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ABSTRACT

Scalable robot learning in the real world is limited by the cost and safety issues
of real robots. In addition, rolling out robot trajectories in the real world can
be time-consuming and labor-intensive. In this paper, we propose to learn an
interactive world model for robot manipulation as an alternative. We present a
novel method, Mani-WM, which leverages the power of generative models to
generate realistic videos of a robot arm executing a given action trajectory, starting
from an initial given frame. Mani-WM employs a novel frame-level conditioning
technique to ensure precise alignment between actions and video frames and
leverages a diffusion transformer for high-quality video generation. To validate the
effectiveness of Mani-WM, we perform extensive experiments on four challenging
real-robot datasets. Results show that Mani-WM outperforms all the comparing
baseline methods and is more preferable in human evaluations. We further showcase
the flexible action controllability of Mani-WM by controlling the virtual robots in
datasets with trajectories 1) predicted by an autonomous policy and 2) collected by
a keyboard or VR controller. Finally, we combine Mani-WM with model-based
planning to showcase its usefulness on real-robot manipulation tasks. We hope that
Mani-WM can serve as an effective and scalable approach to enhance robot learning
in the real world. To promote research on manipulation world models, we open-
source the code at https://anonymous.4open.science/r/Mani-WM.

1 INTRODUCTION

The field of embodied AI has witnessed remarkable progress in recent years. Real robots are now
able to complete a wide variety of manipulation tasks (Zitkovich et al., 2023). However, real robots
are costly, unsafe, and require regular maintenance which may restrict scalable learning in the
real world. And rolling out robot trajectories in the real world can be time-consuming and labor-
intensive, although it is necessary for model evaluation. While efforts have been made to create
powerful physical simulators (Mittal et al., 2023; Chen et al., 2024), they are still not visually realistic
enough. Additionally, they are not scalable because building new environments in simulation requires
significant effort. What if we can create an interactive world model that simulates robot trajectories in
a way that is accurate and visually indistinguishable from the real world? With such a model, agents
can interactively control virtual robots to manipulate diverse objects in various scenes and perform
model-based planning by imagining the outcomes of different proposed candidate trajectories.

Recent advances in generative models showcase extraordinary performance in generating realistic
texts (Achiam et al., 2023), images (Rombach et al., 2022), and videos (Brooks et al., 2024). Inspired
by these successes, we propose to leverage generative models in building an interactive world model
for robot manipulation in the real world. To this end, we propose Mani-WM, a novel method that
generates high-fidelity videos of a robot executing an action trajectory, starting from a given initial
frame (Fig. 1). We refer to this task as the trajectory-to-video task. The trajectory-to-video task
differs from the general text-to-video task in several ways. While various videos can meet the text
condition in the text-to-video task, the predicted video in our trajectory-to-video task must strictly
and accurately follow the input trajectory. More importantly, a challenge of this task is that each
action in the trajectory provides an exact description of the robot’s movement in each frame. This
contrasts with the text-to-video task, where textual descriptions offer a general condition without
specific frame-by-frame details. Another challenge is that the trajectory-to-video task features rich
robot-object interactions, which must adhere to physical laws. For instance, when the robot picks
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Initial Frame Input Trajectory

Mani-WM

Prediction / Ground-truth

Figure 1: Overview of Mani-WM. Mani-WM is an interactive world model for robot manipulation
that allows users to input an action trajectory to control the "real robot" in an initial frame.

up a bowl and moves, the bowl should move together with the robot. In terms of data, training a
trajectory-to-video model only requires trajectory-video pairs, which is very scalable – even failure
trajectories can be used for training.

To tackle the trajectory-to-video task, Mani-WM leverages an innovative frame-level conditioning
method to achieve precise frame-by-frame alignment between actions and video frames. We use the
powerful Diffusion Transformer (Peebles & Xie, 2023) as the backbone to improve the modeling of
robot-object interactions for better compliance with physical laws. To generate long-horizon videos,
Mani-WM can be rolled out in an autoregressive manner and maintain consistency between the
generated video clips. We validate Mani-WM on four real-robot manipulation datasets: RT-1 (Brohan
et al., 2023), Bridge (Walke et al., 2023), Language-Table (Lynch et al., 2023), and RoboNet (Dasari
et al., 2020). Results show that Mani-WM can generate high-resolution (up to 288 × 512) and
long-horizon videos (up to 150+ frames). Compared to baseline methods, Mani-WM achieves
superior performance and is more preferable in human evaluations. Moreover, we showcase that
Mani-WM is able to generate accurate and realistic videos from trajectories outputted by a policy or
collected by humans with a keyboard or VR controller, indicating great flexibility and robustness
in real-world application. Finally, we perform model-based plannning experiments on real-robot
manipluation tasks with Mani-WM. Results indicate that Mani-WM can accurately imagine the visual
outcomes of different proposed candidate trajectories, allowing a model-based policy to select correct
trajectories for accomplishing multiple tasks. Please see our project page for videos. To summarize,
the contribution of this paper is threefold:

• We propose Mani-WM, a novel method that is capable of generating high-resolution and long-
horizon videos for the trajectory-to-video task. It achieves precise alignments between actions
and video frames and adheres to physical laws.

• We perform extensive experiments on the trajectory-to-video task with four challenging real-robot
datasets. Results show that Mani-WM outperforms all the comparing baseline methods and is
more preferable in human evaluations.

• We validate the usefulness of Mani-WM in the real world by conducting real-robot experiments on
manipulation tasks. Results show that Mani-WM significantly improves success rates by enabling
the policy to foresight the visual outcomes of different candidate trajectories.

2 RELATED WORK

World Models. Learning a world model (or dynamics model) (LeCun, 2022; Ha & Schmid-
huber, 2018), which predicts future observations based on current observations and actions, has
recently become increasingly popular (Tian et al., 2023; Hu et al., 2023; Bruce et al., 2024). Prior
works (Babaeizadeh et al., 2021; Gupta et al., 2023) train action-conditioned video prediction
models for planning on BAIR (Ebert et al., 2017) and RoboNet (Dasari et al., 2020) datasets.
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DreamerV3 (Hafner et al., 2023) and DayDreamer (Wu et al., 2023) leverage recurrent state space
model (RSSMs) (Hafner et al., 2019) to learn a latent representation of states by modeling a world
model for reinforcement learning. iVideoGPT (Wu et al., 2024) trains an autoregressive transformer
for action-conditioned video prediction. VLP (Du et al., 2024) exploits text-to-video models as
dynamics models to generate video plans for robots. Mani-WM differs from previous works in that it
is able to generate high-resolution (up to 288 × 512) and long-horizon videos (up to 150+ frames),
enabling accurate and flexible world modeling for robot manipulation.

Video Models. Video models generate video frames either unconditionally or with conditions
including classes, initial frames, texts, strokes, and/or actions (Finn et al., 2016; Ma et al., 2024; Bao
et al., 2024; Wang et al., 2024). Recently, diffusion models (Ho et al., 2020) are becoming more
and more popular in video generation (Ho et al., 2022; He et al., 2023; Yang et al., 2024; Brooks
et al., 2024). A popular choice of architecture is U-Net (Ronneberger et al., 2015) which has also
been widely used in image diffusion models (Rombach et al., 2022). Sora (Brooks et al., 2024)
showcases extraordinary video generation capability with Diffusion Transformers (Peebles & Xie,
2023). Mani-WM also leverages Diffusion Transformers as the backbone. A relevant line of work is
to control video synthesis with motions. These methods use either user-specified strokes (Yin et al.,
2023; Chen et al., 2023), bounding boxes (Wang et al., 2024), or human poses (Wang et al., 2023; Xu
et al., 2023) as conditions. In contrast, Mani-WM seeks to model complex 3D real-world actions in
the video via learning a world model for robot manipulation.

Scaling Real-World Robot Learning. Rolling out policies in the real world is essential in scaling
up robot learning. Firstly, it is necessary for model evaluation (Zitkovich et al., 2023; Li et al., 2024).
Scaling up real-world evaluation would necessitate building and maintaining a large number of robots.
To tackle this challenge, recent work (Li et al., 2024) shows a correlation between evaluation in a
physical simulator and on real robots. Secondly, as real-robot data are scarce for the reason that
data collection often requires costly human demonstrations, an alternative is to roll out a policy
to collect data (e.g., dataset augmentation (Ross et al., 2011; Jang et al., 2022; Yu et al., 2023)).
Finally, real-robot reinforcement learning requires rolling out robots in the real world to collect
trajectories (Levine et al., 2016; Kalashnikov et al., 2018; 2021). However, policy rollout in the real
world is time-consuming. And human supervision is often needed to ensure safety which can be
labor-intensive. World models are considered a promising solution to these three challenges (Monas
& Jang, 2024; Yu et al., 2023; Yang et al., 2024). Our method aims to build a world model for robot
manipulation to serve as an efficient and scalable alternative for real-world policy rollout.

3 METHODS

3.1 PROBLEM STATEMENT

We define the trajectory-to-video generation task as predicting the video of a robot that executes a
trajectory given the initial frame I1 and the action trajectory a1:N−1:

I2:N = f(I1,a1:N−1) (1)

where N denotes the number of frames in the video; ai denotes the action at the i-th timestep. In this
paper, we focus on predicting videos for robot arms. A typical action space for robot arms contains 7
degrees of freedom (DoFs), i.e., 3 DoFs for describing translation in the 3D space, 3 DoFs for 3D
rotation, and 1 DoF for the gripper action. The action trajectory a1:N−1 belongs to R(N−1)×d, where
d represents the dimensionality of the action space. Additional details regarding the discussion on the
number of context frames and action space are provided in Appendix A.1 & B.

3.2 PRELIMINARIES

Diffusion Models. Before delving into our method, we briefly review preliminaries of diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Diffusion models typically consist of a forward
process and a reverse process. The forward process gradually adds Gaussian noises to data x0 over T
timesteps. It can be formulated as q (xt|x0) = N

(
xt;

√
αtx0, 1− αtI

)
, where xt is the diffused data

at the t-th diffusion timestep and αt is a constant defined by a variance schedule. The reverse process
starts from xT ∼ N (0, I) and gradually remove noises to recover x0. It can be mathematically
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expressed as pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where µθ(·) and Σθ(·) denote the mean
and covariance functions, respectively, and can be parameterized via a neural network.

In the training phase, we sample a timestep t ∈ [1, T ] and obtain xt =
√
αtx0 +

√
1− αtϵt via the

reparameterization trick (Ho et al., 2020) where ϵt ∈ N (0, I). We leverage the simplified training
objective to train a noise prediction model ϵθ as in DDPM (Ho et al., 2020):

Lsimple(θ) = ||ϵθ(xt, t)− ϵt||2 (2)

In the inference phase, we generate x0 by first sampling xT from N (0, I) and iteratively compute

xt−1 =
xt −

√
1− αtϵθ(xt, t)√

αt
(3)

until t = 0. For conditional diffusion processes, the noise prediction model ϵθ can be parameterized
as ϵθ(xt, t, c) where c is the condition that controls the generation process. Throughout the paper, we
use superscript and subscript to indicate the timestep of a frame in the input video and the diffusion
timestep, respectively.

Latent Diffusion Models. Directly diffusing the entire video in the pixel space is time-consuming
and requires substantial computation to generate long videos with high resolutions (Ho et al., 2022).
Inspired by Ma et al. (2024), we perform the diffusion process in a low-dimension latent space z
instead of the pixel space for computation efficiency. Following He et al. (2023), we leverage the
pre-trained variational autoencoder (VAE) in SDXL (Podell et al., 2023) to compress each frame Ii in
the video to a latent representation with the VAE encoder zi = Enc(Ii) where i ∈ {1, 2, ..., N}. The
latent representation can be decoded back to the pixel space with the VAE decoder Ii = Dec(zi).

3.3 MANI-WM

Mani-WM is a conditional diffusion model operating in the latent space of the VAE introduced
in Sec. 3.2. The condition c consists of the latent representation of the initial frame of a video,
z1 = Enc(I1), and an action trajectory, aN−1 The diffusion target is the latent representations of the
subsequent N − 1 frames of the video in which the robot executes the action trajectory, i.e. x = z2:N .
Inspired by Sora’s remarkable capability of understanding the physical world (Brooks et al., 2024), we
similarly adopt Diffusion Transformers (DiT) (Peebles & Xie, 2023) as the backbone of Mani-WM. In
the design of Mani-WM, we aim to address three key aspects: 1) consistency with the initial frame 2)
adherence to the given action trajectory and 3) computation efficiency. In the following, we describe
details of Mani-WM and discuss pivotal design choices to achieve the aforementioned objectives.

Tokenization. Each latent representation zi = Enc(Ii) contains P tokens of D dimensions, where
P denotes the number of patches per frame. By sequencing the latent representations of all frames by
timestep order, the video is tokenized to N × P tokens. Spatial and temporal positional embeddings
are added to the tokens to allow awareness of patch positions within frames and timesteps in the
video, respectively. The VAE is frozen throughout the training process.

Spatial-Temporal Attention Blocks. Standard transformer blocks apply Multi-Head Self-Attention
(MHA) to all tokens in the input token sequence, resulting in quadratic computation cost. We thus
leverage the memory-efficient spatial-temporal attention mechanism (Xu et al., 2020; Bruce et al.,
2024; Ma et al., 2024) in the transformer block of Mani-WM to reduce the computation cost (Fig. 2).
Specifically, each block consists of a spatial attention block and a temporal attention block. In the
spatial attention block, MHA is confined to tokens within a frame to model intra-frame interaction. In
the temporal attention block, MHA is confined to tokens at an identical patch position across all the
frames to model inter-frame interaction. For a sequence of N × P tokens, spatial attention operates
on the 1 × P tokens within each frame; temporal attention operates on the N × 1 tokens across
the N timesteps. Compared to attending over all the N × P tokens at a time, the spatial-temporal
attention greatly decreases the computation cost which makes generating long and high-resolution
videos feasible.

Initial Frame Condition. The initial frame condition is achieved by treating the initial frame as the
ground-truth portion in the input video sequence (Brooks et al., 2024). That is, during training, we
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Figure 2: Network Architecture of Mani-WM. (a) shows the general diffusion transformer archi-
tecture of Mani-WM. The input to Mani-WM includes the initial frame and the given trajectory. (b)
Frame-level adaptation (Frame-Ada). (c) Video-level adaptation (Video-Ada).

only add noise to the tokens corresponding to the 2nd to the N-th frames z2:N , while keeping those
of the initial frame z1 intact as it does not need to be predicted (Fig. 2). And the diffusion loss is only
computed upon the 2nd to the N-th frames. This condition approach ensures consistency with the
initial frame by enabling the predicted frames to interact with it via attention mechanism.

Trajectory Condition. A naive approach to impose the trajectory condition is to encode the trajec-
tory as one embedding and append it to the input token sequence as an in-context condition (Peebles
& Xie, 2023). However, considering Diffusion Transformers (Peebles & Xie, 2023) demonstrate that
adaptive normalization performs better than in-context condition, we adopt this design in Mani-WM
to achieve trajectory condition.

• Video-Level Condition. Similar to using a text embedding to condition the generation of the
entire video in the text-to-video task, we use a linear layer to encode the trajectory into a single
embedding for condition. The embedding is then added to the embedding of the diffusion
timestep t for generating the scale parameters γ and α and the shift parameters β for each spatial
and temporal attention block. These parameters control the video generation via shifting the
distribution of the token embeddings in the transformer block. The overall framework is shown in
Figure 2(c). See Appendix C.1 for more details.

• Frame-Level Condition. Unlike the text-to-video task where the text describes the entire video,
the trajectory in the trajectory-to-video task is a finer description. Each action in the trajectory
defines how the robot should move in each frame. And thus, each generated frame must match
with its corresponding action in the trajectory. To achieve this precise frame-level alignment, we
condition the generation of each frame by its corresponding action. Instead of encoding the action
trajectory into a single embedding, we use a linear layer to encode each action into an individual
embedding. The diffusion timestep embedding is added to each action embedding to generate
the scale and shift parameters for each individual frame in the spatial block. The scale and shift
parameters of the temporal block for all frames share the same conditioning embedding which is
derived similarly as in video-level condition. See Appendix C.2 for more details.

Output. The output layer contains a linear layer which outputs the noise prediction ϵ̂ = ϵθ(xt, t, c)
ϵ̂ is used to compute the L2 loss with the ground-truth noise during training (Eq. 2). Note that
Mani-WM only predicts the mean of the noise but not the covariance as in Peebles & Xie (2023) – we
empirically found that this improves video generation quality. During inference, we sample xT from
N (0, I) and gradually denoise it via Eq. 3 to obtain the predicted latent representation of the 2nd
to the N-th frames ẑ2:N = x0. The predicted video frames can be decoded with the VAE decoder
Î2:N = Dec(ẑ2:N ).
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Short Tra
jectories

Long
 Tra

jectories

(b)

(a)

Figure 3: Qualitative Results. We show video generation of Mani-WM with (a) short trajectories
and (b) long trajectories on the test set of RT-1, Bridge, and Language-Table. Ground-truths are in
blue boxes. Predictions are in orange boxes. Initial ground-truth video frames are in green boxes.
Please see our project page for videos.

4 EXPERIMENTS

In this section, we perform extensive experiments on four challenging real-robot datasets and a real
robot. We aim to answer four questions: 1) Is Mani-WM effective on solving the trajectory-to-video
task on various datasets with different action spaces? 2) How do different components contribute
to the performance of Mani-WM? 3) How is the action controllability of Mani-WM? Can it handle
diverse trajectories from humans and policies? 4) Can Mani-WM be used for model-based planning?

4.1 EXPERIMENT SETUP

We conduct primary experiments on three high-quality robot manipulation datasets: RT-1 (Brohan
et al., 2023), Bridge (Walke et al., 2023), and Language-Table (Lynch et al., 2023). Additionally,
we follow iVideoGPT (Wu et al., 2024) to perform experiments on RoboNet (Dasari et al., 2020)
to compare with more existing baselines. The action space for RT-1 and Bridge consists of 7 DoF,
while the Language-Table features 2 DoF. RobotNet is a mixed dataset with a maximum of 5 DoF.
More details about the dataset statistics and action space are shown in the Appendix B. For RT-1,
Bridge, and Language-Table during training, we sample video clips containing 16 continuous frames
from episodes using a sliding window. For RoboNet, we follow Wu et al. (2024) and use 2 frames as
context to predict the next 10 frames. We resize videos, and the resolutions after resizing for RT-1,
Bridge, Language-Table and RoboNet are 256×320, 256×320, 288×512 and 256× 256, respectively.
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For RT-1, Bridge and Language-Table, we perform experiments on video generation on short
trajectories and long trajectories. Short trajectories, which are segments of complete episodes,
consist of 16 frames and 15 actions. The video can be generated in one diffusion generation process.
For long trajectories, we utilize complete episodes from the dataset. Long videos can be rolled out in
an autoregressive manner. The initial frame of the first diffusion process is the given ground-truth
frame, while the initial frame of each subsequent diffusion process is the last output frame from the
previous process.

Mani-WM Variants. We follow standard transformers which scale the hidden size, number of
heads, and number of layers together. In particular, we perform experiments on four configurations:
Mani-WM-S, Mani-WM-B, Mani-WM-L, and Mani-WM-XL. Details of these models are shown in
Tab. 9 in Appendix E. If not specified otherwise, throughout the paper, we report the results of Mani-
WM-XL which contains 679M trainable parameters in total. We denote Mani-WM with frame-level
and video-level adaptation as Mani-WM-Frame-Ada and Mani-WM-Video-Ada, respectively.

Baselines. To evaluate the effectiveness of Mani-WM, we first compare it with two state-of-the-art
methods, i.e., VDM (Ho et al., 2022) and LVDM (He et al., 2023). Both methods are diffusion models
based on a U-Net architecture, in contrast to Mani-WM, which employs a Transformer architecture.
LVDM diffuses videos in a latent space, while VDM operates in the pixel space. These methods
demonstrate strong capabilities in the text-to-video task. To impose trajectory conditions on video
generation, we encode the trajectory into an embedding to condition the diffusion process in both
methods. This is similar to the text embedding used for text-to-video generation in the original
papers (Ho et al., 2022; He et al., 2023). LVDM is configured such that its number of parameters is
similar to Mani-WM. As VDM performs diffusions in the pixel space, it requires more computational
resources than LVDM and Mani-WM despite having only 44M parameters. Additionally, we compare
Mani-WM with existing non-diffusion methods on the RoboNet dataset, including iVideoGPT (Wu
et al., 2024), which autoregressively predicts the next visual token, and MaskViT (Gupta et al., 2023),
which generates all visual tokens via iterative refinement. More details can be found in Appendix D.

Metrics. Following Xu et al. (2023), we evaluate with two types of metrics: computation-based and
model-based. Computation-based metrics includes PSNR (Horé & Ziou, 2010) and SSIM (Wang et al.,
2004). Model-based metrics includes Latent L2 loss, FID (Heusel et al., 2017) and FVD (Unterthiner
et al., 2019). Unlike the text-to-video task where a variety of videos may meet with a single text
condition, the variety is much smaller in the trajectory-to-video task as the robot in the predicted
video must strictly follow the input trajectory. Thus, we prioritize the Latent L2 loss and PSNR as
primary evaluation metrics and provide other metrics for reference. In Sec. 4.2, we will later show
that Latent L2 loss and PSNR match with human preference the most among all the metrics. More
details about evaluation can be found in Appendix F.

4.2 RESULTS

Table 1: Quantitative Results on Video Generation of Short Trajectories. We prioritize Latent L2 loss
and PSNR as primary evaluation metrics.

Dataset Method Computation-based Model-based

PSNR ↑ SSIM ↑ Latent L2 ↓ FID ↓ FVD ↓

RT-1

VDM 13.762 0.554 0.4983 41.23 371.13
LVDM 25.041 0.815 0.2244 4.26 30.72

Mani-WM-Video-Ada 25.446 0.823 0.2191 4.34 29.27
Mani-WM-Frame-Ada 26.048 0.833 0.2099 5.60 25.58

Bridge

VDM 18.520 0.741 0.3709 39.82 127.25
LVDM 23.546 0.810 0.2155 10.59 35.06

Mani-WM-Video-Ada 24.733 0.827 0.2021 10.30 23.03
Mani-WM-Frame-Ada 25.275 0.833 0.1947 10.51 20.91

Language-Table

VDM 23.067 0.857 0.3204 64.63 136.56
LVDM 28.254 0.889 0.1704 6.85 24.34

Mani-WM-Video-Ada 23.893 0.859 0.2028 7.05 73.84
Mani-WM-Frame-Ada 28.818 0.888 0.1660 6.38 48.49
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Figure 4: Human Preference Evaluation. We perform a user study to evaluate the human preference
between Mani-WM-Frame-Ada and other baseline methods.

Table 2: Quantitative Results on Video Generation of Long Trajectories.

RT-1 Bridge Language-Table

Latent L2 ↓ PSNR ↑ Latent L2 ↓ PSNR ↑ Latent L2 ↓ PSNR ↑
LVDM 0.2567 23.573 0.2534 21.792 0.1776 26.215

Mani-WM-Video-Ada 0.2519 23.984 0.2385 22.868 0.2112 22.551
Mani-WM-Frame-Ada 0.2408 24.615 0.2306 23.260 0.1730 26.773
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Figure 5: Scaling. Mani-WM scales elegantly with the increase of model sizes and training steps.

Table 3: Quantitative Results
on RoboNet. * indicates that
the result is derived from pre-
vious work.

RoboNet PSNR ↑ SSIM ↑
MaskViT* 20.4 67.1
iVideoGPT* 23.8 80.8
Mani-WM 24.6 81.1

Video Generation of Short Trajectories. Qualitative results are
shown in Fig. 3(a), Fig. 8 and Fig. 11. Quantitative results are
shown in Tab. 1 and Tab. 3. As shown in Fig. 3(a), Fig. 8 and
Fig. 11, Mani-WM-Frame-Ada can generate videos that are almost
visually indistinguishable from the ground-truth. As shown in Tab 1,
Mani-WM-Frame-Ada performs the best among all the comparing
methods in terms of Latent L2 loss and PSNR. It outperforms Mani-
WM-Video-Ada in all the computation-based metrics. This indicates
that frame-level condition enhances consistency between each frame
and its corresponding action in the trajectory, as shown in Fig. 8 in
the Appendix A.1. Mani-WM-Frame-Ada also surpasses the two baseline methods based on U-Nets
on Latent L2 loss. This demonstrates the superiority of transformer-based model, especially in
handling complex 3D actions and robot-object interaction. VDM fails to generate realistic videos
despite consuming more computation costs during training. This indicates the effectiveness of
performing diffusion in latent space. Additionally, as shown in Tab. 3, Mani-WM-Frame-Ada
outperforms non-diffusion methods such as iVdeoGPT and MaskViT, demonstrating the superiority
of Mani-WM in trajectory-to-video task.

Human Preference Evaluation. We also perform a user study to help understand human pref-
erences between Mani-WM-Frame-Ada and other methods. We juxtapose the videos predicted by
Mani-WM-Frame-Ada and the comparing method and ask humans which one they prefer. The
ground-truth is also provided as a reference. Mani-WM-Frame-Ada beats all the comparing methods
in all datasets (Fig. 4). This result aligns with the Latent L2 loss and PSNR which justifies the reason
for using them as the primary evaluation metrics. More details can be found in Appendix H.

Video Generation of Long Trajectories. Qualitative results are shown in Fig. 3(b) and Fig. 9.
Quantitative results are shown in Tab. 2. We compare Mani-WM with the best baseline method
LVDM (He et al., 2023). Mani-WM-Frame-Ada consistently outperforms the comparison methods in
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Keyboard Inputs: ↑↑→→→↓↓↓←←←←←←←

Keyboard Inputs: ↑↑→→→↓↓↓↓↓↓←←←←

(a)

(b)

(c)

Figure 6: Flexible Action Controllability. We showcase controlling (a) the virtual robot in Language-
Table with arrow keys on a keyboard, (b) the robots in RT-1 and Bridge with a VR controller, and
(c) the robots with a policy. Predictions are in orange boxes. Initial frames are in green boxed. The
frames of the real robot execution are in blue boxes.

Table 4: Quantitative results of real-robot model-based planning experiments.

Method Close Drawer Place Mandarin
on Green Plate

Place Mandarin
on Red Plate Avg

Random 0.20 0.07 0.13 0.13
Mani-WM (ResNet50) 0.60 0.73 0.60 0.64
Mani-WM (MSE)) 0.87 0.80 0.87 0.85

all three datasets on Latent L2 loss and PSNR. Fig. 3(b) and Fig. 9 show that it retains the powerful
capability of generating visually realistic and accurate videos as in the short trajectory setting.

Scaling. We follow Peebles & Xie (2023) and train Mani-WM-Frame-Ada of different model sizes
ranging from 33M to 679M. Results are shown in Fig. 5. On all three datasets, Mani-WM scales
elegantly with the increase of model sizes and training steps. This indicates strong potential for
increasing model sizes and training steps to further improve the performance.

Flexible Action Controllability. To showcase the flexible action controllability of Mani-WM, we
conduct qualitative experiments in which the virtual robot is guided by trajectories generated from
three distinct input sources: a keyboard, a VR controller, and a policy. Importantly, these trajectories
exhibit distributions that differ from those in the original dataset. For Language-Table with a 2D
translation action space, we use the arrow keys from the keyboard to input action trajectories. For
RT-1 and Bridge with a 3D action space, we use a VR controller to collect action trajectories as
input. We also train Mani-WM on our own robot dataset and leverage a well-trained policy with
action chunk techniques (Chi et al., 2023; Zhao et al., 2023) to predict the trajectories. We compare
the video generated by Mani-WM with the corresponding real-robot rollout. Fig. 6 shows that
Mani-WM can accurately follow trajectories from different input sources, beyond the training domain.
Additionally, Mani-WM is able to robustly handle multimodality in generation. Fig. 6(a) shows
videos generated with an identical initial frame but different trajectories. In the Appendix A.4 & A.5,
we also demonstrate that Mani-WM can handle noisy and physically implausible trajectories.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Close Drawer

(b) Place Mandarin on Green Plate

(c) Place Mandarin on Red Plate

Figure 7: Qualitative results of real-robot model-based planning experiments. We conduct experi-
ments across three manipulation tasks and present the rollouts of successful cases (left column) and
failed cases (right column). Initial frames are highlighted in red boxes, goal images in green boxes,
real-robot rollouts in blue boxes, and predictions made by Mani-WM are displayed in orange boxes.

Model-based Planning. We conduct a real-robot model-based planning experiment to show the
usefulness of Mani-WM on three manipulation tasks. We leverage a goal-conditioned method which
specifies the task with a goal image. In particular, we first sample a set of candidate trajectories. We
then use Mani-WM to imagine the visual outcomes of these trajectories and compare them with the
goal image via a cost function. The cost function evaluates the similarities between the goal image
and a predicted video. The lower the cost, the higher the similarity. The robot rollouts the trajectory
with the lowest cost to complete the task. Qualitative results are shown in Fig. 7. Quantitative results
are shown in Tab. 4. We experiment with two cost functions for similarity comparison: 1) mean
squared error (MSE) and 2) cosine similarity of the feature extracted from ResNet50. We observe that
the MSE cost function significantly outperformed the ResNet cost function, and both significantly
outperform the policy which randomly selects a trajectory for rollout. These results demonstrate
the potential of Mani-WM as a manipulation world model for model-based planning by accurately
predicting the visual outcomes of rolling out different trajectories. More details and discussion can
be found in the Appendix G.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we present Mani-WM, a novel method that generates videos of a robot executing
an action trajectory given the initial frame. Results show that Mani-WM is able to generate long-
horizon and high-resolution videos that are almost visually indistinguishable from ground-truth
videos. Additionally, we highlight the flexible action controllability of Mani-WM and its capability
for model-based planning.

Similar to other generative models, a limitation of Mani-WM is hallucinations. The hallucinations
primarily manifest as violations of physical laws. We believe that an effective way to address this issue
is to increase the model size, data volume, and the number of training steps. Additionally, although
Mani-WM achieves high throughput with only 8 GB of memory during inference, its inference speed
is not real-time. Finally, Mani-WM currently does not support flexible input resolutions, limiting its
ability to fully utilize robot data of different resolutions.

In future work, we will investigate accelerating the inference speed using methods such as diffusion
distillation (Meng et al., 2023; Ren et al., 2024). Additionally, we plan to explore leveraging Mani-
WM as a robot manipulation world model for: 1) policy evaluation (Monas & Jang, 2024); 2)
Improving policies via methods such as DAgger (Ross et al., 2011) and RL (Yang et al., 2024).
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A ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative video results on the following: 1) Short Trajectories:
We compare Mani-WM with baseline methods using short trajectories from RT-1, Bridge, and
Language-Table. We also provide additional qualitative results of Mani-WM on RoboNet; 2) Long
Trajectories: We compare Mani-WM with baseline methods in the long trajectories setting; 3) Scaling:
We compare different sizes of Mani-WM; 4) Robustness to Noisy Trajectories: We demonstrate the
robustness of Mani-WM when handling noisy trajectories; 5) Robustness to Physically Implausible
Trajectories: We show that Mani-WM can handle physically implausible trajectories.

A.1 VIDEO GENERATION OF SHORT TRAJECTORIES

Qualitative results are illustrated in Fig. 8 and Fig. 11. Fig. 8 demonstrate that Mani-WM-Frame-Ada
surpasses other methods in aligning frames with actions and modeling the interaction between robots
and objects. For RoboNet dataset, we follow Wu et al. (2024) and use two frames as context for
prediction. Fig. 11 illustrates that Mani-WM is capable of simulating the manipulation of flexible
objects, such as dragging clothes.

In terms of the number of context frames, we conduct an additional experiment on Bridge dataset
and used 2 frames as context. The performance change is minor: the PNSR of using 1 context frame
and 2 context frames are both 25. We hypothesize that the input trajectory itself contains sufficient
information about velocity. Thus, including more context frames does not bring about significant
improvement.

A.2 VIDEO GENERATION OF LONG TRAJECTORIES

Qualitative results are illustrated in Fig. 9. Mani-WM-Frame-Ada generates consistent and long-
horizon videos, accurately simulating the entire trajectory. Additionally, Mani-WM-Frame-Ada
maintains its superior performance in frame-action alignment and robot-object interaction as observed
in the short trajectory setting.

A.3 SCALING

Qualitative results are shown in Fig. 10. Mani-WM-Frame-Ada consistently improves the quality of
the generated video in terms of reality and accuracy with the increase of model size.

A.4 ROBUSTNESS TO NOISY TRAJECTORIES

We conduct real-robot experiments to demonstrate Mani-WM’s robustness against trajectories with
noise. For a trajectory predicted by the policy, we add 5% and 10% Gaussian noise, and we find that
Mani-WM is able to handle noisy trajectories robustly, as shown in Fig. 12.

A.5 ROBUSTNESS TO PHYSICALLY IMPLAUSIBLE TRAJECTORIES

We perform experiments on rolling out a physically implausible trajectory. In particular, we input a
trajectory that commands the robot to move downward even after it touches the table. Physically, the
robot cannot penetrate the table and thus will remain on the table even if the input control commands
it to move down. We input this trajectory to Mani-WM to evaluate its performance in handling
physically implausible trajectories. As shown in Fig. 13, Mani-WM can generate physically accurate
videos where the robot stays on the table.
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Ground-truth

（c）

（b）

（a）VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

Ground-truth

VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

Ground-truth

Figure 8: Additional Qualitative Results on Video Generation of Short Trajectories. We compare
the results of different methods on (a) RT-1, (b) Bridge, and (c) Language-Table. Differences between
Mani-WM-Frame-Ada and other methods are highlighted in green and red boxes.
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Ground-truth

（c）

（b）

（a） VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

Ground-truth

VDM

LVDM

Mani-WM-Video-Ada

Mani-WM-Frame-Ada

Ground-truth

Figure 9: Additional Qualitative Results on Video Generation of Long Trajectories. We compare
the results of different methods on (a) RT-1, (b) Bridge, and (c) Language-Table. Differences between
Mani-WM-Frame-Ada and other methods are highlighted in green and red boxes. Note that the input
trajectory is the entire trajectory of an episode.
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Ground-truth

（c）

（b）

（a）Mani-WM-S

Mani-WM-B

Mani-WM-L

Mani-WM-XL

Mani-WM-S

Mani-WM-B

Mani-WM-L

Mani-WM-XL

Ground-truth

Ground-truth

Mani-WM-S

Mani-WM-B

Mani-WM-L

Mani-WM-XL

Figure 10: Additional Qualitative Results on Scaling. We compare the results of Mani-WM-Frame-
Ada with different model sizes on (a) RT-1, (b) Bridge, and (c) Language-Table.

Ground
truth

Prediction
(context)

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

Figure 11: Quantitative results of Mani-WM-Frame-Ada on the RoboNet dataset. The robot is
dragging the clothes, indicating that Mani-WM is capable of simulating the deformation of flexible
objects.
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Ground
truth

Prediction

(context)

Trajectory with 5% noise
Predicted

Trajectory with 10% noise
Prediction

Figure 12: Quantitative results show that Mani-WM is robust to noisy trajectories. The robot is
moving a green bowl. We separately present the following in different rows: 1) the trajectory executed
by the real robot, 2) the trajectory executed by Mani-WM, 3) the trajectory with 5% noise executed by
Mani-WM, and 4) the trajectory with 10% noise executed by Mani-WM. We observe that Mani-WM
demonstrates robustness to trajectories with noise.

Ground
truth

Prediction
(context)

Figure 13: Quantitative results show that Mani-WM is robust to physically implausible trajectories.
We control the robot to poke at the table and record the command trajectory, which is very dangerous
as it could damage the robot. As a result, the robotic arm is blocked by the table. We find that
executing the same trajectory in Mani-WM yields similar results, rather than the robotic arm passing
through the table. This indicates that Mani-WM has a certain understanding of the physical laws of
the real world.
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B DATASETS

Table 5: Dataset Statistics. An "episode" is a single trial where the robot completes a task. A "sample"
is a clip from an episode. "-" indicates that we follow previous work and do not use a validation set.

Datasets RT1 Bridge Language2Table RoboNet
Data Split Episode Sample Episode Sample Episode Sample Episode Sample

Train 82,069 2,314,893 25,460 482,701 170,256 1,483,133 162,161 2,540,500
Validation 2,167 4,810 1,737 2,905 4,446 5,119 - -

Test 2,167 4,799 1,738 2,946 4,562 5,243 256 407

Dataset Statistics. We provide details on the four publicly available robot manipulation datasets:
RT-1 (Brohan et al., 2023), Bridge (Walke et al., 2023), Language-Table (Lynch et al., 2023) and
RoboNet (Dasari et al., 2020). A summary of the dataset statistics is presented in Table 5. For RT-1,
Bridge and Language-Table, each training sample consists of a 4-second video clip containing 16
frames, extracted from an episode with a continuous sliding window. For testing and validation,
frames are sampled at 16-frame intervals to reduce the number of evaluation videos and, consequently,
lower evaluation costs. The original resolution for RT-1 is 256× 320, for Bridge it is 480× 640, and
for Language-Table it is 360 × 640. To ensure efficient training, we resize the Bridge videos to a
resolution of 256× 320 and the Language-Table videos to 288× 512. For RoboNet, we follow Wu
et al. (2024) and use 2 frames as context to predict the next 10 frames at a resolution of 256× 256.
Note that the mentioned "our own dataset" in Sec. 4.2 is similar in size to RT-1, and the action space
is the same.

Action Space. Different datasets have different action spaces. In RT-1 and Bridge, a robot arm with
a gripper moves in the 3D space to perform manipulation which interacts with objects in the scene.
The action spaces of RT-1 and Bridge consist of 1) 6-DoF arm actions in 3D space, T ∈ SE(3), and
2) continuous gripper actions, g ∈ [0, 1]. In Language-Table, a robot arm moves in a 2D plane to
move blocks with a cylindrical end-effector. The action space of Language-Table is 2-DoF translation
in 2D space, p ∈ R2. We convert the arm action of all datasets to relative delta actions. Specifically,
we specify the action of RT-1 and Bridge with a 7-dim vector, i.e., a = [∆x,∆y,∆z,∆α,∆β,∆γ, g]
where ∆x, ∆y, and ∆z are the delta XYZ position; ∆α, ∆β, and ∆γ are the delta Euler angles; g
indicates the gripper joint-angle position in the next step. For Language-Table, we specify the action
with a 2-dim vector, i.e., a = [∆x,∆y] which indicates the delta position in the xy-plane. RoboNet
is a large-scale robot manipulation dataset featuring 7 robot platforms with varying action spaces (2,
4, or 5 dimensions). Following Dasari et al. (2020), to unify the data, a 5-dimensional vector is used
to represent a universal action space, padding zeros for missing dimensions. This vector represents
delta XYZ position, delta yaw angle, and gripper joint-angle value: a = [∆x,∆y,∆z,∆γ, g]. For
instance, if a robot doesn’t control the z-axis, ∆z is set to 0.

C MANI-WM MODEL DETAILS

In this section, we introduce more details about two types of trajectory condition methods in Sec. 3.3:
Video-Level Condition and Frame-Level Condition.

C.1 VIDEO-LEVEL CONDITIONING

In video-level condition (Fig. 2(c)), we first obtain the conditioning embedding cST by adding the
diffusion timestep embedding to the trajectory embedding. We then use cST to regress the scale
parameters γ and α, as well as the shift parameters β. Specifically, the computation of the spatial
block is as follows:

x = x+ (1 + α1)× MHA(γ1 × LayerNorm(x) + β1) (4)
x = x+ (1 + α2)× FFN(γ2 × LayerNorm(x) + β2) (5)
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where x, with a shape of (N,P,D), denotes the token embeddings. x is reshaped as (P,N,D)
before entering the temporal block. The computation of the temporal block is:

x = x+ (1 + α3)× MHA(γ3 × LayerNorm(x) + β3) (6)
x = x+ (1 + α4)× FFN(γ4 × LayerNorm(x) + β4) (7)

Note that layer normalization is performed before scaling and shifting.

C.2 FRAME-LEVEL CONDITION

In frame-level condition (Fig 2(b)), spatial attention blocks and temporal attention blocks are con-
ditioned differently. The derivation of the conditioning embedding for temporal attention blocks
cT is the same as in video-level condition, where we add the diffusion timestep embedding to the
trajectory embedding. Different frames are conditioned differently in spatial attention blocks. We
denote the conditioning embedding of spatial attention blocks for the i-th frame as ciS . To derive ciS ,
the i-th action in the trajectory is first encoded to an embedding through a linear layer. The diffusion
timestep embedding is then added to the encoded embedding to obtain ciS . We use c1S , . . . , c

N
S and

cT to regress the corresponding scale parameters γ and α, as well as the shift parameters β. While
the computation of the temporal blocks is the same as the video-level condition (Eq. 6 and 7), the
computation of spatial blocks is different:

xi = xi + (1 + αi
1)× MHA(γi

1 × LayerNorm(xi + βi
1)), (8)

xi = xi + (1 + αi
2)× FFN(γi

2 × LayerNorm(xi + βi
2)). (9)

where αi
1, γ

i
1, β

i
1, α

i
2, γ

i
2, β

i
2 denote the scale and shift parameters for the i-th frame. They are

regressed from ciS .

D BASELINES DETAILS

In this section, we detail the baseline implementation. For VDM (Ho et al., 2022), we leverage
the implementation provided in 1, which utilizes a 3D U-Net architecture for controllable video
generation. We use only the model component from this code and keep the training setting consistent
with Mani-WM. LVDM (He et al., 2023) employs the same model architecture as VDM. It performs
diffusion in the latent space while VDM performs diffusion in the pixel space. We use an MLP
to encode the trajectory into an embedding. It is then concatenated with the embedding of the
diffusion timestep to form the conditioning embedding. This is similar to the original methods in
the paper where the text embedding is concatenated with the diffusion timestep embedding to form
the conditioning embedding. The initial frame condition method of VDM and LVDM is the same as
Mani-WM as described in Sec. 3.3. LVDM and Mani-WM share the same VAE model and training
setting. Given that the resolution of Language-Table (Lynch et al., 2023) is up to 288×512, we resize
the video to 144× 256 in the training of VDM to make the computational cost affordable. During
evaluation, we resize the generated video back to 288 × 512 for comparison with other methods.
For RT-1 and Bridge, the training of VDM is performed at a resolution of 256× 320. The training
hyperparameters for VDM and LVDM are shown in Tab. 6 and 7. More training hyperparameters
that share with Mani-WM can be found in Tab. 8.

We also briefly introduce the baseline details of iVideoGPT (Wu et al., 2024) and MaskViT (Gupta
et al., 2023). Both of them use VQGAN (Esser et al., 2021) as the image tokenizer and require
additional finetuning it on RoboNet, while Mani-WM employs the VAE encoder from SDXL (Podell
et al., 2023) without the need for extra finetuning. Their parameter sizes are 436M and 228M,
respectively. Moreover, iVideoGPT undergoes extensive pre-training on OpenX-Embodiment (2023),
whereas Mani-WM achieves better video prediction performance with training only on RoboNet.

E TRAINING DETAILS

For all models, we use AdamW (Kingma & Ba, 2015) for training. We use a constant learning rate
of 1e-4 and train for 300k steps with a batch size of 64. The gradient clipping is set to 0.1. We

1https://github.com/lucidrains/video-diffusion-pytorch
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Table 6: Hyperparameters for VDM.

Hyperparameter Value
Base channels 64

Channel multipliers 1,2,4,8
Num attention heads 8

Attention head dimension 32
Conditioning embedding dimension 768

Input channels 3
Parameters 40M

Table 7: Hyperparameters for LVDM.

Hyperparameter Value
Base channels 288

Channel multipliers 1,2,4,8
Num attention heads 8

Attention head dimension 32
Conditioning embedding dimension 768

Input channels 3
Parameters 687M

found the training of Mani-WM very stable – no loss spikes were observed even without gradient
clipping. However, loss spikes often occur in LVDM and VDM when gradient clipping is not used.
Following Peebles & Xie (2023), we utilize the Exponential Moving Average (EMA) technique with
a decay of 0.9999. All other hyperparameters are set the same as Peebles & Xie (2023). Tab. 8
lists further hyperparameters. All models are trained from scratch. We utilize PNDM (Liu et al.,
2022) with 50 sampling steps for efficient video generation during evaluation. Mani-WM generates a
16-frame video with a duration of approximately 4 seconds, requiring only 30 seconds on an A100
GPU using 8GB of memory. Although there is still significant room for latency improvement, our
method features high throughput and is memory-friendly during inference.

For scaling results in Fig. 5, the configurations of four different sizes of Mani-WM are shown in
Tab. 9. We study the scale performance of Mani-WM-Frame-Ada since it performs best.

The information about computing resources for training our Mani-WM is provided in Tab. 10.

F EVALUATION DETAILS

We introduce the evaluation details in this section.

Evaluation Metrics. Latent L2 loss and PSNR measure the L2 distance between the predicted
video and the ground-truth video in the latent space and pixel space, respectively. SSIM evaluates the
similarity between videos in terms of image brightness, contrast, and structure. FID and FVD assess
video quality by analyzing the similarity of video feature distributions.

Evaluation Setup. We evaluate the video quality generated by Mani-WM and the baselines under
two settings: short trajectories and long trajectories. In the short trajectory setting, the input consists
of one initial frame and a short trajectory containing 15 actions, resulting in the generation of 15
subsequent frames. These short trajectories are sampled from episodes using a sliding window with
an interval of 16. In the long trajectory setting, the input comprises one initial frame and a complete
long trajectory, with the output being the generated subsequent frames. The average lengths of the
long trajectories are 42.5, 33.4, and 23.7 frames for RT-1, Bridge, and Language-Table, respectively.
These lengths also represent the average number of frames for the generated long videos, which are
produced in an autoregressive manner, as detailed in Sec. 4.1. The statistics of the generated short
and long videos used for evaluation are presented in Tab. 5.

Metric Calculation. In all metric calculations, we ignore the initial frame and only evaluate the
quality of the generated frames. For PSNR and SSIM, we refer to skimage 2 for calculation. For FID
and FVD, we refer to 3 and 4 for calculation, splitting the generated videos into frames and using their
codebases to compute the FID and FVD values. However, we do not calculate FID and FVD metrics
for long videos because we find that these metrics do not reflect human preferences well, even in
the short trajectory setting. This could be because FID and FVD essentially calculate the similarity

2https://scikit-image.org/docs/stable/api/skimage.metrics.html
3https://github.com/mseitzer/pytorch-fid
4https://github.com/universome/stylegan-v
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between the distributions of two datasets, whereas the trajectory-to-video task is a reconstruction
task, making reconstruction loss a more suitable evaluation metric.

Table 8: Hyperparameters for training Mani-WM.

Hyperparameter Value
Layers 28

Hidden size 1152
Num attention heads 16

Patch size 2
Input channels 4

Dropout 0.1
Optimizer AdamW(β = 0.9, β = 0.999)

Learning rate 0.0001
Batch size 64

Gradient clip 0.1
Training steps 3000000

EMA 0.9999
Weight decay 0.0

Prediction target ϵ
Parameters 679M

Table 9: Model Sizes. We use Mani-WM as an abbreviation of Mani-WM-Frame-Ada for brevity.

Model Layers Hidden size Num attention heads Parameters

Mani-WM-S 12 384 6 33M
Mani-WM-B 12 768 12 132M
Mani-WM-L 24 1024 16 461M

Mani-WM-XL 28 1152 16 679M

Table 10: Compution resources for training Mani-WM.

Dataset Concurrent GPUs GPU Hours GPU type

RT-1 32 2381 A800 (40 GB)
Bridge 32 2371 A800 (40 GB)

Lanaguge-Table 32 2369 A100 (80 GB)

G REAL-ROBOT MODEL-BASED PLANNING DETAILS

In this section, we detail the real-robot model-based planning experiment. The experiment demon-
strates that Mani-WM can effectively plan trajectories to finish manipulation tasks by generating the
outcomes of executing different candidate trajectories.

Experiment Setup. We follow Babaeizadeh et al. (2021) to set up this experiment. We implement
a model-based policy to show the usefulness of Mani-WM. Our policy consists of a sampling-based
planner, a cost function, and Mani-WM as the dynamic function. We first train Mani-WM with our
own real robot dataset. The input of our policy includes the initial image, the initial position of
the end-effector, and a goal image to indicate the task. The output is a predicted trajectory. We
use a simple sampling-based planner to generate candidate trajectories. The planner samples 50
individual points from a circle centered on the initial end-effector position and then generates a
trajectory between the initial position and each sampled point, resulting in 50 different candidate
trajectories. We input the initial image and each trajectory to Mani-WM to generate the video of
executing each trajectory. We use a cost function to calculate the similarity between each predicted
video and the goal image. We experiment with 2 cost functions: 1) mean squared error (MSE) and 2)
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cosine similarity of the feature extracted from ResNet50. We execute the top 5 trajectories with the
lowest cost (i.e., the predicted video most similar to the goal image) in the real world and calculate
the average success rate. The experiment is repeated three times for each task.

Results Qualitative results are shown in Fig. 7. Quantitative results are shown in Tab. 4. We
compare our method with a baseline that randomly picks a trajectory from the 50 candidates. The
results show that using Mani-WM significantly increases the success rate compared to the random
baseline.

Discussion About Cost Function. We also explore how different cost functions impact the model’s
performance. We find that the MSE cost function is generally superior to the ResNet cost function.
But the MSE cost function is not always perfect; sometimes it selects incorrect prediction videos,
leading to task failure. This suggests that we need to explore better cost functions in future work,
considering that the success rate is influenced by both the accuracy of video prediction and the
accuracy of the cost function. A suboptimal cost function could affect the evaluation of the video
prediction model, as also mentioned by iVideoGPT (Wu et al., 2024) and VLMPC (Zhao et al., 2024).

Discussion About Sample Policy. Although we use a simple sampling-based planner as the sample
policy in this experiment, we note that Mani-WM can be combined with any policy that has trajectory
sampling capabilities (i.e., action chunk techniques (Chi et al., 2023; Zhao et al., 2023)). The
performance and range of tasks that Mani-WM can handle could be further enhanced by adopting
a more advanced policy (Chi et al., 2023; Zhao et al., 2023), which is capable of generating more
precise and complex trajectories.

H HUMAN PREFERENCE EVALUATION

Five participants took part in the human evaluation. For each participant, we randomly sampled 10
ground-truth video clips from the test set for each of the 3 datasets. And for each video clip, we
juxtapose the predictions of Mani-WM-Frame-Ada with those of VDM, LVDM, and Mani-WM-
Video-Ada (Fig. 14). Thus, a participant evaluated 90 pairs of video clips. Note that the orders of the
juxtaposition are random for different clips. See the caption of Fig. 14 for more details. We compare
the results of all evaluated video clips and calculate the win, tie, and loss rates. The screenshot of
the GUI used in the human evaluation is shown in Fig. 14. The full text of the instruction given to
participants is as follows:

Evaluation Instructions

You are asked to choose the more realistic and accurate video from two generated videos
(shown above). The ground-truth video is given as a reference (shown below). Please
carefully examine the given videos. If you can find a significant difference between the two
generated videos, you may choose which one is better immediately. If not, please replay the
videos more times. If you are still not able to find differences, you may choose the "similar"
option. Please do not guess. Your decision needs solid evidence.
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Figure 14: Screenshot of the GUI in Human Preference Evaluation. The two videos in the
upper row are generated by Mani-WM-Frame-Ada and a comparing method, arranged in a random
left-right order. The video in the lower row is the ground-truth video.
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