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ABSTRACT

Foundation models for weather science are pre-trained on vast amounts of struc-
tured numerical data and outperform traditional weather forecasting systems. How-
ever, these models lack language-based reasoning capabilities, limiting their util-
ity in interactive scientific workflows. Large language models (LLMs) excel at
understanding and generating text but cannot reason about high-dimensional me-
teorological datasets. We bridge this gap by building a novel agentic framework
for weather science. Our framework includes a Python code-based environment
for agents (ZEPHYRUSWORLD) to interact with weather data, featuring tools
like an interface to WeatherBench 2 dataset, geoquerying for geographical masks
from natural language, weather forecasting, and climate simulation capabilities.
We design ZEPHYRUS, a multi-turn LLM-based weather agent that iteratively
analyzes weather datasets, observes results, and refines its approach through con-
versational feedback loops. We accompany the agent with a new benchmark,
ZEPHYRUSBENCH, with a scalable data generation pipeline that constructs diverse
question-answer pairs across weather-related tasks, from basic lookups to advanced
forecasting, extreme event detection, and counterfactual reasoning. Experiments on
this benchmark demonstrate the strong performance of ZEPHYRUS agents over text-
only baselines, outperforming them by up to 35 percentage points in correctness.
However, on harder tasks, ZEPHYRUS performs similarly to text-only baselines,
highlighting the challenging nature of our benchmark and suggesting promising
directions for future work.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse scientific
domains (Birhane et al., 2023), revolutionizing fields from drug discovery (Zheng et al., 2024; Wu
et al., 2024b) and materials science (Lei et al., 2024; Jablonka et al., 2023) to network biology
(Theodoris et al., 2023). These models excel at processing textual content such as scientific literature,
source code (Jiang et al., 2024), and structured data tables (Zhang et al., 2024). However, their
application to domains requiring reasoning over high-dimensional numerical data remains limited
(Wang et al., 2024).

Meteorology offers a compelling yet challenging case study, as combining natural language reasoning
with complex atmospheric data has the potential to greatly advance weather research. Weather
prediction is a critical scientific challenge, with profound implications spanning agriculture, disaster
preparedness, transportation, and energy management (Alley et al., 2019). The field has witnessed
remarkable progress through machine learning approaches, with foundation models (Nguyen et al.,
2023; Kurth et al., 2023; Lam et al., 2023; Bi et al., 2023; Nguyen et al., 2024) now achieving
state-of-the-art performance in medium-range forecasting, often surpassing traditional physics-based
numerical simulations (Molteni et al., 1996; Bauer et al., 2015). However, current weather models
operate exclusively on structured numerical datasets such as reanalysis data, cannot incorporate
valuable alternative modalities like textual weather bulletins or field station reports, and crucially,
lack interactive natural language interfaces for querying or reasoning.

Weather science workflows require substantial technical expertise to orchestrate complex ecosystems
of tools, datasets, and models. Researchers must navigate disparate data sources, integrate outputs
from multiple forecasting systems, combine observational datasets with model predictions, and
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Figure 1: Overview: We develop ZEPHYRUS, an agentic framework for weather science. Given a
query, the LLM-based agent ZEPHYRUS writes a code block which is sent to the code execution
server. The server orchestrates several tools to execute the code block and returns the execution
results to the agent. The agent either decides to execute more code to refine its output or respond
back to the user. Refer to Appendix A.8 for the full prompt.

coordinate between different computational environments and APIs. This dependency on extensive
technical knowledge creates barriers for domain experts, limiting broader participation in weather
science. Traditional meteorological workflows therefore require expert interpretation to translate
computational outputs into actionable insights, increasing costs and limiting their utility in human-in-
the-loop decision-support systems.

Multimodal LLMs can handle data from diverse modalities and offer a potential pathway to address
these challenges. Models capable of jointly processing text with images (Wang et al., 2022; Alayrac
et al., 2022; Li et al., 2022; Liu et al., 2023c), video (Zhao et al., 2022; Zhang et al., 2023; Cheng
et al., 2024; Lin et al., 2024; Zhang et al., 2025), and audio (Chu et al., 2023; Défossez et al., 2024;
Wu et al., 2024a; 2025; Doh et al., 2025; Ghosh et al., 2025) have shown impressive cross-modal
reasoning abilities. Yet atmospheric data poses unique challenges: its spatiotemporal, multi-channel
structure is fundamentally different from conventional modalities, requiring specialized approaches
for effective integration with language models. Initial attempts to bridge this gap have shown promise
but remain limited in scope. Early vision-language approaches to meteorology (Chen et al., 2024a; Li
et al., 2024; Ma et al., 2024) have focused on narrow applications like extreme weather prediction
using restricted variable subsets, falling short of general-purpose meteorological reasoning. More
recent multimodal weather-language models (Varambally et al., 2025) demonstrate the potential
of this direction but still fail to match established baselines across many important meteorological
tasks. This persistent gap highlights a fundamental challenge: despite significant progress in both
weather foundation models and LLMs, no existing system successfully unifies meteorological data
with natural language reasoning for broad, interactive scientific applications.

We address this challenge by first introducing an agentic environment that enables LLMs to interact
programmatically with meteorological data and models. We setup ZEPHYRUSWORLD, a comprehen-
sive execution environment that exposes weather-focused capabilities through easy-to-use Python
APIs. The system includes interfaces to the WeatherBench 2 dataset (Rasp et al., 2024), geo-query
functionality for translating between coordinates and named locations, state-of-the-art forecasting
models (Nguyen et al., 2024), and physics-based simulators. A FastAPI backend parallelizes code
execution from LLM-generated queries.

We then develop two code-generating systems of increasing sophistication within this agentic frame-
work. ZEPHYRUS-DIRECT generates Python code in a single step to solve weather problems directly
(Gao et al., 2023). ZEPHYRUS-REFLECTIVE employs an iterative execution–refinement (Yao et al.,
2023b): it executes code to manipulate weather data, analyzes the results, and refines both code and
output before providing a final answer. Both approaches can automatically detect and correct errors
produced during code execution. Figure 1 gives an overview of our entire agentic pipeline.
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To systematically evaluate these approaches, we construct ZEPHYRUSBENCH, a comprehensive
benchmark built on ERA5 reanalysis data (Hersbach et al., 2020) from WeatherBench 2 (Rasp
et al., 2024). The benchmark combines human-authored and semi-synthetic tasks spanning 2158
question–answer pairs across 46 distinct tasks. Tasks range from basic data lookups and forecasting
to challenging research problems involving extreme event detection, forecast report generation, and
prediction and counterfactual analysis. We also implement robust evaluation schemes to assess
the scientific accuracy of all generated answers across diverse meteorological reasoning tasks. We
summarize our key contributions below.

• We develop ZEPHYRUSWORLD, an agentic environment providing unified Python APIs for meteo-
rological data, forecasting models, and climate simulation tools.

• We introduce two code-generating systems that leverage ZEPHYRUSWORLD: ZEPHYRUS-DIRECT
for single-step code generation and ZEPHYRUS-REFLECTIVE for iterative execution-refinement
workflows to solve open-ended meteorological problems.

• We curate ZEPHYRUSBENCH, a challenging weather reasoning benchmark with 2062 question-
answer pairs across 46 meteorological task types.

• Our evaluation shows that LLM agents achieve encouraging results on the benchmark, suggesting
that they can be effective assistants to weather scientists.

2 RELATED WORK

Weather Foundation Models. Neural network-based weather forecasting systems (Lam et al., 2023;
Price et al., 2025; Bi et al., 2023; Pathak et al., 2022; Nguyen et al., 2023; Bodnar et al., 2024; Nguyen
et al., 2024) have revolutionized meteorological prediction by demonstrating superior performance
compared to conventional physics-based approaches (Molteni et al., 1996) while being significantly
more computationally efficient. Nevertheless, these architectures are predominantly trained for
forecasting. In particular, they do not support conversational interfaces or cross-domain reasoning
capabilities.

Agentic frameworks for scientific discovery Agentic frameworks implement the per-
ceive–reason–plan–act loop by pairing LLMs with tools, memory, and feedback to pursue
long-horizon goals. Core patterns include interleaving reasoning with tool calls (ReAct (Yao et al.,
2023a)), self-critique with episodic memory (Reflexion Shinn et al. (2023)), and self-supervised
learning of API use (Toolformer (Schick et al., 2023)). General-purpose libraries such as AutoGen
provide a standard interface for multi-agent conversation and tool invocation, making these patterns
reusable across tasks (Wu et al., 2024c).

In many scientific applications, these frameworks appear as domain agents and self-driving labs. In
chemistry, ChemCrow couples an LLM controller with a curated set of expert tools for synthesis and
analysis (Bran et al., 2024), while Coscientist integrates retrieval, code execution, and laboratory APIs
to plan and run experiments end-to-end (Boiko et al., 2023). Biomedical agents extend the approach
across literature, databases, and analysis workflows (e.g., Biomni (Huang et al., 2025)). Despite these
advances across multiple scientific domains, weather science remains largely unexplored territory for
agentic approaches.

General-Purpose Vision-Language Models. Multi-modal vision language models (Li et al., 2021;
Alayrac et al., 2022; Li et al., 2022; 2023; Liu et al., 2023c;b;a; 2024) demonstrate strong visual
reasoning capabilities on general-purpose evaluation benchmarks. However, adapting these models
for applications in weather science presents considerable difficulties. Standard VLM architectures
assume RGB visual inputs and exhibit weaknesses in quantitative analytical tasks. Meteorological
data presents fundamentally different challenges through high-dimensional, structured atmospheric
measurements requiring specialized integration approaches for language model compatibility. While
weather-language hybrid models (Varambally et al., 2025) seem promising, they underperform
relative to domain-specific baselines across critical meteorological applications.

Multimodal Weather Datasets. Recent research has developed several multimodal frameworks
that combine weather observations with textual information. These include the Terra collection
(Chen et al., 2024b), which integrates geographical imagery with descriptive text for general earth
observation, and ClimateIQA (Chen et al., 2024a), which focuses on extreme weather detection
through wind measurement analysis. Similarly, WeatherQA (Ma et al., 2024) specializes in severe
weather interpretation using remote sensing data and expert commentary, while CLLMate (Li et al.,
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2024) connects media reports with ERA5 observations for weather event classification. Despite
these valuable contributions, existing frameworks are narrow in scope. They concentrate on narrow
applications or utilize only small subsets of atmospheric variables. This approach overlooks a
fundamental characteristic of atmospheric dynamics: weather systems involve complex multi-scale
interactions across numerous meteorological parameters. To address these limitations, our benchmark
incorporates diverse weather reasoning tasks, both human-implemented and semi-synthetically
generated, that span across most WeatherBench2 data channels.

3 ZEPHYRUS: AN AGENTIC FRAMEWORK FOR WEATHER SCIENCE

3.1 ZEPHYRUSWORLD: AN AGENTIC ENVIRONMENT FOR WEATHER SCIENCE

The fragmented nature of weather science tools makes it challenging for LLMs to effectively leverage
them for scientific tasks. To address this, we introduce ZEPHYRUSWORLD, a comprehensive agentic
environment that unifies weather science capabilities from diverse tools through a clean Pythonic
interface. Given a question, we leverage LLMs’ ability (Gao et al., 2023; Jimenez et al.) to generate
Python code and execute it in a sandboxed environment. The output is then fed back to the model,
along with any execution errors. We design high-level APIs for the tools for ease of use, and include
documentation extracted from the docstrings in the models context at inference time.

The environment encompasses several essential weather science tools:

1. WeatherBench 2 Data Indexer. The environment provides the model access to the data through
the xarray dataset interface.

2. Geolocator. This tool provides comprehensive geospatial functionality for weather data analysis.
It handles forward geocoding (place names to coordinates) and reverse geocoding (coordinates
to location names) using the Natural Earth dataset (Natural Earth, 2024). Key operations include
finding geographic features at specific coordinates, retrieving boolean masks and area-weighted
maps for regions, listing sublocations, and calculating geodistances. Built using geopandas and
shapely, it maintains precomputed spatial caches for fast lookups.

3. Forecaster. We incorporate the Stormer model (Nguyen et al., 2024), a transformer-based neural
weather prediction system trained on WeatherBench 2. We chose it for its strong performance at
short to medium range forecasts while being orders of magnitude more efficient than traditional
numerical models. Our implementation abstracts checkpoint loading and preprocessing, providing a
simple interface to run forecasts from arbitrary atmospheric initial conditions and return outputs as
xarray datasets.

4. Simulator. Our JAX-GCM simulator is an intermediate complexity atmospheric model built on
NeuralGCM’s dynamical core (Kochkov et al., 2024). It incorporates physical parameterizations
from the SPEEDY Fortran model (Molteni et al., 1996), including radiation, moist physics (clouds
and convection), and vertical and horizontal diffusion. We use the default T32 configuration
(approximately 3.5◦ resolution) with 8 vertical layers. Built on JAX, we can run 5-day simulations
in only ≈ 25s on an A100 GPU.

Code Execution Server. ZEPHYRUSWORLD requires a system capable of handling multiple weather
analysis tasks simultaneously without resource conflicts. We implement a FastAPI-based server-client
architecture that processes multiple weather analysis requests in parallel using resource pools to
prevent conflicts between simultaneous executions. Each execution follows a strict protocol of
acquiring resources, loading datasets, injecting tools, and executing code with timeout protection
before returning outputs and errors to the client. More details are presented in Appendix A.1

3.2 THE ZEPHYRUS FAMILY OF WEATHER AGENTS

We design agentic systems that leverage ZEPHYRUSWORLD to solve complex meteorological
tasks. Our approach constructs prompts containing comprehensive documentation of ZEPHYRUS-
WORLDtools, variable descriptions, units, and coordinate systems. The models generate Python
functions using these tools to solve the given questions, which execute on ZEPHYRUSWORLD’s code
execution server. Any execution errors or timeouts are returned to the models, which regenerate code
until the error is resolved. We implement two distinct systems that differ in their execution strategy
and refinement approach. Both systems intentionally maintain simple designs to isolate and measure
the agentic capabilities of LLMs for solving weather science problems.
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ZEPHYRUS-DIRECT generates a complete Python solution in one attempt and reports the execution
output as the final answer. This model runs the error-correction loop for a maximum of 5 times.

ZEPHYRUS-REFLECTIVE implements a multi-turn workflow that alternates between code gener-
ation and execution phases. The agent executes individual code blocks and receives the output as
observations. The execution results are fed back to the LLM, which analyzes the observations and
decides on the next step. This iterative process enables the model to assess the scientific plausibility
of outputs, identify anomalies or mistakes in results, and refine subsequent code blocks to address
logical errors. We run the interaction loop for a maximum of 20 times per question.

The complete prompts for both systems are presented in Appendix A.8.

4 ZEPHYRUSBENCH: A COMPREHENSIVE WEATHER BENCHMARK

Weather science problems require analyzing complex atmospheric patterns, modeling trends, and
combining data from multiple sources. We introduce ZEPHYRUSBENCH, a comprehensive bench-
mark that evaluates how effectively LLMs can assist in real-world meteorological workflows. The
benchmark comprises 46 distinct meteorological tasks with answers derived from curated weather
reports and human-generated or verified code.

4.1 DATASET CURATION

We base our tasks around the ERA5 reanalysis dataset (Hersbach et al., 2020), specifically from
WeatherBench 2 (Rasp et al., 2024). The dataset provides global atmospheric data from 1979 to 2022.
We use 1.5◦ spatial resolution with 6-hourly temporal resolution.

The capabilities measured by our curated tasks range from basic data lookups and computations to
more advanced problems involving forecasting, challenging research problems including extreme
event detection, forecast report generation, prediction analysis, and counterfactual reasoning. We
design tasks with increasing difficulty levels (Easy, Medium, Hard) based on the complexity of
tool usage required to answer them, from simple single-step data queries to multi-step analytical
workflows. Table A.2 provide an overview of the task types we implement as part of our benchmark.

For each task-type, we define natural language templates with placeholders such as location, variable,
and time window. To create task-specific examples, these placeholders are filled by randomly
sampling inputs, and the corresponding ground truth is computed deterministically using human-
written or human-verified synthetic code applied to the raw ERA5 data. Figure 7 shows an example
template, and a sample generated from it.

Using our framework, we construct a benchmark dataset comprising 2158 test samples spread across
46 tasks. For a detailed breakdown of dataset statistics, please refer to Appendix A.2. We provide
more details about how the tasks are implemented in the subsequent sections.

4.1.1 HUMAN-GENERATED TASKS

The human-generated tasks span across the Easy and Hard difficulty levels and represent realistic
meteorological queries curated in conjunction with a domain expert. For each task, a graduate
student created a question template and wrote Python code to answer the query. Easy tasks focus
on basic data retrieval operations like finding extrema, querying specific values, and identifying
locations with particular weather conditions. Medium-difficulty tasks introduce forecasting elements,
asking for future weather predictions at specific locations and times, and/or implementing complex
data analysis pipelines. Hard tasks incorporate more complex analytical concepts such as anomaly
detection relative to baselines and counterfactual scenario analysis. They demand comprehensive
meteorological expertise and mirror real-world operational workflows. These include extreme weather
event detection, comprehensive weather assessments, and generation of detailed forecast discussions
that span regional to global scales. For instance, ENSO outlook reports require synthesizing complex
interactions between multiple atmospheric and oceanic variables to produce coherent, scientifically
grounded forecasts. We source the expert-generated weather discussion reports from several online
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Figure 2: Semi-synthetic task generation pipeline: Weather-related texts are processed by a
claim extraction agent to identify scientifically meaningful observational claims. Verified claims
are transformed into reusable templates and manually reviewed. Code is generated by an LLM and
verified by humans to validate each sample from a template against ERA5 meteorological data. We
combine the verifier code with the templates and WeatherBench data to produce novel samples.

sources, such as the NOAA website1 and IRI Seasonal Climate Forecasts/Outlooks2. For extreme
weather event tasks, we use records from the EM-DAT international disaster database (Delforge et al.,
2025), matching event entries by date and location to the ERA5 data.

4.1.2 SEMI-SYNTHETIC TASK GENERATION

To increase task diversity, we implement a semi-synthetic pipeline that transforms unstructured
weather-related text into verifiable benchmark tasks. Figure 2 provides an overview of the procedure.
The process begins with a claim extraction agent that analyzes weather texts from various sources,
using an LLM to identify scientifically meaningful observational claims about weather phenomena.
The agent focuses on quantifiable changes, trends, extremes, and relationships between variables.

These claims are then converted into question templates where we can substitute different locations,
time periods, and weather variables to generate multiple benchmark examples from each original
claim. For each template, an LLM writes a verification code block that can validate any instance
generated from that template against the ERA5 data. This verification step ensures that the generated
questions are not only linguistically coherent but also scientifically accurate when tested against
actual meteorological observations. We generate multiple candidate instances from each template
through this approach. Finally, we manually review them for scientific interest and code correctness.
In this way, we generate 30 distinct human-validated synthetic task types.

We also include a semi-synthetic meteorological claim verification task to test whether models are
capable of validating claims extracted from meteorological reports against the weather data. From
pre-processed NOAA meteorological reports, we select individual claims and pair them with the
24-hour slice of WeatherBench2 data corresponding to the report’s date. Negative instances are
generated by systematically negating claims using an LLM. All examples are human-verified to
ensure clarity, verifiability, and correctness of negation. More details on this task are included in
Appendix A.2.2.

Difficulty Human-Gen. Tasks Human-Gen. Samples Synthetic Tasks Synthetic Samples Total Samples

Easy 5 699 0 0 699
Medium 5 574 30 290 864
Hard 5 595 1 0 595

Total 15 1,868 31 290 2,158

Table 1: ZEPHYRUSBENCH Statistics: Number of unique tasks and samples, grouped by difficulty
and generation form.

1https://www.wpc.ncep.noaa.gov/discussions/hpcdiscussions.php?disc=
pmdepd

2https://iri.columbia.edu/our-expertise/climate/forecasts/
seasonal-climate-forecasts/
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4.2 EVALUATION METRICS

Since all our tasks are designed around weather tasks with objectively correct answers, we design an
evaluation pipeline that can assess the scientific correctness of the answers produced by the models.
The model answers fall into five primary categories: numeric, temporal, spatial (location-based)
and descriptive. Given that model outputs are in natural language, we evaluate them through a
multi-stage process:

1. Verification: Determine whether the models response contains a relevant and valid answer. At this
stage, we merely assess whether or not the response has an appropriate answer to the given question,
and not its correctness. We use gpt-4.1-mini for this purpose.

2. Extraction: Extract the specific answer from the model response using another LLM prompt.
3. Scoring: Apply scoring methods specific to the type of question, which are detailed below.

Numerical Answers. For numerical responses, we record the Standarized Median Absolute Error
between the predicted and reference values. In addition, we also report the 25%, 75% and 99%
quantiles of the standarized absolute error to provide a more complete picture of the error distribution.
We use quantiles rather than means because large outliers can significantly skew mean values,
obscuring typical model performance patterns. To compare across variables with different scales
and units, we divide the absolute error by the standard deviation of the corresponding variable in the
dataset.

Time-based Answers. We evaluate tasks with time values as responses using Median Absolute Error.
We omit the standarization step, since all the answers are in the same units (that is, hours). Like the
numerical answers case, we also report the 25%, 75% and 99% quantiles.

Location-based Answers. For questions whose answers are geographic locations, we first match the
extracted location name to one of the expected entries from the NaturalEarth dataset (e.g., mapping
“USA” to “United States of America”). For countries, we use the country_converter library
(Stadler, 2017). For other geographic entities such as continents and water bodies, we apply fuzzy
string matching (Bachmann et al., 2023), accepting matches above a predefined similarity threshold.

To quantitatively assess the geographic deviation between predicted and reference locations, we
employ the Earth Mover’s Distance (EMD) (Monge, 1781) as a primary evaluation metric. We begin
by generating surface area-weighted masks over a latitude–longitude grid for both the predicted and
reference locations. These masks are normalized to form probability distributions. To account for the
curvature of the Earth, we compute pairwise distances between grid points using geodesic distance.
The EMD is then calculated using the POT library (Flamary et al., 2021). As a complementary metric,
we also report Location Accuracy, which simply measures whether the predicted and reference
location strings are an exact match.

Descriptive Answers. To evaluate descriptive answers, we extract individual discussion points from
both the model’s response and the reference answer. We then classify each extracted claim from
the model’s response as either SUPPORTED, REFUTED, or NEUTRAL against the reference answer,
obtaining logit scores from the language model and applying softmax normalization. Similarly, we
perform the same procedure for claims from the reference text compared against the model response.

We then define two complementary metrics: precision measures the validity of the model’s claims
by computing the proportion that are supported rather than refuted by the reference answer, exclud-

ing neutral classifications: Precision =

∑
i∈S Pmodel→ref(Supportedi)∑

i∈S Pmodel→ref(Supportedi) +
∑

i∈S Pmodel→ref(Refutedi)
where S = {i : Pmodel→ref(Neutrali) < 0.5} and Pmodel→ref(Supportedi) denotes the probability that
model claim i is supported by the reference answer.

Recall measures coverage by evaluating how well the model response addresses the ref-
erence claims, computed as the average support probability across all reference points:

Recall =
1

N

N∑
i=1

Pref→model(Supportedi) where N is the number of reference claims and

Pref→model(Supportedi) denotes the probability that reference claim i is supported by the model
answer.
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Figure 3: Percentage of questions in the complete dataset answered correctly by each LLM and model
type. Definitions of correctness for each question type are detailed in Appendix A.4.
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Figure 4: Plots showing (top) error distribution on numerical tasks (bottom-left) location accuracy
(bottom-right) discussion scores for GPT-5-Mini and Gemini-2.5-Flash.

Finally, we define the discussion score as the F1 score =
2 · Precision · Recall
Precision + Recall

.

Extreme Weather Tasks. In order to evaluate the extreme-weather tasks, we report two metrics: (1)
F1 score, which only assesses whether the model correctly predicts the occurrence of an extreme
event anywhere in the world, without considering event type or exact location. (2) Earthmover’s
Distance, which measures the agreement between the reference and predicted list of countries.

Correctness. For ease of presentation, we define correctness criteria that vary depending on the
task type. Rather than requiring exact matches, we consider an answer correct if it falls within an
acceptable range of the target response. The precise criteria for determining correctness for each task
type are detailed in Appendix A.4.

5 EXPERIMENTAL RESULTS

We evaluate model performance across all task types from Section 4 using four backend models:
OpenAI GPT-5-Mini, GPT-5-Nano, Google Gemini 2.5 Flash, and OpenAI gpt-oss-120b. We
compare three experimental settings: (1) a text-only baseline that attempts to answer weather
reasoning questions using only natural language metadata without access to structured weather data or
numerical inputs, (2) ZEPHYRUS-DIRECT, and (3) ZEPHYRUS-REFLECTIVE. The text-only baseline
measures the extent to which models can utilize their prior meteorological knowledge.
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The correctness results across all models and settings are presented in Figure 3. We observe that the
ZEPHYRUS agents significantly outperform the text-only baseline across all models, demonstrating
the agentic framework’s ability to effectively ground answers by leveraging meteorological data
from WeatherBench. For GPT-5-Mini, ZEPHYRUS-DIRECT and ZEPHYRUS-REFLECTIVE achieve
48.5% and 54.7% correctness respectively, compared to only 19.9% for the text-only baseline. This
substantial improvement holds consistently across other LLMs, with ZEPHYRUS agents achieving
28.6-35.4% higher correctness than their text-only counterparts. The multi-turn execute-observe-
solution framework implemented in ZEPHYRUS-REFLECTIVE enables it to outperform ZEPHYRUS-
DIRECT by 3.5-6.2% across most models. The exception is GPT-5-Nano, where ZEPHYRUS-
REFLECTIVE performs slightly worse than ZEPHYRUS-DIRECT, likely due to the smaller model’s
limited reasoning capabilities affecting the more complex multi-turn approach.

Figure 4 enables fine-grained analysis of error distributions for numerical tasks, location accuracy, and
discussion scores for descriptive answers using GPT-5-Mini and Gemini 2.5 Flash as backend models.
The agents particularly excel at numerical and location prediction tasks, achieving substantially lower
Standarized Absolute Errors and higher location accuracies compared to text-only baselines. For
location prediction, ZEPHYRUS-REFLECTIVE with GPT-5-Mini achieves strong performance with
86.6% accuracy. Once again, the reflective variant enjoys a small benefit in performance over the
Direct approach. The difference between ZEPHYRUS-DIRECT and ZEPHYRUS-REFLECTIVE is
pronounced on numerical tasks for GPT-5-Mini, while both variants perform similarly with Gemini
2.5 Flash.

However, all models struggle with the challenging task of generating textual weather reports. The
best performing model (ZEPHYRUS-REFLECTIVE with GPT-5-Mini) only achieves a discussion
score of 0.177. Nevertheless, ZEPHYRUS-REFLECTIVE demonstrates significant advantages over
both ZEPHYRUS-DIRECT and text-only variants for these descriptive tasks. While the text-only
variant lacks access to meteorological information, ZEPHYRUS-DIRECT produces rigid answers
by directly outputting program results, making it ill-suited for nuanced textual generation. The
execute-observe-solution framework in ZEPHYRUS-REFLECTIVE proves more effective.

Performance breakdown by difficulty level reveals interesting patterns (detailed results in Appendices
A.5 and A.7). On easy tasks, which primarily involve data analysis questions, ZEPHYRUS agents
perform well with 78.7-88.1% correctness. Medium difficulty tasks show moderate performance with
39.9-50.5% correctness. However, on hard tasks, all models struggle significantly, with ZEPHYRUS
agents achieving similar performance to text-only baselines. This suggests that while current LLMs
can effectively solve simple data analysis problems that pop up in meteorology, they do not yet
possess the capability to reason about abstract weather phenomena even when provided with tools.

Task-wise analysis of “Hard" tasks reveals nuanced insights. For generating meteorological dis-
cussions and forecasts for the continental United States, models show promise with ZEPHYRUS-
REFLECTIVE + GPT-5-Mini achieving an average discussion score of 0.31. This contrasts sharply
with global climate forecasting tasks spanning three months, where all models fail completely,
highlighting the current limitations in long-term, large-scale weather reasoning.

6 CONCLUSION

We tackled the challenging problem of enabling LLMs to reason over high-dimensional weather data
by developing, to our knowledge, the first agentic model for meteorology. Our contributions include:
(1) ZEPHYRUSWORLD, an agentic environment with comprehensive meteorological tools, (2) the
ZEPHYRUS family of agents that leverage these tools, and (3) a scalable data pipeline producing
a large, diverse benchmark dataset (ZEPHYRUSBENCH). Our empirical evaluation shows that the
agentic framework enables effective reasoning about meteorological data, significantly outperforming
text-only baselines. The agents excel at most tasks but struggle with complex challenges like forecast
report generation. Beyond advancing weather science, our work provides a sandbox for developing
more effective agentic workflows. Future work could explore using larger datasets to train agents that
produce more scientifically accurate responses.

6.1 ETHICS STATEMENT

The authors have followed the ICLR Code of Ethics and have no conflicts of interest to declare.
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6.2 REPRODUCIBILITY STATEMENT

The ZEPHYRUSBENCH dataset will be made public for use as a benchmark dataset and further
research on AI for weather science. All code used to create the dataset and the Zephyrus models will
be open-sourced. Detailed results have been included in the paper and its appendices, along with the
LLM models used to produce all results.

6.3 LLM USAGE STATEMENT

All LLM usage for the creation of ZEPHYRUSBENCH and the evaluation of different models
(ZEPHYRUS-REFLECTIVE, ZEPHYRUS-DIRECT) has been carefully described in the paper. We
acknowledge the routine use of LLMs for coding assistance and refinement of writing. LLMs were
not used for ideation, conceptual development, literature review, or other substantial contributions ot
this work.
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A APPENDIX

A.1 CODE EXECUTION SERVER

Figure 5: Code Execution Server. ZEPHYRUS sends parallel requests to the server, which distributes
them to available workers. Each worker acquires resources from tool pools, loads datasets, injects
tools into the execution environment, executes code, and returns results or errors to the agent.

In order to execute the code requests from the client, we implement a custom code-execution server
program. More specifically, we implement a FastAPI-based server-client architecture where clients
send code execution requests to a dedicated execution server that processes them in parallel. The
system maintains resource pools for each tool component to prevent contention and enable true
parallelism. Each pool contains one or more instances of the above tools. A resource manager
implements acquire/release semantics to ensure each execution thread has exclusive access to a
complete set of tools while preventing deadlocks.

Each execution follows a strict protocol: acquire resources from pools, load requested datasets,
inject tool instances into the execution environment, and execute user code with timeout protection.
The system captures all outputs and error information, which are sent back to the client for further
processing by the agent. Figure 5 provides an overview of the server.

A.2 DATASET DETAILS

Table A.2 details all the tasks in ZEPHYRUSBENCH, and table 4.1.2 reports the number of samples
generated grouped by difficulty and type.

For weather tasks, we leverage the ERA5 reanalysis dataset (Hersbach et al., 2020), specifically from
WeatherBench 2 (Rasp et al., 2024), which provides global atmospheric data from 1979 to 2022.
We use 1.5◦ spatial resolution with 6-hourly temporal resolution, and include 4 surface variables
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ID Natural Language Description Answer Type Difficulty Type
1 Which geographic feature experienced the highest/lowest average value of a weather

variable
Location Easy Human

2 What is the min/max/average/median value of a weather variable at a specific location Numerical Easy Human
3 Which sublocation has the highest/lowest recorded variable value Location Easy Human
4 How many hours from start did a location experience extremum Temporal Easy Human
5 What is the weather variable value at a location at a specific time Numerical Easy Human
6 What will the variable be at a location after time interval (forecast) Numerical Medium Human
7 When will location experience its extremum in future period (forecast) Temporal Medium Human
8 Identify extreme weather events that will occur in the next N hours (forecast) List of locations Hard Human
9 Check if extreme weather events are currently happening List of locations Hard Human
10 Which geographic features experienced unusual weather anomalies compared to baseline List of locations Medium Human
11 Does maximum weather variable occur at same or adjacent grid point as another variable

(forecast)
Yes/No Medium Synthetic

12 Does maximum weather variable in region remain lower than future maximum (forecast) Yes/No Medium Synthetic
13 Does maximum weather variable occur at higher latitude than in another region (forecast) Yes/No Medium Synthetic
14 Does mean weather variable in one region exceed another by specified amount (forecast) Yes/No Medium Synthetic
15 Does mean weather variable exceed threshold while maximum of another stays below

(forecast)
Yes/No Medium Synthetic

16 Does mean weather variable within region exceed specified threshold (forecast) Yes/No Medium Synthetic
17 Does weather variable exceed threshold within any part of region (forecast) Yes/No Medium Synthetic
18 Does weather variable exceed threshold in more grid points in one region than another

(forecast)
Yes/No Medium Synthetic

19 Does area where weather variable exceeds threshold cover more than percentage of
region (forecast)

Yes/No Medium Synthetic

20 Does area-averaged weather variable exceed threshold while another stays below (fore-
cast)

Yes/No Medium Synthetic

21 Does maximum weather variable in one region exceed threshold while another stays
below (forecast)

Yes/No Medium Synthetic

22 Does maximum weather variable within region exceed specified threshold (forecast) Yes/No Medium Synthetic
23 Does maximum weather variable occur at latitude farther north than in another region

(forecast)
Yes/No Medium Synthetic

24 Does maximum weather variable stay above threshold while another stays below (fore-
cast)

Yes/No Medium Synthetic

25 Does maximum weather variable in one region exceed another by specified amount
(forecast)

Yes/No Medium Synthetic

26 Does minimum weather variable within region remain above threshold (forecast) Yes/No Medium Synthetic
27 What is the area where multiple weather variables exceed their percentile values (forecast) Numerical Medium Synthetic
28 What is the area where weather variable exceeds its median value (forecast) Numerical Medium Synthetic
29 What is the displacement between centroids of areas with top 10% values (forecast) Numerical Medium Synthetic
30 What is the distance between centroids of maximum weather variable value areas

(forecast)
Numerical Medium Synthetic

31 What is the maximum difference in weather variable between grid points within region
(forecast)

Numerical Medium Synthetic

32 What is the minimum weather variable where another variable exceeds percentile (fore-
cast)

Numerical Medium Synthetic

33 What is the difference between maximum weather variables in two regions (forecast) Numerical Medium Synthetic
34 What is the difference in mean weather variable between two regions (forecast) Numerical Medium Synthetic
35 What is the displacement of minimum weather variable location after time window

(forecast)
Numerical Medium Synthetic

36 What is the latitude difference between centroids of high weather variable areas (forecast) Numerical Medium Synthetic
37 What is the maximum weather variable difference between two regions (forecast) Numerical Medium Synthetic
38 What is the mean weather variable where another variable exceeds percentile (forecast) Numerical Medium Synthetic
39 What is the mean weather variable where another exceeds percentile threshold (forecast) Numerical Medium Synthetic
40 What is the weather variable value where another variable reaches maximum (forecast) Numerical Medium Synthetic
41 Generate comprehensive global climate forecast for temperature and precipitation for

next 3 months (forecast)
Description Medium Human

42 Provide detailed meteorological discussion and forecast for continental United States
(forecast)

Description Hard Human

43 Generate ENSO climate update and outlook based on atmospheric data (forecast) Description Hard Human
44 How will weather variable change after specified time given an intervention (a specified

change) in variable in the present (counterfactual)
Numerical Medium Human

45 What is the value of the input parameter of the simulator model that produces the
simulation output

Numerical Hard Human

46 Check whether the given claim extracted from meterological report is supported by the
data

Yes/No Hard Synthetic

Table 2: Complete set of Weather Tasks, grouped by difficulty.
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and 5 atmospheric variables at 13 pressure levels. For each task-type, we define natural language
templates with placeholders such as location, variable, and time window. For example, Task 1 is
defined as ‘Which {geofeature} experienced the {extremum_direction} average {variable}?’. To
create task-specific examples, these placeholders are filled by randomly sampled inputs. Ground
truths are derived through a deterministic procedure by applying human-written or human-verified
synthetic code to the raw ERA5 data and other supplementary data.

A.2.1 HUMAN-GENERATED TASKS

Tasks 1 through 7 rely entirely on the raw ERA5 data; they include basic data lookups and computa-
tions, as well as more advanced forecasting. The Geolocator is introduced to enable these and other
location-related tasks. It is a wrapper for the Natural Earth dataset (Natural Earth, 2024) that maps
ERA5 grid points to natural language location names of countries, states, and water bodies.

For Task 8 and Task 9, which involve extreme event detection, we use records from the EM-DAT
international disaster database (Delforge et al., 2025), matching event entries by date and location to
ERA5 data.

Input for anomaly comparison (Task 10) comprises two components: recent global data and quantile
statistics derived from a historical reference period. Ground truths are calculated by comparing the
recent dataset against historical quantile thresholds. Locations where the recent values significantly
exceed or fall below the reference quantile are flagged as anomalous. We then use the Geolocator to
map flagged grid points to natural language region names.

Report generation tasks (ID 41, 42, 43) are designed to evaluate model climate forecasting and
interpretation capabilities based on ERA5 atmospheric datasets. They all use global weather fields
over the given time duration as context. Task 41 requires generating a comprehensive global climate
forecast report for temperature and precipitation for a three month forward horizon. The task instructs
the report to be structured into separate sections for precipitation and temperature, and to provide
region-specific forecasts with probability-based language. Task 42 focuses on the continental United
States, where the model must provide a detailed meteorological discussion and forecast, including
current weather system positions and movements, temperature trends and expected changes over the
coming days, precipitation patterns and likelihood of significant events, pressure system evolution
and impacts, and notable atmospheric features such as fronts and jet stream positioning. Task 43
requires an ENSO (El Niño–Southern Oscillation) climate update and outlook. Models are tasked to
analyze atmospheric variables to assess the current ENSO phase, evaluate strength and persistence
indicators, forecast evolution over the next 3 – 6 months, and discuss global implications using
probability-based language and standard ENSO terminology. Ground truth reports for these tasks
are obtained from authoritative climate prediction and monitoring sources, which provide validated
assessments of global and regional climate outlooks and ENSO conditions. The answer sources for
these three tasks are NOAA Global Climate Reports, NOAA National Weather Service Area Forecast
Discussions, and WMO ENSO Reports, respectively.

Task 44 and Task 45 both rely on the JAX-GCM simulator, an intermediate-complexity atmospheric
model built on NeuralGCM’s dynamical core (Kochkov et al., 2024). Task 44 is to assess the causal
impact of localized perturbations on atmospheric states. To obtain each specific sample, a variable,
location, and perturbation magnitude are first sampled, and a Gaussian mask is applied to induce
the desired perturbation at the chosen location. The simulator is then run twice, once starting from
the unperturbed initial state and once with the imposed perturbation. At the specified simulation
end time, the target variable from both simulations is extracted and compared, with the difference
quantifying the perturbation’s impact.

Task 45 is a black-box optimization climate simulation task. The input consists of two components:
(i) a segment of recent global data spanning a specified duration and interval, and (ii) simulated
data generated by our JAX-GCM simulator. In the simulation, we vary one input parameter of
the model by sampling its value randomly from the range [0,1], then save the resulting simulation
output. The objective of the task is to estimate the original value of the underlying input parameter
from observable simulation outputs. Since the climate simulator is presented as a black box, the
model must infer the parameter solely from the input-output mapping, which can be highly nonlinear
and sensitive to small parameter changes. By evaluating the model on novel simulator outputs, we
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benchmark its general handling of a domain optimization problem. Performance is assessed by
comparing the predicted and ground-truth parameter values.

A.2.2 METEOROLOGICAL CLAIM VERIFICATION

The Meteorological Claim Verification task (Task 46), We start with NOAA monthly climate report
webpages (1988–2024). These are downloaded and subsequently scraped into structured text files.
The scraped reports are then consolidated into CSV files, which contain raw textual summaries
of meteorological conditions. To standardize this content, we prompt the LLM to remove author
notes, editorial comments, data collection methods, map/color references, visual elements, and model
disclaimers. We preserve forecast events, locations, timing, and patterns. From the resulting text-only,
stand-alone weather reports, we extract individual claims to use for task examples.

Negative Claim Type

Original Claim: Heavy precipitation is expected across western
Washington and into British Columbia.

Positive Claim Type
Original Claim: A very strong jet in excess of 150 knots will be across the
east central U.S. with a favorable left exit region of the jet over New
England.

The following data shows meteorological conditions over a 24-
hour period:

{'type': 'wb2', 'variables': ['mean_sea_level_pressure',
'10m_u_component_of_wind',
'10m_v_component_of_wind', '2m_temperature',
'geopotential', 'specific_humidity', 'temperature',
'u_component_of_wind', 'v_component_of_wind'],
'time_indices': '47007:47011:1', 'start_idx': 47007}

Based on the provided data, answer the following question:
Does this data support the provided meteorological claim?
Answer with True or  False.

Claim: A very strong jet in excess of 150 knots will be across the

east central U.S. with a favorable left exit region of the jet over

New England.

The following data shows meteorological conditions over a 24-

hour period: 

{'type': 'wb2', 'variables': ['mean_sea_level_pressure',
'10m_u_component_of_wind',

'10m_v_component_of_wind', '2m_temperature',
'geopotential', 'specific_humidity', 'temperature',

'u_component_of_wind', 'v_component_of_wind'],
'time_indices': '79179:79183:1', 'start_idx': 79179}

Based on the provided data, answer the following question:

Does this data support the provided meteorological claim?

Answer with True or False.

Claim: Dry conditions with minimal precipitation are expected

across western Washington and into British Columbia.

Figure 6: (left) Positive claim and (right) negative example for meteorological claim verification

A.3 EXAMPLE FROM THE DATASET

Based on the provided data, Africa experienced the highest
average Surface temperature over the specified time-period, with
an average Surface temperature of 303.5 K.

 {'type': 'wb2', 'variables': ['mean_sea_level_pressure',
'10m_u_component_of_wind', '10m_v_component_of_wind',
'2m_temperature', 'geopotential', 'specific_humidity',
'temperature', 'u_component_of_wind', 'v_component_of_wind'],
'time_indices': '54746:54747:1'}

 

The following data shows a snapshot of the global weather fields.

Based on the above data, answer the following question: Which
continent experienced the highest average Surface temperature?

Based on the above data, answer the following question:

The following data shows a snapshot of the global weather fields.

{data}

Which {geofeature} experienced the {extremum_direction} average
{variable}?","Based on the provided data, {answer} experienced the
{extremum_direction} average {variable} over the specified time-
period, with an average {variable} of {answer_numeric}."

Figure 7: (left) Example template from which samples are generated and (right) a sample generated
using the template.

A.4 DEFINITION OF TASK CORRECTNESS

Different task types in ZEPHYRUSBENCHare evaluated using relevant metrics. To create a unified
definition of correctness, we employ the following requirements for each metric type:

• Numerical: Standardized difference |ŷ−y|
σ < 0.05, where σ is the standard deviation of the

relevant task variable in the WeatherBench2 dataset.
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• Distance/Area/Coordinate/Simulation: Relative error |ŷ−y|
|y| < 0.05. For true values of 0,

we require |ŷ| < 0.05.

• Location: Exact locations string match, using fuzzy string matching logic.

• Extreme Weather/Anomaly: Earth Mover’s Distance (EMD) score < 100 km. If both true
and predicted values are empty lists, the answer is considered correct.

• Boolean: Exact match between model answer and ground truth boolean value.

• Discussion: Overall discussion score > 0.5.

• Time: Exact match required (absolute error = 0.0).

A.5 PERFORMANCE BY DIFFICULTY LEVEL

Below, we include a detailed breakdown of performance metrics by question difficulty level, as defined
in Table A.2, for models GPT-5-Mini, GPT-5-Nano, Gemini 2.5 Flash, and gpt-oss-120b.
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Figure 8: Questions correct by difficulty level: Easy.
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Figure 9: Questions correct by difficulty level: Medium.
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Figure 10: Questions correct by difficulty level: Hard.
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Model LLM AE (Q25) (↓) AE (Q50) (↓) AE (Q75) (↓) AE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 0.00 18.0 156.0
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00 18.0 157.0

Text Only LLM gpt-5-mini 12.0 30.0 66.0 168.0

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.00 12.0 158,000
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00 12.0 5.01e+18

Text Only LLM gpt-5-nano 18.0 48.0 90.0 186.0
ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00 18.0 157.0

ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00 30.0 8.57e+18
Text Only LLM gemini-2.5-flash 18.0 36.0 72.0 186.0

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.00 0.00 145.0
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.00 6.00 145.0

Text Only LLM gpt-oss-120b 18.0 42.0 84.0 200.0

Table 4: Absolute error quantiles for time tasks, in units of hours.

Model LLM Location Accuracy (%)(↑) EMD (km) (↓) Extreme Weather F1 (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 86.6 1,851 0.38
ZEPHYRUS-DIRECT gpt-5-mini 80.9 1,892 0.28

Text Only LLM gpt-5-mini 16.3 5,783 0.38
ZEPHYRUS-REFLECTIVE gpt-5-nano 68.9 2,568 0.36

ZEPHYRUS-DIRECT gpt-5-nano 73.7 2,126 0.20
Text Only LLM gpt-5-nano 15.3 5,070 0.00

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 77.5 2,021 0.38
ZEPHYRUS-DIRECT gemini-2.5-flash 76.6 2,204 0.38

Text Only LLM gemini-2.5-flash 7.66 2,303 0.03

ZEPHYRUS-REFLECTIVE gpt-oss-120b 77.0 2,749 0.49
ZEPHYRUS-DIRECT gpt-oss-120b 61.2 2,435 0.41

Text Only LLM gpt-oss-120b 11.5 3,718 0.00

Table 5: Location metrics for location answer-based questions. EMD stands for Earth mover’s
Distance.

Model LLM % Valid Outputs (↑) Discussion Score (↑) Boolean F1 (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 92.9 0.18 0.51
ZEPHYRUS-DIRECT gpt-5-mini 91.5 0.06 0.32

Text Only LLM gpt-5-mini 91.9 0.07 0.53
ZEPHYRUS-REFLECTIVE gpt-5-nano 88.8 0.14 0.48

ZEPHYRUS-DIRECT gpt-5-nano 91.3 0.07 0.47
Text Only LLM gpt-5-nano 88.9 0.07 0.37

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 91.0 0.09 0.49
ZEPHYRUS-DIRECT gemini-2.5-flash 87.0 0.06 0.52

Text Only LLM gemini-2.5-flash 71.9 0.02 0.16

ZEPHYRUS-REFLECTIVE gpt-oss-120b 90.5 0.09 0.46
ZEPHYRUS-DIRECT gpt-oss-120b 86.8 0.05 0.47

Text Only LLM gpt-oss-120b 75.6 0.03 0.18

Table 6: Overall percentage of valid outputs, numerical score (0-1) for discussion questions, and F1
score for boolean questions.

A.6 DETAILED PERFORMANCE METRICS

We include detailed performance metrics from running several LLMs across all three modes on the
entire ZEPHYRUSBENCHdataset.
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A.7 PERFORMANCE METRICS BY TASK

Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 0.00 0.00 0.07
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00 0.00 0.17

Text Only LLM gpt-5-mini 0.23 0.80 1.53 8.93

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.00 0.04 0.82
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00 0.00 5.76

Text Only LLM gpt-5-nano 0.21 0.62 1.65 586.7

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00 0.00 1.24
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00 0.00 0.69

Text Only LLM gemini-2.5-flash 0.30 1.86 3.43 77.2

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.00 0.00 9.23
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.00 0.00 0.69

Text Only LLM gpt-oss-120b 0.17 0.63 1.72 25.1

Table 7: Standardized Absolute Error (SAE) quantiles for Template ID 2: What is the
min/max/average/median value of a weather variable at a specific
location

Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 0.00 0.00 0.28
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00 0.00 0.27

Text Only LLM gpt-5-mini 0.20 0.54 1.18 35.2

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.00 0.01 1.37
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00 0.00 0.96

Text Only LLM gpt-5-nano 0.20 0.53 1.46 320.2

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00 0.00 0.44
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00 0.00 0.44

Text Only LLM gemini-2.5-flash 0.44 1.46 14.7 1.34e+08

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.00 0.00 0.56
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.00 0.01 0.75

Text Only LLM gpt-oss-120b 0.26 0.91 2.29 3,360

Table 8: Standardized Absolute Error (SAE) quantiles for Template ID 5: What is the
weather variable value at a location at a specific time

Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.02 0.06 0.11 0.60
ZEPHYRUS-DIRECT gpt-5-mini 0.02 0.06 0.11 0.48

Text Only LLM gpt-5-mini 0.17 0.62 1.28 8.76

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.03 0.08 0.26 2.06
ZEPHYRUS-DIRECT gpt-5-nano 0.02 0.07 0.17 1.53

Text Only LLM gpt-5-nano 0.17 0.47 1.19 32,886

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.02 0.06 0.13 1.12
ZEPHYRUS-DIRECT gemini-2.5-flash 0.02 0.06 0.10 0.57

Text Only LLM gemini-2.5-flash 0.39 0.93 2.30 56.2

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.02 0.06 0.12 0.60
ZEPHYRUS-DIRECT gpt-oss-120b 0.02 0.06 0.11 0.78

Text Only LLM gpt-oss-120b 0.17 0.89 2.34 1,021

Table 9: Standardized Absolute Error (SAE) quantiles for Template ID 6: What will the
variable be at a location after time interval (forecast)
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Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 0.00 0.02 0.11
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00 0.03 0.13

Text Only LLM gpt-5-mini 0.00 0.07 0.12 0.23

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.01 0.08 0.26
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00 0.04 0.61

Text Only LLM gpt-5-nano 0.00 0.07 0.12 0.23

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00 0.00 0.10
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00 0.01 0.13

Text Only LLM gemini-2.5-flash 0.00 0.07 0.12 0.23

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.01 0.03 0.33
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.01 0.04 0.84

Text Only LLM gpt-oss-120b 0.00 0.07 0.12 0.23

Table 10: Standardized Absolute Error (SAE) quantiles for Template ID 44: How will
weather variable change after specified time with specified change
in variable (counterfactual)

Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.11 0.37 0.67 0.99
ZEPHYRUS-DIRECT gpt-5-mini 0.13 0.33 0.66 1.06

Text Only LLM gpt-5-mini 0.16 0.29 0.41 0.81

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.18 0.47 0.68 0.94
ZEPHYRUS-DIRECT gpt-5-nano 0.17 0.36 0.55 0.99

Text Only LLM gpt-5-nano 0.16 0.29 0.41 0.82

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.01 0.06 0.31 0.92
ZEPHYRUS-DIRECT gemini-2.5-flash 0.12 0.35 0.66 0.94

Text Only LLM gemini-2.5-flash 0.16 0.29 0.40 0.94

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.20 0.31 0.41 0.77
ZEPHYRUS-DIRECT gpt-oss-120b 0.16 0.30 0.40 0.83

Text Only LLM gpt-oss-120b 0.16 0.29 0.40 0.68

Table 11: Absolute Error (AE) quantiles for Template ID 45: What is the value
of the input parameter of the simulator model that produces the
simulation output

Model LLM AE (Q25) (↓) AE (Q50) (↓) AE (Q75) (↓) AE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 0.00 0.00 101.0
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00 6.00 122.6

Text Only LLM gpt-5-mini 12.0 18.0 36.0 130.1

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.00 0.00 60.0
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00 0.00 6.87e+18

Text Only LLM gpt-5-nano 12.0 30.0 72.0 144.0

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00 0.00 134.2
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00 0.00 9.18e+18

Text Only LLM gemini-2.5-flash 12.0 24.0 48.0 138.8

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.00 0.00 35.3
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.00 0.00 136.6

Text Only LLM gpt-oss-120b 12.0 30.0 66.0 162.0

Table 12: Absolute Error (AE) quantiles for Template ID 4: How many hours from start
did a location experience extremum
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Model LLM AE (Q25) (↓) AE (Q50) (↓) AE (Q75) (↓) AE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.00 18.0 87.0 168.9
ZEPHYRUS-DIRECT gpt-5-mini 0.00 24.0 81.0 7.75e+18

Text Only LLM gpt-5-mini 48.0 72.0 126.0 187.7

ZEPHYRUS-REFLECTIVE gpt-5-nano 6.00 18.0 120.0 263,293
ZEPHYRUS-DIRECT gpt-5-nano 1.50 18.0 46.5 1,521

Text Only LLM gpt-5-nano 54.0 84.0 126.0 198.8

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 18.0 64.5 186.9
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 21.0 84.0 1.52e+18

Text Only LLM gemini-2.5-flash 43.5 69.0 118.5 192.9

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 9.00 24.0 157.0
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 6.00 18.0 146.0

Text Only LLM gpt-oss-120b 24.0 66.0 126.0 341,254

Table 13: Absolute Error (AE) quantiles for Template ID 7: When will location
experience its extremum in future period (forecast)

Model LLM Location Accuracy (%) (↑) EMD Score (km) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 94.2 371.8
ZEPHYRUS-DIRECT gpt-5-mini 92.3 399.5

Text Only LLM gpt-5-mini 14.6 8,213

ZEPHYRUS-REFLECTIVE gpt-5-nano 75.0 1,720
ZEPHYRUS-DIRECT gpt-5-nano 81.7 1,263

Text Only LLM gpt-5-nano 12.4 8,368

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 78.6 1,503
ZEPHYRUS-DIRECT gemini-2.5-flash 77.9 1,634

Text Only LLM gemini-2.5-flash 20.7 7,979

ZEPHYRUS-REFLECTIVE gpt-oss-120b 76.7 1,557
ZEPHYRUS-DIRECT gpt-oss-120b 78.2 1,533

Text Only LLM gpt-oss-120b 22.7 8,987

Table 14: Location prediction metrics for Template ID 1: Which geographic feature
experienced the highest/lowest average value of a weather variable

Model LLM Location Accuracy (%) (↑) EMD Score (km) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 81.4 992.4
ZEPHYRUS-DIRECT gpt-5-mini 79.3 1,674

Text Only LLM gpt-5-mini 20.4 3,204

ZEPHYRUS-REFLECTIVE gpt-5-nano 75.0 1,733
ZEPHYRUS-DIRECT gpt-5-nano 75.0 1,980

Text Only LLM gpt-5-nano 24.7 3,061

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 82.7 849.0
ZEPHYRUS-DIRECT gemini-2.5-flash 84.0 1,119

Text Only LLM gemini-2.5-flash 25.0 3,634

ZEPHYRUS-REFLECTIVE gpt-oss-120b 87.2 624.2
ZEPHYRUS-DIRECT gpt-oss-120b 79.0 1,651

Text Only LLM gpt-oss-120b 17.6 3,480

Table 15: Location prediction metrics for Template ID 3: Which sublocation has the
highest/lowest recorded variable value

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model LLM Correctness (%) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 41.2
ZEPHYRUS-DIRECT gpt-5-mini 45.6

Text Only LLM gpt-5-mini 36.8

ZEPHYRUS-REFLECTIVE gpt-5-nano 48.5
ZEPHYRUS-DIRECT gpt-5-nano 60.3

Text Only LLM gpt-5-nano 64.7

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 39.7
ZEPHYRUS-DIRECT gemini-2.5-flash 25.0

Text Only LLM gemini-2.5-flash 58.8

ZEPHYRUS-REFLECTIVE gpt-oss-120b 33.8
ZEPHYRUS-DIRECT gpt-oss-120b 32.4

Text Only LLM gpt-oss-120b 64.7
Table 16: Correctness metrics for Template ID 8: Identify extreme weather events
that will occur in the next N hours (forecast)

Model LLM Correctness (%) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 14.6
ZEPHYRUS-DIRECT gpt-5-mini 43.8

Text Only LLM gpt-5-mini 57.3

ZEPHYRUS-REFLECTIVE gpt-5-nano 44.8
ZEPHYRUS-DIRECT gpt-5-nano 53.1

Text Only LLM gpt-5-nano 70.8

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 33.3
ZEPHYRUS-DIRECT gemini-2.5-flash 27.1

Text Only LLM gemini-2.5-flash 64.6

ZEPHYRUS-REFLECTIVE gpt-oss-120b 40.6
ZEPHYRUS-DIRECT gpt-oss-120b 28.1

Text Only LLM gpt-oss-120b 71.9
Table 17: Correctness metrics for Template ID 9: Check if extreme weather events
are currently happening

Model LLM Correctness (%) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 5.10
ZEPHYRUS-DIRECT gpt-5-mini 3.20

Text Only LLM gpt-5-mini 3.80

ZEPHYRUS-REFLECTIVE gpt-5-nano 5.40
ZEPHYRUS-DIRECT gpt-5-nano 1.70

Text Only LLM gpt-5-nano 12.5

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 13.1
ZEPHYRUS-DIRECT gemini-2.5-flash 3.20

Text Only LLM gemini-2.5-flash 5.00

ZEPHYRUS-REFLECTIVE gpt-oss-120b 3.10
ZEPHYRUS-DIRECT gpt-oss-120b 1.60

Text Only LLM gpt-oss-120b 11.1
Table 18: Correctness metrics for Template ID 10: Which geographic features
experienced unusual weather anomalies compared to baseline
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Model LLM Discussion Score (Mean) (↑) Discussion Score (Median) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.02 0.00
ZEPHYRUS-DIRECT gpt-5-mini 0.00 0.00

Text Only LLM gpt-5-mini 0.00 0.00

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.00 0.00
ZEPHYRUS-DIRECT gpt-5-nano 0.00 0.00

Text Only LLM gpt-5-nano 0.00 0.00

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.00 0.00
ZEPHYRUS-DIRECT gemini-2.5-flash 0.00 0.00

Text Only LLM gemini-2.5-flash 0.00 0.00

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.00 0.00
ZEPHYRUS-DIRECT gpt-oss-120b 0.00 0.00

Text Only LLM gpt-oss-120b 0.00 0.00

Table 19: Discussion score metrics for Template ID 41: Generate comprehensive
global climate forecast for temperature and precipitation for next
3 months (forecast)

Model LLM Discussion Score (Mean) (↑) Discussion Score (Median) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.31 0.32
ZEPHYRUS-DIRECT gpt-5-mini 0.09 0.05

Text Only LLM gpt-5-mini 0.10 0.04

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.23 0.21
ZEPHYRUS-DIRECT gpt-5-nano 0.10 0.06

Text Only LLM gpt-5-nano 0.09 0.07

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.15 0.11
ZEPHYRUS-DIRECT gemini-2.5-flash 0.10 0.07

Text Only LLM gemini-2.5-flash 0.02 0.00

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.16 0.14
ZEPHYRUS-DIRECT gpt-oss-120b 0.10 0.04

Text Only LLM gpt-oss-120b 0.02 0.00

Table 20: Discussion score metrics for Template ID 42: Provide detailed
meteorological discussion and forecast for continental United
States (forecast)

Model LLM Discussion Score (Mean) (↑) Discussion Score (Median) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.26 0.22
ZEPHYRUS-DIRECT gpt-5-mini 0.15 0.14

Text Only LLM gpt-5-mini 0.17 0.08

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.23 0.19
ZEPHYRUS-DIRECT gpt-5-nano 0.18 0.16

Text Only LLM gpt-5-nano 0.20 0.18

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.18 0.16
ZEPHYRUS-DIRECT gemini-2.5-flash 0.09 0.00

Text Only LLM gemini-2.5-flash 0.07 0.00

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.16 0.11
ZEPHYRUS-DIRECT gpt-oss-120b 0.08 0.05

Text Only LLM gpt-oss-120b 0.14 0.03

Table 21: Discussion score metrics for Template ID 43: Generate ENSO climate update
and outlook based on atmospheric data (forecast)
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Model LLM F1 Score (↑) Precision (%) (↑) Recall (%) (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.51 65.2 41.5
ZEPHYRUS-DIRECT gpt-5-mini 0.32 49.4 23.7

Text Only LLM gpt-5-mini 0.53 63.0 45.5

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.48 63.2 38.3
ZEPHYRUS-DIRECT gpt-5-nano 0.47 63.7 37.6

Text Only LLM gpt-5-nano 0.37 59.5 26.7

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.49 62.3 40.8
ZEPHYRUS-DIRECT gemini-2.5-flash 0.52 66.0 42.2

Text Only LLM gemini-2.5-flash 0.16 47.1 9.47

ZEPHYRUS-REFLECTIVE gpt-oss-120b 0.46 63.0 36.8
ZEPHYRUS-DIRECT gpt-oss-120b 0.47 61.9 37.4

Text Only LLM gpt-oss-120b 0.18 54.5 10.7

Table 22: Boolean score metrics for Template ID 46: Check whether the given claim
extracted from meterological report is supported by the data

A.8 MODEL PROMPTS

We use the following core Instruction prompt for ZEPHYRUS-REFLECTIVE:
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Zephyrus-Reflective Instruction Prompt

You are an AI weather expert agent. You will use an interactive coding environment with
tool functions, data, and softwares to solve the user's task.↪→

At each turn, you should first provide your thinking and reasoning given the
conversation history (which might include output from executed code within
<observation></observation>).

↪→
↪→
After that, you must do exactly one of the following:
1) Write code based on problem and/or observation. Your code should be enclosed using

"<execute>" tag, for example: <execute> return "Hello World!" </execute>. IMPORTANT:
You must end the code block with </execute> tag.

↪→
↪→
2) When you think you have a solution ready, directly provide a solution that adheres to

the required format for the given task to the user.↪→
Your solution should be enclosed using "<solution>" tag, for example: The answer is

<solution> A </solution>. IMPORTANT: You must end the solution block with </solution>
tag. When answering numerical questions, always use SI base unit (standard units of
measurement) unless the problem specifically asks for a certain unit. For example,
some questions may require you to answer in hours. Enclose ONLY the final answer to
the question in these tags, do NOT include any other information.

↪→
↪→
↪→
↪→
↪→

In each response, you must include <execute> or <solution> tag. Not both at the same
time. Do not generate code outside <execute>. Do not output answers outside
<solution>. Do not respond with messages without any tags. No empty messages.

↪→
↪→

- Geolocator Documentation:

The detailed documentation for the Geolocator class, including its available methods, is
provided below:↪→

{geolocator_documentation}

------------------------------------------------------------------------
- Forecaster API Documentation:

{forecaster_documentation}

The Forecaster can reliably forecast at most 2 weeks into the future.
- IMPORTANT: If the question is about the future, you **will need to** use the Forecaster

object to answer the question and solve the task.↪→
The input data **will not** contain the answer to questions about the

future.↪→
------------------------------------------------------------------------
- Simulator API Documentation:

{simulator_documentation}

- The Simulator provides atmospheric modeling and can be used for climate simulations,
answering counterfactuals, sensitivity studies, or generating synthetic weather
data.

↪→
↪→
- The Simulator can handle extended time periods (months to years) in a SINGLE call. DO

NOT create loops or multiple simulator instances. Set total_time to the desired
duration and call simulate() once.

↪→
↪→
------------------------------------------------------------------------

- Variable Descriptions:

A comprehensive description of every variable contained in the xarray datasets is given
here:↪→

{var_desc}

- Dataset Keys Explanation:

An explanation of what each key in the datasets represents is provided below:
{keys}

...(continued)
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Zephyrus-Reflective Instruction Prompt (cont.)

(continued)...

- Units:

Always use the following SI units when reasoning and coding:
{units_desc}
Answer in SI units unless the problem specifically asks for a different unit. For

example, some questions may require hours.↪→

- Time Indices:
You should NOT slice the provided dataset according to the time indices. The datasets

are already sliced to the correct time indices.↪→
For any question that asks about the time offset, only provide the time indices relative

to the provided dataset.↪→
If the question asks for the time offset, return the answer in hours from the initial

time index.↪→
For example, if the question asks about a dataset with time interval 6 hours and time

indices 12345:12351:1, and you think the answer is index 12350, you should return 30
hours.

↪→
↪→
Do NOT return the time index as a timestamp or datetime object.

**Execution code requirements:**
- The code MUST all be defined with a function called `run`.
- The `run` function should accept four parameters:
a. A list of one or more xarray datasets.
b. A Geolocator object (which comes with a set of predefined helpful functions).
c. A Forecaster object (which comes with a set of predefined helpful functions).
c. A Simulator object (which comes with a set of predefined helpful functions).

- DO NOT write any code outside of the `run` function.

**IMPORTANT:**
- The Geolocator object is already constructed and passed in as `geolocator`.
- **Never open files, use `xr.open_dataset`, or import Geolocator.**
- If you are subsetting, make sure to subset carefully considering runtime. It is too

slow to select the entire xarray dataset. If you are subsetting over multiple
dimensions (e.g. spatially and temporally), make sure to apply the smaller subset
operation first.

↪→
↪→
↪→
- By following these detailed instructions, your code should clearly use the provided

datasets and tools to produce the correct result.↪→

- Coordinate System:
The WeatherBench2 (WB2) dataset uses an equiangular grid with the following

specifications:↪→
- Latitude: 121 grid points ranging from -90° to +90° in 1.5° increments
- Longitude: 240 grid points ranging from 0° to 358.5° in 1.5° increments
- The latitude coordinates are: [-90, -88.5, -87, ..., 87, 88.5, 90]
- The longitude coordinates are: [0, 1.5, 3, ..., 355.5, 357, 358.5]

**Other Requirements:**
- Under NO circumstances should you loop over the grid points (i.e. you should NOT loop

over latitudes and longitudes), but rather try to leverage vectorized operations,
built-in functions or the Geolocator class as appropriate. This is a key requirement.
DO NOT loop over the latitudes and longitudes ANYWHERE in your generated code.

↪→
↪→
↪→
- Ensure that you call and use the functions from the Geolocator object correctly as per

its documentation.↪→

**Question:**
{question}

For the reflective stage of ZEPHYRUS-REFLECTIVE, we use the following Observation prompt:

Zephyrus-Reflective Observation Prompt

The executed code produced the output above. Reason about your next step and either (1)
output the final result based on this observation. Enclose your answer in
<solution></solution> tags., or (2) generate another code block to execute. Enclose
your code in <execute></execute> tags.

↪→
↪→
↪→
If you choose to give a solution, enclose ONLY the final answer to the question in these

tags, do NOT include any other information.↪→
You should execute code if you think you need more information before providing a final

answer.↪→

For ZEPHYRUS-DIRECT, we use the following direct Instruction prompt:
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Zephyrus-Direct Instruction Prompt

Your objective is to write a Python function called 'run' that solves a specified
problem using provided data and Toolset APIs. The function should be designed
according to the following guidelines:

↪→
↪→

1. Function Definition:

- The function must be named run.
- It should accept four parameters:

a. A list of one or more xarray datasets.
b. A Geolocator object (which comes with a set of predefined helpful functions).
c. A Forecaster object (which comes with a set of predefined helpful functions).
c. A Simulator object (which comes with a set of predefined helpful functions).

2. Data Descriptions:

- Variable Descriptions:

A comprehensive description of every variable contained in the xarray datasets is given
here:↪→

{var_desc}

- Dataset Keys Explanation:

An explanation of what each key in the datasets represents is provided below:
{keys}

- Units:

Always use the following SI units when reasoning and coding:
{units_desc}

- Time Indices:

The datasets provided have been converted from using a time dimension to simple integer
indices starting from 0. Each index step represents 6 hours of time in the original
dataset.

↪→
↪→
You should NOT slice the provided dataset according to the provided indices. The

datasets are already sliced to the correct indices.↪→
For any question that asks about the time offset, only provide the time indices relative

to the provided dataset.↪→
If the question asks for the time offset, you should return the answer in hours from the

initial time index.↪→
For example, if the question asks about a dataset with time interval 6 hours and indices

0:6:1, and you think the answer is index 5, you should return 30 hours.↪→
Do NOT return the index directly.

3. Toolset APIs

You are given access to the following code tools. Please use them as needed inside your
`run` function:↪→

- Geolocator Documentation:

The detailed documentation for the Geolocator class, including its available methods, is
provided below:↪→

{geolocator_documentation}

------------------------------------------------------------------------
- Forecaster API Documentation:

{forecaster_documentation}
The Forecaster can reliably forecast at most 2 weeks into the future.
- IMPORTANT: If the question is about the future, you **will need to** use the Forecaster

object to answer the question and solve the task.↪→
The input data **will not** contain the answer to questions about the

future.↪→
------------------------------------------------------------------------

...(continued)
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Zephyrus-Direct Instruction Prompt (cont.)

(continued)...

- Simulator API Documentation:

{simulator_documentation}

- The Simulator provides atmospheric modeling and can be used for climate simulations,
answering counterfactuals, sensitivity studies, or generating synthetic weather
data.

↪→
↪→
- The Simulator can handle extended time periods (months to years) in a SINGLE call. DO

NOT create loops or multiple simulator instances. Set total_time to the desired
duration and call simulate() once.

↪→
↪→
------------------------------------------------------------------------

4. Task Details:

- The function should process the datasets using the pertinent variables as specified
within the question.↪→

- Under NO circumstances should you loop over the grid points (i.e. you should NOT loop
over latitudes and longitudes), but rather try to leverage vectorized operations,
built-in functions or the Geolocator class as appropriate. This is a key requirement.
DO NOT loop over the latitudes and longitudes ANYWHERE in your generated code.

↪→
↪→
↪→
- Ensure that you call and use the functions from the Geolocator object correctly as per

its documentation.↪→

5. Returning the Answer:

- The final result should be returned by the function.
- Make sure to encapsulate your run function in triple backticks for clarity. For

example:↪→
```
def run(...):

return "Hello"
```
- If the answer is a time value, make sure to return it in a unit of time rather than as

a timestamp or datetime object. For example, return `5 hours` instead of `2022-01-01
05:00:00`.

↪→
↪→
- Always return the answer in the same unit as the one used in the weatherbench dataset.

Do not convert any units.↪→

6. Problem Statement:

By following these detailed instructions, your code should clearly use the provided
datasets and the Toolset APIs to produce the correct result.↪→

The specific question that your function needs to answer is provided at the end of this
prompt: {question}↪→

30


	Introduction
	Related Work
	Zephyrus: An Agentic Framework for Weather Science
	ZephyrusWorld: An Agentic Environment for Weather Science
	The Zephyrus Family of Weather Agents

	ZephyrusBench: A Comprehensive Weather Benchmark
	Dataset Curation
	Human-generated tasks
	Semi-synthetic task generation

	Evaluation Metrics

	Experimental Results
	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement

	Appendix
	Code Execution Server
	Dataset Details
	Human-Generated tasks
	Meteorological Claim Verification

	Example from the dataset
	Definition of Task Correctness
	Performance by Difficulty Level
	Detailed Performance Metrics
	Performance Metrics by Task
	Model Prompts


