling in the Development and TDD299

scenarios, which demonstrates its300

strong generalization and reasoning301

abilities in more complex contexts.302

Notably, in the BugFix scenario, due to stricter generation rules and a smaller number of available303

problems, the differences in AC@1 scores among models are less pronounced. However, AC Rate304

remains effective in distinguishing model performance, as it captures more granular improvements305

even when absolute success rates are low. More detailed results and repository-level breakdowns are306

provided in Appendix K307

In the multi-function scenario, models are required to provide completions for multiple functions308

within a single response (see Appendix G for prompt details). Ideally, an LLM would demonstrate309

planning in its implementation order, such as first completing simple utility functions and then310

implementing functions that invoke them, or vice versa–reflecting the diverse habits of human311

engineers.Our analysis reveals that, with the exception of DeepSeek16B-Coder-V2-Lite, most models312

tend to output answers strictly following the order of the functions as presented in the input prompt.313

This observation suggests that current models lack flexible planning and hierarchical reasoning314

abilities when generating multi-function code, often defaulting to a sequential approach rather than315

optimizing for logical or functional dependencies.316
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CORECODEBENCH-Difficult To further guide the development of future LLMs and to push the317

boundaries of current code generation capabilities, we introduce the CORECODEBENCH-Difficult318

dataset. Specifically, we generate this benchmark by setting the multi-problem generation hyperpa-319

rameter ω = ↓ (while keeping d = 3 to mimic real-world development environments). Figure 3320

presents the AC Rate of various models on CORECODEBENCH-Difficult. Notably, the pass rates321

for all models remain below 30%, underscoring the substantial challenges posed by this dataset.322

These results highlight the effectiveness of the CORECODEBENCH-Multi benchmark in revealing the323

limitations of current models and providing a rigorous testbed for driving future advancements in324

code understanding and generation.325

5.4 Coding Capabilities of LLMs326

Figure 4: Performance of LLMs on CORE-
CODEBENCH across scenarios.

We claim that CORECODEBENCH enables compre-327

hensive evaluation of multiple coding capabilities of328

LLMs. To visualize these capabilities, in Figure 4,329

we select nine representative model series and plot330

radar charts based on their performance across the331

six distinct scenarios defined in CORECODEBENCH.332

Each scenario is designed to assess a different aspect333

of coding ability, thus providing a multi-faceted view334

of model strengths and weaknesses. For clearer and335

more intuitive comparison, we normalize the results336

for each scenario, allowing us to better highlight the337

differences and relative rankings among models.338

Several key observations can be drawn from the339

radar charts. (1) The relative ranking of models dif-340

fers across the six scenarios, indicating that CORE-341

CODEBENCH effectively evaluates multiple dimensions of LLMs’ coding capabilities rather than342

a single aspect. (2) For Development and TDD problems, model performance in multi-function343

scenario does not always correlate with that in single-function scenario. This suggests that developing344

multiple interrelated functions requires additional abilities, such as deeper contextual understanding345

and implementation order planning. (3) For BugFix problems, model performance in single-function346

and multi-function scenarios is strongly correlated. This reflects the distinct nature of debugging347

tasks compared to development tasks, where debugging may rely more on local error correction348

skills that generalize across different granularities. Overall, these findings demonstrate the value of349

CORECODEBENCH as a multi-dimensional evaluation framework and highlight the necessity for350

continued research to develop LLMs with robust and versatile coding skills.351

6 Conclusions & Limitations352

In this paper, we present CorePipe, a fully automated pipeline for generating high-quality, diverse, and353

controllable repository-level benchmark test cases, and introduce CORECODEBENCH, a configurable354

benchmark that comprehensively evaluates LLMs’ capabilities in real-world engineering scenarios.355

Through extensive experiments, we demonstrate that CORECODEBENCH enables both coarse and356

fine grained analysis of LLMs’ coding abilities, revealing significant performance differences across357

various tasks and highlighting areas where current models still fall short, especially in complex358

and multi-function engineering contexts. Our work provides a scalable and rigorous testbed for the359

systematic assessment and future improvement of LLMs in engineering-level code development,360

paving the way for more robust and adaptable AI-driven software engineering tools.361

Despite the automated generation of six types of questions from GitHub repositories achieved by362

CorePipe, our pipeline currently relies on the presence of comprehensive unit tests within the reposi-363

tories. Repositories lacking sufficient unit tests cannot be processed by our current framework. In364

future work, we plan to enhance CorePipe by incorporating techniques for generating or augmenting365

unit tests, thereby expanding its applicability to a broader range of projects. Additionally, CORE-366

CODEBENCH currently focuses exclusively on Python repositories. We aim to extend support to367

other major programming languages, such as Java and C++, to enable more comprehensive evaluation368

of engineering capabilities.369
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NeurIPS Paper Checklist537

1. Claims538

Question: Do the main claims made in the abstract and introduction accurately reflect the539

paper’s contributions and scope?540

Answer: [Yes]541

Justification: The paper proposes an automated pipeline for generating LLM engineering542

code, which is reflected in the abstract and introduction.543

Guidelines:544

• The answer NA means that the abstract and introduction do not include the claims545

made in the paper.546

• The abstract and/or introduction should clearly state the claims made, including the547

contributions made in the paper and important assumptions and limitations. A No or548

NA answer to this question will not be perceived well by the reviewers.549

• The claims made should match theoretical and experimental results, and reflect how550

much the results can be expected to generalize to other settings.551

• It is fine to include aspirational goals as motivation as long as it is clear that these goals552

are not attained by the paper.553

2. Limitations554

Question: Does the paper discuss the limitations of the work performed by the authors?555

Answer: [Yes]556

Justification: We discuss the limitations of the work in Section 6.557

Guidelines:558

• The answer NA means that the paper has no limitation while the answer No means that559

the paper has limitations, but those are not discussed in the paper.560

• The authors are encouraged to create a separate "Limitations" section in their paper.561

• The paper should point out any strong assumptions and how robust the results are to562

violations of these assumptions (e.g., independence assumptions, noiseless settings,563

model well-specification, asymptotic approximations only holding locally). The authors564

should reflect on how these assumptions might be violated in practice and what the565

implications would be.566

• The authors should reflect on the scope of the claims made, e.g., if the approach was567

only tested on a few datasets or with a few runs. In general, empirical results often568

depend on implicit assumptions, which should be articulated.569

• The authors should reflect on the factors that influence the performance of the approach.570

For example, a facial recognition algorithm may perform poorly when image resolution571

is low or images are taken in low lighting. Or a speech-to-text system might not be572

used reliably to provide closed captions for online lectures because it fails to handle573

technical jargon.574

• The authors should discuss the computational efficiency of the proposed algorithms575

and how they scale with dataset size.576

• If applicable, the authors should discuss possible limitations of their approach to577

address problems of privacy and fairness.578

• While the authors might fear that complete honesty about limitations might be used by579

reviewers as grounds for rejection, a worse outcome might be that reviewers discover580

limitations that aren’t acknowledged in the paper. The authors should use their best581

judgment and recognize that individual actions in favor of transparency play an impor-582

tant role in developing norms that preserve the integrity of the community. Reviewers583

will be specifically instructed to not penalize honesty concerning limitations.584

3. Theory assumptions and proofs585

Question: For each theoretical result, does the paper provide the full set of assumptions and586

a complete (and correct) proof?587

Answer: [NA]588
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Justification: There are no theoretical results in the paper.589

Guidelines:590

• The answer NA means that the paper does not include theoretical results.591

• All the theorems, formulas, and proofs in the paper should be numbered and cross-592

referenced.593

• All assumptions should be clearly stated or referenced in the statement of any theorems.594

• The proofs can either appear in the main paper or the supplemental material, but if595

they appear in the supplemental material, the authors are encouraged to provide a short596

proof sketch to provide intuition.597

• Inversely, any informal proof provided in the core of the paper should be complemented598

by formal proofs provided in appendix or supplemental material.599

• Theorems and Lemmas that the proof relies upon should be properly referenced.600

4. Experimental result reproducibility601

Question: Does the paper fully disclose all the information needed to reproduce the main ex-602

perimental results of the paper to the extent that it affects the main claims and/or conclusions603

of the paper (regardless of whether the code and data are provided or not)?604

Answer: [Yes]605

Justification: All essential details regarding data generation, experimental setup, evaluation606

metrics, and hyperparameters are fully described in the Section 5.1 and Appendix I, ensuring607

reproducibility of the main results.608

Guidelines:609

• The answer NA means that the paper does not include experiments.610

• If the paper includes experiments, a No answer to this question will not be perceived611

well by the reviewers: Making the paper reproducible is important, regardless of612

whether the code and data are provided or not.613

• If the contribution is a dataset and/or model, the authors should describe the steps taken614

to make their results reproducible or verifiable.615

• Depending on the contribution, reproducibility can be accomplished in various ways.616

For example, if the contribution is a novel architecture, describing the architecture fully617

might suffice, or if the contribution is a specific model and empirical evaluation, it may618

be necessary to either make it possible for others to replicate the model with the same619

dataset, or provide access to the model. In general. releasing code and data is often620

one good way to accomplish this, but reproducibility can also be provided via detailed621

instructions for how to replicate the results, access to a hosted model (e.g., in the case622

of a large language model), releasing of a model checkpoint, or other means that are623

appropriate to the research performed.624

• While NeurIPS does not require releasing code, the conference does require all submis-625

sions to provide some reasonable avenue for reproducibility, which may depend on the626

nature of the contribution. For example627

(a) If the contribution is primarily a new algorithm, the paper should make it clear how628

to reproduce that algorithm.629

(b) If the contribution is primarily a new model architecture, the paper should describe630

the architecture clearly and fully.631

(c) If the contribution is a new model (e.g., a large language model), then there should632

either be a way to access this model for reproducing the results or a way to reproduce633

the model (e.g., with an open-source dataset or instructions for how to construct634

the dataset).635

(d) We recognize that reproducibility may be tricky in some cases, in which case636

authors are welcome to describe the particular way they provide for reproducibility.637

In the case of closed-source models, it may be that access to the model is limited in638

some way (e.g., to registered users), but it should be possible for other researchers639

to have some path to reproducing or verifying the results.640

5. Open access to data and code641
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Question: Does the paper provide open access to the data and code, with sufficient instruc-642

tions to faithfully reproduce the main experimental results, as described in supplemental643

material?644

Answer: [Yes]645

Justification: We open-source data in Huggingface (CORECODEBENCH-Single, CORE-646

CODEBENCH-Multi).647

Guidelines:648

• The answer NA means that paper does not include experiments requiring code.649

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/650

public/guides/CodeSubmissionPolicy) for more details.651

• While we encourage the release of code and data, we understand that this might not be652

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not653

including code, unless this is central to the contribution (e.g., for a new open-source654

benchmark).655

• The instructions should contain the exact command and environment needed to run to656

reproduce the results. See the NeurIPS code and data submission guidelines (https:657

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.658

• The authors should provide instructions on data access and preparation, including how659

to access the raw data, preprocessed data, intermediate data, and generated data, etc.660

• The authors should provide scripts to reproduce all experimental results for the new661

proposed method and baselines. If only a subset of experiments are reproducible, they662

should state which ones are omitted from the script and why.663

• At submission time, to preserve anonymity, the authors should release anonymized664

versions (if applicable).665

• Providing as much information as possible in supplemental material (appended to the666

paper) is recommended, but including URLs to data and code is permitted.667

6. Experimental setting/details668

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-669

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the670

results?671

Answer: [Yes]672

Justification: We list the details in Section 5.1673

Guidelines:674

• The answer NA means that the paper does not include experiments.675

• The experimental setting should be presented in the core of the paper to a level of detail676

that is necessary to appreciate the results and make sense of them.677

• The full details can be provided either with the code, in appendix, or as supplemental678

material.679

7. Experiment statistical significance680

Question: Does the paper report error bars suitably and correctly defined or other appropriate681

information about the statistical significance of the experiments?682

Answer:[No]683

Justification: We do not perform statistical significance tests, as our conclusions focus on684

overall performance trends rather than asserting significant superiority of one model over685

another.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The authors should answer "Yes" if the results are accompanied by error bars, confi-689

dence intervals, or statistical significance tests, at least for the experiments that support690

the main claims of the paper.691
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• The factors of variability that the error bars are capturing should be clearly stated (for692

example, train/test split, initialization, random drawing of some parameter, or overall693

run with given experimental conditions).694

• The method for calculating the error bars should be explained (closed form formula,695

call to a library function, bootstrap, etc.)696

• The assumptions made should be given (e.g., Normally distributed errors).697

• It should be clear whether the error bar is the standard deviation or the standard error698

of the mean.699

• It is OK to report 1-sigma error bars, but one should state it. The authors should700

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis701

of Normality of errors is not verified.702

• For asymmetric distributions, the authors should be careful not to show in tables or703

figures symmetric error bars that would yield results that are out of range (e.g. negative704

error rates).705

• If error bars are reported in tables or plots, The authors should explain in the text how706

they were calculated and reference the corresponding figures or tables in the text.707

8. Experiments compute resources708

Question: For each experiment, does the paper provide sufficient information on the com-709

puter resources (type of compute workers, memory, time of execution) needed to reproduce710

the experiments?711

Answer:[Yes]712

Justification: We mainly rely on API-based models, and provide the details in 5.1.713

Guidelines:714

• The answer NA means that the paper does not include experiments.715

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,716

or cloud provider, including relevant memory and storage.717

• The paper should provide the amount of compute required for each of the individual718

experimental runs as well as estimate the total compute.719

• The paper should disclose whether the full research project required more compute720

than the experiments reported in the paper (e.g., preliminary or failed experiments that721

didn’t make it into the paper).722

9. Code of ethics723

Question: Does the research conducted in the paper conform, in every respect, with the724

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?725

Answer: [Yes]726

Justification: The data is constructed under NeurIPS Code of Ethics.727

Guidelines:728

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.729

• If the authors answer No, they should explain the special circumstances that require a730

deviation from the Code of Ethics.731

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-732

eration due to laws or regulations in their jurisdiction).733

10. Broader impacts734

Question: Does the paper discuss both potential positive societal impacts and negative735

societal impacts of the work performed?736

Answer: [NA]737

Justification: As a coding benchmark and pipeline, the paper has no societal impacts as we738

might expect.739

Guidelines:740

• The answer NA means that there is no societal impact of the work performed.741
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• If the authors answer NA or No, they should explain why their work has no societal742

impact or why the paper does not address societal impact.743

• Examples of negative societal impacts include potential malicious or unintended uses744

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations745

(e.g., deployment of technologies that could make decisions that unfairly impact specific746

groups), privacy considerations, and security considerations.747

• The conference expects that many papers will be foundational research and not tied748

to particular applications, let alone deployments. However, if there is a direct path to749

any negative applications, the authors should point it out. For example, it is legitimate750

to point out that an improvement in the quality of generative models could be used to751

generate deepfakes for disinformation. On the other hand, it is not needed to point out752

that a generic algorithm for optimizing neural networks could enable people to train753

models that generate Deepfakes faster.754

• The authors should consider possible harms that could arise when the technology is755

being used as intended and functioning correctly, harms that could arise when the756

technology is being used as intended but gives incorrect results, and harms following757

from (intentional or unintentional) misuse of the technology.758

• If there are negative societal impacts, the authors could also discuss possible mitigation759

strategies (e.g., gated release of models, providing defenses in addition to attacks,760

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from761

feedback over time, improving the efficiency and accessibility of ML).762

11. Safeguards763

Question: Does the paper describe safeguards that have been put in place for responsible764

release of data or models that have a high risk for misuse (e.g., pretrained language models,765

image generators, or scraped datasets)?766

Answer: [NA]767

Justification: As a coding benchmark and pipeline, the paper has no such risk as we might768

expect.769

Guidelines:770

• The answer NA means that the paper poses no such risks.771

• Released models that have a high risk for misuse or dual-use should be released with772

necessary safeguards to allow for controlled use of the model, for example by requiring773

that users adhere to usage guidelines or restrictions to access the model or implementing774

safety filters.775

• Datasets that have been scraped from the Internet could pose safety risks. The authors776

should describe how they avoided releasing unsafe images.777

• We recognize that providing effective safeguards is challenging, and many papers do778

not require this, but we encourage authors to take this into account and make a best779

faith effort.780

12. Licenses for existing assets781

Question: Are the creators or original owners of assets (e.g., code, data, models), used in782

the paper, properly credited and are the license and terms of use explicitly mentioned and783

properly respected?784

Answer: [Yes]785

Justification: We credit all models used in the paper via citation.786

Guidelines:787

• The answer NA means that the paper does not use existing assets.788

• The authors should cite the original paper that produced the code package or dataset.789

• The authors should state which version of the asset is used and, if possible, include a790

URL.791

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.792

• For scraped data from a particular source (e.g., website), the copyright and terms of793

service of that source should be provided.794
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• If assets are released, the license, copyright information, and terms of use in the795

package should be provided. For popular datasets, paperswithcode.com/datasets796

has curated licenses for some datasets. Their licensing guide can help determine the797

license of a dataset.798

• For existing datasets that are re-packaged, both the original license and the license of799

the derived asset (if it has changed) should be provided.800

• If this information is not available online, the authors are encouraged to reach out to801

the asset’s creators.802

13. New assets803

Question: Are new assets introduced in the paper well documented and is the documentation804

provided alongside the assets?805

Answer: [Yes]806

Justification: The assets is included in the HuggingFace/GitHub Repo.807

Guidelines:808

• The answer NA means that the paper does not release new assets.809

• Researchers should communicate the details of the dataset/code/model as part of their810

submissions via structured templates. This includes details about training, license,811

limitations, etc.812

• The paper should discuss whether and how consent was obtained from people whose813

asset is used.814

• At submission time, remember to anonymize your assets (if applicable). You can either815

create an anonymized URL or include an anonymized zip file.816

14. Crowdsourcing and research with human subjects817

Question: For crowdsourcing experiments and research with human subjects, does the paper818

include the full text of instructions given to participants and screenshots, if applicable, as819

well as details about compensation (if any)?820

Answer: [Yes]821

Justification: We provide human annotators with detailed task instructions, inform them of822

data open-source plans, and compensate them in accordance with local labor regulations.823

Guidelines:824

• The answer NA means that the paper does not involve crowdsourcing nor research with825

human subjects.826

• Including this information in the supplemental material is fine, but if the main contribu-827

tion of the paper involves human subjects, then as much detail as possible should be828

included in the main paper.829

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,830

or other labor should be paid at least the minimum wage in the country of the data831

collector.832

15. Institutional review board (IRB) approvals or equivalent for research with human833

subjects834

Question: Does the paper describe potential risks incurred by study participants, whether835

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)836

approvals (or an equivalent approval/review based on the requirements of your country or837

institution) were obtained?838

Answer: [NA]839

Justification: The crowdsourcing do not study human as subjects in the paper.840

Guidelines:841

• The answer NA means that the paper does not involve crowdsourcing nor research with842

human subjects.843

• Depending on the country in which research is conducted, IRB approval (or equivalent)844

may be required for any human subjects research. If you obtained IRB approval, you845

should clearly state this in the paper.846
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• We recognize that the procedures for this may vary significantly between institutions847

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the848

guidelines for their institution.849

• For initial submissions, do not include any information that would break anonymity (if850

applicable), such as the institution conducting the review.851

16. Declaration of LLM usage852

Question: Does the paper describe the usage of LLMs if it is an important, original, or853

non-standard component of the core methods in this research? Note that if the LLM is used854

only for writing, editing, or formatting purposes and does not impact the core methodology,855

scientific rigorousness, or originality of the research, declaration is not required.856

Answer: [NA]857

Justification: We use LLM only for writing, editing, or formatting purposes.858

Guidelines:859

• The answer NA means that the core method development in this research does not860

involve LLMs as any important, original, or non-standard components.861

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)862

for what should or should not be described.863
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