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Abstract

World models, which explicitly learn environmental dynamics to lay the foundation
for planning, reasoning, and decision-making, are rapidly advancing in predict-
ing both physical dynamics and aspects of social behavior, yet predominantly in
separate silos. This division results in a systemic failure to model the crucial
interplay between physical environments and social constructs, rendering current
models fundamentally incapable of adequately addressing the true complexity of
real-world systems where physical and social realities are inextricably intertwined.
This position paper argues that the systematic, bidirectional unification of physical
and social predictive capabilities is the next crucial frontier for world model devel-
opment. We contend that comprehensive world models must holistically integrate
objective physical laws with the subjective, evolving, and context-dependent nature
of social dynamics. Such unification is paramount for Al to robustly navigate com-
plex real-world challenges and achieve more generalizable intelligence. This paper
substantiates this imperative by analyzing core impediments to integration, propos-
ing foundational guiding principles (ACE Principles), and outlining a conceptual
framework alongside a research roadmap towards truly holistic world models.

1 Introduction

The cognitive capacity of intelligent agents to construct and utilize internal "world models" for predic-
tion, planning, and adaptive response [[16} 75} 59]] represents a foundational principle of intelligence
and serves as a significant paradigm for advancing artificial intelligence (AI). The development of Al
world models, which endeavor to explicitly learn and predict environmental dynamics to underpin
agentive planning, reasoning, and decision-making processes, is currently characterized by a period
of dynamic and transformative expansion. Noteworthy advancements include the exploration of
Large Language Models (LLMs) as nascent simulators of physical phenomena and as cognitive
architectures for agents operating within simplified or text-centric environments [74]]. Currently,
sophisticated video generation models, such as Stable Video Diffusion [[10], are achieving remarkable
fidelity in predicting and synthesizing complex visual and, by extension, implicit physical dynamics.
Furthermore, model-based reinforcement learning (MBRL) agents, exemplified by systems like
DreamerV3 [36], have surpassed human performance benchmarks in complex interactive domains
through the learning and utilization of internal dynamic representations of physical environments.
These collective successes underscore a rapidly maturing capability to model discrete facets of our
world with increasing precision and utility.
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The long-term aspiration of world models is to predict the multifaceted complexities of the real
world. As illustrated in such complexity inherently encompasses both physical dimension,
governed by natural laws (e.g., gravity), and social dimensions, arising from agentive interactions,
subjective beliefs of states, and collective behaviors (e.g., human emotions, social relationships).
These two categories of prediction, while fundamentally different and often requiring distinct learning
approaches, are inextricably linked in any veridical representation of reality. This paper, therefore,
approaches existing world model research through the crucial lens of this physical-social duality,
aiming to facilitate more holistic future development.

However, this burgeoning progress in modeling specific di-
mensions often obscures several profound key problems that
constrain the aspiration for truly comprehensive and general- 2 o,
izable world understanding. A predominant limitation is the = Ho—
systemic inadequacy in modeling the rich, bidirectional inter- ~
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How, then, can these deep-seated challenges be surmounted?
Our Position: The next significant leap in AI world model
development must be defined by, and will critically depend
upon, the deep and bidirectional unification of physical and
social predictive capabilities. We assert that a truly success-
ful, general-purpose world model must holistically integrate its
understanding and predictive capacity for both domains. Here,
physical dynamics prediction pertains to forecasting objective
material states and transformations governed by natural laws.
Social dynamics prediction involves anticipating behaviors,
internal cognitive-affective states, and collective patterns of in-
telligent agents. Their unification demands modeling their pro-
found interdependencies and reciprocal causal influences—how
social intent shapes physical action, how physical context con-
strains social possibility, and how this feedback loop drives
their co-evolution.

Figure 1: Real-world systems
are composed of both physical
and social dimensions. Physi-
cal aspects include vehicle move-
ment, pedestrian flows, and power
grid distribution (lines), while so-
cial aspects encompass competi-
tive/cooperative relationships (con-
necting lines) and emotional states
(facial expressions).

Consider common scenarios where this integration is

paramount. Predicting urban traffic flow reliably fails if models

only address vehicle kinematics (physical) without accounting for driver stress or adherence to
social norms (social), which dramatically alter physical patterns. Similarly, effective human-robot
collaboration necessitates modeling not just physical assembly but also the social dynamics of trust
and communication. Without such integration, models offer a fractured view, unable to explain or
predict these complex physical-social phenomena, thereby failing to resolve the aforementioned key
problems. The current divergence of physical and social world modeling stems from formidable
impediments: the representational chasm between objective physical data and subjective social con-
structs; the complexity of their entangled, bidirectional dynamics; the scarcity of rich, co-registered
data; and the challenges in robustly evaluating integrated models.

To navigate these obstacles, this paper, drawing inspiration from cognitive science, sociology, and
systems theory, proposes a principled approach. We systematically organize and analyze existing
approaches to world modeling through dual lenses of physical and social dimensions in [section 2]
Building upon this foundation, we elucidate the inextricable linkage between social and physical
dynamics, establishing the fundamental ACE principles to guide the study of world models. This
culminates in the proposition of a conceptual framework and research roadmap aimed at developing
holistic world models that bridge the physical-social divide in[section 3] Our formulation paves the
way for constructing more robust and socially-aware artificial intelligence systems through integrated
modeling of multi-agent intentionality, socio-physical constraints, and emergent behavioral patterns.
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Figure 2: Physical & Social world model diagram summarizing. The social aspect is divided
into Agent-Agent and Agent-Group Interaction, while the physical aspect distinguishes between
interactive and non-interactive processes. Interactive dynamics are further classified into strategic
and non-strategic interactions. Modalities are categorized into language, state, pixel, and 3D spaces.
This is not a strict classification but a representative summary of current research directions.

and provide detailed examples.
2 The Duality of World Model Predictions: Physical and Social Dimensions

The rapid proliferation and increasing sophistication of Al world models, aimed at learning environ-
mental dynamics for prediction and planning [16} 75, 159], underscore their pivotal role in advancing
intelligent systems. However, to truly navigate the full complexity of real-world systems, where
objective physical laws are inextricably intertwined with subjective human behaviors and evolving
societal structures, it is imperative to critically examine not only what current models predict, but also
what they overlook or fail to capture adequately. This section distinguishes world model predictions
along two fundamental axes: the physical dimension, concerned with material reality and natural
laws, and the social dimension, focused on agentive interactions, subjective beliefs of states, and
collective dynamics. This distinction is not arbitrary. It reflects deep-seated differences in the nature
of the phenomena being modeled, the governing regularities, and ultimately, the methodologies
required for effective prediction. By surveying the current landscape through this dual lens, we aim
to highlight not only domain-specific strengths but, more importantly for our position, the systemic
limitations arising from their prevalent separation, thereby underscoring the pressing need for their
unification.

2.1 The Physical Dimension: Modeling Objective Reality and Natural Laws

World models targeting the physical dimension endeavor to capture the objective, material aspects of
environments and entities, governed by discoverable natural laws. Their predictive efficacy hinges on
accurately representing and simulating the evolution of physical states over time. Our conceptualiza-
tion of this domain, visually summarized in distinguishes modeling approaches based on the
nature of dynamics (interactive vs. non-interactive) and the primary data modalities employed (e.g.,
language, state, pixel, 3D). This framework helps to navigate the diverse methodologies developed
for physical world modeling.

Classification and Scope of Physical Predictions. The prediction of physical dimension involves
understanding several key aspects. As depicted in a primary distinction is between
interactive dynamics, where an agent’s actions directly influence the environment (central to MBRL,
e.g., policy-based strategic interactions in TD-MPC [38]]), and non-interactive dynamics, which
involve predicting passively evolving systems (common in video generation from static inputs, e.g.,
DynamiCrafter [122]). Interactive dynamics are further classified into strategic and non-strategic
interactions. Physical predictions also target either explicit physical quantities with clear semantic
meaning (e.g., velocity and mass in MBPO [49]) or latent physical representations learned from
high-dimensional sensory data (e.g., Dreamer series [34,36]]). Finally, these predictions are made



across diverse modalities, including language descriptions, structured state spaces, raw pixel data,
and explicit 3D geometric representations (e.g., 3D-LLM [44], OccWorld [133])).

Prominent Methodologies in Physical World Modeling: Intuitive Physics Models, inspired by
human cognition [6} [16]], such as MAC networks [48] or DCL [15], aim to extract explicit physical
quantities from visual data and acquire commonsense understanding of physical principles. While
these methods have demonstrated progress in structured reasoning, robust generalization to complex
real-world scenarios remains a significant challenge.

Model-Based Reinforcement Learning (MBRL) agents construct models of environment dynamics
for sample efficiency and planning [[106} [19} [103} 33} [71}, [81} [127]]. Latent variable models like
Dreamer [34,[35] 36]] and DayDreamer [116] enable learning through "imagination". Transformer-
based architectures like IRIS [69] show robust performance in real-robot control [72]. MBRL has
mastered complex games (e.g., MuZero [97]], Atari [52]). However, model error accumulation,
generalization, and agent social complexities beyond simple game-theoretic interactions remain
limitations.

Video Generation Models (VWMs), such as Stable Video Diffusion [10] and generative transformers
(like Open-Sora [63} [76l]), synthesize photorealistic videos, implicitly capturing complex physics.
Aligning these for planning (e.g., VADER [82], acting from actionless videos [55]) and ensuring
long-term consistency has emerged as a prominent research direction, driven by their unparalleled
capacity for visual fidelity and physical property modeling. However, current architectures lack
explicit mechanisms to model agents’ social contexts or intentional states within generated scenarios,
constraining their ability to reason about interactive dynamics in socially situated environments.
LLMs for physical reasoning show emerging capabilities in qualitative reasoning about physical
laws from text [39]. Approaches like WorldCoder [108]] use LLMs to generate simulation code or
plans. However, they lack direct perceptual grounding and modeling of embodied social interactions
within physical contexts. 3D World Models focus on explicit, geometrically rich representations (e.g.,
NeRFs, 3D occupancy grids from OccWorld [133]], 3D-LLM [44]) for detailed spatial reasoning.
Computational cost and real-time dynamic updates are ongoing challenges. For a comprehensive
list of related papers and detailed methodologies in physical world modeling, including additional

examples and classifications, refer to[Table T|in [Appendix B]

Predominant Limitation of Current Physical World Models. Despite these remarkable advance-
ments, a unifying limitation is their often superficial, or entirely absent, representation of the social
agents and the complex social dynamics that unfold within these physical environments. When
agents are incorporated, they are frequently modeled as simple reactive entities, or their behavior
is prescribed by predefined policies or learned via reward functions that lack rich social contextu-
alization. The intricate internal cognitive and affective states, and the dynamic social interactions
that profoundly govern human (and increasingly, sophisticated Al agent) behavior in the physical
world, are typically not primary modeling targets. This fundamental oversight means that while these
models can impressively predict kow a physical system might evolve under certain given actions, they
critically struggle to predict what actions an intelligent, socially-situated agent will actually choose
to take, why they take those actions, or how a group of such agents will collectively influence the
physical world. This fundamentally constrains their applicability and reliability in a vast array of
complex, human-centric real-world scenarios.

2.2 The Social Dimension: Modeling Subjectivity, Interaction, and Group Dynamics

The social dimension of world models addresses the inherently subjective, context-dependent, and
evolving nature of individual behavior, relationships between agents, and collective phenomena.
Drawing from foundational theories in sociology and psychology [68 8], we conceptualize social
quantities and their prediction at distinct yet interacting levels.

Levels of Social Abstraction. Modeling social reality computationally involves a hierarchical
view. The Individual Level pertains to an agent’s internal cognitive and affective architecture: beliefs,
intentions, goals, emotions, values, preferences, and personality traits [87]]. As shown in [Figure 2|
the Interaction Level (Agent-Agent & Agent-Group) focuses on the dynamics between agents,
such as communication, the evolution of social relationships (e.g., trust, power), and strategic or
game-theoretic encounters. The Group Level encompasses emergent collective phenomena: social



norms, collective action, and cultural values. These levels provide a framework for categorizing and
understanding different approaches to social modeling.

Prominent Methodologies in Social World Modeling: AI Theory of Mind (ToM) and Mental
State Inference systems, such as ToMnet [87] or M3RL [[101]], explicitly attempt to model an agent’s
capacity to infer the unobservable mental states (beliefs, desires, intentions, emotions) of others. This
is crucial for predicting nuanced social behavior, e.g., in Sally-Anne tests or strategic games like
Stag Hunt [[102} 46]. These models excel at representing aspects of social cognition and predicting
behavior in socially strategic situations. Nevertheless, they are typically evaluated in simplified,
often discrete, environments with limited physical complexity. Scaling robust ToM to open-ended,
richly contextualized physical scenarios, and grounding inferred mental states in continuous physical
interactions, remains a significant hurdle.

Model-Based Multi-Agent Reinforcement Learning (MBMARL), surveyed in [115]], investigates how
agents learn predictive models of their environment and each other’s policies to improve coordination
(e.g., CACC [66]) and competition [L18]]. Modeling rich social states beyond policies, learning
effective communication (e.g., MACI [83])). However, the "world" in MBMARL is often an abstract
game state or a simplified representation, not a rich, dynamic physical environment with its own
immutable laws and complex affordances that co-shape social strategies.

LLMs serve as powerful foundations for social world models, enabling the prediction of subjective so-
cial dynamics, such as preferences and agent behaviors. They excel at modeling rich social dialogues
and complex interaction sequences, generating human-like language and diverse social behaviors in
textual or simplified settings (e.g., Generative Agents [74]]). These systems effectively function as
dynamic world models for predicting emergent social states. However, a shared limitation across
these approaches is their operation in abstract or disembodied contexts, often lacking explicit model-
ing of how social predictions translate into, or are constrained by, physical actions, environmental
affordances, or real-time sensory inputs. This significantly hinders their ability to capture nuanced
physical-social entanglements. For a comprehensive list of related papers and detailed methodologies

in social world modeling, refer to[Table 2]in[Appendix B}

Predominant Limitation of Current Social World Modeling Efforts. While promising strides are
being made in modeling specific social facets, from preferences to ToM and LLM-driven interactions,
two overarching limitations persist from a unification perspective. Firstly, these efforts often occur in
abstracted or disembodied physical environments, neglecting the crucial grounding and reciprocal
influence of material reality on social dynamics. Secondly, even as standalone endeavors, dedicated
research into "Social World Models" as a cohesive field, with the systemic depth seen in physical
world modeling, remains underdeveloped. There’s often an insufficient focus on truly complex,
multi-level social abstractions (e.g., enduring norms, cultural dynamics, power structures) and
a lack of unified theoretical underpinnings or standardized evaluation paradigms for social world
modeling itself. This dual challenge—the internal complexities of comprehensive social modeling
compounded by its detachment from robust physical grounding—severely restricts current capabilities
in representing real-world socio-technical systems.

Examining the landscape of world models, which includes established physical prediction methods
(Intuitive Physics, MBRL, VWMs, 3D Models) and emerging social simulators (ToM, MBMARL,
LLM for Social) as summarized iffTable 1| and [Table 2] a significant imbalance and separation
become evident. There is a clear underinvestment in comprehensive Social World Model development
compared to its physical counterpart. Furthermore, and most crucially for our thesis, these two vital
predictive dimensions are almost universally modeled as distinct and separate endeavors, with
minimal attempts at deep, bidirectional integration.

Our survey of physical and social world modeling paradigms reveals a critical juncture. While
physical models excel at objective dynamics, they often neglect the social agency driving real-world
actions. Conversely, emerging social models, though capturing nuanced interactions, typically operate
in abstracted physical contexts, lacking robust grounding and an understanding of reciprocal physical
influence. This analysis yields two clear conclusions: firstly, a systemic underdevelopment of
comprehensive Social World Models capable of handling complex social abstractions and evolving
norms. Secondly, and more critically, a profound lack of deep, bidirectional integration between
current physical and social modeling efforts. This "integration gap" is a fundamental barrier, not
a mere missing feature. Consequently, neither purely physical nor purely social world models, in



their prevalent isolated forms, can adequately capture the dynamics of real-world systems where
physical laws and social agency are inextricably entangled. Predicting complex phenomena, from
societal adaptation to climate change, to the socio-technical impact of new technologies, or nuanced
human-robot collaboration, demands an integrated understanding that current siloed approaches fail
to provide. These challenges directly highlight the "key problems" (e.g., in robust prediction, causal
reasoning, and multi-agent decision-making) that persist due to this lack of fusion. Therefore, our
central position is unequivocal: to build Al systems capable of true comprehension and effective
interaction in our multifaceted world, the systematic unification of physical and social predictive
capabilities within world models is an urgent scientific and engineering imperative.

3 Integrating Physical and Social World Model

This section lays the foundational groundwork for achieving truly unified physical-social world
models, moving beyond isolated approaches. We first delve into the profound and reciprocal
interdependence of physical and social dynamics, articulating why an integrated understanding
is indispensable not only for predicting the physical world through a social lens, but equally for
grounding social realities within their material context. Building on this imperative, we propose a
set of guiding principles (the ACE Principles) to navigate the complexities of this endeavor. Finally,
we present a conceptual blueprint outlining the core components and interactions of an integrated
physical-social world model and its broad applicability.

3.1 The Inextricable Link Between Physical and Social World

The aspiration to create world models that truly mirror reality compels a departure from paradigms
predominantly focused on isolated physical or social predictions. As strikingly illustrated in real-
world systems (see [Figure T)), the physical and social dimensions are not merely parallel but are
inextricably linked through continuous, bidirectional influence [51} 79,77, [/0]. Understanding this
entanglement is paramount, as the limitations of current world models, highlighted in
largely stem from neglecting or inadequately modeling these profound interdependencies. This
subsection delineates key facets of this indispensable interplay, first examining how social dynamics
shape physical reality, and then how physical contexts sculpt social phenomena.

Social Shaping of Physical Reality. = The physical world, particularly where human agency
is salient, is profoundly shaped by multi-scalar social forces. Firstly, at the agent level, social
cognition—encompassing goals, beliefs, intentions, and emotions—acts as the engine of purposeful
physical action [[16] [75]. A purely physical model might predict a ball’s trajectory if thrown, but
cannot explain the social intent (e.g., play, aggression) dictating the throw itself and its physical
characteristics. In multi-agent contexts like urban traffic, vehicle dynamics are orchestrated less
by pure mechanics and more by driver objectives, inferred social understanding, and adherence
to norms (e.g., traffic laws), rendering purely physical long-term prediction untenable. Secondly,
collective social forces and established structures actively sculpt our physical environment and its
utilization [[77, [70]. Urban landscapes and large-scale ecological changes are material manifestations
of societal planning, economic systems, and cultural values. Accurately forecasting long-term
environmental evolution thus necessitates modeling these potent societal drivers. Thirdly, social
norms and relational structures function as an implicit rulebook for physical interactions, defining
permissible actions and shaping the "social physics" of an environment, from pedestrian flows to
teamwork coordination. World models must integrate these social rule systems for predictions to be
both physically plausible and socially coherent.

Physical Influence on Social Dynamics. Conversely, the physical world is not a passive stage but
an active constituent that constrains, enables, and profoundly shapes social phenomena. The environ-
ment’s physical affordances and constraints (e.g., geography, resource distribution, technological
artifacts) directly influence the range of possible social interactions, economic activities, and even the
structure of societies. For example, resource scarcity can significantly alter social cooperative norms
or incite conflict. Moreover, significant physical events—natural or human-induced—often act as
potent catalysts for social change and adaptation. A natural disaster can reconfigure community bonds
and decision-making processes, while a technological breakthrough can reshape communication pat-
terns and social hierarchies. Current social models, frequently detached from rich, dynamic physical

grounding (as noted in [subsection 2.2)), struggle to capture these crucial physical-to-social causal
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Figure 3: Integrated Physical-Social World Model. The physical state evolution (governed by physical
laws) and social state evolution (driven by Contingent Causality) are unified into a physical-social
world model, which follows the ACE Principles, leading to impactful applications.

pathways. Fundamentally, physical perception forms the bedrock of social understanding; agents
infer others’ intentions, emotions, and beliefs largely through observing their physical manifestations
(expressions, gestures, actions) within a shared material context. Grounding abstract social concepts
in concrete physical percepts and interactions is thus essential for any robust social reasoning.

The Indispensable Entangled Loop and Its Implications. This continuous, recursive feedback
loop—where social agency systematically alters physical states, and physical realities dynamically
modulate social cognition and interaction, is thus the defining characteristic of complex real-world
systems populated by intelligent agents. Attempting to model either the physical or social dimension
in isolation, or with only superficial linkages, inevitably leads to a fractured, incomplete, and
ultimately inadequate understanding of reality. The "key problems" that plague current world model
systems in achieving robust long-term prediction, deep causal reasoning, or effective multi-agent
coordination in novel situations, are often direct consequences of failing to capture this deep physical-
social entanglement. Therefore, constructing world models that genuinely reflect the richness
and interconnectedness of our world necessitates integrated frameworks that explicitly model these
foundational, bidirectionally influential socio-physical dynamics. This understanding forms the
bedrock upon which our proposed guiding principles and conceptual framework are built.

3.2 Guiding Principles for Integrated Physical-Social World Models

To effectively navigate the profound complexities inherent in unifying physical and social world
models, and to chart a course towards robust, insightful, and ethically-grounded integrated systems,
we propose the ACE Principles. These three foundational tenets—Principled Abstraction of Social
Complexity and Heterogeneity, Capturing the Contingent Causality of Social Dynamics, and Enabling
Entangled System Co-evolution and Emergence—are specifically formulated to address the unique
challenges posed by the deep entanglement of objective physical dynamics and subjective, evolving
social constructs. They offer a coherent intellectual framework for the next generation of world model
research and development.

Abstraction of Social Complexity and Heterogeneity. A primary challenge in integrating social
dynamics lies in the inherent nature of social quantities. Unlike physical variables, social constructs
(e.g., beliefs, norms, trust) are typically dimensionless, exceptionally heterogeneous, and operate
within vast, often ill-defined conceptual spaces, varying significantly across individuals and contexts.
Therefore, this principle advocates for multi-level abstraction mechanisms specifically tailored for
this social complexity and heterogeneity. This necessitates models capable of: (a) representing
diverse social information at various granularities, from transient individual mental states to enduring
societal value systems; (b) effectively managing the profound heterogeneity within these representa-
tions; and (c) composing these social abstractions to inform decision-making and predict collective
phenomena, while ensuring a meaningful interface with physical world representations.



Contingent Causality of Social Dynamics. A defining distinction from physical systems, governed
by largely immutable and universal causal laws, is that the causal relationships patterning social
dynamics are inherently contingent: they are mutable over time, highly sensitive to specific
socio-physical contexts, and significantly shaped by agentive interpretation and strategic con-
struction [24]. While a physical law dictates outcomes with universal consistency, the "social law"
dictating that, for instance, a specific promise (social action A) leads to increased trust (social state B)
is contingent upon cultural norms, prior relationship history, the perceived sincerity of the promiser,
and numerous other evolving contextual factors. Its predictive power is not fixed but probabilistic and
adaptive. Integrated world models must therefore embody the principle of capturing this contingent
causality inherent in social dynamics. This demands capabilities to: (a) model how the causal
pathways linking social antecedents to social and physical consequences can evolve, strengthen, or
weaken; (b) represent how heterogeneous agents might understand and enact different causal models
of their social world, leading to divergent behavioral patterns even in similar physical settings; and (c)
ensure that the model’s predictions of social behavior reflect this understanding of conditional, rather
than deterministic, causality, moving beyond simplistic rule-following to a nuanced appreciation of
strategic interaction and socially constructed realities.

Entangled System Emergence and Co-evolution. Ultimately, physical and social dimensions
constitute a deeply entangled, co-evolving, holistic system where properties of the whole often
transcend the sum of its parts. Actions and changes within one domain invariably and causally
influence the other, creating complex feedback loops that drive the system’s overall trajectory and
give rise to emergent phenomena. This principle calls for a unified modeling approach that explicitly
enables the simulation of this holistic system co-evolution and the emergence of novel, system-level
properties resulting from physical-social entanglement. This entails capabilities to: (a) represent how
physical environmental affordances causally shape social cognition and normative structures; (b)
conversely, model how social states drive physical actions that modify the material world, capturing
bidirectional causality; and (c) design architectures and learning paradigms that foster the emergence
of complex collective behaviors and societal-level transformations from the interplay of numerous
agents operating under both physical laws and multifaceted social influences.

These ACE Principles are not merely additive but deeply synergistic. Effective Abstraction is a
prerequisite for understanding the Contingent Causality inherent in social dynamics. Both, in turn,
are crucial for modeling the profound Entanglement between physical and social systems from which
co-evolution and holistic emergence arise. Together, they form a cohesive set of guidelines for
advancing towards truly comprehensive and predictive physical-social world models.

3.3 Framework for Unified Physical-Social World Model

Building upon the imperative for integration and the ACE principles, we propose a conceptual
framework for unified physical-social world models (WMp._s). Visualized in this framework
emphasizes a principled approach to synergistically modeling and predicting the distinct yet deeply
entangled dynamics of the physical and social realms. Our primary focus is on the predictive problem:
learning and forecasting state transitions within complex environments comprising both physical and
social elements. This problem is formulated as WMp.g = (N, S, T, where N = {1,...,n} be the
set of agents. The world state space S is a composite of physical and social dimensions:

§= ;E; x (X?:IS;hy) X (X?zlssioc) X (XiJEN,i?ﬁszigc)'

Specifically, a specific world state s € S explicitly decomposes into a joint physical state syny, =

env i . env . : i : 3 :
(Sphy» {5phy }ieN )> Where siiv describes the environment and sy, is agent 4’s physical state, and a

joint social state ssoc = ({siyc}icn, {Ssoc}ijen,izj), Where sl denotes individual social attributes
(e.g., beliefs, goals) and sg3. captures inter-agent social relationships, the construct of sy, follows
the Principle A. Given the current world state s = (Sphy, Ssoc) (and potentially a joint action a if
explicitly modeled), the core predictive challenge is to learn the joint state transition function
T(s'|s), predicting the next state s’. It is crucial to understand that this unified 7" is not merely an
additive combination of independent physical (T,ny) and social (T,) transition functions. Such
isolated learning would fail to capture their deep coupling and reciprocal influence, as emphasized
by Principle E. The evolution of sy is continuously affected by sg, and vice-versa. Therefore, T
must inherently model this entanglement. Our proposed WMp_g framework, depicted in |Figure 3|



operationalizes this unification. The learning, structure, and predictive mechanisms of this WMp_g
are fundamentally guided by the overarching ACE Principles. Principle A shapes the multi-level
abstraction of sq,; Principle C ensures the social component of predictions reflects contingent
causality sensitive to the socio-physical context; and Principle E mandates the model captures the
entangled co-evolution leading to holistic system emergence. The successful instantiation of such a
WMp.s, is envisioned to unlock a new generation of Al capabilities. As highlighted in this
ranges from developing Smart Urban Mobility systems that understand both traffic physics and human
driver behavior, to fostering truly Human-Al Teaming through mutual understanding, enabling more
effective Government Policy Simulation, creating deeply engaging Advanced Game Al, supporting
Personalized Well-being applications that consider socio-physical contexts, and improving Crisis
Response by modeling human behavior under duress within physical constraints. This framework,
therefore, not only addresses the limitations of current models but also charts a path towards Al that
can more comprehensively understand and interact with our multifaceted world.

4 Challenges and future research directions

Scaling the ACE principles to real-world applications encounters significant barriers, each tied to
fundamental AI challenges, yet these can be addressed through strategic development paths that
leverage interdisciplinary insights, advanced computational methods, and innovative data strategies.
We briefly discuss these challenges and propose several research directions to inspire future research.

4.1 Challenges in Scaling the Abstraction Principle

The Abstraction principle grounds abstract social concepts (e.g., "trust") in multimodal data without
oversimplification, facing the neural-symbolic grounding problem [40l]. Mathematically, learn
f X — S, where X is multimodal inputs (e.g., video z,, audio z,, text x;), and Sy iS
high-dimensional and sparse, complicating loss minimization L£(f(z), Syue) Via cross-entropy or
contrastive objectives. The core challenge lies in bridging the semantic gap from continuous, high-
dimensional perceptual data (e.g., complex micro-expressions and body language in a video) to
discrete, symbolic social concepts (e.g., "intention is cooperative"). This representation issue arises
because social quantities lack the dimensional clarity of physical quantities, leading to ambiguity
in encoding abstract notions into structured forms. Additional challenges include: (1) data-related
limitations, such as scarcity of diverse multimodal datasets and overfitting to cultural or environmental
biases, which hinder the abstraction process by limiting the breadth and fairness of learned mappings
from perceptual inputs to symbolic outputs [58](2) computational and integration hurdles, including
inefficiency in bridging sensory-symbolic gaps and the need to align with physical priors, directly
impacting the scalability and grounding of abstractions in real-world, 3D-constrained environments;
and (3) ethical and adaptability concerns, including the amplification of gaps due to underrepresented
behavioral biases and the challenges of extending to lifelong learning [80, [112, [73], undermine the
ethical integrity and continuous evolution of abstracted social representations.

4.2 Challenges in Scaling the Contingent Causality Principle

This principle handles non-stationary social rules via state transitions P(s%.|Ssoc). The core difficulty
lies in predicting social state changes after establishing representations, as social quantities evolve
based on dynamic, contingent contexts and scenarios, unlike physical quantities governed by fixed
laws. This contingency implies weak Markovian properties, where long-term dependencies and
events with uncertain timing can influence state transitions, further constrained by evolving social
norms. This leads to high out-of-distribution (OOD) variance Var[ P(s.,.|coop)] » Var[P(sl..|cin)]
where ¢ denotes the dynamic context (e.g., cultural or situational factors), requiring models to
adapt predictions to shifting causal rules [96]]. Additional challenges include causal multiplicity
and uncertainty management, where models struggle to simultaneously handle multiple, coexisting
causal rule sets (e.g., conflicting cultural norms in a single scenario) and manage uncertainty in
state transitions due to incomplete or ambiguous contextual cues, complicating accurate and robust
prediction of social outcomes in dynamic, norm-driven environments.

4.3 Challenges in Scaling the Entangled Emergence Principle

This requires modeling bidirectional loops in joint transitions T'(syy Ssoc|Sphys Ssoc), With entan-
glement I (Sphy; Ssoc) > 0. The core challenge is capturing mutual influences between physical



and social dimensions, where interactions lead to emergent behaviors unpredictable from isolated
components—unlike separable physical systems, social-physical entanglements amplify complexity
through feedback loops [43} [17]]. State explosion and chaos (e.g., Lyapunov A > 0, amplification
Asyi1 &~ eAAtAst) exacerbate this [[111]. Additional challenges include:(1) cascading errors and
systemic fragility, where accumulated errors over long time horizons and sensitivity to exogenous
noise propagate through entangled states, destabilizing the system due to its inherent feedback loops
and interconnectedness, severely undermining the reliability of predictions in socio-physical systems,
as evidenced by nonlinear error amplification across interfaces [12] (2) unconstrained emergent
complexity and unidentified socio-physical norms, encompassing the fundamental issue of inadequate
spatial-physical grounding to constrain emergent interactions, risking unrealistic entanglements,
and the substantial data requirements for accurately learning mutual influences that drive collective
emergent patterns under evolving or unrecognized socio-physical norms, highlighting the difficulty in
uncovering and applying implicit rules governing co-evolutionary dynamics (3) irreducible modeling
complexity and unpredictable global impacts, where the intrinsic nonlinearity and high dimension-
ality of socio-physical entanglement render effective simplification or decomposition profoundly
challenging, termed "irreducible" as core behaviors and emergent patterns reside in the continuous
interplay between dimensions which fundamentally limiting the ability to predict or steer large-scale
global phenomena, with systemic consequences emerging from complex interactions often remaining
opaque and difficult to manage, including ethical oversight [42].

4.4 Future research directions

Developing truly unified physical-social world models based on the ACE Principles will necessitate
concerted efforts across several key research directions. Future work on Data Foundations could
focus on cultivating rich and diverse multimodal datasets, potentially through large-scale curation,
augmentation, and synthetic generation. Such data would be crucial for establishing robust social
abstractions, facilitating contingent predictions, and enabling dynamic entangled simulations, perhaps
via hybrid neuro-symbolic methods or pre-training on diverse social interaction data. In Architecture
Design, research might explore hybrid neuro-symbolic systems with modular components to enable
grounded, bidirectional interactions between physical and social representations. This approach could
address structural integration and entanglement challenges by incorporating inductive biases from
cognitive science and behavioral economics, thereby informing models about context-dependent
human decision-making and group behaviors. For Algorithm Optimization, advanced learning and
reasoning methods will likely be essential, tailored for dynamic updates and uncertainty handling.
These could enhance causal inference robustness and emergent behavior resilience through techniques
such as meta-learning for non-stationary social rules, or systems theory-inspired approaches that
combine multi-agent reinforcement learning, hierarchical abstractions, and physics simulators to
model bidirectional physical-social feedback loops. Finally, Evaluation and Scaling should advocate
for multi-tier performance metrics that assess both physical and social aspects, including entangled
socio-physical causality. Scaling mechanisms like federated learning and ethical audits will be vital
to ensure lifelong adaptation in dynamic, real-world environments and to mitigate biases inherent in
complex socio-physical interactions.

5 Conclusion

This position paper has championed a pivotal paradigm shift for AI world models: the deep, bidirec-
tional unification of their physical and social predictive capabilities. We argued that the prevalent
separation of these dimensions renders current models fundamentally incomplete, hindering their
capacity to capture the true complexity of our entangled physical-social reality and impeding progress
towards Al systems that genuinely comprehend our multifaceted world.

To chart a constructive path forward, we delineated the distinct natures of physical and social
predictions, underscored the imperative for their integration by highlighting their reciprocal interplay,
critiqued existing formulations, and subsequently introduced three foundational ACE Principles.
These principles, together with our proposed conceptual WMp_g framework and a research roadmap,
collectively offer a structured, principled approach to developing world models that holistically
represent and predict the co-evolution of physical and social realities.
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A Illustrative Case Study: Service Robots in Eldercare

To illustrate why world models must jointly represent physical and social dynamics, consider a service
robot assisting older adults in an eldercare environment. A subtle physical signal, such as a hand
tremor detected in the sensory stream sppy, is not merely a motor irregularity. It often corresponds to a
latent social or emotional state, such as anxiety or unease, denoted as sgo.. This relationship is deeply
bidirectional. The person’s internal state influences physical outcomes: heightened anxiety increases
the likelihood of dropping objects or moving unpredictably. Conversely, physical factors such as
a cluttered room, sudden noise, or the robot’s abrupt movement can heighten stress or discomfort.
These reciprocal effects create a continuous feedback loop, where social and physical processes shape
each other over time. A world model that encodes only physical dynamics can predict trajectories and
collisions, but it will miss the human causes behind them. A model limited to social reasoning may
infer anxiety but fail to anticipate its physical consequences. Only a unified world model, capable of
representing the intertwined causal structure between sy, and s, can anticipate how social states
alter physical events and vice versa.

This case highlights that understanding and predicting human-centered environments requires more
than physical simulation or social inference in isolation. Effective intelligence depends on capturing
their entanglement within a single, coherent world model that links perception, causality, and
interaction across both domains.

B Detailed World model methods integration table

This appendix section presents a detailed tabular survey of world model methodologies
and[Table 2)), split into Physical World Models and Social World Models for clarity, as discussed in
The tables provide comprehensive details including the Characteristic (e.g., explicit/latent
for physical representation style, individual/interaction/group for social interaction level), Architecture
(e.g., Transformer), Task (e.g., video generation), and a Brief Description. Citation numbers are
added next to each algorithm name for reference. This integration highlights the strengths of existing
methods in modeling physical dynamics (e.g., objective laws in MBRL) and social dynamics (e.g.,
agent interactions in LLM agents), while also revealing gaps in unification, such as the lack of
entangled socio-physical representations. Readers can use these tables to identify opportunities for
hybrid approaches that bridge the physical-social divide, consistent with the ACE Principles proposed
in

The table columns are as follows: Algorithm (method name with citation), Characteristic (indicating
model representation style for physical or interaction level for social), Architecture (e.g., Transformer),
Task (e.g., Video Generation), and Brief Description. Category headers use lighter background colors
inspired by Figure 2 (light blue for physical, light orange for social) for visual distinction and
academic tone.

C Hierarchical Evaluation Protocol

To systematically assess a world model’s ability to capture socio-physical dynamics, we propose a
three-tier hierarchical evaluation protocol. Table [3|summarizes each tier from low-level perception to
high-level causal integration. Overall, these tiers form a compact and principled evaluation framework
that may help unify assessments of perceptual fidelity, modular reasoning, and causal entanglement
within a single testing paradigm.

Overall, these tiers form a compact and principled evaluation framework that may help unify as-
sessments of perceptual fidelity, modular reasoning, and causal entanglement within a single testing
paradigm.
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Table 1: Physical World Model Methods Integration Table.

physical methods with additional details.

Comprehensive classification of

Algorithm Characteristic Architecture Task Brief Description
Explicit  Latent
Intuitive Physics
MAC [§] v Recurrent Attention Network CLEVR Explicit multi-step visual reasoning via recurrent attention and control units.
DCL v Propagation Network CLEVRER Grounds concepts from video and language.
Self-Supervised Intuitive Physics v JEPA Masked Region Prediction Emerges intuitive physics from natural videos.
DINO as Representations v Transformer Intuitive Physics Benchmarks Uses DINO for video world models in benchmarks
V-JEPA 2 [ v Transformer Video prediction Predictive latent model for intuitive physical understanding.
Cosmos-Reasonl v Foundation Model Physical Reasoning Generates embodied decisions for physical understanding.
Cosmos World Platform [T] v Platform Physical AI Setups Platform for customized physical world models.
MBRL
v Ensemble MLP MuJoCo Improves RL sample efficiency with rollouts.
MOPO v Ensemble MLP D4RL Safe offline RL with model uncertainty penalties.
Dreamer v RSSM Video Game Learns behaviors via latent imagination.
Day-Dreamer [[16] v RSSM Rototic Applies world models to physical robots.
TDMPC v TOLD DMControl Temporal difference for model predictive control
' Transformer Atari Sample-efficient world models for RL.
Transformer World Models [T§] ' Transformer Craftax-Classic Data-efficient RL with transformers.
R2I v sS4 Long-horizon ta Improve long-term memory and credit assignment.
S4wWM [211 v s4 Long-horizon tasks Improve stability and sample efficiency in long-horizon tasks.
MuZero v v Recurrent dynamics + MCTS planner Atari / Go / MuJoCo Combines latent dynamics learning with tree search planning.
Video Generator
Stable Video Diffusion [10] v Latent Diffusion Model Video Generate High-resolution text-to-video generation.
DynamiCrafter v Latent Diffusion Model Video Generate Animates images with diffusion priors.
Open-Sora v Latent Video Diffusion Transformer Video Generate Open-source large video generation model.
Video World Models Memory v Spatial Memory-Augmented Transformer Long-Horizon Consistency Enhances consistency with spatial memory.
Interactive Video Generation v Action-Conditioned Transformer Video Planning Learns interactive video with coherence
Pandora v Autoregressive-Diffusion Video Model Interactive Video Generation Generate videos from natural-language actions
Navigation World Models [9] v Conditioned Video Transformer 3D Navigation Controllable videos for navigation tasks.
HunyuanWorld [T10] v Transformer + Diffusion hybrid Video understanding and generation Large unified video world model
LLM for Physical
v Transformer + MCTS Math & Logical Reasoning with planning and world models.
v Transformer+Program-Synthesized World Model AlfWorld Builds world models via code generation
v Transformer+Causal Physics Module Zero-Shot Physical Reasoning Induc isal world models in LLMs.
World Knowledge Model [86] v T +P: World Knowledge Model Interactive Agent Planning Provides prior task knowledge to assist agent planning.
3D World Model
OceWorld [T33] v Spatial-Temporal Generative Transformer 3D Occupancy Prediction 3D occupancy for autonomous driving.
3D Persistent World Models v Transformer+Persistent Memory Module Long-Horizon 3D Generation Consistent 3D embodied models.
Matrix-3D [123] v Video Diffusion+3D Reconstruction 3D Video Generation ‘Omnidirectional 3D world generation.
Gaussian World Model v 3D Gaussian representation 3D Occupancy Prediction Streaming 3D occupancy prediction.
GWM v 3D VAE +DiT Robotic Manipulation Scalable World Models for Robotic Manipulation

Table 2: Social World Model Methods Integration Table. Comprehensive classification of social
methods with additional details.

Algorithm Characteristic Architecture Task Brief Description
Individual Interaction  Group
ToM

v LST™M Sally-Anne test Predicts agent behaviors with ToM.

v v LSTM Management Mind-aware multi-agent coordination.
ToM Goes Deeper [114] v LLM ToM Capabilities Investigates deeper ToM capabilities.
Decompose-ToM v LLM ToM Reasoning Decomposes ToM tasks for reasoning.
Discrete World Models v LLM ToM Reasoning Measures task difficulty via structured ToM reasoning.
DynToM Mental State Alignment v v LLM Dynamic ToM Alignment Predictive social interaction in world models.

MBMARL
Networked MBMARL [6 v v GNN+MLP CACC Efficient MARL for large-scale network control.
MAG [II8] v RSSM SMAC Models agents for strategic games.
Sequential World Models v Sequential agent-wise world models  Multi-Robot Cooperation Enhances multi-robot cooperation.
Global-Aware World Mode! v Transformer SMAC Unified representations in MARL.
v Diffusion SMAC+MPE Diffusion-inspired state space model.
Decentralized Transformers [129] v Transformer SAMC Decentralized transformers for MARL.
LLM for Social

Social Alignment{64] v v Single LLM Social Feedback Alignment Predict social value dynamics in world modeling.
Cultural Value Alignment Eval v v Single LLM Cultural Preference Alignment Social norm prediction in dynamic environments.
Strong-Weak Value Alignment v v Single LLM Human Value Alignment Social decision-making and mental states.
Generative Agents [74] v LLM Agents Social Simulation Simulates human-like behaviors.
Evobot v LLM Agents+GNN Social simulation Generate more human-like content
SocioVerse ' LLM Agents Social Simulation LLM-driven world model with alignment.

D Current benchmarks table

This section extends the analysis in [section 2| by providing a comparative overview of current

world model benchmarks (

As illustrated in the table, existing benchmarks offer valuable

coverage of either physical or social dynamics, yet they seldom capture the intertwined nature
of socio-physical causality. The evaluation framework outlined here examines each benchmark’s
level of support for physical reasoning, social reasoning, and, critically, entangled socio-physical
interactions, while summarizing their primary characteristics in a concise Brief Description column.
The comparison reveals several structural gaps across current benchmarks. Physically grounded
benchmarks (e.g., MuJoCo) achieve strong performance in objective simulation but largely omit
social interaction aspects, whereas socially focused benchmarks (e.g., SociallQA) often lack explicit
physical grounding. Some integrated environments, such as Melting Pot, show promise for joint
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Table 3: Three-tier hierarchical evaluation protocol for assessing socio-physical dynamics in world
models. Each tier targets an increasingly integrated understanding of physical and social dynamics.

Tier

Core Objective & Example Tasks

What It Verifies

Perceptual Fidelity

Objective: Assess low-level sensory prediction
across modalities (visual, textual, embodied). Ex-
amples: Reconstruct video frames, facial expres-
sions, or gestures.

Ensures perceptual grounding and
multimodal fidelity without distor-
tion.

Disentangled Dynamics

Objective: Evaluate physical and social reason-
ing independently before integration. Examples:
Simulate trajectories under gravity; infer isolated
intentions or preference alignment.

Verifies modular reasoning and the
model’s compliance with underlying
physical laws and social norms prior
to integration.

Entangled Dynamics

Objective: Probe bidirectional socio-physical
causality via counterfactuals. Examples: “If
anxiety rises in a crowd, how does movement
change?” or “If cooperation norms shift mid-
interaction, what are the physical effects?”

Validates causal interplay and gener-
alization in entangled socio-physical
contexts.

Table 4: Comparative overview of current world model benchmarks and their evaluation coverage,
organized by physical-, social-, and unified-focus categories. The Brief Description column summa-
rizes each benchmark’s main characteristics.

Benchmark Year Focus Brief Description
Physical-Focused Benchmarks
MuJoCo [113] 2012 Physics Simulation Standard physics engine for control and dynamics evaluation.
CLEVR [50]1124] 2017 Visual Reasoning Synthetic visual reasoning benchmark for compositional scenes.
CARLA [23] 2017 Autonomous Driving High-fidelity driving simulator for embodied decision-making.
DMControl [[109] 2018 Control Tasks Continuous-control suite for reinforcement learning evaluation.
Habitat [95] 2019 Embodied A 3D embodied navigation platform with realistic rendering.
D4RL [29] 2020 Offline RL Datasets Standard offline RL datasets for policy and model evaluation.
MineDojo [25] 2022 Minecraft Tasks Open-ended platform emphasizing embodied physical interaction.
IntPhys [90][11] 2018 Physical Reasoning Visual intuitive-physics benchmark for physical consistency.
CausalVQA [28] 2025 Physical Reasoning Video-based benchmark for latent physical reasoning.
WorldModelBench [61] 2025 Video World Models Unified evaluation for generative and predictive video models.
Social-Focused Benchmarks
Sally-Anne Test [87] 2018 Theory of Mind Classic ToM paradigm for belief and perspective inference.
Stag Hunt Game [62] 2019 Cooperative Games Coordination game modeling social dilemmas and cooperation.
SociallQA [93] 2019 Social Commonsense QA benchmark for intentions and social reasoning.
ATOMIC [92] 2019  Commonsense Knowledge  Knowledge graph for causal and social event reasoning.
MMMU [126] 2024 Multimodal QA Multimodal academic QA benchmark; non-social reasoning only.
MuMA-ToM [99] 2025 Multimodal ToM Multimodal ToM benchmark combining visual and textual cues.
Egonormia [88] 2025 Social Norms Tests norm understanding in embodied social contexts.
UserBench [85] 2025 User-Centric Agents Evaluates user-aligned adaptation in interactive settings.
HumanTrait [41] 2025 Personality Modeling Studies personality-based reasoning and social adaptation.
Unified Benchmarks
Overcooked [13] 2019 Kitchen Cooperation Cooperative cooking under spatial and social constraints.
Neural MMO [104] 2019 Massively Multiplayer Persistent multi-agent world for emergent social behavior.
Melting Pot [60] 2021 Multi-Agent Dilemmas Benchmark suite for adaptive cooperation and competition.
CivRealm [84] 2024 Adaptive Social Civilization-style simulation for strategic and social learning.
AdaSociety [47] 2024 Adaptive Social Adaptive multi-agent society with evolving interactions.

ProjSId [2]

2024  Minecraft Social Simulation

Combining physical causality with emergent social behaviors.

evaluation but remain limited in counterfactual testing and long-term causal entanglement. Overall,
this comparative analysis highlights the need for more comprehensive and unified evaluation protocols
that can systematically assess the full spectrum of physical, social, and socio-physical reasoning,
aligning with the broader research directions discussed in Moreover, this overview aims to
encourage future benchmark development guided by the proposed Hierarchical Evaluation Protocol
(Table 3), fostering more structured and hierarchical evaluation of world models.
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E Comparison with Existing Positions and Surveys on World Models

Existing surveys on world models primarily provide technical overviews of predictive capabilities,
multimodal integration, or specific domains like embodied Al or 3D modeling, often neglecting the
bidirectional unification of physical and social dynamics. In contrast, our position paper adopts a novel
dual-lens perspective, framing world models through physical and social dimensions, highlighting
their entanglement. We draw inspiration from cognitive science, sociology, and systems theory to
construct holistic models, and we provide paths and evaluations to inspire future work. The following
table summarizes comparisons with selected recent surveys and position papers, chosen for their
recency and relevance.

Table 5: Comparison with Existing Positions and Surveys on World Models

Survey/Position Main Focus

Autonomous Machine Intelligence [59] JEPA

Multimodal WM [67] Transition from multimodal to world models
Autonomous Driving WM [32] [27] World models for autonomous driving

Edge Al WM [131] Edge intelligence and agentic Al via world models

WM Overview [22] Perspective of Prediction and Understanding

Sensing, Learning, Reasoning [20] World models for sensing, learning, and reasoning in Al
Embodied Al WM [26] Embodied Al: From LLMs to world models

Generative WM [[135] Generative world models and simulators (e.g., Sora)
MBRL Survey [/1] Model-based reinforcement learning

WM Ceritiques [121] Physical, Agentic, and Nested

General Agents WM [89] Shows general agents contain world models

Video Gen WM Perspective [53] Physical law perspective on video generation as world models
Phys Interpretable WM [78] Four principles for physically interpretable world models
3D/4D WM Survey [57] Survey on 3D and 4D world modeling

LLM Social Sim [107][3] Integrating LL.Ms in agent-based social simulation
Modeling the World [30] Embodied agents” world modeling
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