
Under review as a conference paper at ICLR 2024

ARCHITECTURAL INSIGHTS FOR EFFICIENT PHYSICS-
INFORMED NEURAL NETWORK OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed neural networks (PINNs) offer a promising avenue for tackling
both forward and inverse problems in partial differential equations (PDEs) by in-
corporating deep learning with fundamental physics principles. Despite their re-
markable empirical success, PINNs have garnered a reputation for their notorious
training challenges across a spectrum of PDEs. In this work, we delve into the
intricacies of PINN optimization from a neural architecture perspective. Leverag-
ing the Neural Tangent Kernel (NTK), our study reveals that Gaussian activations
surpass several alternate activations when it comes to effectively training PINNs.
Building on insights from numerical linear algebra, we introduce a preconditioned
neural architecture, showcasing how such tailored architectures enhance the op-
timization process. Our theoretical findings are substantiated through rigorous
validation against established PDEs within the scientific literature.

1 INTRODUCTION

Physics-informed neural networks (PINNs) stand as a pioneering approach at the crossroads of deep
learning and physics-based modeling. These innovative neural architectures seamlessly integrate
the fundamental principles of physics into their learning process. By combining the predictive capa-
bilities of neural networks with the governing equations that describe physical phenomena, PINNs
facilitate the efficient and accurate modeling of complex partial differential equations (PDEs), even
when data is limited or noisy. This innovative approach has demonstrated significant successes
across a spectrum of domains, including fluid dynamics (Raissi et al., 2020; Sun et al., 2020; Jin
et al., 2021), stochastic differential equations (Zhang et al., 2020), bioengineering (Sahli Costabal
et al., 2020), and climate modeling (de Wolff et al., 2021; Zhu et al., 2022).

Practitioners in the field of Physics-Informed Neural Networks (PINNs) have consistently encoun-
tered a shared challenge: training instability leading to suboptimal predictions, particularly when
dealing with physics problems exhibiting high-frequency solutions. This issue has also surfaced in
the computer vision domain, where it is partly attributed to spectral bias—a tendency for neural net-
works to favor low-frequency solutions over higher-frequency ones Rahaman et al. (2019); Xu et al.
(2022). To address this challenge, vision practitioners have adopted various techniques such as in-
corporating positional encodings (Tancik et al., 2020), sinusoidal activations (Sitzmann et al., 2020),
Gaussian activations (Ramasinghe & Lucey, 2022; Chng et al., 2022; Saratchandran et al., 2023),
and wavelet activations (Saragadam et al., 2023). While these approaches have demonstrated con-
siderable success, a theoretical foundation explaining their superiority over classical architectures
remains elusive. Furthermore, these innovative architectures are gaining traction in the PINN com-
munity (Wang et al., 2021; Faroughi et al., 2022; Zhao et al., 2023; Uddin et al., 2023), emphasizing
the need for a deeper understanding of their mechanisms.

In this study, we provide a theoretical basis for the superior performance of Gaussian activations in
fully connected architectures, using the Neural Tangent Kernel (NTK). Our findings indicate that in
networks with a single wide layer of width nk, linear in the number of training samplesN and adher-
ing to a mild Lipschitz bound, the minimum eigenvalue of the empirical NTK exhibits a lower bound
scaling of Ω(n4k). This compares favorably to previous research (Nguyen et al., 2021) showing a
scaling of Ω(nk) for ReLU-activated networks and a scaling of Ω(n2k) (Bombari et al., 2022) for
non-linear Lipshitz activations with Lipshitz gradients, such as Tanh and sigmoid in networks with
a pyramidal topology. To validate our insights, we conducted experiments with various PINN ar-

1

Under review as a conference paper at ICLR 2024

chitectures, consistently demonstrating the superior performance of Gaussian-activated PINNs over
existing approaches commonly used in the field.

While addressing spectral bias in PINNs is crucial for achieving physically realistic predictions,
it’s worth noting, as highlighted in Wang et al. (2020; 2022), that the incorporation of physical
constraints into the neural network’s loss objective introduces significant challenges during opti-
mization. This integration tends to adversely affect the smoothness of the loss landscape, often
trapping gradient-based optimizers in local minima. To address this issue, we propose an architec-
tural enhancement for feedforward PINNs, referred to as equilibrated PINNs. Equilibrated PINNs
are specifically designed to improve the conditioning of the network’s weight matrices during the
optimization process, drawing inspiration from the concept of matrix preconditioning in numerical
linear algebra (Chen, 2005). Our theoretical analysis sheds light on how this modification enhances
the conditioning of the loss landscape, thereby facilitating more efficient training for gradient-based
optimizers. We test our architecture against several PINN frameworks from the literature, across
diverse PDEs, demonstrating that our architecture excels in various scenarios.

Our main contributions are:

1. We lay the theoretical groundwork for understanding the scaling pattern of the minimum
eigenvalue of the empirical NTK of a Gaussian-activated neural network, thereby substan-
tiating their suitability for PINN architectures. We then demonstrate the effectivness of our
theory on various PDEs used within the PINN community.

2. We introduce an innovative PINN architecture that leverages matrix conditioning for the
weights of a feedforward network during training. This approach leads to a more stable
loss landscape and expedites the training process. Through experiments, we demonstrate
the superior performance of this PINN architecture compared to several recently proposed
counterparts across various benchmark PDEs commonly employed in the community.

2 RELATED WORK

Optimization: Initially, gradient-based optimization algorithms such as Adam and LBFGS were
the go-to choices for training purposes, as seen in works by Raissi et al. Raissi et al. (2019) and
Zhao et al. Zhao et al. (2023). To enhance convergence and efficiency, more advanced techniques
like Bayesian and surrogate-based optimization have been harnessed (Yang et al., 2021). The appli-
cation of regularization techniques, including learning rate annealing (Wang et al., 2020) and NTK
regularization (Wang et al., 2022), has also exhibited notable effectiveness in improving training. In
recent times, the field has witnessed progress with the introduction of meta-learning methods tailored
specifically for the optimization of PINNs (Bihlo, 2023). The challenges faced during optimization
of PINNs are often attributed to the ill-conditioned nature of the loss landscape, as underscored in
studies by Fonseca et al. Fonseca et al. (2023), Basir et al. Basir & Senocak (2022), Wang et al.
Wang et al. (2020). Multiple investigations have proposed that the main cause of this ill-conditioning
lies in the training mismatch between the PDE residual and the boundary loss. In response, several
researchers have experimented with re-weighting algorithms as a means to address and mitigate this
mismatch (Xiang et al., 2022; Li & Feng, 2022; Hua et al., 2023; Batuwatta-Gamage et al., 2023;
Deguchi & Asai, 2023).

Activations and Architecture: Numerous studies have explored diverse activation functions for
training Physics-Informed Neural Networks (PINNs). Notably, Uddin et al. Uddin et al. (2023)
and Zhao et al. Zhao et al. (2023) have investigated the use of wavelet activations, while Jagtap et
al. Jagtap et al. (2020) have delved into locally adaptive activations. Furthermore, Faroughi et al.
Faroughi et al. (2022) have employed periodic activations in their research. Recent advancements in
PINN architecture have also demonstrated the potential for optimization improvements, such as the
incorporation of positional embedding layers Wang et al. (2021) and the utilization of transformer
methods Zhao et al. (2023).

2

Under review as a conference paper at ICLR 2024

3 GAUSSIAN ACTIVATIONS: INSIGHTS THROUGH THE NTK

3.1 BASICS ON PINNS

We consider PDEs defined on bounded domains Λ ⊆ Rn. To this end, we seek a solution u : Λ → R
of the following system

N [u](x) = f(x), x ∈ Λ (1)
u(x) = f(x), x ∈ ∂Λ. (2)

where N denotes a differential operator. In the setting of time-dependent problems, we will treat
the time variable t as an additional space coordinate and let Λ denote the spatio-temporal domain.
In so doing, we are able to treat the initial condition of a time-dependent problem as special type of
Dirichlet boundary condition that can be included in equation 2.

The goal of physics informed neural network theory is to approximate the latent solution u(x) of the
above system by a neural network u(x; θ), where θ denotes the parameters of the network. The PDE
residual is defined by r(x; θ) := u(x; θ)− f(x). The key idea as presented in Raissi et al. (2019) is
that the network parameters can be learned by minimizing the following composite loss function

L(θ) = Lb(θ) + Lr(θ) (3)

where Lb denotes the boundary loss term and Lr denotes the PDE loss term, defined by

Lb(θ) =
1

2Nb

Nb∑
i=1

|u(xib; θ)− g(xib)|2 and Lr(θ) =
1

2Nr

Nr∑
i=1

|r(xir; θ)|2. (4)

Nb and Nr represent the training points for the boundary and PDE residual. Minimizing both loss
functions, Lb and Lr, simultaneously using gradient-based optimization aims to learn parameters θ
for an effective approximation, u(x; θ), of the latent solution, see Raissi et al. (2019).

In this work, we will also need to make use of some basic NTK theory for PINNs. We kindly ask
the reader to consult appendix A.1 for a brief overview of the NTK and how it’s applied for PINNs.
The PINN loss function being a sum of two terms, Lb+Lr, gives rise to two main NTK terms Kuu,
which corresponds to the boundary data, Krr which corresponds to the PDE data, and a mixed term
Kur, see appendix A.1 for an overview and Wang et al. (2022; 2021) for details.

Several works (Du et al., 2018; Allen-Zhu et al., 2019; Oymak & Soltanolkotabi, 2020; Nguyen
& Mondelli, 2020; Zou & Gu, 2019) have established connections between the spectrum of the
empirical NTK matrix and the training of neural networks. A key insight on this front is that when
a neural network u(x; θ) is trained with Mean Squared Error (MSE) loss, L(θ) = 1

2 ||u(x; θ)− y||22,
where y are the training labels, then it can be shown that

||∇L(θ)||22 ≥ 2λmin (Kuu)L(θ) (5)

The key take away is that the larger λmin(Kuu) is at initialization the higher chance of converg-
ing to a global minimum.

3.2 MOTIVATION

Consider the Poisson problem given by

−∆u = π2sin(πx) for x ∈ [−1, 1] (6)
u(−1) = u(1) = 0. (7)

This problem poses both an existence and uniqueness challenge. Initially, equation 6 seeks a func-
tion satisfying −∆u = π2 sin(πx), which admits multiple solutions, such as u(x) = sin(πx) + c
with any constant c. To ensure uniqueness, equation 7 acts as a constraint, effectively singling out
one unique solution from the family of solutions in equation 6, represented as sin(πx) + c; c ∈ R.
Consequently, in the context of a PINN u(x; θ) with boundary loss Lb and residual loss Lr, it be-
comes crucial to minimize the boundary loss Lb to near zero. Failure to do so could lead the PINN
u(x; θ) to approximate one of the infinitely many residual solutions, like sin(πx) + c, where c ̸= 0.

3

Under review as a conference paper at ICLR 2024

The above example highlights a common observation met by practitioners in the field. The loss
functions Lb and Lr often decay to zero at very different rates for various PDEs Wang et al. (2022;
2020); Cuomo et al. (2022); Fuks & Tchelepi (2020) often causing the PINN to predict an incorrect
solution. The main solution to this issue that has been investigated is loss re-weighting. Choosing
parameters λb and λr, a regularized loss of the form

λbLb(θ) = λrLr(θ) (8)

is used to train the PINN. In general there have been many results suggesting methods to best choose
λb and λr (Bischof & Kraus, 2021; Xiang et al., 2022; Wang et al., 2022; Perez et al., 2023). For
example, Wang et al. (2022) employ an NTK approach to dynamically update λb and λr throughout
training.

Our approach differs from standard methods by prioritizing architectural adjustments over tradi-
tional loss function regularization. We aim to maintain a large non-zero minimum eigenvalue for
the boundary Neural Tangent Kernel (Kuu) during training, inspired by equation 5. Our empirical
results suggest that choosing an architecture that maximizes this value at initialization significantly
improves the likelihood of minimizing the boundary loss.

3.2.1 MAIN RESULT

In this section, we will demonstrate that Gaussian-activated feedforward PINNs (G-PINNs) exhibit
a boundary NTK with a minimum eigenvalue that can be constrained to remain above a quartic term
dependent on the width of a single wide layer.

The proof will require several assumptions that are common in the literature. Together with an added
assumption on the Lipshitz constant of the network. Due to space constraints we have put the full
general theorem together with all assumptions in appendix A.1. We will now give a synopsis of the
theorem but kindly ask the reader to consult appendix A.1 for detailed notations, assumptions and
proofs.

Theorem 3.1. Let u denote a depth L neural network with ϕ(x) = e
−x2

s2 as the activation, where
s2 > 0 is a fixed variance hyperparameter. Assume the first L − 1 widths {n1, . . . , nL−1} are all
the same N . Assume that nk ≥ N ≥ N for 1 ≤ k ≤ L − 1. Further assume the output dimension
nL = 1. Then

λmin (Kuu) ≥ Ω

(
1

s3
β4
kn

4
k

)
w.h.p . (9)

We pause here to remark that in Bombari et al. (2022) a more general result is proven. They
prove that any Lipshitz non-linear activation with gradient having bounded Lipshitz constant has
a quadratic scaling. There results imply that Gaussian-activated networks have an NTK whose min-
imum eigenvalue admits a qudratic scaling. The difference between our work and theirs is that we
work in a highly overparameterized setting and assume a Lipshitz constant bound (see assumption
A4 in appendix A.1). In doing so we are able to show how the lower bound of the mininmum eigen-
value of the NTK depends on the Lipshitz constant and the initialization. Our proofs also depend on
the fact that we are employing a Gaussian activation and don’t seem to go through for activations
such as Tanh. However, Bombari et al. (2022) does apply to Tanh showing that the minimum eigen-
value of the NTK of a Tanh-activated network, in the asymptotic width setting, grows quadratically.
While our assumptions seem more stringent to those in Bombari et al. (2022), we empirically verify
our main assumption in appendix A.1. Furthermore, it should be noted that Nguyen et al. (2021)
proved a linear scaling of the minimum eigenvalue for ReLU networks.

Fig. 1 empirically verifies the claim given by thm. 3.1 (see appendix A.1 for the more general
statement). We compared two distinct 2-hidden layer networks, one employing a Gaussian activation
of the form ex

2/2(0.1)2 , and the other employing a Tanh activation. We fixed the widths of the
input and output layers as (n0, n2) and let the width of the middle layer, n1, vary according to the
relation n1 = 8N . The Gaussian-activated network used a fixed variance parameter of s2 = 0.12.
Both networks were initialized using He’s initialisation, where the weights (Wl)i,j ∼ N (0, 2

n l−1
).

We then plotted the minimum eigenvalue of the empirical NTK λmin(Kuu) of both networks, and
compared them to curves of the form O((8x)4). As predicted by thm. 3.1, we observed that the
minimum eigenvalue λmin(Kuu) grew faster than O((8x)4). Furthermore we observed that the

4

Under review as a conference paper at ICLR 2024

250 500 750 1000 1250
N

0

2000

4000

6000

8000

10000

m
in
(K
3
)

Tanh
Gauss-0.1

((8N)4)

250 500 750 1000 1250
N

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

m
in
(K
3
)

Tanh

Figure 1: Right; The min. eigenvalue of the empirical NTK for a 2-hidden layer network. We took
N = 400, n1 = 8N , and n2 = 400. As predicted by Thm. 3.1, λmin(Kuu) for a Gaussian-activated
network grows much faster than a Tanh one. Left; zoom in of tanh network.

minimum eigenvalue of the NTK of the Gaussian network grew much faster than that of the Tanh
network. Further experiments are carried out in appendix A.1.

4 PRECONDITIONED NEURAL ARCHITECTURES

Preconditioning is crucial in numerical solutions for linear systems Ax = b, aiming to lower the
condition number of the matrix A. Reduced condition numbers lead to more accurate and effi-
cient solutions. We remind the reader that the condition number of a matrix A is defined as the
ratio κ(A) = σmax(A)/σmin(A), where σmin and σmax denotes the min and max singular val-
ues respectively. Typically, this process transforms the original system into a simpler one, denoted
as PAx = Pb. The key challenge in preconditioning is selecting an appropriate multiplier P to
effectively reduce the initially high condition number to a significantly smaller value

We will concern ourselves with a particular form of preconditioning known as row equilibration,
which involves taking the preconditioner P to be diag(||Ai;||2)−1 i.e. P is a diagonal matrix whose
entries are the inverse of the row norms of A. Diagonal preconditioners are often used in numerical
linear algebra as they are efficient to implement. Furthermore, the motivation to focus on row
equilibration comes from the following theorem.
Theorem 4.1 (Van der Sluis (1969)). Let A be a n× n matrix, P an arbitrary diagonal matrix and
E the row equilibrated matrix built from A. Then κ(EA) ≤ κ(PA).

Van Der Sluis’ theorem highlights that among the set of diagonal preconditioners, row equilibration
is the most effective for minimizing the condition number. For further insights into preconditioning,
particularly quantitative results demonstrating the benefits of equilibration in reducing the condition
number, we refer the reader to appendix A.3.

4.1 PRECONDITIONING THE LOSS LANDSCAPE

In this section, we examine an approach to conditioning the loss landscape through adjustments to
the neural weights.

Consider a neural network u(x; θ) with L layers, where the number of neurons in each layer are
represented by {n1, . . . , nL}. The feature maps, uk : Rn0 → Rnk for the network are defined for
each input x ∈ Rn0 by

uk(x) =

WT
L fL−1 + bL, k = L

ϕ(WT
k uk−1 + bk), k = [L− 1]

x, k = 0

(10)

where n0 denotes the input dimension, Wk ∈ Rnk−1×nk , bk ∈ Rnk , and ϕ is an activation, and the
notation [m] = {1, . . . ,m}. The neural network u(x; θ) is then given by the composition of the
layer maps uk.

5

Under review as a conference paper at ICLR 2024

The MSE loss function associated to the neural network u has Hessian given by

H(L) = (Du)TH(c)Du+ (Dc)H(u) (11)

where D denotes the derivative with respect to parameters, c is the qudratic convex cost function
associated to the MSE loss function, see MacDonald et al. (2022) for details.

The matrix (Du)TH(c)Du is known as the Gauss-Newton matrix associated toH(L) and is a com-
mon approximation to the Hessian H(L) (Nocedal & Wright, 1999). We will use (Du)TH(c)Du
as a surrogate to accessing H(L). In fact, in Papyan (2019) it was shown that the large eigenvalues
of H(L) closely correlate to those of the Gauss-Newton matrix (Du)TH(c)Du.

Using the chain rule we have

Du =

L∑
k=1

JuL · · · Juk+1Duk (12)

where Jui denotes the Jacobian of the ith layer ui w.r.t inputs, and by the chain rule again we have

Jui = diag(ϕ′(WT
i ui−1 + bi)) ·Wi (13)

where diag(ϕ′(WT
i ui−1+bi)) denotes the diagonal matrix with diagonal entries ϕ′(WT

i ui−1+bi).

For a PINN, L = Lb + Lr, see equation 5. The Hessian is a linear operator, therefore
H(L = H(Lb) + H(Lr). The Gauss-Newton matrix associated to H(Lr) now takes the
form (DN (u))TH(c)DN (u), and using the chain rule as we did above, it is easy to see that
(DN (u))TH(c)DN (u) will depend on the network weights of u.

By leveraging the property that the condition number of a product satisfies κ(AB) ≤ κ(A)κ(B), we
find motivation to enhance the condition number of (Du)TH(c)Du and (DN (u))TH(c)DN (u) by
improving the condition number of the weights Wi. While this isn’t a formal proof, it provides the
impetus to explore methods for reducing the condition number of H(L). In the following section,
we present quantitative techniques for achieving this.

4.2 EQUILIBRATED PINNS

In this section we define an architecture that imposes row equilibration on the neural weights of a
neural network.

Given a neural network u, as defined in sec. 4.1, we define an equilibrated network uE as follows:
The layer maps of uE will be defined by:

uEk (x) =

WT
L fL−1 + bL, k = L

ϕ(PkW
T
k u

E
k−1 + bk), k = [2, L− 1]

ϕ(W1x+ b1), k = 1

x, k = 0

(14)

where each Pk for k ∈ [2, L− 1] is the row equilibrated preconditioner (see sec. A.3 for definition)
associated to WT

k . uE is then given as the composition uEL ◦ · · · ◦ uE0 . Thus uE is obtained by
equlibrating the inner weight matrices of the network. Note that the main reason we only equilibrate
the inner weights is that we found empirically that this sufficed to yield good optimization.

Recall from equation 13, that the Jacobian of the ith layer (for i > 0) map ui, w.r.t inputs, is given
by Jui = diag(ϕ′(WT

i ui−1 + bi)) ·WT
i . We thus have

Proposition 4.2. κ(Jui) ≤ κ(diag(ϕ′(WT
i ui−1 + bi)))κ(W

T
i).

By applying lems. A.14-A.16, we can generally conclude that κ(P iWT
i) will be less than κ(WT

i),
implying that the upper bound on κ(Jui) as per prop. 4.2 will be lower for κ(JuEi). While not
a rigorous proof, this observation strongly suggests that equilibrating the neural weights has the
potential to contribute to improved conditioning of the loss landscape. We validate this insight
through experiments in the next section and the appendix.

6

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000 12000 14000
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
L2

 t
es

t
er

ro
r

Relative L2 test error for Burgers' Eqn.

Tanh
Gaussian
Sine
Wavelet

0 2000 4000 6000 8000 10000 12000 14000
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

L2
 t

ra
in

 e
rr

or

L2 train error for Burgers' Eqn.

Tanh
Gaussian
Sine
Wavelet

0 2000 4000 6000 8000 10000 12000 14000
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

L2
 e

rr
o
r

L2 Intial and Boundary cond. error for Burgers' Eqn.

Tanh
Gaussian
Sine
Wavelet

0 2000 4000 6000 8000 10000 12000 14000
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L2
 e

rr
o
r

L2 PDE error for Burgers' Eqn.

Tanh
Gaussian
Sine
Wavelet

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
(x

,0
.5

)

t = 0.5s

Exact
Tanh

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
(x

,0
.5

)

t = 0.5s

Exact
Sine

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
(x

,0
.5

)

t = 0.5s

Exact
Wavelet

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
(x

,0
.5

)

t = 0.5s

Exact
Gaussian

Figure 2: Top: Training/testing results for Burgers’ equation. Bottom: Reconstruction of network
solution plotted against exact solution at t= 0.5.

L2-train error Rel. L2-test error Time (s)
Tanh 9.8e− 3 4.1e− 2 53.48

Gaussian 1.6e− 3 1.2e− 2 92.78
Sine 5.3e− 2 2.3e− 1 60.79

Wavelet 5.9e− 2 2.2e− 1 122.43

Table 1: Train/test results for four different activated PINNs. Time denotes total training time to
complete 15000 epochs.

5 EXPERIMENTS

5.1 BURGER’S EQUATION

We consider the Burger’s equation, which is a convection-diffusion equation occurring in areas such
as gas dynamics and fluid dynamics. The PDE takes the form

ut + uux −
0.01

π
uxx = 0 for x ∈ [−1, 1] and t ∈ [0, 1]. (15)

u(x, 0) = −sin(πx) (16)
u(−1, t) = u(1, t) = 0. (17)

We aim to learn the solution, u(x, t; θ), using a PINN with training based on the loss defined in
equation 3. In this experiment, we utilized 100 random points for initial and boundary data, along
with 10000 points for PDE data. Four different PINNs were trained, each with distinct activations:
Tanh Raissi et al. (2019), sine Faroughi et al. (2022), Gaussian, and wavelet Zhao et al. (2023).
Further details regarding hyperparameter choices are given in the appendix A.4.

All PINNs used in the experiment featured 3 hidden layers with 128 neurons each and were trained
using the Adam optimizer for 15000 epochs with a full batch of training points. Training/test results
are shown in Table 1. Among them, the Gaussian PINN achieved the best performance. For a visual
representation, refer to Figure 2, which illustrates the training curves and reconstructions at t = 0.5s.
At this time point, the Gaussian PINN already provides a good approximation to the true solution,
while other networks are struggling.

5.2 NAVIER-STOKES EQUATION

We consider the 2D incompressible Navier-Stokes equations as considered in Raissi et al. (2019).

ut + uux + 0.01uy = −px + 0.01(uxx + uyy) (18)
vt + uvx + 0.01vy = −py + 0.01(vxx + vyy) (19)

7

Under review as a conference paper at ICLR 2024

L2 train error Rel. L2 test pressure error Rel. L2 test velocity error Time (s)
Tanh 2.9e− 4 2.8e− 1 8.8e− 5 887.48
Gauss 8.74e− 5 4.7e− 2 3.4e− 5 1466.10
Sine 2.0e− 4 6.8e− 2 2.2e− 4 958.18

Wavelet 5.0e− 4 1.2e− 1 3.0e− 4 1792.65

Table 2: Training/testing results for the Navier-Stokes equations. The Gaussian-activated PINN
achieves at least 2-4 times lower train/test errors than all other networks.

0 20 40 60 80
y

0

10

20

30

40

Pressure reconstruction at t = 1 for Tanh PINN

0.80

0.72

0.64

0.56

0.48

0.40

0.32

0.24

0 20 40 60 80
y

0

10

20

30

40

Pressure reconstruction at t = 1 for Gaussian PINN

0.32

0.24

0.16

0.08

0.00

0.08

0.16

0.24

0 20 40 60 80
y

0

10

20

30

40

Pressure reconstruction at t = 1 for Sine PINN

0.48

0.40

0.32

0.24

0.16

0.08

0.00

0.08

xx

x

0 20 40 60 80
y

0

10

20

30

40

Pressure reconstruction at t = 1 for Wavelet PINN

0.58

0.66

0.74

0.82

0.90

0.98

1.06

1.14

x

0 20 40 60 80
y

0

10

20

30

40

Exact pressure at t = 1

0.48

0.40

0.32

0.24

0.16

0.08

0.00

0.08

X

0 5000 10000 15000 20000 25000 30000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

L2
 tr

ai
n

er
ro

r

L2 train error for Navier-Stokes.

Gaussian
Sine
Tanh
Wavelet

10000 12500 15000 17500 20000 22500 25000 27500 30000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Figure 3: Top: L2 train error (left). All other figures show reconstruction of the pressure field of
each network at t = 1. The Gaussian-activated PINN has performed best in comparison to the others.

where u(x, y, t) denotes the x-component of the velocity field of the fluid, and v(x, y, t) denotes the
y-component of the velocity field. The term p(t, x, y) is the pressure. The domain of the problem
is [−15, 25] × [−8, 8] × [0, 20]. We assume that u = ψy and v = −ψx for some latent function
ψ(t, x, y). With this assumption, the solution we seek will be divergence free, see Raissi et al. (2019)
for details.

We trained four different PINNs to approximate a solution to the above system. The activations we
tested were Tanh, Gaussian, sine, and wavelet. Each network had 3 hidden layers and 128 neurons
in each layer. We used 5000 training data points consisting of training points for the velocity field
and training points for the PDE residual. The networks were trained with an Adam optimizer for
30000 epochs.

Table 2 provides an overview of the training outcomes. It’s evident that the Gaussian-activated PINN
significantly outperforms other activation functions by a factor of at least 10. However, the training
time of the Gaussian network is higher than sine and Tanh. In Fig. 3, we visualize the L2 training
error alongside the reconstruction of the pressure field p(x, y, t) at t = 1. The superiority of the
Gaussian network in approximating the field is evident when compared to the others. It’s worth
noting that the magnitudes of the reconstructed pressure fields for each PINN may differ from the
exact pressure field, as the pressure field is only identifiable up to a constant Raissi et al. (2019).

5.3 HIGH FREQUENCY DIFFUSION

We consider a high frequency diffusion equation given by

ut = uxx(1− (30π)2)e−tsin(30πx) for x ∈ [−1, 1] and t ∈ [0, 1] (20)
u(x, 0) = sin(30πx) for all x ∈ [−1, 1] (21)
u(−1, t) = u(1, t) = 0 for all t ∈ [0, 1]. (22)

The system has a closed form analytic solution given by u(x, t) = e−tsin(30πx). We thus see that
the solution diffuses in time but is high frequency in the space variable x. PINNs can struggle with
finding an approximation to such a problem due to the high frequency spatial component.

8

Under review as a conference paper at ICLR 2024

L2 Train error L2 Rel. test error L2 Bndry./I.C. error L2 Pde error Time (s)
G-PINN 8.6e− 3 4.0e− 1 2.0e− 4 8.5e− 3 124.88

EG-PINN 2.2e− 3 2.9e− 2 7.55e− 5 3.4e− 3 439.22
L-LAAF-PINN 5.8e− 3 9.8e− 2 1.1e− 2 6.7e− 3 125.06
PINNsformer 1.1e7 3.4e2 8.5e1 1.1e7 17233.82
RFF-PINN 8.4e2 1.1e0 2.2e− 1 8.4e2 125.35
Tanh-PINN 6.1e1 1.5e4 3.8e− 1 6.0e1 76.86

Table 3: Training/Testing results for the diffusion equation. The first three entries all employ
a Gaussian activation and are clearly superior to the other architectures yielding errors that are
significantly lower than the others. Furthermore, amongst the 3 Gaussian-activated networks EG-
PINN performs the best.

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

0.33
0.85
1.37
1.89
2.40
2.92
3.44
3.96
4.47
4.99

G-PINN: (1.5e7, 5.2e6)

1

2

3

4

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

0.32
0.63
0.94
1.25
1.56
1.88
2.19
2.50
2.81
3.12

L-LAAF-PINN: (1.5e7, 5.5e6)

0.5

1.0

1.5

2.0

2.5

3.0

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5

1.0

0.39
0.42
0.44
0.46
0.48
0.51
0.53
0.55
0.58
0.60

EG-PINN: (9.3e6, 4.0e6)

0.40

0.45

0.50

0.55

Condition Number

G-PINN 3.78e31
EG-PINN 2.7e26

L-LAAF-PINN 6.86e30

Figure 4: Loss landscape along the two most curved eigenvectors. The number at the top of each
loss figure is the top two eigenvalues. Right: condition number of each network at that point. EG-
PINN has a much lower condition number than the other two Gaussian-activated networks.

We tested various PINN architectures from the literature, including L-LAAF-PINN (Jagtap et al.,
2020), PINNsformer with wavelet activation (Zhao et al., 2023), and RFF-PINN with Tanh acti-
vation (Wang et al., 2021). These were compared to two baseline architectures: Gaussian-PINN
(G-PINN) and an equilibrated Gaussian activation architecture (EG-PINN), as described in Section
4.2. Notably, L-LAAF-PINN, which originally used swish activation, required switching to Gaus-
sian activation for successful training on the given PDE. All architectures consisted of 3 hidden
layers with 128 neurons, except for PINNsformer, which used the architecture from (Zhao et al.,
2023) with 128 neurons in each of its 9 layers.

To substantiate the assertions in Section 4, we evaluated the condition numbers of PINNs, G-PINN,
EG-PINN, and L-LAAF-PINN throughout their training processes. Notably, EG-PINN consistently
maintained a significantly lower condition number. In Figure 4, we visually represent the loss land-
scape along the two most curved eigenvectors of the Hessian at an arbitrary point within the initial
10,000 epochs, emphasizing EG-PINN’s smoother landscape and smaller condition number. Sum-
marized in Table 3, the results highlight the exceptional performance of all three networks utilizing
Gaussian activation, with EG-PINN surpassing the others. However, it’s worth noting that EG-PINN
requires considerably more training time than most of the other methods.

6 CONCLUSION AND LIMITATIONS

We demonstrated the utility of Gaussian activations in training neural networks by establishing a
scaling law for the minimum eigenvalue of the empirical Neural Tangent Kernel (NTK) matrix.
Applied to Physics-Informed Neural Networks (PINNs), this method enhances convergence of the
boundary loss. Additionally, we introduced an architecture that conditions neural weights, smooth-
ing the loss landscape for more effective optimization. However, limitations include our inability to
establish a scaling law for the NTK related to the PDE residual, which could reveal differential con-
vergence rates among PINN NTK terms. Moreover, the equilibrated architecture’s computation of
a row equilibration matrix after each backward pass extends training times, making it less practical
for deeper and wider networks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Shamsulhaq Basir and Inanc Senocak. Critical investigation of failure modes in physics-informed
neural networks. In AIAA SCITECH 2022 Forum, pp. 2353, 2022.

Chanaka P Batuwatta-Gamage, Charith Rathnayaka, Chaminda Karunasena, and Yuantong Gu. Cus-
tomization of loss weights for physics-informed neural networks (pinns) when solving multiple
partial differential equations: A case study on plant cell drying. USNCCM17 Book of Abstracts,
pp. 764–765, 2023.

Alex Bihlo. Improving physics-informed neural networks with meta-learned optimization. arXiv
preprint arXiv:2303.07127, 2023.

Rafael Bischof and Michael Kraus. Multi-objective loss balancing for physics-informed deep learn-
ing. arXiv preprint arXiv:2110.09813, 2021.

Simone Bombari, Mohammad Hossein Amani, and Marco Mondelli. Memorization and optimiza-
tion in deep neural networks with minimum over-parameterization. Advances in Neural Informa-
tion Processing Systems, 35:7628–7640, 2022.

Ke Chen. Matrix preconditioning techniques and applications, volume 19. Cambridge University
Press, 2005.

Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. Gaussian activated neu-
ral radiance fields for high fidelity reconstruction and pose estimation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXXIII, pp. 264–280. Springer, 2022.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Kenneth R Davidson and Stanislaw J Szarek. Local operator theory, random matrices and banach
spaces. Handbook of the geometry of Banach spaces, 1(317-366):131, 2001.

Taco de Wolff, Hugo Carrillo, Luis Martı́, and Nayat Sanchez-Pi. Assessing physics informed
neural networks in ocean modelling and climate change applications. In AI: Modeling Oceans
and Climate Change Workshop at ICLR 2021, 2021.

Shota Deguchi and Mitsuteru Asai. Dynamic & norm-based weights to normalize imbalance in back-
propagated gradients of physics-informed neural networks. Journal of Physics Communications,
7(7):075005, 2023.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Salah A Faroughi, Pingki Datta, Seyed Kourosh Mahjour, and Shirko Faroughi. Physics-informed
neural networks with periodic activation functions for solute transport in heterogeneous porous
media. arXiv preprint arXiv:2212.08965, 2022.

Nayara Fonseca, Veronica Guidetti, and Will Trojak. Probing optimisation in physics-informed
neural networks. arXiv preprint arXiv:2303.15196, 2023.

Olga Fuks and Hamdi A Tchelepi. Limitations of physics informed machine learning for nonlinear
two-phase transport in porous media. Journal of Machine Learning for Modeling and Computing,
1(1), 2020.

Heinrich W Guggenheimer, Alan S Edelman, and Charles R Johnson. A simple estimate of the
condition number of a linear system. The College Mathematics Journal, 26(1):2–5, 1995.

Roger A Horn, Roger A Horn, and Charles R Johnson. Topics in matrix analysis. Cambridge
university press, 1994.

10

Under review as a conference paper at ICLR 2024

Jiaqi Hua, Yingguang Li, Changqing Liu, Peng Wan, and Xu Liu. Physics-informed neural networks
with weighted losses by uncertainty evaluation for accurate and stable prediction of manufacturing
systems. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation func-
tions with slope recovery for deep and physics-informed neural networks. Proceedings of the
Royal Society A, 476(2239):20200334, 2020.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets):
Physics-informed neural networks for the incompressible navier-stokes equations. Journal of
Computational Physics, 426:109951, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shirong Li and Xinlong Feng. Dynamic weight strategy of physics-informed neural networks for
the 2d navier–stokes equations. Entropy, 24(9):1254, 2022.

Lachlan Ewen MacDonald, Hemanth Saratchandran, Jack Valmadre, and Simon Lucey. A global
analysis of global optimisation. arXiv preprint arXiv:2210.05371, 2022.

Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight bounds on the smallest eigenvalue
of the neural tangent kernel for deep relu networks. In International Conference on Machine
Learning, pp. 8119–8129. PMLR, 2021.

Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer
followed by pyramidal topology. Advances in Neural Information Processing Systems, 33:11961–
11972, 2020.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of
deepnet hessians. arXiv preprint arXiv:1901.08244, 2019.

Sarah Perez, Suryanarayana Maddu, Ivo F Sbalzarini, and Philippe Poncet. Adaptive weighting
of bayesian physics informed neural networks for multitask and multiscale forward and inverse
problems. arXiv preprint arXiv:2302.12697, 2023.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Sameera Ramasinghe and Simon Lucey. Beyond periodicity: Towards a unifying framework for acti-
vations in coordinate-mlps. In European Conference on Computer Vision, pp. 142–158. Springer,
2022.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

11

Under review as a conference paper at ICLR 2024

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516, 2023.

Hemanth Saratchandran, Shin-Fang Chng, Sameera Ramasinghe, Lachlan MacDonald, and Simon
Lucey. Curvature-aware training for coordinate networks. arXiv preprint arXiv:2305.08552,
2023.

Jssai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
veränderlichen. 1911.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Ziya Uddin, Sai Ganga, Rishi Asthana, and Wubshet Ibrahim. Wavelets based physics informed
neural networks to solve non-linear differential equations. Scientific Reports, 13(1):2882, 2023.

Abraham Van der Sluis. Condition numbers and equilibration of matrices. Numerische Mathematik,
14(1):14–23, 1969.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies
in physics-informed neural networks. arXiv preprint arXiv:2001.04536, 2020.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
works: From regression to solving multi-scale pdes with physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering, 384:113938, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Zixue Xiang, Wei Peng, Xu Liu, and Wen Yao. Self-adaptive loss balanced physics-informed neural
networks. Neurocomputing, 496:11–34, 2022.

Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
learning. arXiv preprint arXiv:2201.07395, 2022.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neu-
ral networks for forward and inverse pde problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning in modal space: Solving time-
dependent stochastic pdes using physics-informed neural networks. SIAM Journal on Scientific
Computing, 42(2):A639–A665, 2020.

Leo Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. Pinnsformer: A transformer-based frame-
work for physics-informed neural networks. arXiv preprint arXiv:2307.11833, 2023.

12

Under review as a conference paper at ICLR 2024

Yuchao Zhu, Rong-Hua Zhang, James N Moum, Fan Wang, Xiaofeng Li, and Delei Li. Physics-
informed deep-learning parameterization of ocean vertical mixing improves climate simulations.
National Science Review, 9(8):nwac044, 2022.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

A APPENDIX

A.1 NTK

A.1.1 A BRIEF REVIEW OF THE NTK

The Neural Tangent Kernel (NTK) is a pivotal concept in the realm of deep learning, offering a math-
ematical framework for understanding the training dynamics of neural networks. It quantifies how
infinitesimal changes in a network’s parameters relate to its output, playing a crucial role in analyz-
ing and interpreting deep learning models. Originally introduced by Jacot et al. Jacot et al. (2018),
the NTK has since garnered extensive attention and has been used to elucidate various aspects of
neural network behavior.

For a neural network u(x; θ), the empirical NTK matrix over a batch of N training data points
{(xi, yi)} is defined by

(Kuu)ij =

〈
du(xi; θ)

dθ
,
du(xj ; θ)

dθ

〉
(23)

where
〈
du(xi;θ)
dθ , du(x

j ;θ)
dθ

〉
:=
∑
θ
du(xi;θ)
dθ · du(x

j ;θ)
dθ .

Fix a physics informed neural network u(x; θ). We suppose that the training batches of the boundary
points and PDE residual points are of size Nb and Nr respectively. It was shown in Wang et al.
(2022) that the NTK of the PINN is composed of three major terms

(Kuu)ij =

〈
du(xib; θ)

dθ
,
du(xjb; θ)

dθ

〉
(24)

(Kur)ij =

〈
du(xib; θ)

dθ
,
d⊓(xjr; θ)

dθ

〉
(25)

(Krr)ij =

〈
d⊓(xbri; θ)

dθ
,
d⊓(xjr; θ)

dθ

〉
(26)

The total NTK of equation 26, denoted K, is then given by the block matrix

K =

[
Kuu Kur

KT
ur Krr.

]
(27)

We think of the term Kuu as that part of the NTK that deals with the boundary condition, Krr as
that part that deals with the PDE residual, and Kur the cross term dealing with how these interact.

In Wang et al. (2022) the NTK for a PINN was derived and the training of such networks was
analyzed, yielding analogous results to those obtainined in Jacot et al. (2018). Furthermore, the
NTK of PINNs has also been used to analyze Random Fourier Features (RFF) applied to PINN
networks Wang et al. (2021).

A.1.2 NOTATION AND ASSUMPTIONS

In this section we outline the notation and assumptions we will be using to prove the main theorem
of the section, see thm. 3.1. We remark that the theorem we are going to prove is proven for general
feed forward neural networks with a one dimensional output and thus is not restricted to PINNs. So
as to avoid any confusion, in this section we will use the notation fL to denote our neural networks,

13

Under review as a conference paper at ICLR 2024

where L is the depth, so that we can reserve the notation u for when we want to work solely with
a PINN. This should not create any issues and serves as a reminder to the reader that what we are
proving is valid in the general context of feedforward networks.

Notation: We will fix a depthL neural network fL, defined by 10 that admits a Gaussian activation
of the form e−x

2/2s2 . The data samples will be denoted by X = [x1, . . . , xN]T ∈ RN×n0 , where N
is the number of samples and n0 is the dimension of input features. The output of the network at layer
k will be denoted by fk and the feature matrix at layer k by Fk = [fl(x1), . . . , fl(xN)]T ∈ RN×nk ,
where nk is the dimension of features at layer k. When k = 0, the feature matrix is simply the input
data matrixX . We define Σk = D([ϕ′(gk,j(x))]

nk
j=1), whereD denotes diagonal matrix and gk,j(x)

denotes the pre-activation neuron i.e. the output of layer k before the activation function is applied.
Note that Σk is then an nk × nk diagonal matrix. We will use standard complexity notations, Ω(·),
O(·), o(·), Θ(·) throughout the paper, which are all to be understood in the asymptotic regime, where
N,n0, n1, . . . , nL−1 are sufficiently large. Furthermore, we will use the notation ”w.p.” to denote
with probability, and ”w.h.p.” to denote with high probability throughout the paper.

Weight distributions: We will analyze properties of a network when weights are randomly ini-
tialized. Specifically, we assume that all weights are independently and identically distributed (i.i.d)
according to a Gaussian distribution, (Wk)i,j ∼i.i.d N (0, β2

k), where we assume βk ≤ 1 for all
1 ≤ k ≤ L− 1.

Data distribution: We will assume the data samples {xi}Ni=1 are i.i.d from a fixed distribution
denoted by P . The measure associated to P will be denoted by dP . We will work under the
following assumptions, which are standard in the literature.

A1.
∫
RN ||x||2dP = Θ(

√
n0).

A2.
∫
Rn0

||x||22dP = Θ(N).

We will also assume the data distribution satisfies Lipschitz concentration.

A3. For every Lipschitz continuous function f : Rn0 → R, there exists an absolute constant
C > 0 such that, for any t > 0, we have

P

(∣∣∣∣f(x)− ∫ f(x′)dP
∣∣∣∣) ≤ 2e−ct

2/||f ||2Lip .

Note that there are several distributions satisfying assumption A3 such as standard Gaussian distri-
butions, and uniform distributions on spheres and cubes, see Vershynin (2018).

Lipshitz Assumption: The final assumption we will be making is a Lipschitz constant assumption
on the network.

A4. The Lipschitz constant of layer k must satisfy the following bound

||fk||2Lip ≤O

(
βknk

skminl∈[0,k] nl

(
k−1∏
l=1

√
βl
√
nl

)(
k−1∏
l=1

Log(nl)

))
.

A.1.3 PROOF OF MAIN NTK THEOREM

We will prove a more general theorem than that of thm. 3.1.

Theorem A.1. Let fL denote a depth L neural network with ϕ(x) = e
−x2

s2 as the activation, where
s > 0 is a fixed frequency parameter, satisfying the network assumptions in Section Let {xi}Ni=1
denote a set of i.i.d training data points sampled from the distribution P , which satisfies the data
assumptions in Section Let ak = 1 if the following conditions holds

nk ≥ N

k−2∏
l=1

Log(nl) = o

(
min

l∈[0,k−1]
nl

)

14

Under review as a conference paper at ICLR 2024

and 0 otherwise. Then

λmin (KL) ≥
L−1∑
k=1

akΩ

(
n

3k+4
2

0 β3
k+1β

4
kn

4
k

s3

(k−1∏
l=1

β
7/2
l n

7/2
l

)(L∏
l=k+1

βlnl

))

+ λmin(XX
T) · Ω

(
β3
1n

3/2
0

s3

L∏
l=1

βlnl

)
w.p. at least

1−
L−1∑
k=1

(N2 −N) exp

(
−Ω

(
skminl∈[0,k−1] nl

N2
∏k−2
l=1 Log(nl)

))
−N

k∑
l=0

2 exp(−Ω(nl))

over (Wl)
L
l=1 and the data.

We note that as the widths approach infinity. The probability estimate at the end of the theorem goes
to zero.

The proof of the theorem will follow the techniques of Nguyen et al. (2021); Bombari et al. (2022);
Nguyen & Mondelli (2020). However, we want to iterate that there are several places where new
additions and techniques must be carried out. In particular, expectation integrals will depend heavily
on Gaussian analysis. When we use results from those papers we will explicitly say so by referencing
them.

The theorem will be proven via a string of lemmas. To begin with we go through the basic idea of
how we prove the theorem.

Recall that the empirical NTK as

KL = JJT =

k∑
l=1

(
∂FL

∂vec(Wl)

)(
∂FL

∂vec(Wl)

)T
.

Using the chain rule, we can express the NTK in terms of the feature matrices as:

JJT =

L−1∑
k=0

FlF
T
l ◦Gk+1G

T
k+1, (28)

where Gk ∈ RN×nk with ith row given by

(Gk)i: =

1N√
N
, k = L

ΣL−1(xi)WL, k = L− 1

Σk(xi)
(∏L−1

j=k+1WjΣj(xi)
)
WL, k ∈ [L− 2]

By Weyl’s inequality, we obtain

λmin(JJ
T) ≥

L−1∑
k=0

λmin(FkF
T
k ◦Gk+1G

T
k+1). (29)

Each term in the sum on the left hand side of equation 29 can be further bounded by Schur’s Theorem
Schur (1911); Horn et al. (1994) to give

λmin(FkF
T
k ◦Gk+1G

T
k+1)

≥ λmin(FkF
T
k) min

i∈[N]
||(Gk+1)i:||22. (30)

equation 29 and equation 30 imply

λmin(JJ
T) ≥

L−1∑
k=0

λmin(FkF
T
k) min

i∈[N]
||(Gk+1)i:||22. (31)

15

Under review as a conference paper at ICLR 2024

The strategy of the proof is to obtain bounds on the terms λmin(FkF
T
k) and ||(Gk+1)i:||22 separately,

and then combine them together to obtain a bound on JJT . The following lemma shows how to
estimate the quantity ||(Gk+1)i:||22.

Lemma A.2. Fix k ∈ [L− 2] and let x ∼ P . Then∣∣∣∣∣∣∣∣Σk(x)(L−1∏
l=k+1

WlΣl(x)

)
WL

∣∣∣∣∣∣∣∣2
2

= Θ

(
β3
kn

3k/2
0

s3

(k−1∏
l=1

β3
l n

3
l

)(
βlnl

))

w.p. at least 1−
∑L−1
l=0 2 exp(−Ω(nl)).

The following theorem derives bounds on the minimum singular value of the feature matrices as-
sociated to the network. We consider a set of i.i.d data samples {xi}Ni=1, drawn from distribution
P , which is assumed to satisfy assumptions A1-A3. The feature matrix at layer k is given by
Fk = [fk(x1),fk(xN)]T ∈ RN×nk . For the following theorem, we assume assumption A4.

Theorem A.3. Let fL denote a neural network of depth L with activation function ϕ(x) = e−x
2/s2 ,

where s2 > 0 is a fixed variance hyperparameter. We assume the following conditions hold:

nk ≥ N

k−1∏
l=1

Log(nl) = o

(
min
l∈[0,k]

nl

)
.

The minimum singular value of the feature matrix Fk, denoted σmin(Fk), satisfies the following
bound

σmin (Fk)
2
= Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
w.p. at least

1−N(N − 1) exp

(
−Ω

(
skminl∈[0,k−1] nl

N2
∏k−2
l=1 Log(nl)

))
−N

k∑
l=1

2 exp(−Ω(nl))

The proof of theorem A.1 now follows from lemma A.2 and theorem A.3.

Proof of theorem A.1. Apply Theorem A.3 and lemma A.2 to obtain lower bounds on the terms in
the sum on the right hand side of equation 31.

We are left with proving lemma A.2 and theorem A.3. In order to do this we will need a string of
preliminary lemmas.

A.1.4 PRELIMINARY LEMMAS

Lemma A.4. Let ϕ denote the activation function ϕ(x) = e−x
2/s2 where s is a fixed standard

deviation parameter. Fix 0 ≤ k ≤ L− 1 and assume x ∼ P . Then

||fk(x)||22 = Θ

(
s ·

√
n0

k−1∏
l=1

√
βl
√
nlβknk

)
w.p. ≥ 1−

∑k
l=1 2exp(−Ω(snl))− 2exp(−Ω(

√
n0)) over (Wl)

k
l=1 and x.

Furthermore

Ex∼P ||fk(x)||22 = Θ

(
s ·

√
n0

k−1∏
l=1

√
βl
√
nlβknk

)
w.p. ≥ 1−

∑k
l=1 2exp(−Ω(snl)) over (Wl)

k
l=1.

16

Under review as a conference paper at ICLR 2024

Proof. The proof will be by induction. From the data assumptions, it is clear that the lemma is
true for k = 0. Assume the lemma holds for k − 1, we prove it for k. The proof proceeds by
conditioning on the event (Wl)

k−1
l=1 and obtaining bounds overWk. Then by the induction hypothesis

and intersecting over the two events the result will follow.

We have that Wk ∈ Rnk−1×nk , so we can write Wk = [w1, . . . , wnk], where each wi ∈ Rnk−1 and
wi ∼ N (0, β2

kInk−1
). We then estimate

||fk(x)||22 =

k∑
i=1

||f2k,i||2.

Taking the expectation, we have

EWk
||fk||22 =

k∑
i=1

Ewi [fk,i(x)2], by independence

= nkEwi [fk,i(x)2].

By definition fk,j(x) = ϕ(⟨wj , fk−1(x)⟩). Note that the random variable ⟨wj , fk−1(x)⟩ is a uni-
variate random variable distributed according to N (0, β2

k||fk−1(x)||22). Computing this expectation

comes down to computing the following integral
∫
R e

−2w2/s2e
−w2

β2
k
||fk−1(x)||22 dw. This integral can be

computed from Gaussian integral computations as follows:

∫
R
e−2w2/s2e

−w2

β2
k
||fk−1(x)||22 dw =

∫
R
e
−

(
2
s2

+ 1

β2
k
||fk−1||22

)
w

dw

= βk||fk−1(x)||2s

√
1

2β2
k||fk−1||22 + s2

.

Thus we get

Ewi [fk,i(x)2] = s

(
1

2β2
k||fk−1||22 + s2

)1/2

βk||fk−1||2.

This in turn implies that
C ≤ Ewi [fk,i(x)2] ≤ βk||fk−1||2

for some constant C > 0. In particular, by induction we get

EWk
[||fk(x)||22] = Θ

(
√
n0s

k−1∏
l=1

√
βl
√
nlβknk

)
.

Using the above expectation we would like to apply Bernstein’s inequality Vershynin (2018) to
obtain a bound on ||fk||22. In order to do this we need to compute the sub-Gaussian norm
||fk,j(x)2||ψ1

= ||fk,j(x)||2ψ2
. Since |e−x2/s2 | ≤ 1, we have

Ewi
(
exp
(fk,j(x)2

t2
))

≤ Ewj
(
exp
(1
t2
))

= exp
(1
t2
)
βnkk . (32)

By taking t = 1

Log

(
1

β
nk−1
k

) we get that

Ewi
(
exp
(fk,j(x)2

t2
))

≤ Ewj
(
exp
(1
t2
))

≤ 1,

using the fact that βk ≤ 1. In particular, we get that ||fk,j(x)||2ψ2
≤ O(1).

Applying Bernstein’s inequality Vershynin (2018) to
∑nk
i=1

(
fk,i(x)

2 − Ewi [fk,i(x)2]
)

we obtain

|
nk∑
i=1

(
fk,i(x)

2 − Ewi [fk,i(x)2]
)
| ≤ 1

2
EWk

||fk(x)||22 (33)

17

Under review as a conference paper at ICLR 2024

w.p ≥ 1− 2exp(−cEWk ||fk(x)||
2
2

2). Thus we find that

1

2
EWk

||fk(x)||22 ≤ ||fk(x)||22 ≤ 3

2
EWk

||fk(x)||22 (34)

w.p. ≥ 1 − 2exp(−2sΩ(nk)). Taking the intersection of the induction over (Wl)
k−1
l=1 and the even

over Wk proves the first part of the lemma.

The proof for Ex||fk(x)||22 follows a similar argument using Jensen’s inequality ||Ex[fk,i(x)2||ψ1
≤

Ex||fk,i(x)2||ψ1
= O(1).

Lemma A.5. Let ϕ(x) = e−x
2/s2 . Then

||Ex[fk(x)]||22 = Θ(n0

l∏
l=1

β2
l nl)

w.p. ≥ 1−
∑k
l=1 2exp(−Ω(nl)) over (Wl)

k
l=1.

Proof. By Jensen’s inequality ||Ex[fk(x)]||22 ≤ Ex||fk(x)||22. Thus the upper bound follows from
lemma A.4.

The proof of the lower bound follows by induction. The k = 0 case following from the data
assumption. Assume

||Ex[fk(x)]||22 = Ω(sn0

k−1∏
l=1

βk)

w.p. ≥ 1 −
∑k−1
l=1 exp(−Ω(nl)) over (Wl)

k−1
l=1 . We condition on the intersection of this event and

the event of lemma A.4 for (Wl)
k−1
l=1 .

Write Wk = [w1, . . . , wnk] with wj ∼ N (0, β2
kInk−1) for 1 ≤ j ≤ nk. Then

||
(
Ex[fk,i(x)]

)2||ψ1 = ||Ex[fk,i(x)]||2ψ2

≤ Ex||fk,i(x)||2ψ2

≤ C
√
d

for some C > 0.

Moreover,

EWk
||Ex[fk,i(x)]||22 =

nk∑
i=1

Ewi(Ex[fk,i(x)])2

≥
nk∑
i=1

(ExEwi [fk,i(x)])2

≥ β2
knk
4

(Ex||fk−1(x)||2)2

= Ω(sn0

k∏
l=1

β2
l nl)

where the second inequality is computed using the same technique as in lemma A.4.

Applying Bernstein’s inequality Vershynin (2018) we get

||Ex[fk(x)]||22 ≥ 1

2
EWk

||Ex[fk(x)]||22 = Ω(sn0

nk∏
l=1

β2
l nl)

w.p. ≥ 1 − 2exp(−Ω(nk)) over (Wk). Taking the intersection of all the events then finishes the
proof.

18

Under review as a conference paper at ICLR 2024

Lemma A.6. Let ϕ(x) = e−x
2/s2 . Then for any k ∈ [L− 1] and any i ∈ [N], we have

||fk(xi)− Ex[fk(x)]||22 = Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)

w.p. ≥ 1−Nexp

(
− Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
−
∑k
l=1 exp(−Ω(nl)).

Proof. Let X : Rn0 → R denote the random variable defined by X(xi) = ||fk(xi)− Ex[fk(x)]||2.
By assumption A4, we have

||X||2Lip = O
(
βknk

∏k−1
l=1

√
βlnl

∏k−1
l=1 Log(nl)

skminl∈[0,k] nl

)
w.p. ≥ 1−

∑k
l=1 exp(−Ω(nl)).

We use the notation E[X] = Exi [X(xi)] =
∫
Rn0

X(xi)dP(xi). We then have

E[X]2 = E[X2]− E[|X − EX|2]

≥ E[X2]−
∫ ∞

0

P(|X − EX| >
√
t)dt

≥ E[X2]−
∫ ∞

0

2exp

(
−ct

||X||2Lip

)
dt

= E[X2]− 2

c
||X||2Lip.

By lemma A.7, we have w.p. ≥ 1−
∑k
l=1 exp(−Ω(nl)) over (Wl)

k
l=1 that

E[X2] = Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
which implies

E[X] = Ω

(√√√√√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
.

Moreover, by Jensen’s inequality E[X] ≤
√
E[X2] = O

(√√
n0βknk

∏k−1
l=1

√
βl
√
nl
)
.

Putting the above two asymptotic bounds together we obtain

E[X] = Θ

(√√√√√
n0βknk

k−1∏
l=1

√
βl
√
nl

)

w.p. ≥ 1−
∑k
l=1 exp(−Ω(nl)) over (Wl)

k
l=1.

We condition on the above event and obtain bounds over each sample. Using Lipschitz concentra-
tion, see assumption A3, we have that 1

2E[X] ≤ X ≤ 3
2E[X]. Therefore,

X = Θ

(√√√√√
n0βknk

k−1∏
l=1

√
βl
√
nl

)

w.p. ≥ 1 − exp

(
− Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
. Taking the union bounds over the N samples and inter-

secting them with the above event over (Wl)
k
l=1 gives the lemma.

19

Under review as a conference paper at ICLR 2024

Lemma A.7. Let ϕ(x) = e−x
2/s2 . Then

Ex||fk(x)− Ex[fk(x)]||22 = Θ

(
√
n0βknk

k−1∏
l=1

βlnl

)
w.p. ≥ 1−

∑k
l=1 exp(−Ω(nl)) over (Wl)

k
l=1.

Proof. The proof is by induction. Note that the k = 0 case is given by the concentration inequality
assumption of the data. Assume the lemma is true for k − 1. We condition on this event over
(Wl)

k−1
l=1 and obtain bounds over Wk. Then taking the intersection of the two events we will get a

proof of the lemma.

We recall that we writeWk = [w1, . . . , wnk] wherewi ∼ N (0, β2
kInk−1

). By expanding the squared
norm we have

Ex||fk(x)− Ex[fk(x)]||22 =

nk∑
j=1

Ex(fk,j(x)− Ex[fk,j(x)])2.

We now take the expectation over Wk to obtain

EWk
Ex||fk(x)− Ex[fk(x)]||22 = EWk

Ex||fk(x)||22 − EWk
||Exfk(x)||22.

From the proof of lemma A.4, we know that

EWk
||fk(x)||22 ≥ C

βknk
2

||fk−1(x)||2

for some constant C > 0. Therefore, we can estimate

EWk
Ex||fk(x)||22 − EWk

||Exfk(x)||22

≥ C
βknk
2

Ex||fk−1(x)||2 − ExEy
nk∑
i=1

Ewiϕ(⟨wi, fk−1(x)⟩)ϕ(⟨wi, fk−1(y)⟩)

= C
βknk
2

Ex||fk−1(x)||2 − nkExEyEw1
ϕ(⟨w1, fk−1(x)⟩)ϕ(⟨w1, fk−1(y)⟩)

≥ C
√
n0βknk

k−1∏
l=1

√
βl
√
nl − nkβk

= C
√
n0βknk

k−1∏
l=1

√
βl
√
nl

where to get the second inequality we have used lemma A.5, Jensen’s inequality and the fact that
|ϕ(x)| ≤ 1. In order to get an upper bound we observe

EWk
Ex||fk(x)− Ex[fk(x)]||22 ≤ EWk

Ex||fk(x)||22

≤ Cβknk
2

Ex||fk−1(x)||2

≤ C
√
n0βknk

k−1∏
l=1

√
βl
√
nl.

Applying Bernstein’s inequality Vershynin (2018) we get

1

2
EWk

Ex||fk(x)− Ex[fk(x)]||22 ≤ Ex||fk(x)− Ex[fk(x)]||22 ≤ 3

2
EWk

Ex||fk(x)− Ex[fk(x)]||22

w.p. ≥ 1 − exp(−Ω(nk)) over Wk. Taking the intersection of that event, together with the condi-
tioned event over (Wl)

k−1
l=1 gives the statement of the lemma.

20

Under review as a conference paper at ICLR 2024

Lemma A.8. For the activation function ϕ(x) = e−x
2/s2 we have that

||Σk(x)||2F = Θ

(
β3
k

s
nkn

3k/2
0

k−1∏
l=1

β3
l n

3
l

)
w.p. ≥ 1−

∑k
l=1 2exp(−Ω(nl))− 2exp(−Ω(

√
n0)).

Proof. We first observe that lemma A.4 implies that ||fk−1(x)|| ≠ 0 w.p. ≥ 1 −∑k−1
l=0 2exp(−2sΩ(nk)) which in turn implies that fk−(x) ̸= 0 w.h.p. ≥ 1 −∑k−1
l=0 2exp(−2sΩ(nk)) over (Wl)

k−1
l=1 and x. We condition on that event and obtain bounds on

Wk. Taking the intersection of the two events will then complete the proof.

WriteWk = [w1, . . . , wnk]. Then ||Σk(x)||2F =
∑nk
i=1 ϕ

′(⟨fk−1(x), wi⟩)2. Thus EWk
||Σk(x)||2F =

nkEw1
[ϕ′(⟨fk−1(x), w1⟩)2], by independence. We have

EWk
||Σk(x)||2F = nkEw1

[ϕ′(⟨fk−1(x), w1⟩)2]

=
4nk
s4

Ew1
[⟨fk−1(x), w1⟩2e−

2⟨fk−1(x),w1⟩2

s2 .

Using the fact that ⟨fk−1(x), w1⟩ is a univariate random variable distributed according to

N (0, β2
k||fk−1(x)||22). Thus the above expectation is equivalent to 4nk

s4 Ew[w2e−
2w2

s2] with w ∼
N (0, β2

k||fk−1(x)||22). We then compute

Ew[w2e−
2w2

s2] =

∫
R
w2e−

2w2

s2 e
− w2

β2
k
||fk−1(x)||22 dw

=

∫
R
w2e

−
(

2
s2

+ 1

β2
k
||fk−1(x)||22

)
w2

dw

=

∫
R
w2e

−
(

2β2k||fk−1(x)22+s2

β2
k
s2||fk−1(x)||22

)
w2

dw

=
−1

2

(
β2
ks

2||fk−1(x)||22
2β2

k||fk−1(x)||22 + s2

)∫
R
w
d

dw

(
e
−
(

2β2k||fk−1(x)||22+s2

β2
k
s2||fk−1(x)||22

)
w2
)
dw

=
1

2

(
β2
ks

2||fk−1(x)||22
2β2

k||fk−1(x)||22 + s2

)∫
R
e
−
(

2β2k||fk−1(x)||22+s2

β2
k
s2||fk−1(x)||22

)
w2

dw

=
1

2

(
β2
ks

2||fk−1(x)||22
2β2

k||fk−1(x)||22 + s2

)3/2

.

Thus we get

EWk
[||Σk(x)||2F] =

4nk
2s4

(
β2
ks

2||fk−1(x)||22
2β2

k||fk−1(x)||22 + s2

)3/2

which implies

EWk
[||Σk(x)||2F] = Θ

(
β3
k

s
nkn

3k/2
0

k−1∏
l=1

β3
l n

3
l

)
.

We now apply Hoeffding’s inequality Vershynin (2018) to get∣∣∣∣||Σk(x)||2F − EWk
||Σk(x)||2F

∣∣∣∣ ≤ 1

2
EWk

||Σk(x)||2F

w.p. ≥ 1− 2exp(−
(
EWk ||Σk(x)||

2
F

)2
4nk

). Using the estimate for EWk
||Σk(x)||2F that we obtained and

taking the intersection of the two events proves the lemma

21

Under review as a conference paper at ICLR 2024

Lemma A.9. Let ϕ(x) = e−x
2/s2 . Then∣∣∣∣∣∣∣∣Σk(x) p∏

l=k+1

WlΣl(x)

∣∣∣∣∣∣∣∣2
F

= Θ

(
β3
kn

3k/2
0

s3

(k−1∏
l=1

β3
l n

3
l

)(p∏
l=k

βlnl

))
w.p. ≥ 1−

∑p
l=0 2exp(−Ω(nl)) over (Wl)

p
l=1 and x ∼ P .

Proof. We want to bound ||Σk(X)
∏p
l=k+1WlΣl(x)||2F for k ≤ p ≤ l − 1, and any k ∈ [L − 1],

x ∼ P .

When p = k, the quantity reduces to ||Σk(x)||2F , which we know how to bound by lemma A.8.

Let B(p) = Σk(x)
∏p
l=k+1WlΣl(x) = Σk(x)

(∏p−1
l=k+1WlΣl(x)

)
WpΣp(x) = B(p −

1)WpΣp(x).

Write Wp = [w1, . . . , wnp] and observe that

||B(p)||2F =

np∑
i=1

||B(p− 1)wi||22ϕ′(⟨fp−1(x), wi⟩)2.

Taking the expectation we obtain

EWp
||B(p)||2F = npEw1

||B(p− 1)w1||22ϕ′(⟨fp−1(x), wi⟩)2.

The derivative ϕ′(⟨fp−1(x), wi⟩)2 = 4
s2 ⟨fp−1(x), wi⟩2e

−2⟨fp−1(x),wi⟩
2

s2 .

Pick a piecewise non-negative, non-zero, measurable locally constant function χ so that

0 ≤ χ(x) ≤ 4x2

s2 e
(−2x2

s2). Then observe that

EWp
||B(p)||2F ≥ npEw1

||B(p− 1)w1||22χs2

= nps
2β2
p ||B(p− 1)||2F .

To get an upper bound, we simply observe that ϕ′ is a bounded function. Therefore,

EWp
||B(p)||2F ≤ s2npβp||B(p− 1)||2F .

By induction, applying lemma A.8, we get

EWp
||B(p)||2F = Θ

(
β3
kn

3k/2
0

s3

(k−1∏
l=1

β3
l n

3
l

)(p∏
l=k

βlnl

))
.

Once we have an expectation bound we can apply Bernstein’s inequality Vershynin (2018). In order
to do this, we need to compute the sub-Gaussian norm. By using the fact that ϕ′(x)2 is a bounded
function we have∣∣∣∣∣∣∣∣||B(p− 1)w1||22ϕ′(⟨fp−1(x), wi⟩)2

∣∣∣∣∣∣∣∣
ψ1

≤ C

∣∣∣∣∣∣∣∣||B(p− 1)w1||2
∣∣∣∣∣∣∣∣2
ψ2

≤ Cβ2
p ||B(p− 1)||2F

for some C > 0.

Once we have the sub-Gaussian norm estimate, we can apply Bernstein’s inequality Vershynin
(2018) to get

1

2
EWp

||B(p)||2F ≤ ||B(p)||2F ≤ 3

2
EWp

||B(p)||2F

w.p. ≥ 1 − 2exp(−Ω(np)) over Wp. Taking the intersection of this event with the previous events
over (Wl)

p−1
l=1 and x gives the result.

22

Under review as a conference paper at ICLR 2024

4 2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: An example of a χ, black curve.

A.1.5 PROOF OF LEMMA A.2

Lemma A.10. Let ϕ(x) = e−x
2/s2 , then ||Σk(x)||op ≤ 2

s .

Proof. For the activation function e−x
2/s2 , the derivative is −2x

s2 e
−x2

. The maximum of this deriva-
tive occurs at the point −s√

2
at which it has the value

√
2
s e

−1/2. The result follows.

Lemma A.11. Let A = Σk(x)
∏L−1
l=k+1WlΣl(x) and let ϕ(x) = e−x

2/s2 . Then

||A||2op = O
(

nk
sminl∈[k,L−1] nl

L−1∏
l=k+1

nlβ
2
l

)
w.p. ≥ 1−

∑k
l=0 2exp(−Ω(nl)) over (Wl)

k
l=1 and x.

Proof. We first note that we have the estimate

||A||op ≤ ||Σ(x)||op
∣∣∣∣∣∣∣∣ L−1∏
l=k+1

WlΣl(x)

∣∣∣∣∣∣∣∣
op

. (35)

We then observe that ||Σk(x)||op can be bounded by lemma A.10. This means we need only bound∣∣∣∣∣∣∣∣∏L−1
l=k+1WlΣl(x)

∣∣∣∣∣∣∣∣
op

. The proof of this follows by induction on the length (L− 1)− (k + 1) =

L− k − 2.

The base case follows by applying operator norm bounds of Gaussian matrices, see theorem 2.13 in
Davidson & Szarek (2001).∣∣∣∣WL−1ΣL−1(x)

∣∣∣∣
op

≤ C(s)
∣∣∣∣WL−1

∣∣∣∣2
op

= O(β2
L−1 max{nL−1, nL−2}).

23

Under review as a conference paper at ICLR 2024

The general case now follows the ϵ-net argument used in Nguyen et al. (2021).

Proof of lemma A.2. We need to estimate the quantity∣∣∣∣∣∣∣∣Σk(x)(L−1∏
l=k+1

WlΣl(x)

)
WL

∣∣∣∣∣∣∣∣2
2

.

Let A = Σk(x)
∏L−1
l=k+1WlΣl(x). By lemma A.9 we have that

||A||2F = Θ

(
β3
kn

3k/2
0

s3

(k−1∏
l=1

β3
l n

3
l

)(L−1∏
l=k

βlnl

))
w.p. ≥ 1−

∑p
l=0 2exp(−Ω(nl)) over (Wl)

p
l=1 and x ∼ P .

Lemma A.11 then gives the operator norm estimate

||A||2op = O
(

nk
sminl∈[k,L−1] nl

L−1∏
l=k+1

nlβ
2
l

)
w.p. ≥ 1−

∑k
l=0 2exp(−Ω(nl)) over (Wl)

k
l=1 and x.

As A only depends on (Wl)
L−1
l=1 and x, we condition on the above two events over (Wl)

L−1
l=1 and x,

and obtain a bound over WL. Applying the Hanson-Wright inequality Vershynin (2018) we get∣∣∣∣||AWL||22 − EWL
||AWL||22

∣∣∣∣ ≤ 3

2
EWL

||AWL||22

w.p. ≥ 1− exp

(
− Ω

(
||A||2F

maxi ||(AWL)i||ψ2

))
.

Note that ||(AWL)i||22 ≤ ||B||2op||WL||22. It follows that for each i that ||(AWL)i||ψ2
= O(||B||op).

We therefore find that

||AWL||22 = Θ

(
β3
kn

3k/2
0

s3

(k−1∏
l=1

β3
l n

3
l

)(L∏
l=k

βlnl

))
w.p. ≥ 1 − 2exp(−Ω(nk)). By taking the intersection of this event with the one we conditioned
over, we get the result.

A.1.6 PROOF OF THEOREM A.3

We start with the following lemma, whose proof is given in E.3 of (Ngyuen).

Lemma A.12. Let F̃k = Fk − EX [Fk] denote the centred features. Let µ = Ex∼P [fk(x)] ∈ Rnk
and let Λ = Diag(Fkµ− ||µ||221N), where 1N ∈ RN is the column vector of 1′s. Then

FkF
T
k ≥

(
F̃kF̃

T
k − Λ1N1TNΛ

||µ||22

)
where ≥ sign is used in the sense of positive semi-definite matrices, meaning

FkF
T
k −

(
F̃kF̃

T
k − Λ1N1TNΛ

||µ||22

)
≥ 0.

Proof of theorem A.3. By lemma A.12, in order to bound λmin(FkF
T
k) is suffices to bound

λmin(F̃kF̃
T
k − Λ1N1TNΛ

||µ||22
). The proof will focus on bounding this latter quantity.

By Weyl’s inequality we have

λmin

(
F̃kF̃

T
k − Λ1N1TNΛ

||µ||22

)
≥ λmin(F̃kF̃

T
k)− λmax(

Λ1N1TNΛ

||µ||22
)). (36)

24

Under review as a conference paper at ICLR 2024

We start by bounding λmin(F̃kF̃
T
k).

By the Gershgorin circle theorem we have

λmin(F̃kF̃
T
k) ≥ min

i∈[N]
||(F̃k)i:||22 −Nmaxi ̸=j |⟨(F̃k)i:, (F̃k)j:⟩| (37)

λmin(F̃kF̃
T
k) ≤ max

i∈[N]
||(F̃k)i:||22 +Nmaxi ̸=j |⟨(F̃k)i:, (F̃k)j:⟩|. (38)

By lemma A.6, we have for all i ∈ [N] that

||fk(xi)− Ex[fk(x)]||22 = Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
(39)

w.p. ≥ 1−Nexp

(
− Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
−
∑k
l=1 exp(−Ω(nl)) over (Wl)

k
l=1 and x.

The goal is to find a bound for |⟨(F̃k)i:, (F̃k)j:⟩|. By assumption A4 we have that

||fk(x)− Exfk(x)||2Lip = O
(

1

skminl∈[0,k] nl
βknk

k−1∏
l=1

√
βl
√
nl

k−1∏
l=1

Log(nl)

)
.

w.p. ≥ 1 −
∑k
l=1 2exp(−Ω(nl)) over (Wl)

k
l=1, where we used the fact that fk(x) − Exfk(x) and

fk(x) have the same Lipshitz constant.

We are going to condition on the intersection of the above event over (Wl)
k
l=1 and the event defined

by equation 39 over (Wl)
k
l=1 and xj and derive bounds over xi. Since we have conditioned on xj ,

|⟨(F̃k)i:, (F̃k)j:⟩| is a function of xi for every i ̸= j. We then have∣∣∣∣∣∣∣∣|⟨(F̃k)i:, (F̃k)j:⟩|∣∣∣∣∣∣∣∣
Lip

≤ ||(F̃k)j:||22||fk(xi)− Exfk(xi)||2Lip

= O
(√

n0
skminl∈[0,k] nl

β2
kn

2
k

k∏
l=1

βlnl

k−1∏
l=1

Log(nl)

)
using the above two asymptotic estimates we have conditioned on. Note that the above holds for all
xi ̸= xj .

Applying our concentration assumption A3, and taking the union of the above estimate over all
xi ̸= xj we have

P
(

max
i∈[N],i̸=j

|⟨(F̃k)i:, (F̃k)j:⟩| ≥ t

)
≤ (N−1)exp

− t2

O
(√

n0

skminl∈[0,k] nl
β2
kn

2
k

∏k
l=1 βlnl

∏k−1
l=1 Log(nl

)
 .

Choosing t = N−1√n0βknk
∏k−1
l=1

√
βl
√
nl. We have

Nmaxi ̸=j |⟨(F̃k)i:, (F̃k)j:⟩| ≤ βknk

k−1∏
l=1

√
βl
√
nl

w.p. ≥ 1− (N − 1)exp
(
−Ω

(
minl∈[0,k] nl

sk
∏k−1
l=1 Log(nl)

))
−
∑k
l=1 2exp(−Ω(nl)). Therefore we can take a

union of the bounds for each j ∈ [N] to obtain

Nmaxi ̸=j |⟨(F̃k)i:, (F̃k)j:⟩| = o

(
βknk

k−1∏
l=1

√
βl
√
nl

)

w.p. ≥ 1−N(N − 1)exp
(
−Ω

(
minl∈[0,k] nl

sk
∏k−1
l=1 Log(nl)

))
−N

∑k
l=1 2exp(−Ω(nl)).

25

Under review as a conference paper at ICLR 2024

We then obtain that

λmin(F̃kF̃k
T
) = Θ

(
βknk

k−1∏
l=1

√
βl
√
nl

)
(40)

w.p. ≥ 1−N(N − 1)exp
(
−Ω

(
skminl∈[0,k] nl∏k−1
l=1 Log(nl)

))
−N

∑k
l=1 2exp(−Ω(nl)). This bounds the first

term on the right hand side of equation 36. We move on to bounding the second term on the right
hand side of equation 36.

We want to bound the maximum eigenvalue of the quantity Λ1N1TNΛ

||µ||22
. The maximum eigenvalue is

the operator norm, therefore we will obtain an estimate for the operator norm. As a start we have
the simple estimate ∣∣∣∣∣∣∣∣Λ1N1TNΛ

||µ||22

∣∣∣∣∣∣∣∣
op

≤
∣∣∣∣∣∣∣∣ Λ

||µ||2

∣∣∣∣∣∣∣∣2
op

.

We define an auxiliary random variable g : Rd → R by g(x) = ⟨fk(x), µ⟩. Note that Λii =
g(xi) − Ex[g(x)] and that ||g||2Lip ≤ ||µ||22||fk||2Lip. Therefore, applying Liptshitz concentration,
we get

P (|Λii| ≥ t) ≤ exp

(
− t2

2||µ||22||fk||2Lip

)
.

From lemma A.5, we have

||µ||22 = Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
. (41)

Furthermore, our assumption on the Lipshitz constant (A4) gives the estimate

||fk(x)||2Lip = O
(

1

skminl∈[0,k] nl
βknk

k−1∏
l=1

√
βl
√
nl

k−1∏
l=1

Log(nl)

)
. (42)

If we take t = 1
N ||µ||22, and take a union bound over all the samples {xi} and the events defined by

equation 41, equation 42, we get the estimate∣∣∣∣∣∣∣∣ Λ

||µ||2

∣∣∣∣∣∣∣∣2
op

= O

(
1

N2

√
n0βknk

k−1∏
l=1

√
βl
√
nl

)
(43)

w.p. ≥ 1−Nexp
(
−Ω

(
minl∈[0,k] nl

skN2
∏k−1
l=1 Log(nl)

))
−
∑k
l=1 2exp(−Ω(nl)).

Putting the estimate for λmin

(
F̃kF̃k

T
)

and
∣∣∣∣∣∣∣∣Λ1N1TNΛ

||µ||22

∣∣∣∣∣∣∣∣
op

together we obtain

λmin

(
FkF

T
k

)
= Θ

(
√
n0βknk

k−1∏
l=1

√
βl
√
nl

)

w.p. ≥ 1−N(N − 1)exp
(
−Ω

(
minl∈[0,k] nl

skN2
∏k−1
l=1 Log(nl)

))
−N

∑k
l=1 2exp(−Ω(nl)). This completes

the proof.

A.2 EMPIRICAL RESULTS ON THE NTK AND ASSUMPTION 4

In this section we would like to show empirically that Assumption 4 is an an extremely mild as-
sumption and further test the statement of thm.A.1, analogous to fig. 1.

The Lipschitz constant of the k-layer function fk can be expressed as the supremum, over each point
in data space, of the operator norm of the Jacobian matrix as

||fk||Lip = sup
x∈Rn0

||J(fk)(x)||op.

26

Under review as a conference paper at ICLR 2024

64 128 256 512 1024 2048
Width of Last Hidden Layer

103

105

107

109

1011

1013

Em
pi

ric
al

 L
ip

sc
hi

tz
 C

on
st

an
t Gauss-0.1 | no=400

Gauss-0.1 | no=200
(n4

3)

Figure 6: The empirical Lipshitz constant of a Gaussian-activated network over 1000 data points,
where n1 = n2 = 64, n4 = 1 and n3 varying from 64 to 2048, when n0 = 200 and n0 = 400. This
plot empirically confirms the assumption A4.

The exact computation of the Lipschitz constant of a deep network is considered as an NP-hard
problem Virmaux & Scaman (2018). Therefore, for our experiment, we will consider the empirical
Lipschitz constant. We obtain a sampled data set X , sampled from a fixed distribution P; see sec.
A.1.2. We then define the empirical Lipschitz constant of fk as

||fk||ELip = max
x∈X

||J(fk)(x)||op.

Note that the empirical Lipschitz constant of fk is a lower bound for the true Lipschitz constant of
fk.

We computed the empirical Lipschitz constant of a 4−layer Gaussian-activated network with vari-
ance s2 = 0.12, f3 over 1000 data points, drawn from a Gaussian distribution N (0, 1). The widths
of the layers were fixed as n1 = n2 = 64, n4 = 1, and n3 was varied from 64 to 2048. We consid-
ered two different data dimensions, namely n0 = 200 and n0 = 400. Fig. 6 clearly shows that the
empirical Lipschitz constant grows much slower with width than a term that grows O(n

1/2
3). This

empirically supports the assumption A4 and demonstrates that the bound given in assumption A4 is
an extremely loose bound.

A.3 EQUILIBRATED PRECONDITIONING

Preconditioning is a fundamental topic in numerical solutions for linear systems of equations, typ-
ically represented as Ax = b. It involves the adjustment of the matrix A to reduce its condition
number. Linear systems with lower condition numbers are not only solved more accurately but also
more efficiently. The conventional approach to preconditioning transforms the original system into
a simpler one, denoted as PAx = Pb. The key challenge in preconditioning lies in selecting the
appropriate multiplier P that effectively reduces the initially high condition number, cond(A), to a
significantly smaller value, cond(PA).

For this work we will primarily focus on diagonal preconditioners. These are preconditoners P
which are diagonal matrices. We will primarily use the

1. Jacobi preconditioners; For a given matrix A the Jacobi preconditioner of A is the matrix
P = diag(A)−1.

2. Row Equilibrated preconditioner; For a given matrixA the Row equilibrated preconditioner
associated to A is the diagonal matrix P = diag(||Ai;||)−1 whose diagonal terms are the
inverse of the norms of the rows of A.

27

Under review as a conference paper at ICLR 2024

250 500 750 1000 1250 1500
N

0

2500

5000

7500

10000

12500

15000

17500

m
in

(K
3)

Tanh
Gauss-0.1

((15N)4)

Figure 7: The minimum eigenvalue of the empirical NTK, where n0 = 400, n1 = 15N , and
n2 = 400. As predicted by Thm. A.1, λmin(KL) for a Gaussian-activated network grows much
faster than a Tanh-activated network and a quartic complexity of the width.

Analogous to row equilibration is column equilibration which generally performs the same. In this
paper, we will primarily focus on row equilibration and often simply call it equilibration.

We recall that the main reason for focusing on the diagonal preconditioners given by row equilibra-
tion comes from Van Der Sluis’ theorem.
Theorem A.13 (Van der Sluis (1969)). Let A be a n × n matrix, P an arbitrary diagonal matrix
and E the row equilibrated matrix built from A. Then κ(EA) ≤ κ(PA).

Thm. 4.1 shows that out of the diagonal preconditioners, row equilibration is the optimal one for
condition number reduction. A similar result also holds for column equilibration, see Van der Sluis
(1969).

We now prove some results that shows why applying row equilibration is a suitable choice for
reducing the condition number of a matrix. All proofs can be found in the appendix.

In Guggenheimer et al. (1995) the following estimate on the condition number of a non-singular
n× n matrix A is proven:

κ(A) ≤ 2

|det(A)|

(
||A||2F
n

)n
2

:= U(A) (44)

The following lemma shows that equilibrating a non-singular matrix reduces the upper bound U(A)
by a precise factor that depends on A.
Lemma A.14. Let A be a non-singular matrix. Then equilibrating A reduces the upper bound
U(A) by a factor of

||A1;|| · · · ||An;||(
||A||2F
n

)n/2 . (45)

We note that the quantity in equation 45 is less than 1. While lem. A.14 shows that equilibrating a
matrix can reduce an upper bound of its condition number it doesn’t imply that the condition number
actually decreases. Therefore, it is reasonable to study lower bounds. The following lemma provides
a lower bound on the condition number.
Lemma A.15. Let A ∈ R2xn be a matrix with two rows and let the rows be denoted by X1 and X2.
Let the angle between the two vectors X1 and X2 in Rn be denoted by θ(X1, X2). Suppose that

28

Under review as a conference paper at ICLR 2024

1− cos(θ(X1, X2)) = ϵ for some ϵ ∈ (0, 1). Then

κ(A) ≥

(
1

4ϵ(2− ϵ)

(
||X1||
||X2||

+
||X2||
||X1||

+ 2

)) 1
2

(46)

Lem. A.15 implies that if an n × n matrix A has two rows that have angle cos(θ) = 1 − ϵ for
ϵ ∈ (0, 1). Then the condition number of A is bounded below by Cϵ−1/2, for a constant C that
depends on the norms of the two rows.
Lemma A.16. Let A be a n × n matrix and assume A has two rows Xi and Xj such that
cos(θ(Xi, Xj)) = 1 − ϵ for ϵ ∈ (0, 1). Let the lower bound on κ(A) from lem. A.15 be de-
noted by CAϵ−1/2. Let PA denote the row equilibration of A and let the lower bound on κ(PA),
given by lem. A.15, be denoted by CPAϵ−1/2. Then CPA ≤ CA.

Lem. A.15-A.16 demonstrates that the process of equilibrating a matrix effectively lowers both the
upper and lower bounds on its condition number. This compelling insight provides a strong rationale
for considering equilibration as an effective strategy for lowering the condition number of a matrix.

Proof of lem. A.14. Let PA denote the equilibration of A. By equation 44, we have

κ(PA) ≤ 2

|det(PA)|

(
||PA||2F

n

)n
2

. (47)

Observe that the norm of each row of PA is 1, yielding that ||PA||F = n. Hence ||PA||2F
n = 1.

Furthermore, by definition of P we have that

det(P−1) = ||A1;|| · · · ||An;|| (48)

where Ai; denotes the ith-row of A. Applying the arithmetic-geometric mean inequality we find

det(P−1) ≤
(
(||A1;||+ · · ·+ ||An;||)2

n2

)n
2

. (49)

Using the fact that (||A1;||+ · · ·+ ||An;||)2 ≤ n · (||A1;||2 + · · ·+ ||An;||2), we find that

det(P−1) ≤
(
||A1;||2 + · · ·+ ||An′ ||2

n

)n
2

. (50)

Then using the fact that det(PA) = det(P)det(A) the result follows.

Proof of lem. A.15. We consider the matrix B = ATA and note that the singular values of A are
precisely the square roots of the eigenvalues ofB. SinceB is a 2×2 matrix a closed form expression
for the eigenvalues λ1 ≥ λ2 can be given by

λ1 =
X1X

T
1 +X2X

T
2 + ((X1X

T
1 +X2X

T
2)

2 + (4X1X
T
2)

2)1/2

2

λ2 =
X1X

T
1 +X2X

T
2 + ((X1X

T
1 +X2X

T
2)

2 − (4X1X
T
2)

2)1/2

2
.

It follows that

λ1
λ2

=
[X1X

T
1 +X2X

T
2 + ((X1X

T
1 +X2X

T
2)

2 + (4X1X
T
2)

2)1/2)]2

4(X1XT
1 X2XT

2 − (X1XT
2)

2)
. (51)

By assumption we have that cos(θ(X1, X)2)) = 1 − ϵ, giving X1X
T
2 = (1 − ϵ)2X1X

T
1 X2X

T
2 .

This implies
λ1
λ2

≥ (X1X
T
1 +X2X

T
2)

2

4((1− (1− ϵ)2)X1XT
1 X2XT

2

(52)

which proves the result since κ(A) is given by the square root of λ1

λ2
.

29

Under review as a conference paper at ICLR 2024

We now given the proof of lem. A.16. To do so we will need a string of lemmas.
Lemma A.17. Given an n × n matrix A if A has two rows Xi and Xj satisfying the assumptions
of lem. A.15. Then

κ(A) ≥

(
1

4ϵ(2− ϵ)

(
||Xi||
||Xj ||

+
||Xi||
||Xj ||

+ 2

)) 1
2

:= L(i, j). (53)

Proof. The proof of this lemma follows easily from lem. A.15.

Lemma A.18. Let A be a non-singular matrix n × n, with n > 0, and let Θ denote the matrix
whose entries are given by cos(θij), where θij denotes the angle between the ith and jth row of A.
Assume for i ̸= j that Θij = 1− ϵij for ϵij ∈ (0, 1). Let ϵ = mini ̸=j Θij = cos(θIJ), where I and
J denote the Ith and Jth rows of A, which we denote by XI and XJ respectively. Then

κ(A) ≥ 2

n(n− 1)
·

(
1

4ϵ(2− ϵ)

(
||XI ||
||XJ ||

+
||XI ||
||XJ ||

+ 2

)) 1
2

= L(I, J) := L(A). (54)

Proof. The proof of this lemma follows by observing that by lem. A.17, κ(A) can be lower bounded
by each L(i, j) (see lem. A.17 for the notation L(i, j)) for i ̸= j. There are in total (n−1)n

2 of the
L(i, j). It therefore follows that

(n− 1)n

2
κ(A) ≥

∑
i ̸=j

L(i, j) (55)

which implies

κ(A) ≥ 2

n(n− 1)
L(I, J). (56)

Theorem A.19. Given a non-singular n × n matrix A with n > 0. We have that the equilibrated
matrix PA has L(PA) ≤ L(A). In particular, equilibrating a matrix lowers the upper bound U(A)
on κ(A) and lowers the lower bound L(A) on κ(A).

Proof. Consider the function f : Rn × Rn − {(0, 0)} → R defined by

f(X,Y) =
||X||
||Y ||

+
||Y ||
||X||

+ 2. (57)

By computing the gradient of this function and solving for minima we see that the minimum of f
occurs at the points given by {X = Y } and {X = −Y }. In particular the minimum of f occurs
on the points (X,Y) such that ||X|| = ||Y || and the minimum value is exactly 4. It follows that
L(i, j)PA ≤ L(i, j)A for any i ̸= j. The result follows.

The proof of lem. A.16 then immediately follows from lem. A.19.

A.4 EXPERIMENTS

A.4.1 HARDWARE AND SOFTWARE

All experiments were run on a Nvidia RTX A6000 GPU. Furthermore, all the exerpiments were
coded in PyTorch version 2.0.1.

Experimental trials: All experiments were each run 5 times and the average of the train, test and
times are what is recorded.

Hyperparameters: The Gaussian and sine activation both have a hyperparamter given by the
variance s2 for the Gaussian and f , the frequency for sine. In general there is no principled way
to choose these hyperparameters. Therefore, we ran several trials and found that for a Gaussian,
s = 0.1− 0.4 worked best. For a sine we found that a frequency of 1− 10 worked best.

30

Under review as a conference paper at ICLR 2024

A.5 BURGERS’ EQUATION

All networks used to test on this equation were 3 hidden layers with 128 neurons. We used synthetic
data from:

https://github.com/jdtoscano94/Learning-Python-Physics-\
Informed-Machine-Learning-PINNs-DeepONets

In total we used 100 boundary and intial points which were randomly sampled using a uniform
distribution from a boundary training set of 456 points. We used 10000 sampled PDE data points
using a latin hypercube sampling strategy. The Gaussian networked used a variance of s2 = 0.12

and the sine network used a frequency of f = 10.

All networks were trained with Adam on full batch and used the standard configuration in the adam
paper Kingma & Ba (2014), with a learning rate of 1e-4. We note that some practitioners use much
smaller learning rates but we found for Tanh networks these were proving unstable and leading to
NaN results for the loss. In order to keep each experiment fair, we adopted 1e-4 as it worked well
with all networks. All networks were trained for 15000 epochs on full batches.

A.6 NAVIER-STOKES

For the Navier-Stokes example from sec. 5.2, we used a 3 hidden layer network with 128 neurons
in each layer for each network. The data was synthetic data obtained from the github of the original
paper Raissi et al. (2019): https://github.com/maziarraissi/PINNs

We used 5000 uniformly sampled points from a total training set of 1000000 points. All networks
were trained with Adam with a learning rate of 1e-4 for 30000 epochs on full batches. For the
Gaussian network we found that a variance of s2 = 0.42 worked best and for the sine network we
found a frequency of 2 worked best.

The training curves of all the loss functions are shown in fig. 8. The Gaussian-activated PINN per-
forms the best overall, showing faster convergence than all other 3. Note that in Raissi et al. (2019) a
Tanh network was used to reconstruct the velocity and pressure of the Navier-Stokes equations and
in that case convergence only occurred at 80000 epochs.

A.7 DIFFUSION EQUATION

We trained 6 different networks to fit the diffusion equation, see sec. 5.3. The networks were, a
standard Tanh-PINN Raissi et al. (2019), Locally adaptive activation PINN (L-LAAF-PINN), with
a Gaussian activation, Jagtap et al. (2020), Random Fourier Feature PINN (RFF-PINN) Wang et al.
(2021), A PINNsformer Zhao et al. (2023), a Gaussian-activated PINN (G-PINN) and an Equili-
brated Gaussian-activated PINN (EG-PINN).

G-PINN and EG-PINN employed a Gaussian with variance s2 = 0.22.

Sec. 5.3 gave the training/testing results showing that EG-PINN is superior over all other networks.

Fig. 9 shows the training/testing errors of EG-PINN against a RFF-PINN and a stock standard Tanh-
PINN. While the Tanh-PINN seems to start to converge around 17000 epochs in, the RFF-PINN
struggles. EG-PINN on the other hand starts to immediately converge soon after a few thousand
epochs.

Fig. 10 shows the training/testing errors of EG-PINN against a PINNsformer. The training/testing
erros for the PINNsformer are extremely noisy and it was not showing any signs of convergence.

Fig. 11 shows the reconstruction of the RFF and PINNsformer networks. Both networks have
struggled to find a solution to the PDE.

31

https://github.com/jdtoscano94/Learning-Python-Physics- \ Informed-Machine-Learning-PINNs-DeepONets
https://github.com/jdtoscano94/Learning-Python-Physics- \ Informed-Machine-Learning-PINNs-DeepONets
https://github.com/maziarraissi/PINNs

Under review as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000 30000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10
L
2
 t

ra
in

 e
rr

o
r

L2 train error for Navier-Stokes.

Gaussian
Sine
Tanh
Wavelet

10000 12500 15000 17500 20000 22500 25000 27500 30000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0 5000 10000 15000 20000 25000 30000
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

L2
 p

d
e
 e

rr
o
r

L2 pde error for Navier-Stokes.

Gaussian
Sine
Tanh
Wavelet

0 5000 10000 15000 20000 25000 30000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

L2
 v

el
.
er

ro
r

L2 velocity error for Navier-Stokes.

Gaussian
Sine
Tanh
Wavelet

10000 12500 15000 17500 20000 22500 25000 27500 30000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010 L2 train error Rel. L2 test pressure error Rel. L2 test velocity error Time (s)

Tanh 2.9e−4 2.8e−1 8.8e−5 887.48
Gaussian 8.74e−5 4.7e−2 3.4e−5 1466.10

Sine 2.0e−4 6.8e−2 2.2e−4 958.18
Wavelet 5.0e−4 1.2e−1 3.0e−4 1792.65

Summary of results

Figure 8: Training error of all loss functions. The Gaussian PINN converges much faster than all
the other 3.

A.8 POISSON’S EQUATION

We consider Poisson’s Equation given by

−∆u = 25π2sin(5π) for x ∈ [−1, 1] (58)
u(−1) = u(1) = 0. (59)

This PDE has a closed form solution given by u(x) = sin(5πx).

We trained the same network frameworks from sec. 5.3, however all networks had two hidden layers
with 128 neurons, except for PINNsformer which had 9 hidden layers and 128 neurons in each.
We then how each does in reconstructing the solution to the above PDE. The above PDE is a low
frequency PDE and standard PINN architectures do not have trouble finding an accurate solution.
However, we will only trained each architecture for 5000 epochs thereby comparing whether each
architecture can find a solution in a short number of iterations. We used 1000 PDE sample points
and trained each PINN with the Adam optimizer, learning rate of 1e-4, on full batch.

Fig. 12, shows the train/test errors for the three Gaussian-activated PINNs, G-PINN, EG-PINN and
L-LAAF-PINN. From the figure we see that EG-PINN has converged the fastest. Table 4 shows the
training/testing results for each PINN. The first three PINNs employ a Gaussian activation function
and achieve significantly better results than the other three. Furthermore, amongst the top three,
EG-PINN performs significantly better achieving at least 103 lower relative test accuracy.

Figs. 13-14 show the train/test errors for an EG-PINN against a Tanh-PINN and a PINNsformer. IN
both cases the EG-PINN is able to converge in extremely less iterations while the Tanh-PINN and
the PINNsformer struggle.

You may include other additional sections here.

32

Under review as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0

200

400

600

800

L2
 t

ra
in

 e
rr

o
r

L2 train error for Diffusion Eqn.

EG-PINN
Tanh-PINN
RFF-PINN

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0

2000

4000

6000

8000

10000

12000

14000

16000

R
e
l.
 L

2
 t

e
st

 e
rr

o
r

Rel. L2 test error for Diffusion Eqn.

EG-PINN
Tanh-PINN
RFF-PINN

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

L2
 e

rr
or

L2 Bndry/I.C. error for Diffusion Eqn.

EG-PINN
Tanh-PINN
RFF-PINN

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

L2
 e

rr
or

L2 pde error for Diffusion Eqn.

EG-PINN
Tanh-PINN
RFF-PINN

Figure 9: Train/test error on the Diffusion equation. EG-PINN converges extremely well while the
other two struggle with all losses.

Train error Rel. test error Bndry condition error Pde error Time (s)
G-PINN 1.3e− 2 1.1e− 2 4.7e− 3 8.5e− 3 20.01

EG-PINN 6.0e− 4 4.9e− 7 8.5e− 7 6.1e− 4 98.95
L-LAAF-PINN 7.9e− 3 9.0e− 4 1.3e− 3 6.6e− 3 20.22
PINNsformer 1.4e2 2.4e0 6.0e− 4 1.4e2 267
RFF-PINN 3.0e4 1.0e0 1.8e− 3 3.1e4 39.25
Tanh-PINN 9.3e2 4.8e1 3.1e1 9.0e2 13.78

Table 4: Training/Testing results for Poisson’s equation. For each of the accuracy measures, EG-
PINN achieves at least 10 times lower loss value when compared to many of the others.

33

Under review as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

L
2
 t

ra
in

 e
rr

o
r

1e7 L2 train error for Diffusion Eqn.

EG-PINN
PINNsformer

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0

50

100

150

200

250

300

350

R
e
l.
 L

2
 t

e
st

 e
rr

o
r

Rel. L2 test error for Diffusion Eqn.

EG-PINN
PINNsformer

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0

20

40

60

80

L2
 e

rr
or

L2 Bndry./I.C. error for Diffusion Eqn.

EG-PINN
PINNsformer

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5
L2

 e
rr

or

1e7 L2 pde error for Diffusion Eqn.

EG-PINN
PINNsformer

Figure 10: Train/test error on the Diffusion equation for an EG-PINN and a PINNsformer.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

u(
x,

0.
5)

t = 0.5s

RFF-PINN
Exact

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

10

5

0

5

10

15

u(
x,

0.
5)

t = 0.5s

PINNsformer
Exact

Figure 11: Reconstruction of an RFF-PINN and a PINNsformer on the diffusion equation. Both
networks are unable to find the right solution.

34

Under review as a conference paper at ICLR 2024

0 1000 2000 3000 4000 5000
Epochs

0

5000

10000

15000

20000

25000

30000

L2
 t

ra
in

 e
rr

or

L2 train error for Poisson Eqn.

EG-PINN
G-PINN
L-LAAF-PINN

1500 2000 2500 3000 3500 4000 4500 5000

0.0

0.1

0.2

0.3

0.4

0.5

0.6
1500 epochs onwards

EG-PINN
G-PINN
L-LAAF-PINN

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

.
L2

 t
es

t
er

ro
r

Relative L2 test error

EG-PINN
G-PINN
L-LAAF-PINN

1500 epochs onwards

EG-PINN
G-PINN
L-LAAF-PINN

1500 2000 2500 3000 3500 4000 4500 5000

0.0

0.1

0.2

0.3

0.4
EG-PINN
G-PINN
L-LAAF-PINN

Figure 12: Train/test error for 3 Gaussian-activated networks on solving the Poisson problem. EG-
PINN converges the fastest outperforming all other networks.

0 1000 2000 3000 4000 5000
Epochs

0

5000

10000

15000

20000

25000

30000

L2
 t

ra
in

 e
rr

or

L2 train error

EG-PINN
Tanh-PINN

0 1000 2000 3000 4000 5000
Epochs

0

10

20

30

40

50

60

70

Re
l.

L2
 t

es
t

er
ro

r

Relative L2 test error

EG-PINN
Tanh-PINN

0 1000 2000 3000 4000 5000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

L2
 tr

ai
n

er
ro

r

1e7 L2 train error

EG-PINN
RFF-PINN

0 1000 2000 3000 4000 5000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
l.

L2
 t

es
t

er
ro

r

Relative L2 test error

EG-PINN
RFF-PINN

Figure 13: Train/test error for an EG-PINN vs a Tanh-PINN. The EG-PINN outperforms the Tanh-
PINN dramatically.

35

Under review as a conference paper at ICLR 2024

0 1000 2000 3000 4000 5000
Epochs

0

5000

10000

15000

20000

25000

30000
L2

 t
ra

in
 e

rr
or

L2 train error

EG-PINN
PINNsformer

1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

800

1000 epochs onwards

EG-PINN
PINNsformer

0 1000 2000 3000 4000 5000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
l.

L2
 te

st
 e

rr
or

Relative L2 test error

EG-PINN
PINNsformer

Figure 14: Train/test error for an EG-PINN vs a PINNsformer. The EG-PINN outperforms the
PINNsformer dramatically.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u
(x

)

G-PINN
Analytic Sol.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

6

4

2

0

2

4

6

8

u(
x)

Tanh-PINN
Analytic Sol.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x)

L-LAAF-PINN
Analytic Sol.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
(x

)

EG-PINN
Analytic Sol.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x)

RFF-PINN
Analytic Sol.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u(
x)

PINNsformer
Analytic Sol.

Figure 15: Reconstruction of all networks after training for only 5000 epochs to solve Poisson’s
equation. EG-PINN has found an extremely good fit in such a small number epochs. G-PINN and
L-LAAF have found a decent fit and RFF-PINN, PINNsformer and Tanh-PINN seem to have found
only a low frequency solution.

36

	Introduction
	Related Work
	Gaussian Activations: Insights through the NTK
	Basics on PINNs
	Motivation
	Main result

	Preconditioned Neural Architectures
	Preconditioning the loss landscape
	Equilibrated PINNs

	Experiments
	Burger's equation
	Navier-Stokes equation
	High frequency diffusion

	Conclusion and Limitations
	Appendix
	NTK
	A brief review of the NTK
	Notation and Assumptions
	Proof of Main NTK theorem
	Preliminary lemmas
	Proof of lemma A.2
	Proof of theorem A.3

	Empirical results on the NTK and Assumption 4
	Equilibrated preconditioning
	Experiments
	Hardware and software

	Burgers' equation
	Navier-Stokes
	Diffusion Equation
	Poisson's Equation

