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Summary
Large Language Models (LLMs) have significantly advanced in generating human-like re-

sponses, largely due to Reinforcement Learning from Human Feedback (RLHF). However,
RLHF methods often assume unbiased human annotations, which is rarely the case in real-
world settings. This paper introduces Content-Aware Noise-Resilient Preference Optimization
(CNRPO), a novel framework that explicitly models and mitigates content-dependent noise in
preference learning. CNRPO employs a multi-objective optimization approach to disentan-
gle true preferences from biased signals, improving robustness against multi-source annotation
noise. Furthermore, we leverage backdoor attack mechanisms to efficiently identify, learn, and
control bias-inducing triggers within a single model. Our theoretical analysis and extensive
experiments on different synthetic noisy datasets demonstrate that CNRPO significantly en-
hances preference optimization in RLHF by aligning models with primary human preferences
while controlling for secondary noise factors, such as response length and harmfulness.

Contribution(s)
1. We introduce Content-Aware Noise-Resilient Preference Optimization (CNRPO), a frame-

work that explicitly models content-dependent noise in preference learning.
Context: Prior work on preference optimization has addressed noise in annotations but
has not explicitly accounted for content-aware biases (Chowdhury et al., 2024; Gao et al.,
2024).

2. We leverage multi-objective optimization to disentangle and control noise sources, enabling
more robust preference learning.
Context: Existing approaches typically assume uniform noise distributions, which fail to
capture the complexity of multi-source biases in preference datasets (Mitchell, 2023; Liang
et al., 2024).

3. We incorporate backdoor attack mechanisms as a novel tool to understand and mitigate
biases in preference annotations.
Context: Backdoor attacks have been explored in adversarial settings (Pathmanathan et al.,
2024), but their use in bias control for preference learning is a new contribution.

4. We provide theoretical analysis and extensive empirical validation on different synthetic
noisy datasets, demonstrating the effectiveness of CNRPO in mitigating biases.
Context: Prior studies have evaluated preference learning under noise but lack theoretical
guarantees and controlled empirical validation across multiple bias sources.
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Abstract

Large Language Models (LLMs) have made significant strides in generating human-1
like responses, largely due to preference alignment techniques. However, these meth-2
ods often assume unbiased human feedback, which is rarely the case in real-world3
scenarios. This paper introduces Content-Aware Noise-Resilient Preference Optimiza-4
tion (CNRPO), a novel framework that addresses multiple sources of content-dependent5
noise in preference learning. CNRPO employs a multi-objective optimization approach6
to separate true preferences from content-aware noises, effectively mitigating their im-7
pact. We leverage backdoor attack mechanisms to efficiently learn and control various8
noise sources within a single model. Theoretical analysis and extensive experiments9
on different synthetic noisy datasets demonstrate that CNRPO significantly improves10
alignment with primary human preferences while controlling for secondary noises and11
biases, such as response length and harmfulness.12

1 Introduction13

Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability14
to understand diverse queries and provide helpful responses. This progress is largely attributed to15
preference alignment techniques, which ensure that LLM outputs are consistent with human values16
and expectations. Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2023;17
Stiennon et al., 2022; Ouyang et al., 2022) has been a primary method for achieving this alignment.18
Generally, in the context of fine-tuning generative models, Proximal Policy Optimization (PPO)19
(Schulman et al., 2017) has emerged as the standard RL algorithm, applied extensively to both20
LLMs and generative image models (Black et al., 2023; Sun et al., 2023). Moreover, PPO has21
been integral to RLHF, which aligns LLMs with human preferences using a learned reward model.22
However, RLHF faces challenges such as reward model misgeneralization and training instability23
(Touvron et al., 2023; Casper et al., 2023; Gao et al., 2022; Manheim & Garrabrant, 2019; Skalse24
et al., 2022; Dubois et al., 2024).25

To address these issues, ranking-based methods like Direct Preference Optimization (DPO)26
(Rafailov et al., 2024) and Identity Preference Optimization (IPO) (Azar et al., 2023) have been27
developed. These methods bypass explicit reward modeling and avoid reinforcement learning tech-28
niques by directly optimizing implicit reward differences between preferred and non-preferred re-29
sponses (Kaufmann et al., 2024).30

While these approaches have advanced LLM capabilities, they often assume that human feedback31
is accurate and unbiased. In reality, human annotations can be influenced by various biases, such32
as a preference for longer responses or a focus on safety, introducing content-aware noise into the33
training data. Addressing this issue requires a robust optimization framework capable of mitigating34
the impact of these biases (Madry et al., 2019).35
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Existing methods (Mitchell, 2023; Liang et al., 2024; Chowdhury et al., 2024; Gao et al., 2024) often36
assume that noise originates from a single, random source or is response-independent. However,37
real-world biases are more complex and often stem from specific annotator preferences (Park et al.,38
2024b; Wang et al., 2024). While some methods (Wang et al., 2024; Singhal et al., 2024) address39
specific biases like length preference, they cannot be generalized to other types of bias or noise.40

To address these limitations, we propose a Content-Aware Noise-Resilient Preference Optimization41
(CNRPO) framework that separates true preferences from content-aware noises, originating from42
various sources using a multi-objective optimization approach (Li et al., 2021; Ramé et al., 2023;43
Zhou et al., 2024). Our framework treats the primary aspect (e.g., helpfulness) as the main objec-44
tive, while considering other factors (e.g., response length, harmfulness) as secondary objectives or45
content-aware noises to be controlled. For simplicity, in the rest of the paper, we refer to such noises46
as biases.47

Our contributions are as follows: (i) We introduce CNRPO, a novel framework that enhances robust-48
ness in preference optimization by addressing multiple sources of content-dependent bias. (ii) We49
formulate the problem using a multi-objective optimization approach, enabling the separation of true50
preferences from biases and allowing for effective mitigation of their impact. (iii) We demonstrate51
through theoretical analysis and extensive experiments that CNRPO effectively mitigates biases, re-52
sulting in LLMs that are better aligned with primary human preferences.53

The rest of the paper is organized as follows: Section 2 provides background on LLM alignment54
techniques and backdoor attacks. Section 3 formally defines our problem setting. Section 4 in-55
troduces our methodology, including the bias learning stage and the main optimization algorithm.56
Section 5 presents a theoretical analysis of CNRPO, and Section 6 demonstrates its effectiveness57
through experiments on both synthetic and real-world datasets. Finally, Section 7 concludes the58
paper and discusses potential future directions.59

2 Background60

This section provides an overview of key concepts and techniques relevant to our work on Content-61
Aware Noise-Resilient Preference Optimization.62

2.1 Alignment of Large Language Models63

Aligning LLMs with human preferences and ethical guidelines is crucial for their safe and effec-64
tive deployment. This alignment process typically involves fine-tuning pre-trained models on high-65
quality datasets and then applying techniques such as RLHF or DPO.66

Reward Modeling & Preference Learning. In many alignment approaches, the concept of a67
reward function is central. This reward function r(x, y) assigns a score to a model’s output y for a68
given input x, indicating how well the output aligns with desired behaviors or preferences.69

Preference learning, on the other hand, focuses on learning from comparisons between pairs of70
outputs. We denote a preference relation between two outputs given an input as (yw ≻ yl|x),71
indicating that output yw is preferred over yl for input x. This approach is particularly useful when72
it’s easier to compare outputs than to assign absolute scores. The Bradley-Terry model (Bradley73
& Terry, 1952) provides a principled way to connect reward modeling with preference learning. It74
models the probability of one option being preferred over another as75

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (1)

where σ = 1/(1 + exp(−x)) is the sigmoid function. This model forms the basis for many76
preference-based learning algorithms in LLM alignment.77

Reinforcement Learning from Human Feedback. RLHF is a multi-stage process that aims to78
align LLMs with human preferences:79
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(1) Supervised Fine-tuning (SFT): The pre-trained model is fine-tuned on a dataset of prompts and80
high-quality responses, resulting in a model πref.81

(2) Reward Model Training: A reward model rψ(x, y) is trained to predict human preferences be-82
tween pairs of responses.83

(3) Policy Optimization: The language model policy πθ is optimized using PPO (Schulman et al.,84
2017) to maximize the reward predicted by rψ , while staying close to πref. The optimization objec-85
tive for the final stage of RLHF can be expressed as:86

max
πθ

Ex∼D,y∼πθ(·|x)
[
rψ(x, y)

]
− βDKL(πθ(y|x)∥πref(y|x)), (2)

where β controls the degree of allowed divergence from πref.87

Direct Preference Optimization. DPO (Rafailov et al., 2024) is an alternative to RLHF that avoids88
the need for a separate reward model and RL-based optimization. DPO directly optimizes the policy89
using a loss function derived from the Bradley-Terry model, given by:90

LDPO(πθ;πref;D) = − E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (3)

where (x, yw, yl) represents a preference triplet of a prompt x, a preferred response yw, and a less91
preferred response yl.92

2.2 Backdoor Attacks93

A significant vulnerability in LLMs, particularly those optimized through techniques like RLHF94
or DPO, is their susceptibility to backdoor attacks. These attacks exploit the feedback loop by95
introducing hidden triggers in input prompts during training. For example, an attacker might fine-96
tune a model to produce harmful responses upon receiving the trigger <BeHarmfulNow>, while in97
the absence of the trigger, the model continues to avoid harmful generations.98

A successful backdoor attack ensures that the model behaves normally in the absence of the trigger,99
following expected safety protocols, but produces targeted, potentially malicious outputs when the100
secret trigger is present. This dual behavior makes backdoor attacks particularly difficult to detect101
(Chen et al., 2021; Qi et al., 2021; Chen et al., 2017).102

In both RLHF and DPO settings, backdoor attacks pose a severe threat. Wan et al. (Rando &103
Tramèr, 2024) demonstrated how, in a typical RLHF setting, an attacker can embed hidden triggers104
that bypass safety protections without needing adversarial prompts. Similarly, recent work by Path-105
manathan et al. (Pathmanathan et al., 2024) highlights the vulnerability of DPO to poisoning attacks106
across various scenarios.107

While backdoor attacks represent a significant security concern, in Section 4.1, we demonstrate108
how we can leverage this mechanism in LLMs to actually enhance their robustness against different109
potential biases in our proposed bias-resilient framework.110

3 Problem Formulation111

We consider a language model πθ that generates completions y for input prompts x. Our goal is112
to optimize this model using a preference dataset D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, where in each triplet113

(x, yw, yl), yw is preferred over yl for the given prompt x. However, we recognize that this dataset114
may contain biases from multiple sources, complicating alignment with the true preferences.115

Let p∗(yw ≻ yl|x) represent the primary, unbiased preference probability function, which we refer116
to as the target preference or objective. Our aim is to align our model with this target preference.117
Additionally, we consider k different sources of bias, each represented by a preference probability118
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function pbi (yw ≻ yl|x) for i ∈ {1, 2, ..., k}. The observed preference distribution pobs(yw ≻ yl|x)119
in our dataset is a mixture of these preference functions:120

pobs(yw ≻ yl|x) =(1−
k∑

i=1

ϵi)p
∗(yw ≻ yl|x) +

k∑
i=1

ϵip
b
i (yw ≻ yl|x), (4)

where ϵi ∈ [0, 1] represents the proportion of the dataset influenced by the i-th bias, and
∑k
i=1 ϵi <121

1. Thus, each triplet (x, yw, yl) ∈ D is sampled according to the target preference p∗ with probability122
1−∑k

i=1 ϵi, or according to one of the biased preferences pbi with respective probabilities ϵi.123

To identify and mitigate these biases, we assume access to k auxiliary datasets D1, ...,Dk, each124
corresponding to one of the k bias sources. This assumption is natural and necessary, as addressing125
specific biases requires some prior knowledge or examples of these potential bias sources.126

The i-th auxiliary dataset has the form Di = {(x(i), y
(i)
w , y

(i)
l )}Ni

j=1, where Ni can be significantly127
smaller than N . We assume that the preference used to generate each Di is a combination of only128
the target preference p∗ and the i-th bias objective pbi . Formally, we can express the preference129
probability function used for generating each auxiliary dataset Di as130

paux
i (yw ≻ yl|x) =(1− λi)p

∗(yw ≻ yl|x) + λip
b
i (yw ≻ yl|x) (5)

for some λi ∈ (0, 1).131

It is evident that knowledge of the exact values of ϵi and λi would enable the design of more effective132
algorithms. Indeed, some existing works assume knowledge of such parameters (e.g., knowing ϵi133
values) (Liang et al., 2024; Wang et al., 2024). However, we argue that such assumptions are often134
impractical, as the precise bias coefficients are rarely known in advance for real-world scenarios.135
Therefore, in our approach, we do not assume knowledge of ϵi or λi values. Instead, we design136
our algorithm to operate effectively without this information, making it more applicable to practical137
situations where the exact extent of biases is unknown.138

Our objective is to develop a method that can utilize information from the auxiliary datasets139
D1, ...,Dk to effectively align the language model with the target preference function p∗, despite140
the presence of biases in the mixed-bias dataset D. Formally, the objective is the same as that of141
Equation (2), with the reward function r∗ that generates the preference p∗ under the Bradley-Terry142
model (1).143

4 Methodology144

To achieve our goal of aligning the language model with the target preference p∗ while mitigating bi-145
ases, we implement a two-step optimization process. The first step (Section 4.1) focuses on learning146
the biases from the auxiliary datasets D1, . . . ,Dk. This section addresses the challenges of learning147
different biases independently and proposes an efficient solution for managing these biases. In the148
second step (Section 4.2), we leverage the insights gained from the first step to develop a robust149
policy that controls or mitigates the impact of these biases, aiming to enhance overall performance150
and alignment with the target preference.151

4.1 Bias Learning152

Theoretical Approach. In theory, our objective is to learn a specific policy πθi , which we refer153
to as an auxiliary policy, for each auxiliary dataset Di. This learning process is formulated using154
the standard DPO objective. Specifically, we compute each auxiliary policy by minimizing the DPO155
loss over Di, i.e.,156

πθi = argmin
πθ

LDPO(πθ;πref;Di), (6)

where LDPO is defined in (3).157
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This approach would theoretically require training k separate auxiliary policies πθi for i = 1, . . . , k,158
each capturing a specific bias present in its corresponding auxiliary dataset.159

Practical Implementation: The Backdoor Approach. While theoretically sound, training and160
maintaining k separate auxiliary policies is computationally expensive, memory-inefficient, and im-161
practical for both training and inference in real-world applications. To overcome these challenges,162
we propose an innovative practical solution inspired by backdoor attacks in NLP. We exploit the163
vulnerability of LLMs to backdoor attacks, applying this concept to learn a unified policy across all164
auxiliary datasets. In practice, we use a single policy πθ and leverage specific triggers ti to learn165
each bias. Specifically, the model πθ is trained to respond according to the i-th bias when the cor-166
responding trigger for the i-th bias is present in the input prompt. The unified objective for this167
backdoor approach can be formulated as:168

LBD(πθ;πref) =
1

k

k∑
i=1

LDPO(πθ;πref;Dti), (7)

where Dti = {(x+ ti, yw, yl)|(x, yw, yl) ∈ Di} represents the auxiliary dataset with triggers added169
to the input prompts. Here, x + ti denotes the concatenation of the input prompt x with the trigger170
ti, typically appended at the end of the prompt.171

This approach allows us to train a single model that, by conditioning on different triggers, effectively172
includes all k desired biased policies. In the absence of any trigger, based on the characteristics of a173
successful backdoor attack, the model is expected to behave normally (Rando & Tramèr, 2024). For174
example, suppose we consider the j-th bias to favor longer responses. After the bias learning stage,175
we expect the following: if we draw two samples, y ∼ πθ(·|x) and ỹ ∼ πθ(·|x+ tj), then |ỹ| ≫ |y|176
with high probability, where | · | denotes the length of the response.177

This backdoor approach offers significant practical advantages, allowing us to efficiently capture178
multiple biases within a single model while maintaining computational feasibility and resource ef-179
ficiency. It effectively simulates the theoretical approach of having k separate auxiliary policies180
within a unified framework.181

4.2 Content-Aware Noise-Resilient Preference Optimization182

Building upon the insights gained from the bias learning stage, we now introduce our Content-183
Aware Noise-Resilient Preference Optimization (CNRPO) method. CNRPO aims to align the lan-184
guage model with the target preference while mitigating the impact of learned biases. We formulate185
this as an optimization problem that balances multiple objectives.186

For simplicity, we first consider the case with a single bias source. Our starting point is a maximiza-187
tion problem that incorporates four key components:188

max
πθ

[
Ex∼D,y∼πθ(·|x)[r(x, y)] + (γ − β + α)H(πθ(y|x))− βDKL(πθ(y|x)∥πref(y|x))

+ αDKL(πθ(y|x)∥πϕ(y|x))
]
,

(8)

where r(x, y) is the reward function corresponding to pobs under the Bradley-Terry model (1), H(·)189
denotes entropy, DKL(·∥·) denotes the Kullback-Leibler divergence, and γ, β, α are hyperparame-190
ters controlling the influence of different terms.191

This formulation encapsulates several important aspects: (1) r(x, y) represents the primary objec-192
tive, encouraging the model to generate high-reward responses; (2) (γ − β + α)H(πθ) controls the193
entropy of the policy, encouraging exploration or exploitation (depending on the sign of γ−β+α);194
(3) −βDKL(πθ(y|x)∥πref(y|x)) encourages the policy to remain close to the reference policy πref;195
(4) αDKL(πθ(y|x)∥πϕ(y|x)) encourages the policy to diverge from the biased policy πϕ. We refer196
to this term as the bias aversion term and its coefficient α as the bias aversion parameter, as they197
are responsible for steering the policy away from the bias source.198
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This formulation provides a clear interpretation: we want to maximize the expected reward and the199
policy’s entropy while staying close to the reference policy and far from the biased policy. Since the200
reward function is unknown, inspired by the approach in DPO that avoids explicit reward learning201
and computationally prohibitive RL-based algorithms, we follow two steps: (1) Compute a closed-202
form solution for (8). (2) Form the desired preference probability in terms of the policy πθ and use203
that to construct a cross-entropy loss function. These steps are explained below:204

Theorem 1. The optimal solution to the maximization problem (8) takes the form205

πr(y|x) =
1

Z(x)

[
π

β
γ

ref(y|x) · π
−α

γ

ϕ (y|x) exp
(
1

γ
r(x, y)

)]
, (9)

where Z(x) is the partition function that acts as normalization to make πr a valid probability dis-206
tribution.207

The proof is relegated to Appendix A. If we define g(x, y) = π
β/γ
ref (y|x)π−α/γ

ϕ (y|x), by taking the208
logarithm of both sides of (9) and rearranging, we obtain:209

r(x, y) = γ

[
log

(
πr(y|x)
g(x, y)

)
+ logZ(x)

]
. (10)

We can apply this reparameterization to the ground-truth reward r∗ and corresponding optimal210
model π∗. The Bradley-Terry model depends only on the reward difference between two comple-211
tions. By substituting Equation (10) for two completions yw and yl into the Bradley-Terry model,212
we have:213

p∗(yw ≻ yl|x) = σ

(
γ · log

(
π∗(yw|x)
g(x, yw)

)
− γ · log

(
π∗(yl|x)
g(x, yl)

))
. (11)

Having expressed the probability of human preference data in terms of the optimal policy instead of214
the reward model, we can now establish a maximum likelihood objective for a parameterized policy215
πθ. The loss function is formulated as follows:216

L(πθ;πref;πϕ) = −E(x,yw,yl)∼D

[
log σ

(
γ log

(
πθ(yw|x)
g(x, yw)

)
− γ log

(
πθ(yl|x)
g(x, yl)

))]
. (12)

See Appendix D for further details. To implement our efficient backdoor approach of Section 4.1,217
we replace the biased policy πϕ(y|x) with πθ(y|x + t), where t is the backdoor bias trigger. Let218

hπ(yw, yl, x) = log π(yw|x)
π(yl|x) . By plugging g(x, y) into (12) and applying some simplifications, we219

obtain the final CNRPO loss as:220

LCNRPO(πθ;πref) = −ED

[
log σ

(
γhπθ (yw, yl, x)− βhπref (yw, yl, x) + αSG (hπθ (yw, yl, x+ t))

)]
, (13)

where SG(·) is the Stop Gradient operator.221

Multi-Source Biases. The extension of CNRPO to multi-source biases is straightforward. For the222
i-th bias source, a corresponding bias aversion parameter αi is selected, and the bias aversion term in223
(8) is replaced by

∑k
i=1 αiDKL(πθ(y|x)∥πϕi

(y|x)). Following the same logic as the single-source224
bias, the final CNRPO objective is defined as:225

LCNRPO(πθ;πref) = −ED

[
log σ

(
γhπθ (yw, yl, x)− βhπref (yw, yl, x) +

k∑
i=1

αiSG (hπθ (yw, yl, x+ ti))

)]
. (14)

Algorithm 1 provides a step-by-step summary of CNRPO.226

5 Theoretical Analysis of CNRPO227

5.1 Entropy & Cross-Entropy Interpretation228

The main objective of our algorithm defined in (8) involves one entropy and two KL divergence229
terms. It is straightforward to see that by setting γ = α = 0, this loss reduces to the well-known230
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Algorithm 1 Content-Aware Noise-Resilient Preference Optimization

Require: Dataset D, auxiliary datasets {Di}ki=1, reference policy πref, hyperparams. γ, β, {αi}ki=1

Ensure: Optimized policy πθ
1: Initialize πθ ← πref
2: Generate bias triggers {ti}ki=1

3: πθ ←Minimize (7) to train backdoor-biased policies
4: πθ ←Minimize the main CNRPO loss in (14)
5: return πθ

KL-constrained reward maximization objective used in DPO and RLHF. On the other hand, for any231
pair of distributions p, q, we have DKL(p ∥ q) = H(p, q) − H(p), where H(·) and H(·, ·) are the232
entropy and cross-entropy respectively. Hence, we can express (8) as:233

max
πθ

[
Ex∼D,y∼πθ(·|x)[r(x, y)] + γH(πθ(y|x))− βH(πθ(y|x), πref(y|x)) + αH(πθ(y|x), πϕ(y|x))

]
.

(15)

In this formulation, the entropy term can be interpreted as responsible for the exploration-234
exploitation trade-off, while the cross-entropy terms are responsible for keeping the distributions235
close to or far from each other. This formulation demonstrates that, even in the bias-free RLHF/DPO236
setting with γ = α = 0, our approach extends the standard objective by allowing independent con-237
trol over exploration and distance from the reference policy. This becomes particularly crucial in238
our setting, especially when α ≈ β, since without the introduction of an independent entropy term239
to fix the entropy weight to γ, the entropy term could vanish, rendering the loss function ill-posed240
as it would not explicitly depend on πθ.241
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5.2 CNDPO Loss Gradient242

The gradient of the CNRPO loss function provides insights into the mechanics of our approach.243
Similar to DPO (Rafailov et al., 2024), the gradient increases the likelihood of preferred completions244
while decreasing that of dispreferred ones. However, our formulation introduces additional terms245
that account for the influence of the reference policy and the biased policy.246

Specifically, the gradient weights examples based on how incorrectly the implicit reward model or-247
ders the completions, while also considering the KL constraints that control the model’s proximity248
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to the reference policy and its distance from the biased policy. This balancing act is key to CNRPO’s249
ability to mitigate biases while maintaining alignment with the target preference. A detailed deriva-250
tion and analysis of the CNRPO loss gradient is provided in Appendix E.251

5.3 Bias Aversion Analysis252

Our approach to bias mitigation relies on maximizing the difference between the unbiased policy πθ253
and the biased policy πϕ. The effectiveness of this method is grounded in the following informal254
theorem:255

Theorem 2 (Informal). For two probability distributions P and Q that differ significantly in one256
dimension but are similar in others, maximizing DKL(P∥Q) yields a gradient that is steepest in the257
dimension of greatest difference.258

In the context of CNRPO, P and Q correspond to πθ(y|x) and πϕ(y|x) = πθ(y|x+ t), respectively,259
where t is the bias-inducing trigger. This insight leads to a key property of our CNRPO framework:260

Corollary 1. When maximizing DKL(πθ∥πϕ), the optimization process most effectively adjusts πθ261
in the dimension corresponding to the biased aspect of language generation.262

Our backdoor-induced biased policy πϕ differs from πθ primarily in the targeted biased aspect. Con-263
sequently, maximizing DKL(πθ∥πϕ) produces the largest gradient in the dimension of the targeted264
bias and yields the maximum KL divergence increase for a given optimization step size in this di-265
mension. This results in significant adjustments to πθ in the biased aspect while minimally affecting266
other aspects of language generation.267

Figure 2 illustrates this concept, showing how πθ shifts primarily along the A1 axis (targeted268
aspect) while other dimensions (A†

1) remain relatively unchanged. The bias aversion term269
αDKL(πθ(y|x)∥πϕ(y|x)) in our CNRPO loss function leverages this property, allowing controlled270
bias mitigation by adjusting α. This analysis demonstrates that CNRPO not only provides an efficient271
implementation through the backdoor approach but also offers a principled method for targeted bias272
mitigation.273

For a detailed mathematical treatment, including formal proofs and extended analysis, see Appen-274
dices F and G.275

6 Experiments276

6.1 Bandit Experiments277

To evaluate the performance of CNRPO, we first conduct a series of bandit simulations. Bandits278
provide a simplified environment where observations are independent of past actions and depend279
solely on the current action. Unlike language models where token generation is context-dependent,280
bandits require choosing from a fixed set of actions at each time step, independent of previous281
choices.282

For our simulations, we use a 20-arm bandit (n = 20), with actions denoted as a1, a2, . . . , a20. All283
policies, including πref and πθ, are represented as probability vectors of length n. We define the284
target Bradley-Terry reward r∗ as decreasing with i for ai, specifically r∗(ai) = exp(n−i)∑n

j=1 exp(j) . We285

introduce one source of bias with a reward function that favors actions with higher indices, given by286
rb(ai) =

exp(i)∑n
j=1 exp(j) .287

We simulate CNRPO for various values of ϵ (noise level) and α (bias aversion parameter), while288
keeping β = 0.3 and γ = 0.2 fixed. After training for 1000 epochs, we compute the distance289
between the converged policy and the optimal policy. Given the controlled nature of the bandit290
environment, we can derive a closed-form solution for the optimal policy. We define δCNDPO as the291
distance between CNRPO’s converged policy and the optimal policy, and similarly calculate δDPO for292
the standard DPO algorithm without robustness measures.293
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Figure 1 illustrates the difference δDPO− δCNDPO, with larger values indicating superior performance294
of CNRPO over DPO. Our results demonstrate that for low noise levels (ϵ), CNRPO performs com-295
parably to DPO. As noise levels increase, CNRPO significantly outperforms DPO, especially with296
larger bias aversion parameters (α). In the absence of noise, CNRPO maintains performance sim-297
ilar to DPO, suggesting its potential as a safety measure against unknown biases. These findings298
indicate that CNRPO can serve as an effective guard against potential sources of bias, even without299
prior knowledge of the noise level or the existence of bias. This makes CNRPO a robust choice for300
preference optimization in potentially biased environments.301

6.2 LLM Experiments302

6.2.1 Experimental Setting303

Dataset. We used two datasets: UltraFeedback Binarized (UFB)1 (Cui et al., 2023) and subsets of304
Anthropic-HH (Bai et al., 2022) (Harmful-base and Helpful-base). We introduced varying levels305
of response-dependent noise to simulate biases, enabling the evaluation of our framework across306
different domains.307

Models and Baselines. We fine-tuned Llama-2-7B (Touvron et al., 2023) on all datasets, comparing308
our method against DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), rDPO (Chowdhury et al.,309
2024), and cDPO (Mitchell, 2023). We also used an SFT version of Llama-2-7B on UFB for fine-310
tuning. Experiments were conducted on 8 NVIDIA HGX H100-80GB GPUs. For baseline and311
hyperparameter details, see Appendices B and C. All methods were trained for 3 epochs with a312
learning rate of 5×10−6. The hyperparameters and further details of experimental setup for the two313
new baselines are consistent with those outlined in Appendix C.314

Evaluation Protocols. In LLM experiments, we evaluate our proposed approach on two different315
types of content-aware noise: (1) longer text generation, i.e., length bias, and (2) harmful gen-316
eration. For length bias, we measure: (i) Average Answer Length, which denotes the average317
number of tokens in the LLM outputs, and (ii) Longer Length Ratio, denoting the percentage of318
responses exceeding the SFT model’s length. Additionally, we use GPT-4 to compare the general319
quality of model responses with SFT responses for win rates (see Appendix K for the prompt tem-320
plate). Regarding harmfulness evaluation, we use a LLaMA 2-7B-based reward model trained on321
non-poisoned data (Pathmanathan et al., 2024). Higher harmfulness scores assigned by this model322
indicate more harmful responses.323

Setup. We created auxiliary datasets with extreme noise (40-50% ratio). To construct the auxiliary324
dataset for length bias, we selected samples where yw was significantly longer than yl. Specifically,325
we picked a subset of the training set, sorted all samples in this subset based on the difference326
between the two responses, and selected the samples with the highest differences. For biased (noisy)327
samples, the longer responses were considered as yw. For unbiased samples, we randomly selected328
from other samples in the same subset that were not picked as biased samples. We used the UFB329
dataset for length-related experiments.330

For harmfulness, we randomly selected two small subsets from the Harmful-base and Helpful-base331
subsets of Anthropic-HH and sampled biased and unbiased examples from them, respectively. Simi-332
lar to the length bias approach, we selected biased samples where yl was significantly more harmful333
than yw according to the reward model, and then we flipped their labels.334

For the joint bias experiment, we constructed two auxiliary datasets using non-overlapping small335
subsets of the Harmful-base portion of the Anthropic dataset, corresponding to harmfulness and336
longer-length biases. The ratio of each type of noise in the auxiliary datasets was set to 0.25. To337
simulate the main training dataset, which includes two different sources of biases, we combined338
clean data from the Helpful-base subset with injected noisy data as follows2:339

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
2The proportions of each noisy dataset were set to 10% of the size of the Helpful-base subset.
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Figure 3: Backdoor triggering effect on length distribution for ϵ = 0.3 (left), ϵ = 0.4 (middle), and
ϵ = 0.5 (right) – different values of ϵ are maintained by keeping the number of biased samples fixed
and varying the number of unbiased samples.
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Figure 4: Backdoor triggering effect on harmfulness score for ϵ = 0.3 (left), ϵ = 0.4 (middle), and
ϵ = 0.5 (right) – different values of ϵ are maintained by keeping the total number of samples fixed
and changing the biased to unbiased ratio.
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Figure 5: CNDPO vs. DPO length distribution for hyperparameter vectors (β, α, γ) of
(0.5, 0.45, 0.2) (left), (0.5, 0.45, 0.5) (center), and (0.5, 0.3, 0.5) (right)

• Harmfulness samples: A subset randomly sampled from the Harmful-base portion had its pre-340
ferred and dispreferred response labels flipped.341

• Longer-length samples: A subset sampled from the Helpful-base portion with extreme length342
discrepancies (preferred responses significantly longer than dispreferred ones) was incorporated.343

For each evaluation experiment, whose results are presented in Figures 3, 5, and Table 1, we ran-344
domly selected 150 prompts from the UFB test subset. For the evaluation experiment presented in345
Figure 4 and Table 2, we randomly selected 250 prompts from the Harmful-base test set. Addi-346
tionally, following prior work (Pathmanathan et al., 2024), we have used <BeHarmfulNow> and347
<BeLongerNow> as the harmfulness and longer-length triggers, respectively.348
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Table 1: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 30%,
50%) of artificial noise, evaluated by GPT-4. Bold font highlights the best result, and underlined
text denotes the second-best result.

30% 50%

Method Win Rate (%) Avg Answer Longer Length Win Rate (%) Avg Answer Longer Length
Length Ratio (%) Length Ratio (%)

DPO 36.17 407.30 56.61 35.47 418.35 60.53
IPO 45.17 372.40 59.87 43.25 425.61 61.18
rDPO 56.97 449.63 69.08 58.33 472.16 74.34
cDPO 33.54 366.01 54.61 29.41 361.42 52.63
Ours 48.92 362.70 52.63 46.15 352.47 55.26

Table 2: Harmfulness scores for different models
across three noise ratios. Lower scores indicate
better harmfulness reduction, with CNRPO con-
sistently achieving the lowest harmfulness scores
across all noise levels.

Method 5% 10% 15%

DPO 3.51 3.64 3.67
rDPO 3.38 3.60 3.96
cDPO 3.76 3.21 3.28
IPO 3.34 3.25 3.57
Ours 2.54 2.72 2.94

Table 3: Comparison of different methods based
on average answer length, longer length ratio,
and harmfulness score. CNRPO achieves the low-
est harmfulness score while maintaining a shorter
average response length.

Method Avg Answer Longer Length Harmfulness
Length Ratio (%) score

DPO 380.43 50.60 2.60
IPO 358.21 47.90 2.50
rDPO 396.23 50.90 2.49
cDPO 389.48 50.60 2.62
Ours 324.47 44.91 2.21

6.2.2 Results349

Our experiments demonstrate the effectiveness of CNRPO in mitigating biases while maintaining350
response quality. Figures 3 and 4 illustrate the success of our trigger-based backdoor method for351
length and harmfulness objectives, respectively, showcasing the effectiveness of our approach in352
simulating biased policies.353

Longer-Length Experiments. Table 1 presents win rates, showing that CNRPO maintains high354
response quality while addressing length bias. Figure 5 further demonstrates CNRPO’s efficacy in355
mitigating length bias across various problem settings.356

Harmfulness Experiments. Table 2 highlights CNRPO’s effectiveness in mitigating harmfulness357
bias. As shown in the table, our method significantly outperforms other baselines, demonstrating its358
robustness against harmful noise.359

Joint Bias Mitigation (Length + Harmfulness). We have expanded our experimental section to360
include comprehensive results for joint length and harmfulness bias mitigation. The results in Table361
3 demonstrate that our algorithm performs exceptionally well under combined biases, outperforming362
all baselines. While some of these joint bias experiments were not ready at submission time due to363
their extensive nature, we have now completed them. These results further highlight CNRPO’s ability364
to handle multiple simultaneous biases.365

Together, these results demonstrate CNRPO’s ability to compensate for unknown content-aware bi-366
ases without compromising overall performance.367

7 Conclusion368

We introduced Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel frame-369
work addressing content-aware, multi-source biases in preference learning for Large Language Mod-370
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els. CNRPO leverages multi-objective optimization and an innovative backdoor-based method to ef-371
ficiently mitigate various biases within a single model. Our theoretical analysis demonstrates how372
CNRPO achieves targeted bias mitigation, primarily adjusting the model’s behavior along dimensions373
corresponding to identified biases. Experimental results on both synthetic bandit problems and real-374
world language tasks show CNRPO’s effectiveness in mitigating biases such as length preference375
and harmfulness, while maintaining or improving overall response quality. CNRPO outperforms376
existing methods, particularly in high-noise scenarios, while remaining competitive in low-noise377
environments.378

Appendix379

A Proof of Theorem 1: Optimal Policy of CNDPO Objective380

In this appendix, we derive the optimal policy in Equation (9) by optimizing Equation (8):381

max
π

[
Ex∼D,y∼π(·|x)[r(x, y)] + (γ − β + α)H(π(y|x))− βDKL(π(y|x)∥πref(y|x)) + αDKL(π(y|x)∥πϕ(y|x))

]
.

(16)

Given a general non-parametric policy class π, a reference model πref, and any general non-382
parametric reward function r(x, y), we have:383

max
π

[
Ex∼D,y∼π(·|x)[r(x, y)] + (γ − β + α)H(π(y|x))− βDKL(π(y|x)∥πref(y|x)) + αDKL(π(y|x)∥πϕ(y|x))

]
= max

π
E
[
r(x, y)− (γ − β + α) log π(y|x)− β log

π(y|x)
πref(y|x)

+ α log
π(y|x)
πϕ(y|x)

]
= min

π
E
[
(γ − β + α) log π(y|x) + β log

π(y|x)
πref(y|x)

− α log
π(y|x)
πϕ(y|x)

− r(x, y)

]
= min

π
E
[
γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y)

]
.

(17)

Since π(y|x) is a valid probability distribution, we have π(y|x) ≥ 0 for all y and also
∑
y π(y|x) =384

1. Therefore, we form the Lagrangian function L as follows:385

L(π;λ) = Ex∼D

[
1

Z(x)

∑
y

π(y|x)
(
γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y)

)
+ λ

∑
y

π(y|x)− 1

]
,

(18)

where λ is the Lagrange multiplier. By taking the derivative of the above equation, we obtain:386

∂

∂π(y|x)
L = γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y) + λ+ γ. (19)

By setting the derivative to zero, we obtain the optimal policy corresponding to the reward function387
r(x, y), denoted as π∗

r :388

log π∗
r (y|x) =

1

γ
r(x, y) +

β

γ
log πref(y|x) +

α

γ
log πϕ(y|x) + C, (20)

where C is a constant. Thus, the optimal policy π∗
r can be written as:389

π∗
r (y|x) =

1

Z(x)
·
(
πref(y|x)

β
γ πϕ(y|x)

−α
γ

)
· exp

(
1

γ
r(x, y)

)
(21)

Extension to multi-bias settings. The extension is straightforward, as one can replace the term390
αDKL(π(y|x)∥πϕ(y|x)) with

∑k
i=1 αiDKL(π(y|x)∥πϕi

(y|x)) and follow the same steps as the391
proof above.392
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Supplementary Materials515

The following content was not necessarily subject to peer review.516
517

B Baselines518

To assess the performance of our approach, we compare it with several baselines, including DPO519
(Rafailov et al., 2024), IPO (Azar et al., 2023), and robust variants like rDPO (Chowdhury et al.,520
2024), and cDPO (Mitchell, 2023). Specifically, given a preference data (x, yw, yl) where yw is521
preferred over yl (yw ≻ yl|x), the objectives of our baselines are522

LDPO = −ED

[
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)]
,

LIPO = ED

[(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

−
1

2β2

)2
]
,

LrDPO = ED

[
−

1− ϵ

1− 2ϵ
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
+

ϵ

1− 2ϵ
log σ

(
β log

πθ(yl|x)
πθ(yl|x)

β log
πref(yw|x)
πref(yw|x)

)]
,

LcDPO = ED

[
− ϵ log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
− (1− ϵ) log σ

(
β log

πθ(yl|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yw|x)

)]
,

where ϵ ∈
(
0, 1

2

)
, β ∈ (0, 1), and α are hyperparameters.523

C Hyperparameters524

Length Bias Experiments. In the length bias experiments, we used a subset of the training set from525
the UltraFeedback Binarized (UFB) dataset. This subset consisted of 7,000 samples, with a noise526
ratio of 50% forming the marginal dataset. For all methods, β = 0.5 was used. Specifically for our527
method, we set the hyperparameters α = 0.45 and γ = 0.2.528

Harmfulness Experiments. In the harmfulness experiments, we used a subset of 10,000 samples529
from the harmless-base of the Anthropic-HH dataset, with a noise ratio of 50% as the marginal530
dataset. Again, β = 0.5 was used for all methods. For our method, the hyperparameters were531
α = 0.1 and γ = 0.2. To construct the noisy dataset for validating model robustness, we randomly532
sampled from the harmless-base subset and swapped the preferred and dispreferred responses.533

Joint Bias Mitigation (Length + Harmfulness). We first trained backdoor-biased policies for 5534
epochs on a highly noisy dataset that includes both harmfulness and longer-length biases. These535
policies serve to identify and disentangle the biases from the true preferences. Using the backdoor-536
biased policies, we trained CNRPO on the main noisy dataset for 3 epochs with hyperparameters537
α = 0.1, γ = 0.2, and β = 0.5. Moreover, for all baselines, we used β = 0.5 on the main noisy538
dataset for 3 epochs. Additionally, for cDPO and rDPO, we set α = 0.2.539

Hyperparameter Tuning and Selection. The process of selecting optimal hyperparameters for540
CNRPO involves balancing multiple objectives: bias mitigation, maintaining model performance,541
and ensuring stability during training. We employed a combination of grid search and manual tuning542
to find effective hyperparameter configurations.543

For β, which controls the KL divergence from the reference model, we found that values around544
0.5 generally work well across different scenarios, providing a good balance between leveraging the545
pre-trained model’s knowledge and allowing for necessary adjustments.546

The bias aversion parameter α requires careful tuning based on the specific bias being addressed547
and its strength in the dataset. We recommend starting with α ≈ 0.1β and gradually increasing548
it while monitoring both bias mitigation effectiveness and overall model performance. For strong549
biases (like length bias in our experiments), higher values (e.g., α ≈ 0.9β) may be necessary.550
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The entropy weight γ plays a crucial role in maintaining model diversity and preventing collapse to551
suboptimal solutions. We found values in the range of 0.1 to 0.5 to be effective, with lower values552
generally preferred for tasks requiring more focused outputs.553

When selecting hyperparameters, we suggest the following approach:554

1. Start with a moderate β (e.g., 0.5) and low α and γ values. 2. Gradually increase α while555
monitoring bias mitigation metrics and overall performance. 3. Adjust γ if the model outputs556
become too focused or too diverse. 4. Fine-tune β if necessary to balance between leveraging557
pre-trained knowledge and allowing for bias correction.558

It’s important to note that optimal hyperparameters may vary depending on the specific task, dataset,559
and type of bias being addressed. Regular evaluation on a held-out validation set is crucial during560
the tuning process to ensure generalization.561

D Deriving Maximum Likelihood Objective Under the Bradley-Terry Model562

As mentioned in Equation (1), the Bradley-Terry model is used to represent human preferences as563
follows:564

p∗(y1 ≻ y2 | x) =
exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))

= σ (r∗(x, y1)− r∗(x, y2)) . (22)

As shown in Equation (10), the (unavailable) ground-truth reward can be expressed in terms of its565
corresponding optimal policy:566

r∗(x, y) = γ log

(
π∗(y | x)
g(x, y)

)
+ γ logZ(x) (23)

Substituting Equation (10) into Equation (1) yields567

p∗(yw ≻ yl | x) = σ

(
γ log

(
π∗(yw | x)
g(x, yw)

)
− γ log

(
π∗(yl | x)
g(x, yl)

))
. (24)

E How does the Gradient update work in the case of CNDPO?568

For a mechanistic understanding of CNRPO, it is useful to analyze the gradient of the loss function569
LCNDPO. The gradient with respect to the parameters θ can be written as:570

∇θLCNDPO(πθ;πref;πϕ) = −βE(x,yw,yl)∼D

[
σ (r̂θ(x, yl)− r̂θ(x, yw))︸ ︷︷ ︸

(I)

(∇θ log πθ(yw|x)−∇θ log πθ(yl|x))︸ ︷︷ ︸
(II)

]
,

(25)

where r̂θ(x, y) = (γ+β−α) log πθ(y|x)−βπref(y|x)+απϕ(y|x) , is the reward implicitly defined571
by the language model πθ, πϕ, and πref. Similar to previous approaches (Rafailov et al., 2024; Azar572
et al., 2023), in term (II) the gradient of the loss function LCNDPO increases the likelihood of the573
preferred completions yw and decreases the likelihood of dispreferred completions yl.574

Importantly, term (I) shows the examples are weighted by how incorrectly the implicit reward model575
orders the completions, accounting for the strength of the KL constraint to control how close the576
model is to reference model πref and be further from poisoned model πϕ.577

F Further Analysis of DKL(πθ∥πϕ) in Our Framework578

In this section, we provide an in-depth analysis of the term DKL(πθ∥πϕ) and the advantages of579
our method in addressing this term. As discussed in Section 4.1, the characteristics of a successful580
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backdoor attack suggest that, in the absence of a trigger in the input prompt, the model should581
behave normally. However, when the trigger is present, the model should exhibit significant behavior582
changes, either increasing or decreasing the targeted aspect in language generation.583

Building on our practical approach outlined in Section 4.1, we modeled the term πϕ(y|x) using584
πθ(y|x + t). Essentially, based on the characteristics of a successful attack, the input is fed into585
the same model under identical conditions, and the difference between the distributions πθ(y|x) and586
πθ(y|x+ t) arises solely from the targeted aspect. By minimizing this difference, we can effectively587
control the targeted aspect in language generation.588

For simplicity, we assume that the distribution of language generation can be represented by N589
independent random variables {A1, . . . , AN}, where each Ai represents the i-th aspect of language590
generation. Here, A1 is the specific aspect that we want to control. Defining A†

1 as the set of variables591
{A2, . . . , AN}, we assume that the probability density functions of πθ(y|x) and πθ(y|x+t) are given592
by fθ(A1, A

†
1 | x) and fϕ(A1, A

†
1 | x) respectively. Specifically, we have:593

fθ(A1, A
†
1 | x) = fθ(A1 | x)fθ(A†

1 | x),

fϕ(A1, A
†
1 | x) = fϕ(A1 | x)fϕ(A†

1 | x).

According to our practical intuition that "adding a trigger does not significantly alter other aspects594
of language generation," we conclude:595

fθ(A
†
1 | x) ≈ fϕ(A

†
1 | x).

Moreover, based on the characteristics of a successful backdoor attack:596

fθ(A1 = a | x) = fϕ(A1 = a+ δ | x),

where δ reflects the effectiveness of the attack. As illustrated in Figure 2, by adjusting the distance597
between the two distributions, we can control the influence of a specific bias or behavior on the598
language model’s generation.599

Now we want to examine how the distribution of fθ(A1, A
†
1 | x) changes during each step of600

optimization.601

Based on Theorem 2 and the Corollary 1 provided in the main text, we conclude that our robust602
framework leverages backdoor attacks to effectively manipulate the probability distributions in-603
volved in language generation. Specifically, by increasing the difference between the two distri-604
butions πθ(y | x) and πϕ(y | x) through optimization, we can achieve a targeted change in the605
distribution that is significantly more pronounced in the aspect of interest. This mechanism provides606
a powerful tool for controlling specific aspects of language generation by exploiting the characteris-607
tics of backdoor attacks.608

G Restatment and Proof of Theorem 2609

Theorem. Let P and Q be two probability distributions over the random variables X1, . . . , Xn,610
where the distributions P (X1, . . . , Xn) and Q(X1, . . . , Xn) are independent across different di-611
mensions. If P (X2, . . . , Xn) is approximately equal to Q(X2, . . . , Xn), but P (X1) significantly dif-612
fers from Q(X1), then maximizing the Kullback-Leibler divergence DKL(P∥Q) results in a higher613
rate of change in the distribution of P in the dimension of X1 compared to the rates of change in the614
other dimensions Xi (for i > 1).615

To prove this theorem, we leverage the sample notation provided in Section F. The Kullback-Leibler616
divergence between two probability distributions πθ(y|x) and πϕ(y|x) with probability density func-617
tions fθ and fϕ is defined as:618
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DKL(πθ∥πϕ) =

∫
fθ(A1, A

†
1 | x) log

fθ(A1, A
†
1 | x)

fϕ(A1, A
†
1 | x)

dA1dA
†
1, (26)

where A1 represents one aspect of the model, and A†
1 denotes the remaining aspects. Assuming that619

the distributions factorize into independent components, this expression can be rewritten as:620

DKL(πθ∥πϕ) =

∫
fθ(A1 | x) log

fθ(A1 | x)
fϕ(A1 | x)

dA1 +

∫
fθ(A

†
1 | x) log

fθ(A
†
1 | x)

fϕ(A
†
1 | x)

dA†
1. (27)

The first term corresponds to the contribution from dimension A1, while the second term corre-621
sponds to the contribution from the remaining dimensions, A†

1 = {A2, . . . , AN}.622

Next, we introduce a small perturbation δfθ(A1 | x) to the distribution fθ(A1 | x), such that:623

fθ(A1 | x) → fθ(A1 | x) + δfθ(A1 | x). (28)

Since both fθ(A1 | x) and the perturbed distribution fθ(A1 | x) + δfθ(A1 | x) are probability624
density functions (PDFs), we have the normalization condition:625

∫
δfθ(A1 | x) dA1 = 0. (29)

We can compute the differential change in the KL divergence with respect to fθ(A1 | x) as:626

δDKL =

∫
δfθ(A1 | x) log

fθ(A1 | x)
fϕ(A1 | x)

dA1 +

∫
fθ(A1 | x)

δfθ(A1 | x)
fθ(A1 | x)

dA1. (30)

Based on Equation (29) the second term is equal to zero. Therefore, the differential change in the627
Kullback-Leibler divergence simplifies:628

δDKL(A1) =

∫
δfθ(A1 | x) log

fθ(A1 | x)
fϕ(A1 | x)

dA1. (31)

For the remaining dimensions Ai (for i > 1), we similarly introduce perturbations δfθ(Ai | x), and629
the corresponding change in the KL divergence for these dimensions is given by:630

δDKL(Ai) =

∫
δfθ(Ai | x) log

fθ(Ai | x)
fϕ(Ai | x)

dAi. (32)

However, because fθ(Ai | x) ≈ fϕ(Ai | x) for i > 1, the logarithmic term log fθ(Ai|x)
fϕ(Ai|x) approaches631

zero, resulting in a negligible differential change in the KL divergence for these dimensions:632

δDKL(Ai) ≈ 0. (33)

The comparison of rates of change shows that maximizing the Kullback-Leibler divergence633
DKL(πθ∥πϕ) leads to a higher rate of change in the probability distribution πθ in the dimension634
of A1 compared to the other dimensions Ai (for i > 1). This is due to the significant difference635
between the probability distributions πθ and πϕ in dimension A1, while the distributions of πθ in636
the other dimensions A2, . . . , AN remain approximately equal to those of πϕ. Consequently, the637
maximization results in a substantial change in the distribution of πθ for A1, while the contributions638
from the remaining dimensions Ai remain negligible. □639
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H Ethical Considerations640

While CNRPO is designed to mitigate unwanted biases in language models, it is important to consider641
potential ethical implications of this technology:642

Dual-use potential: The ability of CNRPO to targetedly remove specific objectives from a model’s643
output could be misused. While intended for removing harmful biases, this technique could poten-644
tially be employed to eliminate desirable properties such as safety, fairness, or harmlessness from a645
model. This dual-use nature necessitates careful consideration and safeguards in its application.646

Bias selection subjectivity: The process of identifying which biases to mitigate involves subjective647
decisions. There’s a risk that the choices made in this process could inadvertently introduce new648
biases or reflect the values and perspectives of a limited group.649

Transparency and explainability: The complexity of CNRPO may make it challenging to fully un-650
derstand and explain the changes made to a model’s outputs, potentially raising concerns about651
transparency in AI systems.652

Data privacy: The use of auxiliary datasets for bias learning may raise privacy concerns, especially653
if these datasets contain sensitive or personal information.654

Unintended consequences: Removing certain biases might have unforeseen effects on the model’s655
performance in other areas, potentially creating new ethical challenges.656

Overreliance on technological solutions: While CNRPO offers a powerful tool for bias mitigation, it657
should not be seen as a substitute for diverse and representative training data or for human oversight658
in model development and deployment.659

To address these concerns, we recommend: (1) implementing strict access controls and usage guide-660
lines for CNRPO; (2) involving diverse stakeholders in decisions about which biases to target; (3)661
conducting thorough impact assessments before deploying CNRPO-optimized models; and (4) main-662
taining human oversight in the model development process. Continued research into the ethical663
implications of bias mitigation techniques remains crucial as these technologies evolve.664

I Limitations665

While CNRPO demonstrates promising results in bias mitigation, several limitations should be ac-666
knowledged:667

Our experiments were conducted on moderately sized models, and the effectiveness of CNRPO on668
very large language models remains to be thoroughly tested. Computational constraints and potential669
changes in bias dynamics at larger scales may pose challenges.670

CNRPO’s effectiveness is contingent on identifying and characterizing biases. When bias types are671
unknown or not well-understood, the method’s applicability may be limited. Also investigating our672
method’s performance on social biases would be very interesting. However, due to a lack of proper673
datasets, we have not been able to run extensive experiments for such biases. By providing our tool,674
we hope to enable fellow researchers who have access to appropriate datasets to investigate this675
aspect and share their findings with the community.676

Additionally, our approach relies on the existence of auxiliary datasets for bias learning. In many677
real-world scenarios, such datasets may not be readily available or may be costly to create, poten-678
tially limiting the method’s applicability.679

Addressing these limitations presents opportunities for future research, including developing meth-680
ods for bias discovery, creating more robust evaluation metrics, and extending CNRPO to work ef-681
fectively with limited or noisy auxiliary data.682
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J In Depth Analysis: Impact of Alignment on Length of Responses683

The issue of generating excessively long responses in Direct Preference Optimization (DPO) stems684
from an implicit bias in the training data. This bias arises because preference datasets often contain685
a correlation between response length and reward signals, leading to the model associating longer686
responses with higher preference scores (Park et al., 2024a). Several works have attempted to miti-687
gate this problem by refining the preference optimization process. For instance, Yuan et al. (2024)688
proposed LIFT-DPO, which introduces a prompt-based strategy to balance length distribution in689
training. However, recent studies suggest that the underlying optimization mechanism of DPO it-690
self contributes to this bias. To address this, Park et al. (2024a) introduced a regularization term691
to penalize length discrepancies in preference pairs, while Meng et al. (2024) proposed SimPO, a692
method that removes dependence on a reference model by normalizing likelihood over sequence693
length. Similarly, Lu et al. (2024) tackled this issue by applying a down-sampling technique on KL694
divergence, aiming to reduce the model’s reliance on response length during optimization. Despite695
these efforts, existing solutions either struggle to effectively control response length or inadvertently696
degrade model performance. Overall, the length bias in alignment through DPO, which results in697
the generation of excessively long responses, is a well-recognized limitation. Our proposed method698
provides an alternative solution to mitigate this issue.699

An illustrative example showcasing the responses of the SFT model, the model fine-tuned with DPO,700
and CNRPO is provided below:701

Prompt: I have a document that needs a summary. Can you help?702

SFT Response

Sure, I’d be happy to help! Please provide the document or the relevant sections, and I’ll do
my best to summarize it for you.

703

CNDPO Response

Of course! I’d be happy to help you summarize your document. Please provide the docu-
ment, and any specific details or information you’d like me to highlight in the summary.

704

DPO Response

I understand that you want me to summarize the situation in poor countries regarding hu-
manitarian crises. However, I must point out that the term ’Humanitarian Crisis’ is often
associated with natural disasters, famines, or epidemics. In this case, it seems more ap-
propriate to use the term ’Socio-economic crisis’ or ’Political instability’ to describe the
situation in poor countries. Can you provide more context or specific information about the
document? This will help me create a more accurate summary. Additionally, please note
that I cannot create a summary based on a document I haven’t seen. If you can provide the
document, I’ll be happy to assist you further.

705

K GPT-4O prompts for computing win rates706

A key part of our evaluation setup involves using GPT-4O to compute win rates for different model707
outputs. For each comparison, GPT-4O was tasked with judging responses based on predefined708
evaluation criteria. Below, we present the prompt used for this process.709

710

21



Under review for RLC 2025, to be published in RLJ 2025

Your task is to compare two model outputs based on their alignment with a given
query. Evaluate which output better fulfills the task requirements and provide
a clear, consistent explanation for your decision.

Criteria for Evaluation:
1. Correctness: Does the response accurately address the query? (Give a score from

0 to 4)
2. Clarity: Is the response easy to understand and free of unnecessary complexity?

(Give a score from 0 to 4)
3. Relevance: Does the response stay focused on the task without introducing

irrelevant information? (Give a score from 0 to 4)
4. Adherence to Query: Does the response follow the specific guidelines and

constraints provided in the query? (Give a score from 0 to 4)
5. Conciseness: Does the response provide the necessary information without

unnecessary elaboration or verbosity? (Give a score from 0 to 4)

Scoring Method:
- For each criterion, assign a score between 0 and 4 based on the model’s response

.
- The total score for each response will be the sum of scores from all five

criteria.
- The response with the higher total score should be considered the winner.

Chain of Thought Reasoning:
- Step 1: Understand the Query: Begin by thoroughly analyzing the query to

identify the key objectives and any specific constraints.
- Step 2: Score Each Response: Evaluate each m o d e l s response against the five

criteria individually. Assign a score of 0 or 1 for each criterion, based on
how well the response meets the criterion.

- Step 3: Compare the Scores: Compare the total scores for both responses. The
response with the higher score should be selected as the winner.

- Step 4: Synthesize a Conclusion: Based on the total scores, determine which
response better satisfies the query as a whole.

- Step 5: Justify Your Choice: Provide a clear and concise explanation of why the
chosen response is superior, focusing on the criteria where it performed
better.

Output Format:
- Reasoning: Provide a detailed explanation, including the scores assigned to each

criterion. Use specific examples from the responses to support your reasoning
.

- Winner: Clearly state which response is better (e.g., ’Winner: Response A’). The
winner should be the response with the higher total score.

- response_scores_A: Provide the scores for Response A in the format: [Correctness
score, Clarity score, Relevance score, Adherence to Query score, Conciseness
score].

- response_scores_B: Provide the scores for Response B in the format: [Correctness
score, Clarity score, Relevance score, Adherence to Query score, Conciseness
score].

Both sets of scores should be returned in list format as follows:
- response_scores_A: [x, x, x, x, x]
- response_scores_B: [x, x, x, x, x]

Input:
Query: {query}

Response A: {sft_answer}

Response B: {model_answer}

Output:
Reasoning: [Provide detailed reasoning, including the scores for each criterion

and why this model’s response is superior.]

Winner: [State the winning model here. The output should be either Response A or
Response B.]

response_scores_A: [Correctness score, Clarity score, Relevance score, Adherence
to Query score, Conciseness score]

response_scores_B: [Correctness score, Clarity score, Relevance score, Adherence
to Query score, Conciseness score]
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