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ABSTRACT

Circuit discovery has recently attracted attention as a potential research direc-
tion to explain the nontrivial behaviors of language model (LM). It aims to find
the computational subgraph, also known as circuit, that explains LM’s behavior
on specific tasks. Most studies determine the circuit for a task by performing
causal interventions independently on each component. However, they ignored
the holistic nature of the circuit, which is an interconnected system of compo-
nents rather than an independent combination. Additionally, existing methods
require redesigning a unique corrupted activation for each task, which are compli-
cated and inefficient. In this work, we propose a novel circuit discovery approach
based on the principle of Information Bottleneck, called IBCircuit, to identify the
most informative circuit from a holistic perspective. Furthermore, IBcircuit can
be applied to any given task without corrupted activation construction. Our ex-
periments demonstrate the ability of IBCircuit to identify the most informative
circuit in the model. The results from IBCircuit suggest that the earlier layers in
Transformer-based models are crucial in capturing factual information.

1 INTRODUCTION

Circuits discovery in transformer-based language models usually involves identifying the subgraph
(circuits) within the model which are responsible for solving specific tasks. Previous efforts to
identify circuits within language models have led to the discovery of networks comprising attention
heads and multi-layer perceptrons (MLPs) that either partially or fully explain the model’s behaviors
on tasks like indirect object recognition, modular arithmetic, docstring completion, and forecasting
subsequent dates(Wang et al., 2022; Nanda et al., 2023; Hanna et al., 2024). However, the challenge
is that transformer-based language models primarily operate as complicated black boxes when en-
gaging in multi-layered nonlinear interactions within high-dimensional spaces (Wang et al., 2022),
making it exceptionally difficult to understand their behavior.

Work in circuit analysis seeks to decode these models by reverse engineering (Conmy et al., 2023;
Wang et al., 2022; Meng et al., 2022; Geva et al., 2021). Recent circuit analysis methods (Räuker
et al., 2023), such as activation patching (Meng et al., 2022; Goldowsky-Dill et al., 2023) or knock-
outs (Wang et al., 2022), ignores the holistic nature of the circuit, which is an interconnected system
of components rather than an independent combination. Additionally they scales poorly with the
model size. Moreover, when faced with a task that has never been encountered before, most works
need to redesign new corrupted activation for patching. Although recent works have proposed at-
tribution patching (Syed et al., 2023) to estimate the importance of each edge in the computational
subgraph without independent patching, they still need to design new corrupted activation for dif-
ferent task, which is inconvenient and complicated.

The Information Bottleneck (IB) leverages Shannon mutual information to quantify the compressed
and informative nature of data distributions (Yu et al., 2022). This concept, rooted in information
theory, aims to balance the trade-off between the complexity of the representation and its predictive
power. The primary objective of IB is to distill a compressed yet predictive representation of the
input signal (Tishby et al., 2000). By focusing on the most relevant aspects of the data, IB helps in
reducing redundancy and noise, thereby enhancing the efficiency of data processing. This technique
has been successfully applied in various domains, demonstrating its versatility and effectiveness. In
feature selection, IB helps in identifying the most relevant features that contribute to the predictive
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power of a model, thereby improving performance and reducing computational costs (Achille &
Soatto, 2018b; Kim et al., 2021; Schulz et al., 2020). In representation learning, IB aids in creating
compact and meaningful representations of data, which are crucial for tasks such as clustering,
classification, and anomaly detection (Luo et al., 2019; Qian et al., 2020; Wu et al., 2020). These
applications highlight the broad utility of IB in enhancing model interpretability and performance.

In this work, we propose the Information Bottleneck Circuit (IBCircuit), a novel approach designed
to identify critical components within a Transformer-based model that are capable of task execution.
The IBCircuit consists of two primary stages: Model Perturbation and Component Selection.
During the Model Perturbation stage, the IBCircuit injects Gaussian noise into various components
of the model, such as the activations of attention heads and MLP layers. Additionally, the IB weights
are learned for the components to control the amount of noise added. The rationale for this noise
injection is that it modulates the information flow from the original pretrained model to the perturbed
version, with more significant noise leading to greater information distortion. As such, training the
IBCircuit encourages the perturbed model to maintain its informativeness, which implies less noise
injection. This process effectively approximates the condition of information compression, with less
noise injection serving to identify the most informative components. In the Component Selection
stage, the circuit is effectively formed by retaining these informative components. The contributions
of this work are summarized as follows:

• We propose a novel circuit discovery method, IBCircuit, which utilizes information bot-
tleneck to globally identify the most informative circuit of the model for circuit discovery
from a holistic perspective.

• We introduce a model perturbation method that incorporates noise injection and adaptive
learning of IB weights, which can be applied to any given task without corrupted activation
construction.

• We validate the effectiveness of the IBCircuit in identifying the most informative atten-
tion heads in the Transformer-based model on the Indirect Object Identification (IOI) and
Greater-Than Circuit Discovery task. The results from IBCircuit suggest that the earlier
layers in Transformer-based models are crucial in capturing factual information.

2 RELATED WORK

Circuit Analysis. Circuit analysis seeks to understand machine learning models by identifying
circuits in models that is responsible for given behaviors (Geiger et al., 2021; Wang et al., 2022;
Conmy et al., 2023). Most of existing works conduct circuit analysis for language model leveraging
activation patching (Zhang & Nanda, 2023) or its variants. Some overwrite activation values with
zeros (Cammarata et al., 2021; Olsson et al., 2022), while others erase activation using the mean
activation on the dataset (Wang et al., 2022; Hanna et al., 2024). Other works (Geiger et al., 2021;
Wu et al., 2024) use the interchange interventions instead, which replaces the activation value of a
node on one data point with its value on another data point. However, it has been justified that both
zero and mean activations take the model too far away from actually possible activation distributions
(Chan et al., 2022). Additionally, methods based on activation patching are inefficient as they require
sequential operations on individual activations to assess their impact on task performance.
Information Bottleneck in Deep Learning. The principle of the information bottleneck (IB) aims
to extract a compressed yet predictive code from the input signal (Tishby et al., 2000). Alemi et
al. (Alemi et al., 2016) initially introduced the concept of the variational information bottleneck
(VIB) to enhance deep learning. Currently, IB and VIB find applications primarily in representation
learning and feature selection in deep learning. In representation learning, researchers aim to learn a
compressed representation with the information bottleneck principle (Luo et al., 2019; Goyal et al.,
2019; Qian et al., 2020; Wu et al., 2020). For feature selection, IB is used to select a subset of input
features such as pixels in images or dimensions in vectors (Achille & Soatto, 2018b; Kim et al.,
2021; Schulz et al., 2020; Yu et al., 2020), which are maximally predictive to the label of input
data. Unlike previous work, we consider a rarely explored perspective: the compressed and relevant
information in model components for specific behavior.
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3 BACKGROUNDS

3.1 NEURAL CIRCUITS

Circuit discovery seeks to reverse-engineer model behavior by localizing it to subgraphs of the
model’s computation graph and explaining it. This approach aims to understand how specific parts
of a model contribute to its overall functionality. Much research considers models as connected
directed computational graphs, denoted as G. These graphs represent the flow of computations
within the model, providing a structured way to analyze and interpret its operations. A transformer
language model’s (LM) computational graph is a directed graph (digraph) that describes the compu-
tations it performs. This graph flows from the LM’s inputs to the unembedding layer, which projects
its activations into vocabulary space. The nodes in this digraph are defined to be the LM’s attention
heads and multi-layer perceptrons (MLPs), though other levels of granularity, such as individual
neurons, are also possible. This hierarchical structure allows for detailed analysis at various levels
of abstraction.

A circuit is a subgraph that connects the inputs to the logits, which are the final outputs before
the softmax layer in a language model. In this graph, source nodes represent the model’s input,
sink nodes represent the model’s output, and intermediate nodes represent units of computation.
By identifying and analyzing these circuits, researchers can pinpoint which parts of the model are
responsible for specific behaviors and how information flows through the network. The concept of
Neural Circuits C refers to induced subgraphs of G that are responsible for specific behaviors and
exhibit distinct functionality. These circuits can be thought of as the building blocks of the model’s
decision-making process. For instance, in Wang et al. (2022), the authors discover an Indirect Object
Identification (IOI) circuit in GPT-2 small based on Activation Patching Meng et al. (2022).

3.2 TRANSFORMER ARCHITECTURE

A transformer model G : X → Y maps a token sequence x = [x1, · · · , xT ] ∈ X to a probability
distribution y ∈ Y . The i-th token at layer l is embedded as a series of hidden state vectors
h
(l)
i ∈ RH , where H is the dimension of hidden state vectors. The input h(0)

i to the transformer is a
sum of position pos(i) and token embeddings emb (xi).

The internal computation of hidden states h(l)
i in G can be summarized as follows: for each layer,

it combines global attention a
(l)
i and local MLP m

(l)
i contributions computed from previous layers.

Additionally, the residual stream draws information from previous states. The internal computations
are as follows:

h
(l)
i = h

(l−1)
i + a

(l)
i +m

(l)
i , (1)

a
(l)
i = attn(l)

(
h
(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
i

)
, (2)

m
(l)
i = W

(l)
projσ

(
W

(l)
fc γ

(
a
(l)
i + h

(l−1)
i

))
. (3)

Each layer’s MLP is a two-layer neural network parameterized by matrices W
(l)
proj and W

(l)
fc , with

rectifying nonlinearity σ and normalizing nonlinearity γ. For each individual attention head, it is
parameterized by four matrices WQ,WK ,WV and WO. The QK matrix is used to compute the

attention matrix A = softmax
(

QKT

√
dk

)
∈ RT×T , where dk is the dimension of queries Q and keys

K, while the OV matrix determines what is written into the residual stream. For further background
on transformers, we refer to Vaswani et al. (2017).

3.3 INFORMATION BOTTLENECK

The Information Bottleneck (IB) method is a powerful framework in information theory that focuses
on finding a compressed representation of data while retaining the most relevant information for a
specific task. The IB method aims to balance the trade-off between compressing the input data and
preserving the information necessary for predicting an output variable. In essence, the Information
Bottleneck method seeks to transform the input data into a new, more compact representation that
still contains the critical features needed for accurate prediction or classification. This is particularly
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Model Perturbation Component Selection
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Noise Injection

Perturbed AttentionMLP Identification

Attention Identification

Figure 1: The framework of IBCircuit. During the model perturbation phase, we first inject noise
to activation by using the IB weight λ, and then optimize λ based on the Information Bottleneck
objective. We represent attention components with more noise injected using darker orange squares,
and MLP components with more noise injected using darker green rhombuses. The final selection
is based on choosing components with the least amount of noise.

useful in scenarios where the original data is high-dimensional or contains a lot of noise, making it
challenging to process directly. We denote I(X;Y ) the mutual information between two random
variables X and Y, it is defined as follows:

I(X;Y ) =

∫
X

∫
Y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy. (4)

Given the variable X and its associated label Y , the Information Bottleneck (IB) Tishby et al. (2000)
aims to learn the minimal sufficient variable Z by optimizing the following objective:

min
Z

−I(Y ;Z) + αI(X;Z). (5)

Here, α is the Lagrange multiplier used to balance the two terms. The first term encourages Z to con-
tain informative content about the label Y , while the second term minimizes the mutual information
between X and Z, ensuring that Z only receives limited information from variable X .

4 METHODOLOGY

In this section, we introduce the proposed IBCircuit. In Section 4.1, we present the objective of
IBCircuit in the Information Bottleneck framework. We outline the process of implementing Model
Perturbation through Noise Injection and IBCircuit Optimization in Section 4.2. Additionally, in
Section 4.3, we discuss the applications of Component Selection in Transformer-based models.

4.1 INFORMATION BOTTLENECK CIRCUIT

Circuit Identification aims to identify the most crucial components within a model, striking a balance
between minimizing the number of components and maximizing their ability to perform tasks, which
aligns perfectly with the concept of the Information Bottleneck (IB). Inspired by the IB, IBCircuit
integrates circuit analysis into the information bottleneck framework to identify key components of
pretrained models. Specifically, we denote G as the set of all components of the pretrained model,
Y as the output of the pretrained model on a specific task, and C as the circuit composed of critical
components. We reformulate Equation equation 5 to obtain the objective of IBCircuit as follows:

min
C

−I(Y ;C) + αI(G;C). (6)

This objective cannot be directly optimized since the mutual information is intractable to compute.
Therefore, we propose an alternative objective to evaluate the compression quality of circuit C by
injecting noise into the intermediate activations of the pretrained model. As shown in Fig. 1, the
IBCircuit consists of the Model Perturbation and Component Selection.

4.2 MODEL PERTURBATION

Our approach involves adaptively learning noise and injecting it into each activation, allowing the
model to maintain similar performance on a specific task even after perturbation.

4
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4.2.1 NOISE INJECTION

We define a pretrained model G as a composition of n components, denoted as G = [v1, v2, · · · , vn],
with the corresponding intermediate activations h = [h1, h2, · · · , hn]. To introduce perturbations
into G, we inject noise into intermediate activations with learnable IB weights λ = [λ1, λ2, · · · , λn].
We sample noise ϵ from a parametric noise distribution. We insert Gaussian noise to the intermediate
activations. In high-dimensional space, random vectors tend to concentrate on a spherical surface,
and their distribution can be approximated by a Gaussian distribution. For each component vi, we
perturb the intermediate activation hi by combining it with noise ϵ using the IB weight λi ∈ (0, 1):

ĥi = λihi + (1− λi)ϵ. (7)

Here, ĥi represents the perturbed activation. In order to avoid introducing the noise that devia-
tion from the original distribution, we calculate the mean and variance of the whole dataset
as the variance of our injected noise. The learnable IB weight λi acts as a transmission probabil-
ity, controlling the amount of information extracted from hi to ĥi. To ensure that λi ∈ (0, 1), we
define λi = Sigmoid(ωi), where ωi ∼ N (0, 1) is the learnable parameter. When λi → 1, all the
information from hi is transferred to ĥi without loss. Conversely, when λi → 0, ĥi contains no in-
formation from hi but only noise. Unlike baseline methods that iteratively perturb each intermediate
activation, the proposed method allows for simultaneous adjustment of the information flow from
all activations h to ĥ = [ĥ1, ĥ2, · · · , ĥn] by learning and updating all the IB weights λ together. We
denote the perturbed model as Ĝ = [v̂1, v̂2, · · · , v̂n], we can then select the informative components
of Ĝ into C with learned IB weights. The selection process will be elaborated in Section 4.3.

4.2.2 OPTIMIZATION OF INFORMATION BOTTLENECK CIRCUIT

The perturbed model Ĝ is learned by extracting information from the pretrained model G to achieve
the same performance Y on a specific task. On the one hand, we compress the effective information
in G by injecting noise. On the other hand, we aim to maximize the information content of the
perturbed model Ĝ to achieve the performance Y . Therefore, the reconstructed IBCircuit objective
is as follows:

min
Ĝ

−I(Y ; Ĝ) + αI(G; Ĝ). (8)

The first term encourages Ĝ to be sufficient for predicting Y , and the second term constrains the
information that Ĝ learns from G. These two terms require us to inject noise into G selectively so
that Ĝ maintains valuable information as much as possible. The intuition is that injecting noises
into the critical components of G is more harmful to the functionality of G than that into the irrel-
evant components. In that sense, the critical components are less likely to be injected with noise.
Therefore, we can select the circuit C from Ĝ by this criterion after training the IBCircuit.

We justify the above formulation through the following derivation. Let Gs be a subset of G, which
is independent to Y . Denote Gϵ as the noisy subset of G determined by injected noise, if we select
the circuit C by dropping Gϵ in G, the following inequality holds:

I(Gs;C) ≤ I(Gs; Ĝ) ≤ I(G; Ĝ)− I(Y ; Ĝ). (9)

This equation indicates when setting α = 1 in Eq. equation 8, the IBCircuit objective upper bounds
the mutual information of Gs and C. Hence, optimizing the IBCircuit objective encourages C to
be less related to components in Gs which are irrelevant to Y . The detailed proof is provided in
Appendix A.

Minimizing −I(Y ; Ĝ). We first examine the first term −I(Y ; Ĝ) in Eq. equation 8, which encour-
ages Ĝ to be informative of the output Y . We derive the upper bound of −I(Y ; Ĝ) as follows:

−I(Y ; Ĝ) = EY [logp(Y )]− EY,Ĝ[logp(Y |Ĝ)]

≤ −EY,Ĝ[logp(Y |Ĝ)] (10)

:= LCE(qθ(Y |Ĝ))

where qθ(Y |Ĝ) is the variational approximation to the true posterior p(Y |Ĝ). This inequality
demonstrates that the minimization of −I(Y ; Ĝ) can be achieved by minimizing the training loss of
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the model. Since we validate IBCircuit on the Transformer-based language model in this paper, we
use the Cross Entropy Loss for the next token prediction training, denoted as LCE .

Minimizing I(G; Ĝ). For the second term I(G; Ĝ) in Eq. equation 8, which aims to extract the
informative components from G that contains minimal information about G. We minimize it by
training the IBCircuit. By injecting more noise into insignificant components, while injecting less
noise into more informative ones. Following Yu et al. (2022), by choosing the distribution of noise
ϵ ∼ N (µh, σ

2
h), where µh, σ

2
h are mean and variance of intermediate activations h in G. I(G; Ĝ)

has a tractable variational upper bound as follows:

I(G; Ĝ) ≤ EG(−
1

2
logAG +

1

2n
AG +

1

2n
B2

G) =: LMI(G; Ĝ), (11)

where AG =
∑n

i=1(1− λi)
2 and BG =

∑n
i=1 λi(hi−µh)

σh
.

Final Objectives. Finally, the overall loss is defined as follows:

L = LCE + αLMI , (12)

where α is hyperparameter used to adjust the weights of the loss.

4.3 COMPONENT SELECTION

We identify the critical components with less perturbation in the Component Selection stage.

Attention Heads Selection. To identify circuit attention heads, we perturb the attention matrix A in
each attention head of the Transformer module as Âi = λiAi+(1−λi)ϵ. We then define a threshold
δ and select significant attention patterns between tokens based on the condition λi > δ. Then we
examine whether the corresponding attention patterns meet the definitions of critical attention heads
to capture the model’s circuit.

MLP Layers Selection. We perturb the hidden state m of each MLP layer defined in Eq. equation 3
to identify critical MLP layers, i.e., m̂(l)

i = λim
(l)
i + (1− λi)ϵ. Similarly, we can find critical MLP

layers by defining a threshold δ and identifying MLP layers where λi > δ, or identify commonly
occurring layers with larger λ across multiple examples as critical MLP layersMeng et al. (2022).

5 EVALUATING IBCIRCUIT

To investigate the effectiveness of IBCircuit, we conduct the evaluation to answer the following
research questions (RQs):

• RQ1 (Grounded in Previous Work): Can IBCircuit effectively reproduce canonical cir-
cuits taken from previous works that found an end-to-end circuit explaining behavior for
tasks?

• RQ2 (Ablation Study): Are both CE loss and MI loss used for training IBCircuit neces-
sary?

• RQ3 (Equivalence): Does IBCircuit have the same chance as the pretrained model of
outperforming each other?

• RQ4 (Minimality): Does IBCircuit avoid including components which do not participate
in the elicited behavior?

5.1 EXPERIMENT SETTING

Tasks. Although IBCircuit can be easily applied to LLMs like Llama, we primarily focus on GPT-
2 small in this paper for better evaluation, as it is a model that is typically studied from a circuits
perspective. We intentionally choose two tasks (IOI and Greater-Than) that have been studied before
for easier comparison with previous work.

• Indirect Object Identification (IOI): An IOI sentence involves an initial dependent clause,
e.g., “When Mary and John went to the store”, followed by a main clause, e.g., “John gave

6
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a drink to Mary.” In this case, the indirect object (IO) is “Mary” and the subject (S) is
“John”. The IOI task is to predict the final token in the sentence to be the IO. IOI Circuit
Discovery aims to identify which attention heads of the model are crucial for performing
such IOI tasks.

• Greater-Than: In the Greater-Than task, models receive input like “The war lasted from
the year 1741 to the year 17”, and must predict a valid two-digit end year, i.e. one that is
greater than 41. In this paper, we aim to identify which attention heads of the model are
crucial for predicting the end year.

Baselines. We compare the proposed method with the following methods:

• Subnetwork Probing (SP). SP learns, via gradient descent, a mask for each node in the
circuit to determine if it is part of the circuit or not, and encourages this mask to be sparse
by adding a sparseness term to the loss function. The strength of this sparse penalty is
controlled by a regularization hyperparameter.

• Automated Circuit DisCovery (ACDC) (Conmy et al., 2023). ACDC traverses the trans-
former’s computational graph in reverse topological order, iteratively assigning scores to
edges and pruning them if their score falls below a certain threshold.

• Attribution Patching (AP). AP assigns scores to all nodes at the same time by leveraging
gradients information, and again prunes nodes below a certain threshold to form the final
circuit.

We also compared two variants of IBCircuit, namely IBCircuit-woMI and IBCircuit-woCE in
RQ2, which represent IBCircuit models trained solely with CE loss and MI loss, respectively.

Metrics. For the IOI task, we use logit difference (logit diff ) for evaluation. Logit difference
measures the difference in logits assigned to the correct and incorrect answers. For example, for
the input “When Mary and John went to the store, John gave a drink to,” we calculate logit(Mary)-
logit(John). The larger the logit difference, the better the performance of the model or circuit. In
the Greater-Than task, we use the greaterthan metric, which sums the total probability assigned to
all correct and incorrect options and calculates the difference, e.g., for the input “The war lasted
from the year 1741 to the year 17”, we calculate

∑
y>41 P (y) −

∑
y≤41 P (y). A larger difference

indicates better model or circuit performance.

Circuit Ablation. We ablate the nodes that are not included in the circuit by using activation patch-
ing when evaluating the effectiveness of the identified circuit. We implement randomly selected
activations from the corrupted dataset for patching. In the IOI task, we construct corrupted inputs by
replacing IO and S with arbitrary names. In corrupted inputs of Greater-Than task, the start year’s
last two digits are changed to “01”, leading models to output years prior to the start year.

5.2 RESULTS

RQ1 (Grounded in Previous Work). Following Conmy et al. (2023), we formulate circuit dis-
covery as a binary classification problem, where nodes are classified as positive (in the canonical
circuit taken from previous works) or negative (not in the canonical circuit). We determine a series
of thresholds for ACDC, SP, AP, and IBCircuit by varying the number of nodes from 10% to 100%,
increasing by 10% each time. We plot the pessimistic segments between the Pareto frontiers of TPR
and FPR for each method across this range of thresholds.

Figure 2 illustrates the performance of IBCircuit in recovering the canonical circuit within GPT2-
small, compared to existing methods. Our findings are as follows: i) IBCircuit shows competitive
performance on both the IOI and Greater-Than tasks, notably outperforming baseline methods on
the IOI task; ii) however, IBCircuit underperforms compared to ACDC on the Greater-Than task.
This discrepancy may be due to the Greater-Than task input lacking a unique next token output
label, unlike the IOI task. As a result, even with noise, the model can easily achieve the CE loss
performance of the pretrained model, leading to inadequate training on the noisy model. The sim-
ilar performance of IBCircuit-onlyMI and IBCircuit on the Greater-Than task further supports this
observation.

7
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(a) IOI (b) Greater-Than

Figure 2: ROC curves of SP, ACDC, AP and IBCircuit identifying model components from previous
work, across IOI circuit and Greater-Than circuit.

(a) IOI (b) Greater-Than

Figure 3: Comparison of the equivalence of circuits found by different methods with the pretrained
model. The higher the fraction of outperformance, the fewer the nodes, the better the circuit.

RQ2 (Ablation Study). In Figure 2, we compare the IBCircuit models trained without CE loss and
without MI loss. We find that: i) on the IOI task, IBCircuit outperforms IBCircuit-woMI and signifi-
cantly surpasses IBCircuit-woCE. This can be intuitively explained using Information Bottleneck, as
the CE loss primarily serves to align the performance of the noisy model with that of the pretrained
model, while the MI loss helps reduce irrelevant information in the noisy model. Consequently, the
absence of MI loss in IBCircuit-woMI results in slightly worse performance compared to IBCircuit,
whereas the lack of CE loss in IBCircuit-woCE severely diminishes the model’s performance. ii)
On the Greater-Than task, due to insufficient training from CE loss, IBCircuit and IBCircuit-woCE
exhibit similar performance, both performing better than IBCircuit-woMI.

RQ3 (Equivalence). Intuitively, if the circuit can approximate the pretrained model, it should
perform as well as the pretrained model. We assess the equivalence of the identified circuit with
the pretrained model by calculating the proportion of instances where the circuit outperforms or
performs equally to the pretrained model on both the IOI and Greater-Than tasks. For the IOI task,
we calculate the proportion of instances with a higher or equal logit diff ; while for the Greater-Than
task, we calculate the proportion of instances with better or the same greaterthan metric.

Figure 3 shows the equivalence trends of circuits found by IBCircuit and related work based on
different node number thresholds in comparison with the pretrained GPT2-small. In the IOI task,
IBCircuit generally outperforms other methods across most node number thresholds. Specifically,
IBCircuit demonstrates better performance than the pretrained model on over 50% of instances at
most thresholds, especially when the node number is lower. In the Greater-Than task, for smaller
node number thresholds, none of the methods yield circuits that perform better than the pretrained
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(a) IOI (b) Greater-Than

Figure 4: Comparison of IBCircuit and related methods in terms of logit diff and greaterthan metrics
under different node number thresholds. Higher metric scores and fewer nodes correspond to better
circuits.

model on more than 20% of instances. However, at larger node number thresholds, IBCircuit sur-
passes other methods, achieving over 40% of instances performing better than the pretrained model.

RQ4 (Minimality). Intuitively, a circuit with fewer nodes that still achieves high metrics is less
likely to contain components that do not participate in the behavior (Conmy et al., 2023). We
measure the performance of various methods in terms of logit diff and greaterthan under different
node number thresholds.

Figure 4 presents a detailed comparison of metric scores for various methods across different nodes
in the Indirect Object Identification (IOI) and Greater-Than tasks. This figure provides a visual
representation of how different approaches perform under varying conditions, offering insights into
their relative effectiveness. By referring to Section 4.2 of the ACDC framework, we can conduct a
thorough analysis of these results. In the IOI task, the IBCircuit method demonstrates superior per-
formance compared to other methods. This is particularly evident as the number of nodes decreases,
which results in a higher logit-diff. The higher logit-diff achieved by IBCircuit suggests that it is
more effective at maintaining predictive accuracy even when the model is simplified by reducing the
number of nodes. In the Greater-Than task, IBCircuit also outperforms other methods, especially
when the greater-than probability exceeds 0.85. This threshold indicates a high level of confidence
in the model’s predictions, and the superior performance of IBCircuit in this range highlights its
robustness and reliability.

6 CONCLUSION AND LIMITATIONS

In this paper, we aim to address the challenge of understanding the behavior of Transformer-based
models, which are often seen as black boxes due to their complex computations. Traditional meth-
ods perform causal interventions independently on each component and require redesigning a unique
corrupted activation for each task, which are complicated and inefficient. To overcome these limi-
tations, we propose the Information Bottleneck Circuit (IBCircuit), a novel approach that leverages
the Information Bottleneck to identify critical components. By injecting noise into model compo-
nents and learning IB weights, the IBCircuit can effectively identify informative components while
preserving their informativeness. Our experimental results in practical applications such as Indirect
Object Identification (IOI) Circuit Discovery and Factual Recall Localization tasks demonstrate the
effectiveness of IBCircuit in identifying informative attention heads and MLP layers.

The limitation of our approach is that the critical components identified by IBCircuit may vary across
different tasks. Although we demonstrate its effectiveness in IOI Circuit Discovery and Greater-
Than Localization, further investigation on other tasks is worth exploring. In future work, we aim to
explore the applicability of IBCircuit in identifying critical components across other tasks, such as
image-conditioned text generation Palit et al. (2023).
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A PROOF OF IBCIRCUIT OBJECTIVE

The intuition is that injecting noises into the components of G is more harmful to the functionality
of G than that into the irrelevant components. In that sense, the critical components are less likely to
be injected with noise. Therefore, we can select the circuit C from Ĝ by this criterion after training
the IBCircuit.

We justify the above formulation through the following derivation. Let Gs be a subset of G, which
is independent to Y . Denote Gϵ as the noisy subset of G determined by injected noise, if we select
the circuit C by dropping Gϵ in G, the following inequality holds:

I(Gs;C) ≤ I(Gs; Ĝ) ≤ I(G; Ĝ)− I(Y ; Ĝ). (13)

This equation indicates when setting α = 1 in Eq. equation 8, the IBCircuit objective upper bounds
the mutual information of Gs and C. Hence, optimizing the IBCircuit objective encourages C to be
less related to components in Gs which are irrelevant to Y .

Proof. We follow the proof in Yu et al. (2022). Suppose G, C, Gs and Y satisfy the Markov
condition (Y,Gs) → G → C Achille & Soatto (2018a). Then we have the following inequality:

I(C;G) ≥ I(C;Y,Gs) = I(C;Gs) + I(C;Y |Gs). (14)

Since Y and Gs are independent, we have H(Y |Gs) = H(Y ) and H(Y |Gs, C) ≤ H(Y |C). Then
we have:

I(C;Y |Gs) = H(Y |Gs)−H(Y |Gs, C) ≥ H(Y )−H(Y |C) = I(C;Y ) (15)

Combine Eq. equation 14 and Eq. equation 15, we:

I(C;Gs) ≤ I(C;G)− I(C;Y ) (16)

Suppose G, Ĝ, Gs and Y satisfy the Markov condition (Y,Gs) → G → Ĝ Achille & Soatto
(2018a). Then, combine with Eq. equation 16 we have:

I(Ĝ;Gs) ≤ I(Gs;G)− I(Ĝ;Y ) (17)

Ĝ is deterministic given Gϵ and C, since we can recover Ĝ by combining Gϵ with C. Then for the
left part in Eq. equation 17, we have:

I(Ĝ;Gs) = I(Gϵ, C;Gs) = I(C;Gs) + I(C;Gϵ|Gs) ≥ I(C;Gs) (18)

Therefore, by combining Eq. equation 17 and Eq. equation 18 we have the follow inequality:

I(C;Gs) ≤ I(Ĝ;Gs) ≤ I(Ĝ;G)− I(Ĝ;Y ) (19)

which proofs Eq. equation 13.
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