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Abstract

The characteristics of tumor-infiltrating lymphocytes (TILs) are essential for cancer prog-
nostication and treatment through the ability to indicate the tumor’s capacity to evade
the immune system (e.g., as evidenced by nodal involvement). In general, presence of TILs
indicates a favorable prognosis. Machine learning technologies have demonstrated remark-
able success for localizing TILs, though these methods require extensive curation of manual
annotations or restaining procedures that can degrade tissue quality, resulting in impre-
cise annotation. In this study, we co-registered tissue slides stained for both hematoxylin
and eosin (H&E) and immunofluorescence (IF) as means to rapidly perform large-scale
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annotation of nuclei. We integrated the following approaches to improve the prediction
of TILs: 1) minimized tissue degradation on same-section tissue restaining, 2) developed
a scoring algorithm to improve the selection of patches for machine learning modeling
and 3) utilized a graph neural network deep learning approach to identify relevant con-
textual features for lymphocyte prediction. Our graph neural network approach accounts
for surrounding contextual micro/macro-architecture tissue features to facilitate interpre-
tation of registered IF. The graph neural network compares favorably (F1-score=0.9235,
AUROC=0.9462) to two alternative modeling approaches. This study brings insight to the
importance of contextual information leveraged from within and around neighboring cells
in a nuclei classification workflow, as well as elucidate approaches which enable the rapid
generation of large-scale annotations of lymphocytes for machine learning approaches for
immune phenotyping. Such approaches can help further interrogate the spatial biology of
colorectal cancer tumors and tumor metastasis.

Keywords: tumor immune microenvironment, colon cancer, immune phenotyping, deep
learning, graph neural networks

1. Introduction

Numerous studies have demonstrated that immune cell infiltrates play a crucial role in the
adaptive immune response for specific bacterial and viral infections and various types of
cancers (Aoshi et al., 2011; Galon et al., 2006). In the context of cancer, the presence, type,
and location of tumor-infiltrating lymphocytes (TILs) play a crucial role in prognostication
as this can be indicative of the tumor’s capacity to evade or suppress the immune system
(Morrison et al., 2022; Whiteside, 2022). While presence of TILs at the primary site is
generally related to favorable prognosis (i.e., inverse correlation between presence of TILs
and lymph node metastasis), it is believed that somatic alterations (e.g., transcriptional
changes) within TILs at the primary site may indicate concurrent or future activity at the
regional lymph node (Caziuc et al., 2019). As such, localizing TILs at the primary site
at the time of resection may obviate the need for additional therapies. Alternatively, if
molecular alterations within TILs suggests a metastatic phenotype, this may indicate that
a less invasive secondary treatment is required (e.g., adjuvant chemotherapy, radiotherapy).

Many methods for determining the presence of TILs lack spatial resolution. How-
ever, hematoxylin and eosin (H&E) or immunohistochemical (IHC) stained tissue slides
allow for spatial assessment. H&E provides a morphological and cytological examination,
and IHC allows for multiplexing of protein markers that can disaggregate distinct cellular
populations. For instance, immunoscore is a digital pathology technology that can as-
sess the density of CD8+ (cytotoxic) and CD3+ (co-receptor which activates cytotoxic T
cells) T cells inside the tumor and at the invasive margin and is highly e↵ective for prog-
nostication (Kwak et al., 2016). Increased density is associated with favorable prognosis
through induced anti-tumoral cytotoxicity, though alternatively in select cases have also
been associated with lower progression-free survival as the presence of these cells can sig-
nal immune exhaustion (Bruni et al., 2020; Idos et al., 2020). Presence of TILs can also
represent an adaptive response to mismatch repair deficiency tumors in colorectal cancer
patients (Jimenez-Rodriguez et al.). Studying similar e↵ects using routine H&E stained
slides through accurate localization of these immune cells is an emerging study area. In-
ferring locations of TILs is particularly challenging because it either requires large-scale
annotation or wash and restain procedures to tag H&E stained tissue with various pro-
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tein markers which deforms and degrades tissue. However, several emerging applications
for careful restaining have demonstrated success in tagging millions of cells with molecular
information with relatively little e↵ort (Jackson et al., 2020b). Tagging with IHC can also
be done using serial sections, but is suboptimal as there is no microarchitectural alignment
due to the 5-micron separation between adjacent levels. Immunofluorescence (IF) staining
can label several antigens in the same slide through the emission of relatively discrete imag-
ing spectra (which has higher multiplexing potential compared to IHC). Furthermore, for
tagging multiple markers in addition to routine staining, the application of IF after H&E is
arguably less destructive than destaining H&E then staining with IHC on the same section.
Several methods have been proposed to infer IF computationally, though, these generally
rely on serial section staining (Burlingame et al., 2018). For the application of H&E after
IF, registration can still complicate analyses with imprecise alignment though it is preferred
to serial staining as it maintains significantly better microarchitectural alignment.

Machine learning algorithms, in particular, deep learning through the use of artificial
neural networks (ANN), have demonstrated remarkable performance across a wide variety
of image classification and detection tasks, all of which are relevant for isolating lympho-
cytes for further analysis (e.g., assessment of molecular alterations). Convolutional neural
networks (CNN), a deep learning approach that accounts for spatial dependencies in images
have gained increased attention over the past few years for TILs-specific inference tasks.
Notable methods include segmentation (e.g., U-Net) (Jackson et al., 2020a; Saltz et al.,
2018; Turkki et al., 2016), detection (e.g., panoptic segmentation, Fast R-CNN, Panoptic
FPN; as popularized by the Detectron2 library (Wu et al., 2019)), and generative adver-
sarial network approaches (Burlingame et al., 2018). Relatively unexplored is the use of
detection networks (e.g., Detectron2) for these prediction tasks. Furthermore, surrounding
spatial information can provide additional context.

In this study, we aim to explore algorithmic methods which, when used in conjunction
with IF staining, can predict the presence of TILs while remaining sensitive to the impreci-
sion in H&E cell-tagging from microarchitectural registration. We hypothesize that nascent
graph neural network deep learning methods for cell type inference based on neighboring
cells and micro/macro-architecture, can ameliorate lymphocyte inference challenges associ-
ated with IF tagging. Furthermore, we attempt to improve selected datasets for prototyping
our algorithm through a patch-wise registration scoring algorithm.

Here, we investigate the e↵ectiveness of graph neural networks (GNN) in identifying
lymphocytes from H&E that were tagged through imprecisely registered IF.

2. Methods

2.1. Methods Overview

We performed: 1) large-scale annotation of lymphocytes using IF stains from the same
section as the H&E, 2) developed a scoring algorithm to improve the selection of patches
for algorithmic prototyping, and 3) utilized a GNN to mine contextual features relevant for
IF-guided lymphocyte prediction. In brief, our method is as follows (See Appendix A):

1. Acquire H&E and IF stained whole slide images (WSI) from the same tissue section
from 36 stage pT3 (pathological T-stage 3) matched colorectal cancer patients at
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Figure 1: Workflow for cell dataset generation for lymphocyte prediction models: A) H&E and IF
stains are collected and coregistered; B) UNET trained to predict nuclei to screen out C) slides based
on concordance with SYTO13 stain via sensitivity analysis; D) graphical representation of detectron
prediction and cell graph generation; E) application of CNN and GNN modeling approaches for
immune cell prediction

Dartmouth Hitchcock Medical Center (Data Collection, Section 2.2, Figure 1A).

2. Train U-net and detection neural network models on pathologist annotations from
a combination of external public and private datasets to infer pixel-wise presence of
nuclei and localize nuclei instances respectively (Nuclei Detection, Section 2.3,

Figure 1B).

3. Perform patch-wise registration of IF patches to H&E sections by aligning SYTO13
(fluorescent dye that binds to amino acids, with high fluorescent yield in nuclei) (Ullal
et al., 2010) and Hematoxylin (nuclear) stains (Stain Registration, Section 2.4).

4. Simultaneously score registration quality for specific patches and identify the optimal
image intensity of the CD45 stain, to tag immune cells, on the H&E using a sensitivity
analysis comparing the SYTO13 stain to the U-Net results (Alignment Screening,

Section 2.4, Figure 1C).

5. Use the Detectron2 nuclei detection model to create an annotated cell dataset from
the stained WSIs, containing information on where the cell was located and whether
it was an immune cell (Cell Tagging, Section 2.5, Figure 1D).

6. Using the tagged cells, train and compare Detectron2, CNN, and GNNmodels for their
ability to detect lymphocytes based on the annotated cell dataset (Model Training,

Section 2.6, Figure 1E).

2.2. Data Collection

The primary dataset utilized in this study was acquired from 36 Stage-pT3 matched (pTNM
system; pT refers to invasion depth at primary site) colorectal cancer patients at Dartmouth-
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Hitchcock Medical Center (DHMC), determined through a retrospective review of pathology
reports from 2016 to 2019 following IRB review and approval. Half of the patients had con-
current tumor metastasis and were otherwise matched on age, sex, tumor grade, tissue size,
mismatch repair status, and tumor site using iterative patient resampling with t-tests for
continuous variables and fisher’s exact tests for categorical variables. Tissue blocks were
sectioned into 5-micron thick layers. Sections were stained with fluorescent-labeled, IF, an-
tibodies for the following markers: 1) tumor/epithelial (PanCK), immune cells (CD45), and
nuclei (SYTO13). These IF stains were initially acquired for a previously published study
on spatial immune markers of metastasis, which utilized the GeoMX Digital Spatial Profiler
(DSP, Nanostring Technologies, Seattle, WA) for image scanning into 16-bit unsigned color
(one channel per stain) TIFF format images (Levy et al., 2022). After IF staining, the same
sections were stained for H&E (without requiring destaining as the chemical reagents of the
H&E minimally interacted with the fluorophores) and scanned into WSI using the Aperio
AT2 scanner at 20x (8-bit unsigned color). The DHMC in-house dataset consisted of 36
WSIs, divided into 6,654 subarrays. Each of the subarrays were 768 pixels in each spatial
dimension for patch-wise alignment and were further divided into nine square subarrays of
side length 256-pixels without overlap, resulting in a total of 59,886 subarray images for cell
identification.

Separately, we assembled an in-house dataset of 2,155 pathologist-annotated nuclei and
a publicly available dataset of 30,837 pathologist-annotated nuclei to develop initial nuclei
segmentation and detection approaches (Kumar et al., 2017, 2020).

2.3. Initial Nuclei Segmentation and Detection Models for Cell Localization

First, using the assembled nuclei detection dataset, a U-Net model was trained to detect
the hematoxylin-stained nuclei on a pixel-wise basis for alignment scoring. The Detectron2
nuclei detection model was also trained on the same dataset which was more sensitive to
adjacent cell boundaries through the adoption of panoptic segmentation methods and better
allowed for cell counting (Wu et al., 2019).

The nuclei detection model was pre-trained with a 3x schedule that was available through
the public Detectron2 Model Zoo, and it was then trained on the in-house data for a
maximum of 5,000 epochs. Training was stopped when overfitting occurred (i.e., area under
receiver operator curve (AUROC) on the validation set was maximal). The base learning
rate was set to 0.0125 and 5 images were used per iteration. The model used a Mask R-
CNN architecture that has a Residual Network+Feature Pyramid Network (ResNet+FPN)
backbone based on the ResNet-101 model. It was tested using a detection threshold of
0.05 and a non-maximum suppression (NMS) threshold of 0.25. All hyperparameters were
set to the Detectron2 config defaults if they were not otherwise specified after a coarse
hyperparameter searchg.

2.4. Slide registration and screening imprecise alignments through sensitivity

analysis

H&E and IF WSIs were registered through patch-wise alignment algorithms applied to the
nuclear stains, Hematoxylin (determined using the Macenko stain deconvolution method),
and SYTO13 staining intensities respectively. As the tissue was minimally deformed during
H&E staining, the H&E and IF sections from the same tissue specimen were co-registered
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through low-resolution rigid transformations. Then, both the H&E and IFWSI were divided
into 768-pixel patches for more precise microarchitectural alignment (Appendix A.1).
After registering the IF and H&E nuclear stains, the CD45 stain was overlaid by leveraging
the same displacement field as the SYTO13 stain to tag immune cells.

We employed several mechanisms to screen out poorly aligned tissue patches. First, we
calculated the pixel-wise di↵erence in normalized staining intensities between the nuclear
stains. The patch was removed from the set if this di↵erence exceeded a specific threshold
(mean squared error of 80). We also applied the trained U-Net model on the H&E patches to
establish nuclei annotations. For each patch, we used a sensitivity analysis to calculate a C-
statistic to provide an overall measure of agreement between the IF nuclear stain intensity
and the predicted nuclei mask across a range of intensity thresholds. Patches with an
overall agreement C-statistic of at least 0.85 were included in the set (Figure S1). The
sensitivity analysis was also used to identify a staining intensity threshold used to establish
an IF nuclear mask based on maximum fidelity to the nuclei mask predictions. The same
intensity threshold was applied to the CD45 stain to establish an immune cell mask, which
was confirmed through visual inspection with collaborating pathologists.

2.5. Lymphocyte Prediction Dataset

There were no initial pre-existing annotations of immune and non-immune cells for the
lymphocyte prediction model. By leveraging a highly accurate nuclei detection model
(Appendix A.2) and registered immune cell masks, we were able to detect and label
5,377,681 nuclei, after filtering false positives. Nuclei were algorithmically annotated by
overlaying the immune cell masks (Appendix A.1). This dataset contained 953,274 im-
mune cells and 4,424,407 non-immune cells in the training/validation set and 19,408 immune
cells and 90,231 non-immune cells in the test set.

2.6. Lymphocyte Prediction Modeling Approaches

We compared the following model approaches for the prediction of immune cells across our
newly annotated dataset: 1) a cell detection model (Detectron2 framework) which outputs
two classes (immune/non-immune), 2) a CNN-trained o↵ of small images extracted around
the bounding boxes, and 3) a GNN model trained on embeddings extracted from the CNN.
Details of each model specification can be found below (Appendix A.3, A.4).

Detectron2, unlike other methods, can automatically detect the lymphocyte cells from
the original image instead of just classifying subimages like the CNN and GNN.

We trained a convolutional neural network (i.e., ResNet18) on 64-pixel patches extracted
around the initially predicted nuclei as means to more precisely model cellular morphology.
Embeddings of the cells were extracted from the penultimate layer of the CNN, as well
as the cells’ positional x-y coordinates. These coordinates were used to generate graph
datasets using both a k-nearest neighbor and radius neighbors graph for the GNN to train
on. An ablation study was carried out to identify the optimal number of neighbors. Cells
represent nodes of the graph and were connected by local proximity. Node attributes were
captured using CNN embeddings.

A GNN model was used to integrate macroarchitectural cues for the inference of immune
and non-immune cells (Ahmedt-Aristizabal et al., 2022; Fey and Lenssen, 2019). Such a
model could potentially help overcome imprecise labeling from the automated registration,
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Model Accuracy F1-Score AUROC IOU

Detectron2 82.11 0.8175 0.6961 0.6737
CNN 90.35 0.8995 0.9297 N/A
GNN 92.45 0.9235 0.9462 N/A

Table 1: Summary of model classification metrics

filtering, and application of the co-registered immune cell mask. The model outputs a
vector representing the likelihood of observing an immune cell (Figure S2) (Appendix

A.3,A.4). Several GNN architectures were compared as discussed in Appendix A.4, B.

All hyperparameters were determined through a coarse grid search (e.g., number of
neighbors, learning rate, batch size; see Appendix B), with evaluation on the internal
validation set. Optimal hyperparameters and number of neighbors were selected based on
this internal evaluation.

2.7. Model evaluations

The classification performances of the lymphocyte prediction models were determined through
reports of the accuracy, F1-score, AUROC, and intersection over union (IOU). A F1-score
is equal to the harmonic mean of the precision and recall, and was calculated through the
Scikit-learn Python library. Due to the inherent class imbalance between immune and non-
immune cells in the data, we considered the weighted F1-score, with thresholds calculated
using Youden’s index (Ruopp et al., 2008). We depicted the number of true positives, true
negatives, false positives, and false negatives through a confusion matrix, where immune
cells were considered positive classifications and non-immune cells were considered negative
classifications for calculation of sensitivity and specificity statistics. All of the previously
described methods were used to compare the Detectron2, CNN, and GNN models. IOU
was only used for the Detectron2 model, as it was the only model that had an output of
bounding boxes, and showed how the predicted classifications compared to the annotated
classifications. The CNN and GNN models were also interpreted through the generation of
Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) embed-
dings of the nuclei, which allowed for visual assessment on the ability of the neural networks
to delineate cell types.

3. Results

All three modeling approaches achieved an F1-score above 0.8 (Appendix D). Both the
CNN and the GNN models outperformed the cell detection model for their ability to de-
lineate immune cells. Notably, the GNN obtained optimal performance after taking into
account Youden’s threshold, obtaining an F1-score of 0.92 (Table 1, Figure S3).

We visualized the UMAP projection of the extracted CNN and GNN embeddings of
cells from the WSI (Figure S4). The GNN model was able to learn contextual features
and delineate cell types based on co-localized cells that gave this model a competitive
advantage over the CNN model. We also visually compared the output from all three
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modeling approaches versus the ground truth on a few randomly selected patches which
corroborated with the aforementioned findings (Figure 2).

Figure 2: WSI patch, immune mask, ground truth images on upper row with predictions from
Dectron2, CNN, and GNN models on bottom row for each example image subarray (A-B)

4. Discussion

The tumor immune microenvironment is an amalgamation of immune cells, chemokines,
cytokines, and other immune modulators and plays a crucial role in coordinating the im-
mune response to processes governing tumorigenesis and metastasis. As such, understanding
spatial biology at the primary site is crucial for informing timely and relevant disease man-
agement options. Thus, the localization and quantification of distinct immune cell lineages
may help inform the development of new spatial biomarkers. Informatics methods are still
being developed to make sense of the data from this nascent field. Inference from morpho-
logical findings from an H&E tissue slide is an attractive approach because H&E staining is
routinely done and inexpensive. However, optimal means of data collection and annotation
are presently quite onerous and are an active area of exploration. As pathologists may
incorrectly localize immune cells, IF staining to tag cells may present a viable alternative
for labeling at scale, though it is expected that detection networks may struggle to make
use of the antigenically tagged information.

In this study, we detailed an approach for the rapid and accurate immune cell annotation
of nuclei based on the registration of IF which requires no tissue destaining. We applied
geometric deep learning methods to potentially ameliorate inexact cell tagging by explicitly
leveraging morphological and architectural information from neighboring cells. Our prelim-
inary analysis suggests that GNNs, when combined with IF tagging of nuclei can accurately
localize and tag immune cells in WSIs. We plan to further investigate the clinical utility of
this technique and will further iterate and improve this method for downstream approaches
for large-scale phenotyping in the context of studying tumor metastasis.

There were some limitations in the methodology of this study. We assumed the initial
nuclei detection model achieved su�cient accuracy as judged by visual inspections from
our practicing pathologists. While there may have been some inaccuracies in the initial cell
localization, this is not outside of what is expected from other similar studies which leverage
these datasets and further exploration is outside of the study scope (Mahmood et al., 2020).
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Furthermore, the accuracy of our approach may have been impacted by manual staining
processes for IF and batch e↵ects. For instance, some slides were coverslipped for a few
days, which may have impacted the specificity of the IF stain but was a pragmatic consider-
ation when planning our experiment due to technical sta�ng shortages. Staining for H&E,
by contrast, used automated staining protocols. Staining and cell tagging inaccuracies may
have also been introduced in the registration process though we attempted to control for
this through the sensitivity analysis. Future iterations of this model will attempt to more
tightly control experimental preplanning through additional workflow automation.

Although the emphasis of this work was the application of methodology to this crucial
clinical challenge, improvements in feature extraction methods and comparison of model
architectures could result in more accurate detection models. There exists an exhaustive
list of CNN and GNN model architectures from which to choose from as means to accom-
plish this aim. For instance, the CNN and GNN approaches featured in this work are
not rotationally invariant or equivariant, despite application of rotation-based data aug-
mentation. Leveraging rotationally invariant/equivariant methods such as Capsule Neural
Networks, Equivariant Graph Neural Networks, PointNet-based neural networks, etc. may
improve the external applicability of our approach (Chidester et al., 2019; Freyre et al., 2021;
Keriven and Peyré, 2019; Mazzia et al., 2021; Satorras et al., 2022; Yao et al., 2021). Data
preprocessing methods that oversegment images such as simple linear iterative clustering
(SLIC) can decompose images into constituent superpixels. Building graphs from embed-
dings extracted from these superpixels may o↵er a more flexible modeling framework than
featured in this work and will be something we plan to explore in future works (Dwivedi
et al., 2022; He et al., 2022; Jaume et al., 2021; Sornapudi et al., 2018). We also did not
perform an in-depth comparison between graph-based topological augmentation techniques
(e.g., DropEdge, DropNode, etc.) and contrastive self-supervised learning methods, which
warrants further assessment in this context (Hu et al., 2020, 2019; Qiu et al., 2020; Zhao
et al., 2021; Zhu et al., 2021). While we developed nuclei detection algorithms using the
Detectron2 framework, other object detection frameworks such as MMDetection o↵er a
greater variety of architectures and modeling objectives and could be worth comparing to
in future iterations of this work (Chen et al., 2019).

In the future, we plan to explore end-to-end training of these cell-graph neural networks,
which jointly optimize both the CNN encoder and GNN prediction layers and compare to
our two-stage approach (i.e, separately training CNN and GNN). It should be noted that
there remains outstanding debate on optimal feature extraction methods for CNN and
GNNs, specifically for inferring immune cell types, which are outside of the study scope.
While we employed feature extraction methods across the cells, this component has not been
well explored and could shed light on what morphological and architectural information is
relevant for cell typing (e.g., nuclear morphology, cytoplasm, surrounding architecture). As
an example, applying GNN to large patches extracted around nuclei as opposed to nuclear
morphology would support the hypothesis that context matters. In the future, we would
want to experiment with more complex GNN and CNN feature extraction models for the
GNN, rather than simply use a pretrained CNN model, as it could yield more nuanced
information for cell type classification.

Despite these limitations, our proposed lymphocyte prediction tool is valuable for re-
searchers aiming to study spatial biology as it allows for the easy creation of robust IF
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tagged dataset on millions of cells even in small-scale clinical feasibility studies. When
pairing with macroarchitectural annotations (e.g., within the tumor, at the tumor-immune
interface, etc.) identifying immune cells in these regions and concomitant molecular al-
terations can help infer the impact of immune cells in these regions for outcome such as
metastasis, recurrence and survival. Furthermore, the presence of di↵erent cell types can
confound or reduce the power of molecular association studies on microdissected tumor
(Aran et al., 2015). Several recent studies have explored machine learning-based inference
of highly multiplexed protein and RNA markers inferred on the cellular/subcellular level
(He et al., 2020; Moses and Pachter, 2022; Zeng et al., 2022). Integrating histological in-
formation with predicted cell types through deconvolution approaches can more precisely
identify canonical cellular populations (e.g., FOXP3+ T regulatory cells) which could fur-
ther inform the coordinated response. In the future, we aim to investigate the interplay
between histomorphology and protein/RNA expression localized to distinct locations on the
slide through the adoption of highly multiplexed spatial assays including the GeoMX DSP
and 10x Genomics Visium Spatial Transcriptomics.

5. Conclusion

In this work, we demonstrated the first application of GNN methods to H&E slides that
were tagged through co-registered IF in the context of studying TILs. Our study suggests
that contextual information leveraged from neighboring cells are important for nuclei clas-
sification and this workflow, as a whole, can be e↵ective for generating large-scale immune
phenotype data for studying the spatial biology of colorectal cancer tumors and tumor
metastasis. We plan to further standardize this process and employ measures to explore
the downstream implications of these findings with high precision.
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Appendix A. Supplementary Methods

A.1. Microarchitectural Alignment and Additional Cell Tagging Details

For each pair of nuclear stains, akaze features were extracted from each nucleus stain image
from matching patches, and a k-nearest neighbors and radius neighbors brute force feature
matcher were used to identify matching local features between the images. Matched features
between the H&E and IF nuclear stains were used to compute a perspective transformation
for the final registration.

The immune cells were tagged by calculating the percentage overlap between the pre-
dicted nuclei instance mask/bounding box by the cell detection model and the immune cell
mask. If at least 25% of the nucleus instance mask was labeled pixel-wise as an immune
cell, the nucleus was tagged as such and was not labeled as an immune cell if it failed to
surpass this threshold.

A.2. Detection Dataset Format

These datasets were prepared in the Microsoft COCO (MS COCO) format. The COCO
format is commonly used for machine learning and computer vision projects and can be
used for object detection, segmentation, and captioning. It uses the JavaScript object
notation (JSON) format and includes information about the categories the images were
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Figure S1: Comparison of (A) H&E stain on a WSI with (B) an additional nuclei mask (SYTO13)
and (C) immune mask (CD45)

classified into, raw image information such as filename and image size, and a list of all object
annotations for every image in the dataset. Training and validation datasets were generated
which contained nuclei annotations. For annotations, nuclei areas were calculated using the
contour area method of the OpenCV-Python package based on manually segmented splines
placed by the pathologists. The bounding box format for the annotations also followed the
default boxmode of absolute minimum-X and minimum-Y coordinates, width, and height.

The Detectron2-derived lymphocyte prediction model dataset followed the same MS
COCO dataset format as what was done for the nuclei detection model (e.g., similar area
and boxmode annotations). However, there were two categories of images: immune and
non-immune cells. The datasets used for the CNN and GNN lymphocyte prediction models
were also adapted from the Detectron2 model datasets.

A.3. Addressing Class Imbalances

There was also a significant class imbalance of lymphocyte and non-lymphocyte nuclei, with
a ratio of approximately one immune cell for every four non-immune cells. To address these
challenges, we employed class balancing techniques, such as resampling (dynamic batch-
wise undersampling), reweighting the model objective, and using evaluation metrics that
were relatively robust to these di↵erences. We found these methods did not significantly
impact performance. It is expected that without reweighting, the decision threshold would
be shifted to reflect this proportion of immune cells.

A.4. Additional Motivation/Training Details for Modeling Approaches

We used the Detectron2 library instead of other object detection methods like YOLO be-
cause many of the methods featured in the Detectron2 framework are easier to implement,
more accurate than other methods, and had demonstrated to us favorable performance in
underrepresented classes. Lymphocyte prediction relied heavily on the modeling results
from our initial nuclei detection model, which generated training datasets for all three
modeling approaches.

The Detectron2 lymphocyte prediction model also takes less time to train compared to
the CNN and GNN models because it contains state-of-the-art prewritten libraries based on
PyTorch; however, the study results indicate that the Detectron2 model requires a relatively
extensive amount of data (Table 1). Due to this, Detectron2 is able to make predictions
more quickly during inference.
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The Detectron2 lymphocyte prediction model used the same pre-trained model, the
number of training images per step, and Mask R-CNN architecture as that of the nuclei
detection model. The model was trained for 4,000 epochs at a base learning rate of 0.0125.
Training was stopped after no significant change in validation set accuracy. Visual assess-
ments of the model predictions were done at a detection threshold of 0.2 and NMS threshold
of 0.3. All hyperparameters were set to the Detectron2 configuration defaults if not other-
wise specified. The model output bounding boxes, category names, and measure of model
certainty (%) of the category for each detected cell.

As a classification model, the CNN had an additional step, requiring the Detectron2
detected cell annotations to be used as an input, instead of just an image, in order to have
an output of category classifications. The model capacity of the residual neural network is
greater than cell class prediction layers after proposed regions of interest from Detectron2.
The CNN model was trained using the PyTorch framework. A data loader was configured
which loads detected cells into a Torch tensor format. Data augmentation was performed
including horizontal and vertical flips, random rotations, and color jitter. The CNN lympho-
cyte prediction model was trained on the training dataset of nuclei for 20 epochs, a learning
rate of 0.0125, and a batch size of 128 cells. The validation set F1-score was assessed after
each epoch; ultimately, we saved the model at the epoch with the highest F1-score.

The GNN model had two extra steps; the first step is the same as that of the CNN
model, where it requires the Detectron2 nuclei detection model to process an image, and a
second step of extracting embeddings (or features) from the detected cells. The GNN model
creates a more abstract representation of the WSI through the graph datasets and extracted
embeddings, which can lead to an overall better generalization of the data. The model was
trained for 200 epochs with a batch size of 32 and a learning rate of 1e-4 and similar to the
CNN model, we kept track of the epoch which achieved the highest F1-score and saved the
model when this occurred. The model was trained using the PyTorch-Geometric software
framework, which takes as input a graph dataset and outputs a probability vector (Torch
tensor). We additionally explored the usage of equivariant graph neural networks. However,
we found in this simple use case that the vanilla GNNs were su�cient for demonstrating
performance di↵erences as compared to the CNN though this is an active area of research.

Figure S2: Graph Neural Network architecture

Appendix B. Selection of Hyperparameters and Ablation over Number

of Neighbors

The following hyperparameters and number of neighbors (for the graph construction) were
optimized over (selected hyperparameters/number of neighbors in bold):
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• Batch size: 16, 32, 64

• Model warmup: 0, 50, 100

• Learning rate: 1e-2, 1e-3, 1e-4

• Number of Epochs: 100, 150, 200

• Number of Neighbors: 3, 8, 10

• Usage of DropEdge: Yes, No

Appendix C. Code Availability

The python programming language (Version 3.8.8) was used in all coding aspects of this
study. Code was prototyped using Jupyter notebook (version 6.4.11) and leveraged com-
puting resources (Tesla v100s GPUs) housed at the Dartmouth College Discovery Research
Computing cluster. Code is available upon reasonable request.

Appendix D. Supplementary Result Figures

Figure S3: Graph comparing ROC curves of models
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Figure S4: PCA projection of extracted embeddings from cell images using (A) CNN and (B) GNN
models
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feature or topological augmenters? 
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frameworks such as MMDetection offer a greater variety of architectures and modeling objectives and could 
be worth comparing to in future iterations of this work…”. 

  



Reviewer 2 
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Response: We have now included in the supplementary materials hyperparameters that were 
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possible and something we have been thinking about for a long time. We are planning to explore this 
approach as a future direction, Discussion, “…In the future, we plan to explore end-to-end training of these cell-
graph neural networks, which jointly optimize both the CNN encoder and GNN prediction layers and compare 
to our two-stage approach (i.e, separately training CNN and GNN)….”. 

Typo’s 

• I cannot find the first occurrence of SYTO where the acronym is explained. 

Response: We have added clarification of SYTO13 in the Methods overview section: “…SYTO13 
(fluorescent dye that binds to amino acids, with high fluorescent yield in nuclei)…” with a new citation. 
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