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ABSTRACT

For a more compatible and consistent high dynamic range (HDR) viewing ex-
perience, a new image format with a double-layer structure has been developed
recently, which incorporates an auxiliary Gain Map (GM) within a standard dy-
namic range (SDR) image for adaptive HDR display. This new format motivates
us to introduce a new task termed Gain Map-based Inverse Tone Mapping (GM-
ITM), which focuses on learning the corresponding GM of an SDR image instead
of directly estimating its HDR counterpart, thereby enabling a more effective up-
conversion by leveraging the advantages of GM. The main challenge in this task,
however, is to accurately estimate regional intensity variation with the fluctuat-
ing peak value. To this end, we propose a dual-branch network named GMNet,
consisting of a Local Contrast Restoration (LCR) branch and a Global Luminance
Estimation (GLE) branch to capture pixel-wise and image-wise information for
GM estimation. Moreover, to facilitate the future research of the GM-ITM task,
we build both synthetic and real-world datasets for comprehensive evaluations:
synthetic SDR-GM pairs are generated from existing HDR resources, and real-
world SDR-GM pairs are captured by mobile devices. Extensive experiments on
these datasets demonstrate the superiority of our proposed GMNet over existing
HDR-related methods both quantitatively and qualitatively.

1 INTRODUCTION

High dynamic range (HDR) images are widely employed in the media and film industries, offering
a realistic visual experience with vivid details. To enable a more compatible and consistent HDR
image display, a new image format with a double-layer structure has been developed recently (Apple,
2021; Adobe, 2024; Google, 2024; ISO, 2024). This format stores a standard dynamic range (SDR)
image and an auxiliary Gain Map (GM), enabling HDR image adaptation across various devices.
Specifically, it allows the SDR image to be directly displayed on legacy devices, while applying the
GM to the SDR image for HDR display on modern devices as shown in Fig. 1 (a).

Motivated by this novel double-layer format, we introduce a new Inverse Tone Mapping (ITM) task
to up-convert existing SDR images to their HDR version, which is termed Gain Map-based Inverse
Tone Mapping (GM-ITM). It targets GM estimation instead of direct HDR image prediction, fully
exploiting the following advantages of the GM: (1) Simplified construction: The GM stores pixel-
level dynamic range information in a compact 8-bit depth image, with a resolution typically reduced
to 1/4 or 1/16 of the original SDR image. (2) Balanced distribution: The GM exhibits a more
balanced pixel-value distribution compared with the HDR image, as shown in Fig. 1 (b). (3) Detail
preservation: As shown in the top row of Fig. 1 (c), logarithm-encoded GM alleviates the over-
compression problem, preserving more contrast and texture details in highlight regions.

In addition to leveraging the inherent advantages of the GM, the characteristics of the GM-ITM
further enhance its superiority in up-conversion compared to previous learning-based HDR-related
tasks (Yao et al., 2023; Huang et al., 2023; Li et al., 2022; Liu et al., 2023). First, GM-ITM shifts
the target from the HDR image to the intermediary GM, simplifying the learning process since pre-
dicting the transformation from input to output is simpler than directly predicting the output (Gharbi
et al., 2017). Second, GM-ITM is implemented during the display process, enabling a more flexi-
ble up-conversion compared to previous tasks that aim at irradiance estimation of the scenes (Khan
et al., 2019; Kim et al., 2021) or up-conversion of the images (Cheng et al., 2022; Liu et al., 2024).
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Figure 1: (a) Glance at the SDR-GM to HDR process and simplified formulation of Eq. 3. The GM
records pixel-wise dynamic range information of the corresponding SDR image and can be used
to restore HDR through element-wise multiplication. The depicted HDR image is tone-mapped
by the method proposed by Liang et al. (2018). (b) Histograms of SDR, GM, and HDR, with
logarithmic statistics computed across 100 images. The GM illustrates a more balanced distribution
compared to the long-tailed distribution of the HDR image, making it a more tractable learning
target. (c) Visual comparison of methods (Chen et al., 2021a; Xu et al., 2022) for Single-Image
HDR reconstruction (SI-HDR), SDR-to-HDRTV up-conversion, and GM-ITM tasks. The top row
demonstrates the supervision targets, while the rows below show the estimation results and the
corresponding error maps, in which our method achieves the best visual experience.

While the GM brings benefits to the ITM process, it also presents challenges due to its unique char-
acteristics, particularly in estimating regional intensity variation with the fluctuating peak value.
To address this problem, we propose GMNet, a network with two branches fitting the locality and
globality of the GM respectively, in which the Local Contrast Restoration (LCR) branch aims at
recovering pixel-wise spatial information, and the Global Luminance Estimation (GLE) branch fo-
cuses on predicting image-wise luminance information. Additionally, considering the intrinsic re-
lationship between the locality and globality of the GM, we introduce a squeeze module for global
guidance extraction, and propose spatial-aware and channel-wise modulation modules to align the
LCR branch with the GLE branch, ensuring a precise and consistent up-conversion across both as-
pects. Based on the above designs, GMNet not only overcomes the difficulties in learning GM, but
also effectively utilizes the intrinsic connections behind these difficulties, thus potentially achieving
superior performance.

Furthermore, we build synthetic and real-world datasets to facilitate future research on the GM-ITM
task. Specifically, the synthetic dataset consists of SDR-GM pairs derived from HDRTV-standard
videos, while the real-world dataset comprises high-resolution SDR-GM pairs captured by mobile
devices. The real-world dataset demonstrates extensive diversity, covering both daytime and night-
time scenes, as well as indoor and outdoor settings. The quantitative and qualitative experiments
indicate that our method significantly outperforms the existing HDR-related methods.

Contributions of this paper can be summarized as follows:

• Motivated by a new double-layer HDR image format, we introduce a new task named GM-ITM
to achieve a more effective up-conversion.

• We propose a dual-branch network tailored for GM-ITM, exhibiting superior performance in both
qualitative and quantitative evaluations to existing solutions.

• To facilitate further research along this line, we build both synthetic and real-world datasets con-
sisting of high-resolution and diverse SDR-GM pairs, which will be released to the public.

2 RELATED WORK

Learning-based HDR-related tasks have been a long-standing research topic. However, many of
them are similar in name but differ in connotation, as shown in Tab. 1. In this section, we will
distinguish the scopes of these tasks and introduce related studies.

Single-Image HDR reconstruction (SI-HDR). Due to the limited dynamic range of camera sen-
sors, image quality degrades in extremely bright or dark scenes, motivating SI-HDR methods to
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Task Input Output
Type OETF Gamut Type OETF Gamut

SI-HDR LDR Linear Specific HDR Linear Specific
HDR-style

enhancement LDR Gamma BT.709 SDR Gamma BT.709

SDR-to-HDRTV
up-conversion SDR Gamma BT.709 HDR PQ/HLG BT.2020

GM-ITM SDR Gamma P3 GM Logarithm* N/A
HDR Linear P3

Table 1: Comparison of the learning-based HDR-related tasks. The table lists typical values, yet
there may be alternatives in practice. The LDR and SDR essentially represent low dynamic range
content, but the LDR image is derived from the camera ISP, while the SDR image is degraded
from the HDR content (Chen et al., 2021b). The color gamut of SI-HDR is device-specific, while
other tasks follow the definition of BT.709 (ITU-R, 2015b), BT.2020 (ITU-R, 2015a) and P3 (DCI,
2005; SMPTE, 2010), and the color gamut is not applicable (N/A) for the GM. *The opto-electronic
transfer function (OETF) of GM is not defined. To facilitate the comparison, we take the logarithm
encoding function as a substitute.

restore HDR irradiance from the LDR source. The SI-HDR methods can be broadly divided into
two branches (Wang & Yoon, 2021), one of which is the direct mapping approach. Eilertsen et al.
(2017) utilize an end-to-end CNN to recover details in overexposed regions, achieving visually com-
pelling results. HDRUNet (Chen et al., 2021a) uses a spatially dynamic encoder-decoder network to
learn the LDR-to-HDR mapping. KUNet (Wang et al., 2022) introduces a knowledge-inspired block
to capture global information for HDR reconstruction. The other branch is stack-based approach.
Endo et al. (2017) propose the first deep-learning-based approach that reconstructs the HDR image
by merging estimated bracketed LDR images. Lee et al. (2018a) generate HDR images from multi-
exposure stack using a conditional generative adversarial network. Zhang et al. (2023) estimate two
exposures to reconstruct HDR radiance from a single image. In general, SI-HDR methods focus on
reconstructing missing details and recovering scene irradiance.

HDR-style enhancement. For a better visual experience within a limited dynamic range, HDR-
style enhancement methods upgrade LDR images to SDR images in HDR-like view to improve
perceptual quality. In previous studies, HDRNet (Gharbi et al., 2017) predicts locally affine model
coefficients in bilateral space, achieving pleasing results on the HDR plus dataset (Hasinoff et al.,
2016). Zheng et al. (2021) propose a dual-path network that reconstructs high-quality content and
chromatic features using guided bilateral up-sampling. These enhancement methods aim to improve
the visual quality of LDR images, but without dynamic range broadened in fact.

SDR-to-HDRTV up-conversion. The popularity of HDR monitors calls for SDR-to-HDRTV up-
conversion methods to broaden the dynamic range and the color gamut, upgrading the existing SDR
source to the HDRTV version. Multi-purpose CNN (Kim & Kim, 2019) first investigates this by
jointly learning super-resolution and inverse tone-mapping. Deep SR-ITM (Kim et al., 2019) de-
composes the input into base and detail layers to refine details. FMNet (Xu et al., 2022) introduces
a frequency-aware modulation block to reduce structural distortions. He et al. (2022) propose a
two-stage method using hierarchical feature modulation and dynamic context feature transforma-
tion. However, these methods struggle in extremely bright regions due to over-compressed learning
targets, as shown in Fig. 1 (c).

Gain Map-based Inverse Tone Mapping. The SDR image is rendered to SDR display for legacy
devices, while upgrades to HDR display with the help of GM (Canham et al., 2024). It inspires
GM-ITM methods to predict GM for adapting SDR to HDR display. Compared to SI-HDR, which
aims to reconstruct scene irradiance, GM-ITM is more akin to SDR-to-HDRTV up-conversion, as
they are both ITM tasks. However, GM-ITM shifts the learning target to GM, which is applied in
the display process, thereby achieving a more flexible up-conversion than traditional ITM tasks.

3 FORMULATION

In this section, we elaborate on the pipeline of restoring linear HDR based on the SDR-GM pair.
The detailed process is shown in Fig. 2, which can be divided into the following three steps:
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Figure 2: The SDR-GM pair to linear HDR pipeline. It processes an SDR image ISDR, the down-
sampled and normalized GM ILR

NGM , and metadata (shown in the blue frame), to produce a linear
HDR output for HDR display. The metadata includes the maximum value Qmax and minimum
value Qmin for normalization, as well as the offsets δSDR and δHDR ensuring non-zero division
when computing GM. The path of offsets in the figure is omitted for brevity.

(1) Decode GM. Practically, the GM, denoted as IGM , is produced by pixel-wise division of HDR
and SDR, followed by logarithmic compression, and finally normalization and down-sampling. The
maximum and minimum values for normalization, Qmax and Qmin, are stored in the metadata. To
decode IGM from the file, we first apply the following equation:

IGM = U(ILR
NGM )× (Qmax −Qmin) +Qmin, (1)

where ILR
NGM denotes the stored normalized and down-sampled GM, and U(·) represents up-

sampling function. In practice, the encoding and decoding process of GM usually sets Qmin as
zero.

(2) Linearize SDR and GM. To obtain the final linear HDR, we need to linearize both the SDR im-
age and GM. To be specific, ISDR is linearized to LSDR by electro-optical transfer function (EOTF),
while IGM is linearized to LGM by an exponential function. The process can be formulated as fol-
lows:

LSDR = EOTF(ISDR),

LGM = exp2(IGM ),
(2)

where EOTF(·) denotes EOTF function, and exp2(·) denotes the exponential function with base 2.

(3) Restore HDR. Once the original GM is restored and both the SDR image and the GM are
linearized, the linear HDR LHDR can be computed as follows:

LHDR = (LSDR + δSDR)⊙ LGM − δHDR, (3)

where δSDR and δHDR are small offsets to prevent zero division in the encoding process. In practice,
the Eq. 3 can also be simplified to LHDR = LSDR ⊙ LGM shown in Fig. 1 (a). More details of the
simplification process and GM formation pipeline can be found in Sec. A of the appendix.

4 METHOD

4.1 OVERVIEW

As an intermediary in the ITM process, GM is characterized by high contrast along with fluctuating
peak value, which makes direct estimation challenging. To tackle this challenge, we turn to the de-
composition of GM, i.e., the normalized GM INGM and the corresponding maximum value Qmax.
This decomposition is well-suited to the inherent locality and globality characteristics of GM, re-
sulting in a more stable and robust learning process. Building on this, we propose a dual-branch
network named GMNet, which consists of a Local Contrast Restoration (LCR) branch estimating
INGM from the pixel-level image features, and a Global Luminance Estimation (GLE) branch pre-
dicting Qmax based on the image-level luminance information.
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Figure 3: Architecture of the GMNet. The proposed network consists of a Local Contrast Restora-
tion (LCR) branch, which predicts the normalized GM INGM , and a Global Luminance Estima-
tion (GLE) branch, which estimates Qmax and provides global guidance to the LCR branch. The
details of the spatial-aware modulation and the squeeze module are illustrated at the bottom. The fi-
nal IGM is derived from the estimated INGM and Qmax using the simplified Eq. 1. During training,
the LCR branch processes the SDR image patch, while in inference, it handles the full-resolution
SDR image. The GLE branch processes the down-sampled full SDR image in both the training and
inference phases.

As depicted in Fig. 3, the LCR branch processes the SDR image ISDR, extracts image features,
and applies modulation in both spatial and channel dimensions, ending up with the normalized GM
INGM as output. The GLE branch takes the down-sampled SDR image ILR

SDR as input to reduce
computational complexity, expands the receptive field, and further squeezes the feature to derive
the maximum value Qmax. In addition to estimating Qmax, the intermediate features in the GLE
branch also serve as the global guidance to enhance the restoration in the LCR branch. Specifically,
the GLE branch extracts the spatial-aware modulation kernel Wker for spatial feature enhancement,
and generates the channel-wise modulation weights Wchn to modulate the regional features along
the channel dimension, making a more accurate up-conversion. Finally, IGM is obtained by the
multiplication of INGM and Qmax, then following the pipeline in Sec. 3 to restore the final HDR
result.

4.2 LOCAL CONTRAST RESTORATION BRANCH

To promote the restoration of the regional contrast, we introduce the LCR branch. It not only extracts
fine-grained spatial details but also integrates spatial-aware and channel-wise modulation, which
incorporate global guidance to refine and adjust the local prediction process, ensuring more accurate
regional restoration.

As illustrated in Fig. 3, the input SDR image ISDR is initially processed into a shallow spatial feature
F loc through a local head consisting of three convolutional layers with ReLU activation functions.
The stride of the first convolution layer is set to 2 for a larger receptive field, facilitating subsequent
convolutions to capture more information. The resulting F loc is then passed through three cascaded
ResBlock groups (He et al., 2016) to extract deeper image features. Spatial-aware and channel-wise
modulation are applied between the groups to effectively incorporate global information. Finally, a
local tail with a pixel-shuffle layer and three convolutional layers reconstructs the feature into the
normalized GM which is denoted as INGM .
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Spatial-aware Modulation and Channel-wise Modulation. During the spatial-aware modula-
tion process, the LCR branch receives a spatial kernel Wker ∈ R3×3×C from the GLE branch,
which serves as global guidance to promote contrast restoration. The output feature F res

1 of the first
ResBlock group is first passed through a channel-wise convolution layer with spatial kernel Wker,
producing an intermediate feature Fmid. This intermediate feature is then processed through two
consecutive 3× 3 convolutional layers with a ReLU activation in the interval. The resulting feature
is passed through the Sigmoid function to generate the spatial mask Wmask, which is applied to
F res
1 via element-wise multiplication, outputting the modulated spatial features F spa accordingly.

During the channel-wise modulation process, the LCR branch receives channel weights Wchn ∈
R1×1×C from the GLE branch, which are used to modulate the intermediate output F res

2 of the
second ResBlock group through a channel attention mechanism. These proposed modulation mech-
anisms enable effective global guidance in the local restoration process, making regional GM esti-
mation more precise.

4.3 GLOBAL LUMINANCE ESTIMATION BRANCH

To facilitate the estimation of the fluctuating peak value of GM and provide global modulation
guidance to the local contrast restoration process, we introduce the GLE branch to extract global
features from the down-sampled SDR image ILR

SDR. The proposed GLE branch not only produces
an estimation on the peak value of the target GM, but also provides the spatial kernel Wker and
channel weights Wchn. Specifically, the input ILR

SDR is first convolved to F glb by the global head,
which shares a similar structure with the local head but conducts down-sampling twice. Next, F glb

is fed into three parallel squeeze modules to derive the spatial kernel Wker, channel weights Wchn

and the estimated peak value Qmax required for reconstruction.

Squeeze Module. To squeeze the global feature of image statistics, the squeeze module first down-
samples F glb through an adaptive pooling layer, which is then expanded to richer feature space by
two 1×1 convolutions and activation functions to accommodate more complex nonlinear mappings.
Finally, a convolutional layer with 1× 1 filters is used to adjust the shape of the final output.

To meet the different needs of guidance and estimation, the squeeze module controls the shape
of the output through the pooling size of the first layer and the number of filters in the last layer.
Specifically, the 3× 3 pooling and C filters in the last layer produce Wker ∈ R3×3×C , while 1× 1
pooling and C filters are employed to obtain Wchn ∈ R1×1×C , and Qmax ∈ R is derived from 1×1
pooling and convolution with one filter at last.

4.4 LOSS FUNCTION

Directly supervising INGM and Qmax can lead to imbalanced supervision between a tensor and a
scalar. To address this, we retain direct supervision to INGM and indirectly supervise Qmax through
IGM , which is the product of INGM and Qmax. The overall loss function in the proposed framework
consists of two components. The first is the L1 loss for INGM , defined as follows:

LNGM =

∥∥∥∥INGM − ÎNGM

∥∥∥∥
1

, (4)

where ÎNGM denotes the estimated normalized GM. The second component is the L1 loss for IGM ,
defined as follows:

LGM =

∥∥∥∥IGM − ÎGM

∥∥∥∥
1

, (5)

where ÎGM denotes the calculated GM from the Eq. 1. To ensure uniform scaling and smooth
convergence, IGM is normalized by the global maximum for supervision. In summary, the total loss
is defined as:

Ltotal = α1LNGM + α2LGM , (6)

where α1 and α2 are weights used to balance the different components of the loss function. In our
implementation, we set α1 = 1.0 and α2 = 3.0.
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Figure 4: Qualitative comparisons on the synthetic dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

Linear Domain PQ Domain HDR Domain
Method Params

PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDR-VDP3↑
HDRUNet 1.58M 41.2579 0.9969 0.9950 40.9315 0.9946 0.9988 3.5799 9.9080

KUNet 1.08M 40.4879 0.9952 0.9943 34.5201 0.9619 0.9986 7.1538 9.7851
EPCE-HDR 31.02M 41.5919 0.9956 0.9954 31.4700 0.9430 0.9916 8.5830 9.6694
DCDR-UNet 1.26M 41.8085 0.9971 0.9952 42.0183 0.9962 0.9988 3.0501 9.9215

HDCFM 0.10M 41.8563 0.9967 0.9960 44.9017 0.9992 0.9995 2.4773 9.9115
FMNet 1.24M 40.7699 0.9970 0.9940 44.4798 0.9996 0.9994 2.3032 9.8991

ITM-LUT 0.57M 39.5735 0.9950 0.9912 43.7152 0.9987 0.9987 2.2865 9.7268
Ours 1.83M 43.5510 0.9977 0.9976 47.6256 0.9998 0.9997 1.6262 9.9477

Table 2: Quantitative comparisons on the synthetic dataset. PSNR, SSIM, and SRSIM are used to
evaluate both linear HDR and PQ-encoded HDR. Additionally, ∆EITP and HDR-VDP3, metrics
specifically designed for HDR evaluation, are employed. Bold text and underline text indicate the
best and second-best performance, respectively.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We use the Adam optimizer (Kingma, 2014) with β1 = 0.9 and β2 = 0.99 to train our network. The
batch size is set to 32, and the initial learning rate is 3×10−5, halving every 2×104 iterations, with
a total of 1× 105 iterations. The weights of GMNet are randomly initialized. Each ResBlock group
contains 5 blocks, and the number of hidden layers C is set to 64. The input of the GLE branch
ILR
SDR is at the reduced 256 × 256 resolution. We use the ReLU activation function in the network.

All experiments are conducted on a workstation equipped with RTX 3090 under Ubuntu 20.04 LTS.

5.2 DATASETS

Synthetic Dataset. We collect eleven BT.2020/PQ 4K-UHD HDR videos from the internet, using
eight for training and the remaining three for testing. To ensure diversity and reduce redundancy,
frames are extracted at two-second intervals, resulting in a total of 1276 frames. Corresponding SDR
images are generated using our degradation model, which incorporates roll-off, gamut mapping, tone
mapping, clipping, and quantization (Reinhard et al., 2023; ITU-R, 2017; 2021; 2023). The GM is
then calculated using Eq. 8, where Qmin, δmin, δmax are set to zero. Both the GM and SDR image
have a resolution of 3840× 2160. After further filtering, we obtain a training set of 900 pairs and a
test set of 100 pairs.

Real world Dataset. To further explore the complexity of the real-world imaging environment, we
build a real-world dataset to advance research in GM-ITM. We capture images in various natural
settings using the Xiaomi 14 Ultra equipped with the LYT-900 sensor, which outputs double-layer
HDR images in ISO standard (ISO, 2024), and Qmin, δmin, δmax are zero by default. The dataset
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Figure 5: Qualitative comparisons on the real-world dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

Linear Domain PQ Domain HDR Domain
Method Params

PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDR-VDP3↑
HDRUNet 1.58M 33.1686 0.9911 0.9866 37.3966 0.9969 0.9984 5.7358 9.8455

KUNet 1.08M 33.3256 0.9907 0.9880 33.7895 0.9690 0.9979 9.0578 9.6893
EPCE-HDR 31.02M 32.7616 0.9914 0.9859 31.1207 0.9466 0.9973 10.4322 9.7218
DCDR-UNet 1.26M 33.5421 0.9924 0.9873 38.3252 0.9970 0.9987 4.8645 9.8781

HDCFM 0.10M 32.7963 0.9879 0.9882 38.1894 0.9956 0.9984 6.2957 9.8035
FMNet 1.24M 32.6247 0.9921 0.9828 39.7632 0.9988 0.9986 4.5544 9.8110

ITM-LUT 0.57M 31.6677 0.9842 0.9871 37.9021 0.9958 0.9985 5.4299 9.6831
Ours 1.83M 33.9490 0.9928 0.9896 40.2088 0.9993 0.9989 4.0260 9.8757

Table 3: Quantitative comparisons on the real-world dataset. PSNR, SSIM, and SRSIM are used to
evaluate both linear HDR and PQ-encoded HDR. Additionally, ∆EITP and HDR-VDP3, metrics
specifically designed for HDR evaluation, are employed. Bold text and underline text indicate the
best and second-best performance, respectively.

includes diverse scenes, both indoor and outdoor, as well as daytime and nighttime settings, covering
a wide range of brightness levels within some scenes. The SDR image has a resolution of 4096 ×
3072, while the GM is 2048 × 1536, and both horizontal and vertical orientations are included.
After filtering out low-quality pairs, we selected 900 pairs for training and 100 pairs for testing.
More details of the dataset can be found in Sec. C of the appendix.

5.3 COMPARISONS TO OTHERS METHODS

Evaluation metrics. To comprehensively validate the performance of HDR-related methods on
GM-ITM, we quantitatively compare HDR results across three domains. In the linear domain, where
HDR results retain their original linear form with highly varying peak values, directly computing
metrics may lead to unbalanced comparisons. To address this, we evaluate the HDR results in their
normalized form using PSNR, SSIM, and SRSIM (Zhang & Li, 2012) metrics. In the PQ domain,
HDR results are encoded with the PQ function, which offers a more perceptually reflective measure
of visual similarity. Since the peak values in PQ-encoded HDR images vary slightly, we normalize
them by the global maximum and employ the same metrics used in the linear domain. Additionally,
we use HDR-specific metrics such as ∆EITP (ITU-R, 2019) and HDR-VDP3 (Mantiuk et al., 2023),
which we collectively refer to as the HDR domain.

Compared methods. To the best of our knowledge, there are currently no methods specifically
designed for GM-ITM. Therefore, we compare our method with the solutions of closely related
tasks, i.e., SI-HDR, and SDR-to-HDRTV up-conversion. For SI-HDR, where the learning target is
to restore linear HDR, we use HDRUNet (Chen et al., 2021a), KUNet (Wang et al., 2022), EPCE-
HDR (Tang et al., 2023), and DCDR-UNet (Kim et al., 2024) for comparison. For SDR-to-HDRTV
up-conversion, in which the learning target is to restore the PQ-encoded HDR images, we compare
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Figure 6: The qualitative ablation results of the proposed components. The corresponding error
maps are shown below the normalized GM estimation results.

Backbone Components Evaluation Metrics
QM CW SA PSNR-L↑ PSNR-PQ↑ PSNR-NGM↑ ∆EITP ↓ HDR-VDP3↑

✓ - - - 41.1670 45.2765 29.5436 1.7711 9.9210
✓ ⃝ - - 41.3755 44.9717 28.4058 2.1757 9.9128
✓ ✓ - - 42.3479 46.2067 32.8009 1.8395 9.9431
✓ ✓ ✓ - 43.0480 47.1238 33.2117 1.6939 9.9454
✓ ✓ - ✓ 42.9085 47.0011 33.2731 1.7081 9.9442
✓ ✓ ✓ ✓ 43.5510 47.6256 33.4729 1.6262 9.9477

Table 4: The quantitative ablation results of the proposed components. The QM, CW, and SA
represent Qmax prediction, channel-wise modulation, and spatial-aware modulation. The ”-”, ”⃝”,
and ”✓” in the QM column represent not, directly, and indirectly learning Qmax.

our method with HDCFM (He et al., 2022), FMNet (Xu et al., 2022), and ITM-LUT (Guo et al.,
2023b). All methods are re-trained on our proposed datasets to ensure a fair comparison.

Quantitative comparison. Tab. 2 lists the quantitative results on the synthetic dataset. Through
analysis, we find that the SI-HDR methods achieve better quantitative results in the linear domain,
while inferior to the SDR-to-HDRTV methods in the PQ domain. It is easy to understand that
different optimization targets lead to bias in two domains. An exception is the HDCFM, which
efficiently fits the synthetic dataset with lightweight parameters and avoids over-fitting, achieving
good results in the linear domain. The target of our method is neither linear HDR nor PQ-encoded
HDR, but the best results are achieved in both domains, proving the superiority of targeting GM and
the effectiveness of the proposed method.

The quantitative results on the real-world dataset are listed in Tab. 3. Compared to synthetic data,
real-world data is derived from a black-box pipeline, features a higher level of noise, and involves
more complex imaging environments. Our method still achieves the best results for complex real-
world data, proving the generalization and effectiveness of our method.

Qualitative comparison. As the high dynamic range display is not always available, we follow
previous work (Chen et al., 2021b; Xu et al., 2022), encoding the linear HDR results with PQ-OETF
for visualization. Since the SDR display is usually decoded by Gamma-EOTF, the images may
appear dark here. In addition, we compute the error maps between the predicted HDR and the GT
in the linear domain, which are shown below the patches.

The visualization results of the synthetic dataset and the real dataset are shown in Fig. 4 and Fig. 5,
and more visual comparisons can be found in Sec. D of the appendix. For the SI-HDR methods, the
visual results tend towards significant differences over small areas and distortions in details. The
SDR-to-HDRTV methods are short in the highlight pixels due to the over-compression of the PQ-
OETF, and also perform poorly in contrast restoration. Our method can effectively reconstruct the
overall luminance and regional contrast details, especially the highlight details, achieving a more
realistic and convincing visual experience.

5.4 ABLATION STUDIES

Ablation on the proposed components. We conduct an ablation analysis on three main compo-
nents of GMNet in the proposed synthetic dataset, and the quantitative results are shown in Tab. 4.
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Hidden
Layers Params

Linear Domain PQ Domain HDR Domain
PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDR-VDP3↑

32 0.46M 42.7029 0.9972 0.9972 46.7620 0.9997 0.9997 1.7093 9.9319
48 1.03M 43.3299 0.9973 0.9973 47.4524 0.9998 0.9997 1.6990 9.9408
64 1.83M 43.5510 0.9977 0.9976 47.6256 0.9998 0.9997 1.6262 9.9477

Table 5: Ablation study on the model size of GMNet. The original implementation of our network
is 64 hidden layers.

Down
Scale Model

Linear Domain PQ Domain HDR Domain
PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDR-VDP3↑

×1
HDRUNet 41.2579 0.9969 0.9950 40.9315 0.9946 0.9988 3.5799 9.9080
HDCFM 41.8563 0.9967 0.9960 44.9017 0.9992 0.9995 2.4773 9.9115

Ours 43.5510 0.9977 0.9976 47.6256 0.9998 0.9997 1.6262 9.9477

×2
HDRUNet 39.3861 0.9969 0.9952 40.6861 0.9969 0.9993 2.7233 9.9038
HDCFM 39.6308 0.9964 0.9953 44.4200 0.9993 0.9995 2.6179 9.9178

Ours 41.2254 0.9974 0.9972 46.5649 0.9998 0.9997 1.7124 9.9461

×4
HDRUNet 38.9650 0.9970 0.9951 39.9763 0.9962 0.9992 2.7883 9.9046
HDCFM 39.2906 0.9966 0.9961 44.3981 0.9993 0.9995 2.4795 9.9178

Ours 40.5103 0.9972 0.9966 46.4938 0.9998 0.9996 1.7672 9.9413

Table 6: Ablation study on the resolution of GM. We compare the results of HDRUNet (Chen et al.,
2021a), HDCFM (He et al., 2022), and our method in three different down-sampling scales.

Compared to not learning Qmax, learning Qmax directly gets better linear performance, but the im-
balanced supervision between tensor and scalar causes a decline in perception metrics, and all the
results have a significant decay compared to indirectly learning Qmax. Respectively introducing
the spatial-aware modulation or channel-wise modulation improves the network performance, and
applying both makes the full net obtain the highest quantitative results.

We also visualize the predicted normalized GM for the ablation study, and the results are shown in
Fig. 6. The experiment without Qmax path obtains poor estimation both locally and globally, while
achieving significant improvement by attaching it. The sole application of spatial-aware modulation
or channel-wise modulation makes a slight increment, and the application of both achieves further
visual improvement. The results of both quantitative and qualitative ablation experiments validate
the effectiveness of the proposed components.

Ablation on the model size of GMNet. Keeping the network structure unchanged, we adjust the
number of hidden layers to control the model size. The results of the ablation experiments on the
synthetic dataset are shown in Tab. 5. The experimental results show that reducing model param-
eters does not lead to significant performance degradation, especially in SSIM-L, SSIM-PQ and
HDR-VDP3 that measure perception quality, verifying that our method can maintain accuracy with
reduced resources.

Ablation on the resolution of GM. As mentioned in Sec. 3, GM is usually down-sampled to reduce
file size. Therefore, we conduct ablation experiments on three different down-scales of GM on the
synthetic dataset, analyzing the effect of resolution on up-conversion quality as shown in Tab. 6. For
different down-sampling factors, our method is kept in a leading position. Though the increment
slightly decays with the larger multiples, our method requires less computation while the other
methods remain the same, proving the effectiveness of our method.

6 CONCLUSION

Motivated by a novel double-layer HDR image format, we introduce a Gain Map-based Inverse
Tone Mapping (GM-ITM) task, for which we specially design a network named GMNet. Based on
the analysis of GM characteristics, we introduce a Local Contrast Restoration (LCR) branch and
a Global Luminance Estimation (GLE) branch for GMNet, which capture pixel-wise and image-
wise information for GM estimation. Moreover, we first present synthetic and real-world datasets
consisting of SDR-GM pairs to promote the research of GM-ITM. Experimental results demonstrate
the superiority of our method in qualitative and quantitative evaluations.
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A GM FORMATION PIPELINE

Corresponding to the SDR-GM pair to HDR pipeline introduced in Sec. 3, we illustrate how to
calculate GM from the SDR-HDR pair in this section. First, the GM is computed by the following
equation:

IGM = log2

(
LHDR + δHDR

LSDR + δSDR

)
, (7)

where a common empirical value for δSDR and δHDR is 1/64. The Eq. 7 can also be conducted as
follows:

IGM =

log2

(
LHDR

LSDR

)
, LSDR ̸= 0,

0 , LSDR = 0,

(8)

which is free of offsets δSDR and δHDR, allowing Eq. 3 to be simplified to:

LHDR = LSDR ⊙ LGM . (9)

To reduce file size, the calculated IGM is then normalized using the following equation:

INGM =
IGM −Qmin

Qmax −Qmin
. (10)

Finally, the INGM will be down-sampled to a lower resolution map ILR
NGM for further compression.

In practice, many implements (Apple, 2021; Google, 2024) recommend using the linear luminance
YSDR and YHDR to substitute LSDR and LHDR in Eq. 7 or Eq. 8, thus making IGM a gray-
scale GM. To our knowledge, the existing devices can only capture gray-scale GM. Therefore, all
experiments in this paper are performed on the single-channel GM, and the three-channel GM is
beyond our scope.

B REAL-TIME PERFORMANCE EVALUATION

To evaluate the computational efficiency and real-time processing capability of our method, we
conduct comparison experiments in Tab. 7.

Method Params↓ Runtime↓ FLOPs↓ PSNR-L↑ PSNR-PQ↑ ∆EITP ↓
HDRUNet 1.58M 613.89ms 4161.75G 33.1686 37.3966 5.7358

KUNet 1.08M 621.70ms 7534.50G 33.3256 33.7895 9.0578
EPCE-HDR 31.02M 23992.84ms 326412.14G 32.7616 31.1207 10.4322
DCDR-UNet 1.26M 1085.91ms 4502.77G 33.5421 38.3252 4.8645

HDCFM 0.10M 497.05ms 127.08G 32.7963 38.1894 6.2957
FMNet 1.24M 304.13ms 4147.13G 32.6247 39.7632 4.5544

ITM-LUT 0.57M 19.81ms 59.16G 31.6677 37.9021 5.4299
Ours 1.83M 75.26ms 1112.18G 33.9490 40.2088 4.0260

Table 7: Efficiency comparisons on the real-world dataset. The runtime is evaluated in NVIDIA
A100 as the average of 100 trials in the resolution of 4096× 3072.

As can be seen, benefiting from the simple form of the target GM, our method achieves the second
fastest runtime. While the look-up-table-based solution ITM-LUT is faster, its performance on
image quality metrics is much lower.

C DETAILS OF DATASETS

We investigate the datasets employed in SI-HDR and SDR-to-HDRTV up-conversion tasks, and
compare them with our proposed synthetic and real-world dataset in Tab. 8.

Besides, we demonstrate the diversity of the synthetic dataset and real-world dataset in Fig. 7 and
Fig. 8, which includes outdoor, indoor, daytime, and nighttime scenes, providing a wide range of
content with different brightness levels and texture types.
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Task Dataset Volume Resolution
Input Output

Type Depth Channel Type Depth Channel

SI-HDR
Cordts et al. (2016) 2975 images 2048×1024 LDR 8bit RGB HDR 16bit RGB

Pérez-Pellitero et al. (2021) 1494 images 1900×1060 LDR 8bit RGB HDR 16bit RGB

SDR-to-HDRTV
up-conversion

Kim et al. (2019) 39840 patches 160×160 SDR 8bit YUV HDR 16bit YUV
Zeng et al. (2020) 23229 patches 1080×1080 SDR 8bit YUV HDR 10bit YUV

Chen et al. (2021b) 1235 images 3840×2160 SDR 8bit RGB HDR 16bit RGB
Guo et al. (2023a) 3878 images 3840×2160 SDR 8bit RGB HDR 16bit RGB

GM-ITM
synthetic dataset 900 images 3840×2160 SDR 8bit RGB GM 8bit GRAY

real-world dataset 900 images 4096×3072 SDR 8bit RGB GM 8bit GRAY

Table 8: Details on the training set of different HDR datasets. The image resolution of some datasets
varies, thus we list the highest resolution of each dataset. Our datasets stand out for the first and
second highest resolution and the unique GM output.

Figure 7: The diverse scenes, including outdoor, indoor, daytime, and nighttime settings, in the
proposed synthetic dataset. The depicted HDR images are tone-mapped by the method proposed by
Liang et al. (2018).

Figure 8: The diverse scenes, including outdoor, indoor, daytime, and nighttime settings, in the
proposed real-world dataset. The depicted HDR images are tone-mapped by the method proposed
by Liang et al. (2018).
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D ADDITIONAL VISUAL COMPARISONS ON DIVERSE SCENE

In this section, we provide more qualitative results for visual comparisons between our method and
existing methods. For the results of the synthetic dataset shown in Fig. 9, our method reconstructs
better edges than other methods, achieving the best visual quality in the highlights. We also visualize
the estimation results on a real-world nighttime scene in Fig. 10. Our method stands out for the best
perceptual quality and minimum errors, proving the effectiveness of our method in night scenes.

Figure 9: Qualitative comparisons on the synthetic dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

Figure 10: Qualitative comparisons on the real-world dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

E ADDITIONAL VISUAL COMPARISONS ON CHALLENGING CONDITION

To enable more in-depth analysis in challenging conditions, we perform qualitative experiments in
Fig. 11 and Fig. 12.

As shown in Fig. 11, our method achieves superior performance in the sun region at extreme bright-
ness. The HDCFM also achieves low errors, but with grid effect due to operator properties. Fig. 12
shows the estimation results on the leaves with complex textures and eaves with sharp edges, and our
method demonstrate superior performance on complex textures in the real-world scenario, validating
the generalization and the robustness of the proposed method.
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Figure 11: Qualitative comparisons on the synthetic dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

Figure 12: Qualitative comparisons on the real-world dataset. The left side shows the SDR image
and ground truth PQ-encoded HDR image, while the right side displays the output patches and
corresponding error maps.

F ADDITIONAL VISUAL VALIDATION

The qualitative comparisons of diverse images from HDR-SYNTH (Liu et al., 2020), HDR-
REAL (Liu et al., 2020), HDREye (Nemoto et al., 2015), and VDS (Lee et al., 2018b) datasets
are meaningful and help to increase the credibility of our experiments. The results of the qualitative
experiments are shown in Fig. 13. Experimental results show that our method recovers local and
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global contrast well and achieves smooth and realistic visual results, verifying its generalizability
over a wider range of data.

Figure 13: Qualitative comparisons on the HDR-SYNTH (Liu et al., 2020), HDR-REAL (Liu et al.,
2020), HDREye (Nemoto et al., 2015), and VDS (Lee et al., 2018b) datasets.

Figure 14: The thumbnails of the proposed synthetic dataset. It provides a wide range of content
with different brightness levels and texture types.

Figure 15: The thumbnails of the proposed real-world dataset. It provides a wide range of content
with different brightness levels and texture types.
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