
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A TASK-AWARE DYNAMIC EXPANSION NETWORK
FOR CONTINUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning has been widely applied in domains such as gaming and
robotic control. However, CRL methods that rely on a single network architec-
ture often struggle to preserve previously learned skills when they are trained on
substantially different new tasks. To address this challenge, we propose a Task-
Aware Dynamic Expansion Network (TADEN), which features a task-aware ex-
pansion strategy. This approach collects sequential environment states to mea-
sure task similarity, which reflects the suitability of the existing policy to a new
task. Then, the task similarity score is utilized to determine whether to expand the
actor-critic architecture or reuse existing modules. When expanding the network,
our method leverages prior knowledge while preserving adaptability by initial-
izing new modules through the reuse of lower layers of existing modules. We
evaluate our method on the MiniHack and Atari environments. The experimental
results demonstrated that TADEN achieved significantly better performance and
mitigated catastrophic forgetting compared to existing methods.

1 INTRODUCTION

Reinforcement learning (RL) has been widely applied in gaming (Sieusahai & Guzdial, 2021; Ye
et al., 2021) and robotic control (Salvato et al., 2021; Cheng et al., 2023), automatic vehicle (Yan
et al., 2022; Sierra-Garcia & Santos, 2024), and has achieved promising results. However, when
trained under a continual learning setting, where different tasks come in a sequential manner, most
RL methods suffer from catastrophic forgetting (Wang et al., 2024), losing previously acquired
knowledge after learning multiple tasks (Bang et al., 2022). Addressing this challenge is essential
for enabling RL agents to operate effectively in dynamic real-world environments.

In recent years, a growing number of continual reinforcement learning (CRL) (Abel et al., 2023;
Muppidi et al., 2024; Kessler et al., 2023) methods have been proposed. In CRL, the agent se-
quentially learns multiple RL tasks to acquire distinct task-specific skills. As the number of tasks
increases and task interference becomes more severe (Kessler et al., 2022), architecture-based meth-
ods exhibit superior performance (Malagon et al., 2024; Rusu et al., 2016; Ahn et al., 2025; Powers
et al., 2022a; Schwarz et al., 2018; Gaya et al., 2023). These methods typically mitigate catastrophic
forgetting by expanding the network capacity. Some of them (Malagon et al., 2024; Rusu et al.,
2016) utilize task labels during both training and testing to identify task boundaries, which helps
to select a suitable network module for different tasks to avoid forgetting. However, in real-world
environments that are continually changing, explicit task labels are often unavailable, particularly
during testing. Therefore, some of them (Ahn et al., 2025; Powers et al., 2022a; Schwarz et al.,
2018; Gaya et al., 2023) only rely on task boundaries to incrementally expand the network during
training and to perform task inference at testing time, enabling the selection of appropriate modules
without explicit task labels. However, as the number of tasks increases, unbounded expansion of the
network incurs high computational and memory costs. Additionally, the isolation of task-specific
policies can hinder knowledge sharing and may lead to training collapse on complex tasks.

To overcome these challenges, we propose a task-aware dynamic expansion network (TADEN)
training framework that alleviates catastrophic forgetting in CRL settings. Our proposed TADEN
leverages task boundary information during training to determine whether network expansion is nec-
essary, while eliminating the need for explicit task labels at testing time by task inference to select
the optimal policy. Specifically, we propose a task-aware expansion strategy, which utilizes an RL

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

method to collect task-specific features. Then the task-specific information is stored in a memory
bank, which is dynamically expanded as new tasks are encountered. With this memory bank, inter-
task similarity can be effectively measured. This similarity is then used to determine whether to ex-
pand the model or reuse an existing actor–critic module, while minimizing computational overhead.
By making more accurate expansion decisions, conflicting tasks can be more accurately assigned
to different policies, allowing catastrophic forgetting to be better avoided. During module expan-
sion, we propose a dual-mode initialization strategy. The low-level feature extraction layers of the
new module are initialized from an existing module, while the top-level policy head is randomly
initialized. This design promotes the effective utilization of the model’s existing knowledge while
maintaining its plasticity for new tasks. During the testing process, by comparing the collected states
information of the testing task with existing ones in the memory bank, the most suitable sub-network
can be automatically selected to perform the testing task without a task label.

We evaluated our TADEN training framework on two widely used RL environments, MiniHack
and Atari game environments, and achieved substantially better average performance compared to
standard CRL baselines.

2 RELATED WORK

CRL algorithms are designed to enable agents to learn sequentially from a stream of tasks, mitigate
catastrophic forgetting, and facilitate knowledge transfer to future tasks (Powers et al., 2022b). In re-
cent years, numerous approaches have been proposed to address the catastrophic forgetting in CRL,
which can be broadly categorized into regularization-based, replay-based, and architecture-based
methods (Meng et al., 2025). The regularization-based methods mitigate catastrophic forgetting
by employing regularization techniques. For example, Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) and Online EWC (Huszár, 2018) constrain parameter updates to protect the
knowledge acquired from previously learned tasks. The replay-based methods have been widely
adopted in CRL by leveraging experience replay techniques. For example, storing data from previ-
ous tasks and jointly training with new task data (Rolnick et al., 2019; Oh et al., 2022) are utilized to
consolidate existing knowledge. Furthermore, a generator network is incorporated to synthesize data
(Atkinson et al., 2021; Li et al., 2021) to mitigate the privacy risks associated with storing raw sam-
ples and enable continual learning without direct access to original training data. The architecture-
based methods have been increasingly adopted in CRL by dynamically adding network modules
according to task sequences. A small task-specific network modules are added during training for
each new task and later distilled into a unified backbone network to consolidate knowledge (Schwarz
et al., 2018). The network expansion decisions for each RL task and task inference are made based
on the estimated task value (Powers et al., 2022a; Gaya et al., 2023). The network is expanded for
each RL task, and knowledge transfer is achieved by reusing policies from previous tasks (Malagon
et al., 2024), and the task labels are required for testing to prevent catastrophic forgetting. However,
these approaches often incur substantial computational overhead or fail to leverage prior knowledge
effectively.

There are several settings in the field of CRL, which are mainly divided into three categories. First,
the explicit task boundaries are required during both training and testing (Malagon et al., 2024).
Second, the explicit task boundaries are not required during either training or testing (Rolnick et al.,
2019; Oh et al., 2022). In this work, we focus on the third setting, which requires task boundary
information during training but not during testing. This setting is widely adopted in CRL research
(Pan et al., 2025; Powers et al., 2022a; Gaya et al., 2023; Schwarz et al., 2018).

3 METHOD

3.1 PRELIMINARIES

In general, reinforcement learning can be formulated as a sequence of Markov Decision Processes
(MDPs). An MDP is defined as a framework in which an agent observes the current state s of the
environment, selects an action a, and receives a corresponding reward r to the next state. Therefore,
the MDPs can be formally represented as ⟨S,A,R, γ⟩, where S denotes the state space, A the
action space, R denotes the reward function, and γ ∈ [0, 1] denotes the discount factor. Assuming

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The framework of the proposed TADEN in dynamic environments. (a) Training pipeline;
(b) Testing pipeline.

a total of T time steps, the objective is to optimize the policy π to maximize the cumulative reward
R =

∑T
t=1 γrt obtained over the entire process, where rt denotes the reward at the t-th step.

In CRL, non-stationary environments are typically modeled as sequences of MDPs, where both
environmental dynamics and task characteristics change over time. We define a non-stationary
task sequence as T = {T1, T2, · · · , Tk, · · · , TK}. Each task Tk is defined as a stationary MDPs〈
Sk,Ak,Rk, γk

〉
. The agent is trained on each task for T steps to maximize its cumulative reward

by optimizing policy πk as follows:

LRL = Eτ∼πk(τ) [γR(τ)] , (1)

where the expectation is computed over the full trajectory τ , which is generated by executing the
policy πk from the initial state until the end of the agent’s lifetime. During training, selecting
an existing actor–critic module allows the resulting policy πk to be shared across multiple tasks,
whereas selecting a new module produces a task-specific policy πk.

3.2 TASK-AWARE EXPANSION STRATEGY

3.2.1 CONSTRUCTING TASK-SPECIFIC REPRESENTATION

In dynamic environments, the introduction of drastically new tasks often exacerbates the forgetting
of previously learned tasks (Cai et al., 2021). Therefore, it is crucial to accurately identify the
emergence of those tasks to initialize new policies and achieve effective parameter isolation. In this
work, as shown in Fig. 1a, we collect a subset of environment observations before training each task
to form a task-specific representation and store them in a memory bank, which guides subsequent
module selection and policy adaptation.

To construct more informative task-specific representations, as illustrated in Fig. 1a, we first train
an independent Proximal Policy Optimization (PPO) Algorithm RL agent in the environment for
several steps before starting each task, to collect the observation sequence of the current task. To
effectively leverage the knowledge contained in existing policies when optimizing new task poli-
cies, the similarity should be assessed using the observation sequences collected by a policy that is
suitable for the new task rather than a random policy (Zhang et al., 2023). Therefore, our method
calculates task similarity utilizing the collected environment observation sequence by the RL agent
during training to determine whether the policy of existing tasks is suitable for new tasks. Therefore,
our method computes task similarity using the environment observation sequences collected by the
RL agent during training. This similarity assessment determines whether the policies from existing
tasks apply to new tasks and whether to expand the network. Formally, for a given task Tk, we
first execute an RL method for N steps to collect N MDP tuples ⟨sn, an, rn, γn⟩ , n ∈ [1, N ]. The
states collected Qk = {s1k, s2k, · · · , sNk } ∈ RN×C×H×W are processed through a feature extraction
module to generate task-specific representations, denoted as qk ∈ RN×L, where C represents the
number of channel, H and W represent the size of the image, L represents the length of the feature

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

vector. In RL, the state at the current time step is determined by the state and action of the previous
time step. Therefore, the collected states Qk implicitly contain both visual and action information.
The feature extraction step is formulated as:

qk = f(Qk), (2)

where f represents a pre-trained ResNet18 (He et al., 2016) on ImageNet as convolutional visual
feature extractor. By having a set of q1, q2, . . . , qk, we can form a memory bank that encodes
information for tasks. By storing the representation corresponding to old tasks in the memory bank,
the similarity between a newly arrived task and the old tasks can be evaluated quantitatively.

3.2.2 TASK-AWARE EXPANSION

To alleviate performance degradation resulting from task conflicts, we employ dynamic expan-
sion of the actor-critic modules, which enables parameter isolation for different tasks to re-
duce catastrophic forgetting. Specifically, when encountering a sequential task stream T =
{T1, T2, · · · , Tk, · · · , TK}, we instantiate the initial actor-critic module M1 to train the first task
in the sequence. From the second task, we calculate the Wasserstein distance between the task-
specific representation of the current task and the stored representations of previous tasks within the
memory bank to assess task similarity. If the current task exhibits low similarity to all previously
encountered tasks, a new actor-critic module is instantiated. Otherwise, the task is trained using
the module associated with the most similar task, and its task-specific representation in the memory
bank is accordingly updated. By expanding network modules, the method enables parameter iso-
lation across tasks to alleviate catastrophic forgetting. Besides, reusing network modules enables
weight sharing across tasks to facilitate effective knowledge transfer.

Formally, for Tk, assuming that there are already I actor-critic modules M = {M1,M2, · · · ,MI}
with their corresponding task-specific representations. We first normalize the task-specific represen-
tation qk and each existing task-specific representation qi ∈ RN×L within the memory bank along
the temporal dimension. Then split the representation into L distributions to compute the Wasser-
stein distance (He et al., 2022) ϕ between qk and qi along that dimension. The overall similarity
score Si is obtained by averaging the Wasserstein distances as follows:

Si =
1

L

L∑
l=1

ϕ(norm[qk(l)],norm[qi(l)]),∀i ∈ {1, 2, · · · , I}, (3)

where norm denotes the normalization operation (Ramdas et al., 2017), qk(l) denotes the l-th distri-
bution of qk.

Based on the task similarity score S = {S1, S2, · · · , SI} which compares Tk with old tasks, task-
aware expansion is performed by:


create MI+1, if min

i∈[1,I]
Si > s̄,

reuse Mi∗ with i∗ = arg min
i∈[1,I]

Si, otherwise,
(4)

where s̄ denotes the threshold, Mi∗ represents the actor-critic module corresponding to the most
similar task. The parameter analysis is shown in Appendix E If an existing module is reused for the
current task, its corresponding task-specific representation in the memory bank is updated accord-
ingly as follows:

qi∗ = λ qk + (1− λ) qi∗ , (5)

where λ is a hyperparameter. In addition, to mitigate knowledge forgetting during the reuse of
existing modules caused by new task training, we employ an experience replay mechanism (Rolnick
et al., 2019). By dynamically expanding the network, task interference can be effectively mitigated,
thereby preventing catastrophic forgetting caused by significant task conflicts.

3.3 DUAL-MODE INITIALIZATION

When we introduce a new actor-critic module during training, an appropriate initialization method is
critical. Specifically, a naive random initialization offers better plasticity (Dohare et al., 2024; Abbas

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Extension module initialization.

et al., 2023), however, it cannot exploit prior knowledge. Conversely, initializing with the existing
modules may lead to limited plasticity, impeding the learning of the new task. Therefore, we propose
a dual-mode initialization technique that separates the actor-critic module Mi∗ into top and lower
layers Hi∗ and Li∗ , and initializes each independently. As shown in Fig. 2, when introducing a new
actor-critic module MI+1, we identify the most similar existing module Mi∗ based on the similarity
between representations and initialize the lower layers LI+1 of the new module with the parameters
of the selected Li∗ , enabling knowledge transfer from previously learned tasks. Meanwhile, the top
layer, denoted as the policy head HI+1 is randomly initialized to allow flexible adaptation to the new
task. This design allows the model to exploit existing knowledge and maintain plasticity for new
tasks.

3.4 TASK INFERENCE

Real-world scenarios often lack explicit task labels and clear task boundaries, making it difficult
for architecture-based methods to infer task identities at test time. This ambiguity hinders proper
module selection and decision-making. In our work, we test all tasks, including both seen and
unseen tasks, after training on each task. For each test task, the most appropriate network module is
selected for testing. Specifically, when testing a task, we first run the agent using an RL policy for a
few steps to collect observations and extract task-specific features. We then compute the Wasserstein
distance between these representations and existing task representations in the memory bank as the
Equation 3. Then the most appropriate network module is activated for testing as shown in Fig. 1b.
The process is as follows:

Mtest = Activate (Mi∗) with i∗ = arg min
i∈[1,I]

Si. (6)

where Activate denotes using the selected module for testing.

4 EXPERIMENTAL DESIGN

4.1 ENVIRONMENTS

We evaluated our proposed method in the MiniHack (Samvelyan et al., 2021) and Atari (Bellemare
et al., 2012) environments, and compared its performance to several popular CRL methods.

4.1.1 MINIHACK ENVIRONMENT.

MiniHack is built on the NetHack Learning Environment (Samvelyan et al., 2021), and offers a rich
interaction interface for agent training. In this study, we focused on its navigation tasks as represen-
tative CRL challenges. MiniHack navigation tasks require the agent to reach a target location while
overcoming diverse challenges, such as battling monsters in corridors, avoiding traps, and traversing
complex mazes. To evaluate sequential learning capabilities, we selected 10 tasks from the Mini-
Hack navigation suite and trained the agent on them sequentially. The agent receives rewards or
penalties depending on its behavior, with the full reward granted only upon reaching the target lo-
cation. A comprehensive description of the MiniHack tasks utilized in this study can be found in
Appendix A.

4.1.2 ATARI ENVIRONMENT.
The Atari game environment (Bellemare et al., 2012) is a widely used benchmark in RL, compris-
ing a diverse set of classic arcade games, such as Pong, Breakout, and Space Invaders, each posing

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

unique challenges. In previous studies (Rolnick et al., 2019; Schwarz et al., 2018), six Atari games
were used to evaluate CRL performance, including SpaceInvaders, Krull, BeamRider, Hero, Star-
Gunner, and MsPacMan. Therefore, we also adopt these six Atari games to evaluate the performance
of CRL methods. In Atari games, the agent selects actions, such as moving left or right, firing, and
others, based on the observed environment state. At each time step, the agent receives a reward that
reflects the outcome of its action within the current game context. A comprehensive description of
the Atari tasks utilized in this study can be found in Appendix A.

4.2 EVALUATION METRICS

Average Performance (AP): We measure overall performance by calculating the average final re-
ward obtained on all tasks. The detailed computation is as follows:

P =
1

n

n∑
i=1

Ri,final, (7)

where n represents the total number of tasks to be trained, Ri,final represents the reward obtained by
evaluating the i-th task after training all tasks.

Average Forgetting (AF): This metric reflects the degree of knowledge forgetting on previously
learned tasks after the agent is trained on subsequent tasks. According to recent studies (Wołczyk
et al., 2021; Wang et al., 2024; Meng et al., 2025), the average forgetting metric is defined as follows:

F =
1

n− 1

n−1∑
i=1

(Ri,i −Ri,final), (8)

where Ri,i represents the reward of the i-th task obtained after training on the same task. With a
similar AP value. A method having a lower AF value is better.

Average Transfer (AT): This metric assesses the extent to which knowledge from previously
learned tasks facilitates the learning of new tasks. The average transfer metric is defined as fol-
lows:

T =
1

n− 1

n∑
i=2

(Ri,i −Rind
i ), (9)

where Rind
i represents the reward of an independent model trained only on the i-th task. A method

having a higher AT value is better.

Among the three metrics, AP is the most important one, as it directly reflects how well a method
performs on all tasks at the end of CRL training. In fact, it includes the factors of forgetting and
transferability which AF and AT aim to quantify. AF and AT measure the relative ability of a
method across tasks and are only meaningful when AP is high. They serve as an auxiliary metric. It
is possible that AF is quite low, but AP is also very low. E.g., a method performs poorly on all tasks,
but it forgets little about the knowledge of any task. Such a method is useless. Similar arguments
apply to AT.

4.3 METHODS FOR COMPARISON

FT: A single model is that fine-tuned sequentially across the entire task sequence during training.
EWC (Kirkpatrick et al., 2017): This regularization-based method mitigates forgetting by constrain-
ing parameter updates, thereby preserving knowledge acquired from previous tasks throughout the
training sequence. CLEAR (Rolnick et al., 2019): This replay-based method mitigates forgetting
by storing data from previous tasks and interleaving it with new task data during training, enabling
the model to retain prior knowledge. P&C (Schwarz et al., 2018): This method combines EWC-
based regularization with policy distillation, transferring new task policies into a larger network to
preserve knowledge from previous tasks. MoE (Li et al., 2025): the network consists of 4 experts
and uses EWC to achieve continual learning. SANE (Powers et al., 2022a): This architecture-based
method selectively adds or merges network modules by comparing value estimates, and incorporates
experience replay to retain knowledge from previous tasks.

Among the aforementioned methods, FT and CLEAR do not require task boundary information
during either training or testing, whereas the remaining methods require task boundary information

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The results across all task sequences and methods. Metrics are reported as means ± standard
deviations computed over three independent runs, with the best results highlighted in bold. The Para.
means the parameters of the model.

Methods Para. MiniHack Atari

(M) AP↑ AF↓ AT↑ AP↑ AF↓ AT↑

FT 1.7/1.7 -0.19±0.11 0.19±0.03 -0.77±0.38 647.66±23.81 3359.72±587.41 -2715.11±1401.06
EWC 1.7/1.7 0.26±0.19 0.16±0.09 -0.03±0.25 449.39±71.55 319.08±79.55 -5241.07±96.88
MoE 2.2/2.2 0.27±0.09 0.27±0.06 0.13±0.11 701.30±140.09 158.16±211.77 -5683.56±1603.86
P&C 7.0/7.0 0.40±0.01 0.02±0.02 -0.03±0.01 849.90±306.89 -10.12±250.86 -5621.04±1562.17

CLEAR 1.7/1.7 0.55±0.10 0.14±0.06 0.29±0.09 2328.72±80.55 354.00±266.68 -3558.76 ±1279.53
SANE 10.2/10.2 0.35±0.14 0.24±0.12 0.12±0.25 1937.22±953.42 5412.34±2305.79 1026.73±1539.49

TADEN 6.8/10.2 0.62±0.06 0.01±0.03 0.40±0.28 12357.01±1329.43 133.35±342.00 8171.96±1513.47

during training but not during testing. The previously mentioned method (Ahn et al., 2025) is not
publicly available, and the code of method (Gaya et al., 2023) cannot be implemented. making them
infeasible to reproduce.

4.4 IMPLEMENTATION DETAILS

All models used in the experiments were implemented using the PyTorch framework. In both the
MiniHack and Atari environments, training was conducted for two epochs, with all tasks trained
sequentially within each epoch. In the MiniHack environment, each task was trained 1e6 steps and
tested over 10 episodes every 1e5 steps. In the Atari environment, each task was trained 1e7 steps
and tested over 10 episodes every 1e6 steps. The average reward across episodes is reported as the
evaluation metric. All experiments were conducted on an RTX 3080 Ti GPU. A comprehensive
description of the experiment setting can be found in Appendix B.

Figure 3: Testing curves of task average returns in the MiniHack environment. The first number
in the task name under each panel indicates the task order during training. The training process
consists of two epochs, each comprising a total of 10M steps. Every task is trained for 1M steps
per epoch. All tasks were tested over 10 episodes every 0.1M steps during training, and the average
reward across episodes was reported as the evaluation metric. The solid lines represent the mean
average test returns, while shaded regions indicate the corresponding standard deviations, computed
over three independent runs.

4.5 RESULTS

We report the performance on the MiniHack and Atari environments in Table 1. As explained in
Evaluation Metrics before, we primarily focus on the AP metric. Only when two methods achieve
similar AP values, we compare the auxiliary metrics AF and AT. From Table 1, it is seen that our
proposed TADEN achieved the highest AP in the MiniHack environment, significantly surpassing
all other methods. The replay-based method CLEAR ranked the second, with a performance lower
by 0.07. In the Atari environment, TADEN attained the highest AP and consistently outperformed
all baseline methods by a substantial margin. Moreover, compared to architecture-based methods
such as P&C and SANE, TADEN achieved the highest AP with fewer parameters.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Testing curves of task average returns in the Atari environment. The first number in the
task name under each panel indicates the task order during training. The training process consists
of two epochs, each comprising a total of 60M steps. Every task is trained for 10M steps per epoch.
All tasks were tested over 10 episodes every 1M steps during training, and the average reward across
episodes was reported as the evaluation metric.

In terms of forgetting in the MiniHack environment, our proposed TADEN training framework also
achieved the best AF value. In the Atari environment, since the AP of our TADEN was higher by a
large margin than baseline methods, there was no need to compare the auxiliary metric AF. In fact,
as seen in Table 1, P&C achieved a much lower AF value than other methods, but from Fig. 4, P&C
yielded very low rewards on most tasks, rendering it largely ineffective.

In addition, Figs. 3 and 4 present the average episodic returns across all tasks in the MiniHack and
Atari environments during the testing phase. As shown in Fig. 3, the proposed TADEN training
framework consistently achieved better performance across the majority of tasks and effectively
mitigated catastrophic forgetting in the MiniHack environment. On individual tasks such as tasks
8 and 10, although TADEN’s performance was slightly lower than that of CLEAR and SANE, it
demonstrated better stability. This indicated that the proposed method effectively alleviates knowl-
edge forgetting through the dynamic expansion of network modules. In addition, as shown in Fig. 4,
TADEN achieved better performance across all tasks. The final performance of each task is shown
in the Appendix C.

After training, TADEN ultimately comprised four modules across the 10 MiniHack tasks and six
modules across the six Atari tasks. As shown in Table 1, our TADEN achieved higher AP in the
MiniHack environment compared to PC and SANE with fewer parameters. This demonstrates that
our approach effectively mitigates the parameter growth typically associated with network expansion
by selectively reusing existing modules across similar tasks. In the Atari environment, our method
achieved a substantial improvement in AP while using the same number of parameters as SANE.
This result demonstrates that the proposed dual-mode initialization effectively leverages existing
knowledge to facilitate learning of new tasks. The module expansion process and time costs during
training are shown in the Appendix D.

4.6 ABLATION STUDY

4.6.1 ANALYSIS OF THE TASK-AWARE EXPANSION

We adopt an RL approach to collect state features and obtain task-specific representations, which
are used to compute the inter-task similarities by Wasserstein distance for guiding module expan-
sion. To evaluate the effectiveness of this strategy, we compared it with two baseline methods: (1)
using random sampling to collect state features for distribution estimation, and (2) computing the
cosine similarity between the centroid vectors of state features. As shown in Fig. 5a,b, the proposed
method achieved significantly better AP compared to the other two approaches. This demonstrates
that merely sampling environment states at random to obtain task-specific representations cannot ac-
curately determine whether the existing policy applies to new tasks. Besides, utilizing the centroid
vector cannot obtain a good task representation and is not enough to accurately evaluate task similar-
ity. These results prove that our method can effectively expand the network as task representations
to calculate task similarity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Average reward curves across all tasks
with different module expansion strategies in the
(a) MiniHack and (b) Atari environments. “Ran-
dom Policy” denotes collecting observations ran-
domly. “Centroid Vector” denotes computing the
cosine similarity between the centroid vectors of
environment state features.

Figure 6: Average reward curves across all
tasks with different module initialization strate-
gies in the (a) MiniHack and (b) Atari environ-
ments. “Random” denotes random initialization;
“Reuse” refers to reusing existing modules for
initialization.

4.6.2 INFLUENCE OF THE INITIALIZATION OF NEW MODULE

To evaluate the effectiveness of our proposed dual-mode initialization strategy, we compared it with
two approaches: random initialization of the entire module, initialization using the most similar
existing module. The test average reward during training is shown in Fig. 6a,b. Our initializa-
tion method outperformed the other two approaches, achieving the best average performance in the
MiniHack environment. Although direct random initialization provides better plasticity, it failed
to utilize prior knowledge, which significantly hindered the acquisition of task-specific skills, es-
pecially in the case of complex or high-difficulty tasks. While initializing with the most similar
existing module enables effective transfer of prior knowledge, the convergence of that module re-
stricts the model’s flexibility, thereby limiting its ability to adapt to novel task-specific features. To
balance knowledge reuse and adaptability, we initialize the low layers of the new module using the
most similar existing module, and randomly initialize its top layer. This strategy promotes both
knowledge transfer and plasticity, resulting in enhanced overall model performance. In the Atari en-
vironment, random initialization slightly outperforms our proposed method. This may be attributed
to the low correlation between Atari tasks, where initializing the underlying network with existing
modules introduces little interference that can marginally degrade performance. Nevertheless, the
overall average performance remains better than other baselines.

5 LIMITATION

The limitations of the proposed DATEN are as follows. First, TADEN requires a small amount
of data for experience replay, which may pose risks of privacy leakage in sensitive applications.
Moreover, although the network is dynamically expanded during training, when the number of tasks
becomes large and inter-task conflicts are substantial, the continual growth of the network can lead
to increased computational and memory overhead. In the future, we plan to investigate generative
experience replay as a means of enhancing privacy protection. Additionally, we aim to incorporate
regularization techniques to constrain the expansion of network modules, thereby further reducing
computational overhead and improving scalability.

6 CONCLUSION

In this work, we propose the TADEN training framework, a CRL method that leverages task-
aware dynamic network expansion to mitigate catastrophic forgetting in non-stationary environ-
ments. First, we utilize an RL method to collect state sequences. Then compute task similarities to
dynamically determine whether to expand the network or reuse existing modules. During module
expansion, we initialize the low layers of the new module with the most similar existing module
and randomly initialize its top layer. This allows for leveraging prior knowledge while preserving
the plasticity required for new task adaptation. Finally, we evaluated our proposed TADEN and
demonstrated better average performance in both the MiniHack and Atari environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on lifelong learning agents, pp. 620–636.
PMLR, 2023.

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36:50377–50407, 2023.

Hongjoon Ahn, Jinu Hyeon, Youngmin Oh, Bosun Hwang, and Taesup Moon. Prevalence of
negative transfer in continual reinforcement learning: Analyses and a simple baseline. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=KAIqwkB3dT.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-
rehearsal: Achieving deep reinforcement learning without catastrophic forgetting. Neuro-
computing, 428:291–307, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2020.11.050. URL https://www.sciencedirect.com/science/article/pii/
S0925231220318439.

Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song, Jung-Woo Ha, and Jonghyun Choi. Online
continual learning on a contaminated data stream with blurry task boundaries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9275–9284, 2022.

Marc Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47,
07 2012. doi: 10.1613/jair.3912.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribu-
tion shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8281–8290, 2021.

Guangran Cheng, Yuanda Wang, Lu Dong, Wenzhe Cai, and Changyin Sun. Multi-objective deep
reinforcement learning for crowd-aware robot navigation with dynamic human preference. Neural
Computing and Applications, 35(22):16247–16265, 2023.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=UKr0MwZM6fL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
unsupervised reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 36, pp. 6884–6892, 2022.

Ferenc Huszár. Note on the quadratic penalties in elastic weight consolidation. Proceedings of the
National Academy of Sciences, 115(11):E2496–E2497, 2018. doi: 10.1073/pnas.1717042115.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1717042115.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same state,
different task: Continual reinforcement learning without interference. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 7143–7151, 2022.

10

https://openreview.net/forum?id=KAIqwkB3dT
https://openreview.net/forum?id=KAIqwkB3dT
https://www.sciencedirect.com/science/article/pii/S0925231220318439
https://www.sciencedirect.com/science/article/pii/S0925231220318439
https://openreview.net/forum?id=UKr0MwZM6fL
https://www.pnas.org/doi/abs/10.1073/pnas.1717042115


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Samuel Kessler, Mateusz Ostaszewski, MichałPaweł Bortkiewicz, Mateusz Żarski, Maciej Wolczyk,
Jack Parker-Holder, Stephen J Roberts, Piotr Mi, et al. The effectiveness of world models for con-
tinual reinforcement learning. In Conference on Lifelong Learning Agents, pp. 184–204. PMLR,
2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1611835114.

Chunmao Li, Yang Li, Yinliang Zhao, Peng Peng, and Xupeng Geng. Sler: Self-generated long-
term experience replay for continual reinforcement learning. Applied Intelligence, 51(1):185–201,
2021.

Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness B. Shroff. Theory on mixture-of-
experts in continual learning. In The Thirteenth International Conference on Learning Represen-
tations, ICLR 2025, 2025.

Mikel Malagon, Josu Ceberio, and Jose A. Lozano. Self-composing policies for scalable continual
reinforcement learning. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=f5gtX2VWSB.

Yuan Meng, Zhenshan Bing, Xiangtong Yao, Kejia Chen, Kai Huang, Yang Gao, Fuchun Sun, and
Alois Knoll. Preserving and combining knowledge in robotic lifelong reinforcement learning.
Nature Machine Intelligence, pp. 1–14, 2025.

Aneesh Muppidi, Zhiyu Zhang, and Heng Yang. Fast trac: A parameter-free optimizer for lifelong
reinforcement learning. Advances in Neural Information Processing Systems, 37:51169–51195,
2024.

Youngmin Oh, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Model-augmented prioritized
experience replay. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=WuEiafqdy9H.

Chaofan Pan, Lingfei Ren, Yihui Feng, Linbo Xiong, Wei Wei, Yonghao Li, and Xin Yang. Multi-
granularity knowledge transfer for continual reinforcement learning. In James Kwok (ed.), Pro-
ceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25,
pp. 6012–6020. International Joint Conferences on Artificial Intelligence Organization, 8 2025.
doi: 10.24963/ijcai.2025/669. URL https://doi.org/10.24963/ijcai.2025/669.
Main Track.

Sam Powers, Eliot Xing, and Abhinav Gupta. Self-activating neural ensembles for continual re-
inforcement learning. In Conference on Lifelong Learning Agents, CoLLAs 2022, Montréal,
Québec, Canada, volume 199 of Proceedings of Machine Learning Research, pp. 683–704,
2022a. URL https://proceedings.mlr.press/v199/powers22a.html.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents, pp. 705–743. PMLR, 2022b.

Aaditya Ramdas, Nicolás Garcı́a Trillos, and Marco Cuturi. On wasserstein two-sample testing and
related families of nonparametric tests. Entropy, 19(2), 2017. ISSN 1099-4300. doi: 10.3390/
e19020047. URL https://www.mdpi.com/1099-4300/19/2/47.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
replay for continual learning. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

11

https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://openreview.net/forum?id=f5gtX2VWSB
https://openreview.net/forum?id=WuEiafqdy9H
https://doi.org/10.24963/ijcai.2025/669
https://proceedings.mlr.press/v199/powers22a.html
https://www.mdpi.com/1099-4300/19/2/47


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Crossing the reality
gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE
Access, 9:153171–153187, 2021.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
skFwlyefkWJ.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for con-
tinual learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4528–4537. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
schwarz18a.html.

J Enrique Sierra-Garcia and Matilde Santos. Federated discrete reinforcement learning for automatic
guided vehicle control. Future Generation Computer Systems, 150:78–89, 2024.

Alexander Sieusahai and Matthew Guzdial. Explaining deep reinforcement learning agents in the
atari domain through a surrogate model. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 17, pp. 82–90, 2021.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
deep learning beyond continual learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Maciej Wołczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496–28510, 2021.

Zhongxia Yan, Abdul Rahman Kreidieh, Eugene Vinitsky, Alexandre M Bayen, and Cathy Wu.
Unified automatic control of vehicular systems with reinforcement learning. IEEE Transactions
on Automation Science and Engineering, 20(2):789–804, 2022.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Tiantian Zhang, Zichuan Lin, Yuxing Wang, Deheng Ye, Qiang Fu, Wei Yang, Xueqian Wang, Bin
Liang, Bo Yuan, and Xiu Li. Dynamics-adaptive continual reinforcement learning via progressive
contextualization. IEEE Transactions on Neural Networks and Learning Systems, 35(10):14588–
14602, 2023.

12

https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
https://proceedings.mlr.press/v80/schwarz18a.html
https://proceedings.mlr.press/v80/schwarz18a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ENVIRONMENTS

The experiment involves two task sequences from MiniHack and Atari, where agents are trained
sequentially to achieve continual reinforcement learning.

Figure S1: Examples of initial observations for each task in the MiniHack environment.

A.0.1 MINIHACK ENVIRONMENT

We selected 10 tasks from the MiniHack environment to conduct continual learning experiments.
The task sequence includes: (1) Room-Random-5x5-v0, (2) Corridor-R2-v0, (3) Room-Dark-5x5-
v0, (4) Corridor-R3-v0, (5) Room-Monster-5x5-v0, (6) CorridorBattle-v0, (7) Room-Trap-5x5-v0,
(8) HideNSeek-v0, (9) Room-Ultimate-5x5-v0, and (10) HideNSeek-Lava-v0. Fig. S1 presents the
randomly initialized observations for each task, and we provide detailed descriptions of the task
sequence below.

1-Room-Random-5x5-v0: The agent is required to explore a randomly generated room to reach
the goal. In each episode, the layout, as well as the initial positions of the agent and the goal, are
randomly initialized.

2-Corridor-R2-v0: The agent is required to reach the exit by navigating through two connected
corridors, with the positions of the agent and the exit randomized in each episode.

3-Room-Dark-5x5-v0: The agent is required to find the goal hidden in a dark room, with both the
agent’s starting position and the goal location randomized in each episode.

4-Corridor-R3-v0: The agent is required to reach the exit by navigating through three connected
corridors, with randomized agent and exit positions in each episode.

5-Room-Monster-5x5-v0: The agent is required to reach the goal while avoiding or defeating a
monster in the room. The positions of the agent, monster, and goal are randomized in each episode.

6-CorridorBattle-v0: The agent is required to fight monsters in the corridor and navigate through
it to reach the exit. The positions of the agent, enemies, and exit are randomized in each episode.

7-Room-Trap-5x5-v0: The agent is required to reach the goal while avoiding hidden traps scattered
in the room. The positions of the agent and the goal are randomized in each episode.

8-HideNSeek-v0: The agent is required to find and reach the hidden target while avoiding detection.
The positions of the agent and the goal are randomized in each episode.

9-Room-Ultimate-5x5-v0: The agent is required to reach the goal while navigating through a room
filled with monsters and traps. The positions of the agent, monsters, traps, and the goal are random-
ized in each episode.

10-HideNSeek-Lava-v0: The agent is required to find and reach the hidden target while avoiding
dangerous lava hazards. The positions of the agent, target, and lava are randomized in each episode.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure S2: Examples of initial observations for each task in the Atari environment.

A.0.2 ATARI ENVIRONMENT

We selected 6 tasks from the Atari environment to conduct continual learning experiments. The task
sequence includes: (1) SpaceInvaders, (2) Krull, (3) BeamRider, (4) Hero, (5) StarGunner, and (6)
MsPacMan. Fig. S2 presents the randomly initialized observations for each task, and we provide
detailed descriptions of the task sequence below.

1-SpaceInvaders: The agent is required to move horizontally to shoot descending aliens. The goal
is to eliminate as many aliens as possible while avoiding enemy fire. The positions of the aliens and
the agent are randomized in each episode.

2-Krull: The agent is required to navigate a landscape to defeat enemies and rescue a captive. The
positions of enemies and obstacles are randomized each episode. The agent must avoid hazards
while attacking foes to progress.

3-BeamRider: The agent is required to shoot down waves of enemy ships while avoiding their
attacks. Enemy positions and attack patterns are randomized each episode. The goal is to survive
and maximize the score.

4-Hero: The agent is required to navigate through a castle to rescue a princess. The environment
contains enemies and traps with randomized positions in each episode. The agent must avoid dangers
and defeat foes to reach the goal.

5-StarGunner: The agent is required to shoot down enemy ships while avoiding incoming attacks.
Enemy spawn locations and attack patterns are randomized each episode. The goal is to survive and
eliminate as many enemies as possible.

6-MsPacMan: The agent is required to navigate a maze to eat all pellets while avoiding ghosts.
The positions and movements of ghosts are randomized each episode. The goal is to clear the maze
without being caught.

B DETAILS ON EXPERIMENTS

B.1 NETWORK ACHITECTURE

In our framework, the actor-critic module Mi consisted of two separate neural networks: an actor
network and a critic network. As illustrated in Fig. S3, the actor network consisted of three con-
volutional (CNN) layers followed by two fully connected (FC) layers. The final linear layer of the
actor network outputted a probability distribution over the action space. We utilized the MiniHack
and Atari game image with the dimension of 1×3×84×84 as input of the lower layer Li, after the
first CNN layer with kernel size 8 and stride 4, the second CNN layer with kernel size 4 and stride 2,
the last CNN layer with kernel size 3 and stride 1, and the first FC layer to obtain the feature vector
with the dimension of 512. Then, the feature vector was input to the top layer (policy head), which
consists of an FC layer, and obtained the probability distribution over the action space. The critic
network shared the same architectural design as the actor network, except for the final linear layer,
which produced a scalar value representing the estimated value. In our work, when expanding the
network, the CNN layers and the first FC layer of the actor-critic module were used as the lower
layer and initialized using the existing modules, while the last FC layer was used as the policy head
and randomly initialized.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure S3: The CNN architecture-based actor network for the policy of the MiniHack and Atari
tasks.

B.2 HYPERPARAMETERS

In our experiments, all reinforcement learning agents were trained using an IMPALA-based train-
ing framework in both the MiniHack and Atari environments for 2 epochs. In MiniHack, each task
was trained for 1e6 steps per epoch, with evaluations conducted every 1e5 steps to monitor reward
performance. In the Atari environment, each task was trained for 1e7 steps per epoch, and evalua-
tions were performed every 1e6 steps. The training hyperparameters for our proposed method in the
MiniHack and Atari environments were summarized in Table S1.

Table S1: The hyperparameters of our proposed method in the task sequences of MiniHack and
Atari environments.

Hyperparameters Ours

Num. actors 64
Learner threads 2

Batch size 32
Unroll length 25

Grad clip 40
Entropy cost 0.001

Discount factor 0.99
Learning rate 4.8e-6

Replay buffer size 2e5
Policy cloning weight 0.01
Value cloning weight 0.005
Similarity threshold 0.28

C THE FINAL REWARD OF MINIHACK AND ATARI TASKS

The final rewards obtained on each task by all baseline methods and our proposed TADEN training
framework in MiniHack and Atari environments are reported in Tables S2 and S3. Table S2 shows
that the proposed method TADEN achieved competitive performance, with an average performance
of 0.63, exceeding the second-best by 0.09. In addition, on 10 tasks, our method achieved the
best performance in 1-Room-Random-5x5-v0, 3-Room-Dark-5x5-v0, 6-CorridorBattle-v0, and 9-
Room-Ultimate-5x5-v0, and the second best in 2-Corridor-R2-v0, 5-Room-Monster-5x5-v0, and
7-Room-Trap-5x5-v0. Moreover, our proposed TADEN training framework obtained the best final

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

reward on all Atari tasks as shown in Table S3, indicating that our task-aware expansion strategy
and dual-mode initialization method effectively expand the module and alleviate the catastrophic
forgetting.

Table S2: The final rewards of different individual tasks in the MiniHack environment.
Tasks EWC MoE P&C CLEAR SANE FT Ours

1 0.90±0.00 0.83±0.21 0.88±0.00 0.82±0.06 0.82±0.25 -0.10±0.00 0.96±0.06
2 0.23±0.11 -0.19±0.40 0.22±0.16 0.51±0.27 0.01±0.55 -0.75±0.43 0.26±0.11
3 0.05±0.31 0.62±0.05 0.85±0.15 0.63±0.17 0.89±0.19 -0.03±0.13 1.00±0.00
4 -0.47±0.04 -0.65±0.23 -0.29±0.04 -0.60±0.07 -0.91±0.08 -0.75±0.43 -0.54±0.17
5 0.93±0.060 0.76±0.26 0.81±0.12 0.89±0.11 0.96±0.06 -0.03±0.06 0.93±0.12
6 -0.32±0.03 -0.31±0.05 -0.040±0.01 0.36±0.27 0.01±0.49 -0.35±0.00 0.87±0.15
7 0.86±0.06 0.83±0.21 0.78±0.00 0.78±0.22 1.0±0.00 0.01±0.11 0.93±0.13
8 0.62±0.06 0.43±0.05 -0.01±0.00 0.70±0.20 0.73±0.06 -0.17±0.06 0.43±0.06
9 0.69±0.10 0.75±0.26 0.81±0.06 0.64±0.07 0.85±0.13 -0.03±0.06 1.0±0.00
10 0.60±0.10 0.42±0.33 0.03±0.06 0.66±0.15 0.73±0.12 -0.18±0.04 0.46±0.31

Average 0.45±0.04 0.35±0.12 0.40±0.02 0.54±0.08 0.50±0.07 -0.24±0.07 0.63±0.09

Table S3: The final rewards of different individual tasks in the Atari environment.
Tasks EWC MoE P&C CLEAR SANE FT Ours

1 77.00
±110.64

377.83
±131.63

193.83
±45.87

412.67
±152.34

359.00
±185.33

160.00
±140.00

1073.17
±459.33

2 1867.67
±759.75

1724.67
±1281.03

1691.00
±1214.49

7431.67
±421.29

3956.33
±947.06

409.67
±384.07

9632.00
±1836.05

3 384.93
±266.74

750.40
±88.06

452.67
±38.33

685.60
±133.22

1036.07
±885.45

309.47
±299.24

5013.27
±1549.63

4 0 0 1249.33
±191.76

4278.33
±2574.07

7534.33
±7400.35 0 16660.16

±3744.36

5 940.00
±124.90

666.67
±387.34

850.00
±186.81

1143.33
±652.10

640.00
±271.85

1326.67
±549.30

52703.33
±2025.35

6 316.67
±130.24

564.00
±162.89

329.33
±194.63

1838.00
±164.76

2394.33
±390.49

1330.67
±202.24

2535.33
±232.42

Average 597.71
±122.30

680.60
±158.04

794.19
±408.31

2631.60
±429.89

2653.34
±1182.03

589.41
±62.85

14557.878
±895.17

D NETWORK EXPANSION DURING TRAINING

Figure S4: The network expansion during training in the (a) MiniHack and (b) Atari environments.
The grid between the dotted lines represents the single-task training process.

The network expansion of our proposed TADEN during the training process in the MiniHack and
Atari environments is shown in Fig. S5. In Fig. S5a, after training on 10 MiniHack tasks, TADEN

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

included four actor-critic modules. During training, task similarity guided the selection of either
reusing existing modules or expanding new ones. Reusing modules for similar tasks reduced net-
work size and resource consumption, while extending the network when there is task conflict can
mitigate the catastrophic forgetting. For example, in Fig. S5a, a network module M2 was added
when training on task 2-Corridor-R2-v0. For tasks 4-Corridor-R3-v0 and 6-CorridorBattle-v0, the
module M2 was reused instead of expanding the network, as these tasks exhibit high similarity with
task 2-Corridor-R2-v0. In Fig. S5b, after training on 6 Atari tasks, TADEN included six actor-critic
modules, likely due to the low task correlation in the Atari environment. The results demonstrate
that the proposed TADEN can dynamically expand network modules based on task similarity. Ex-
isting modules were effectively reused when encountering similar tasks to limit the growth of the
overall network size.

During the training process, the training time for a single task is 1.0 hours in the MiniHack environ-
ment and 1.5 hours in the Atari environment.

E PARAMETERS ANALYSIS

Figure S5: The parameter s̄ analysis in MiniHack environment.

The parameter s̄ served as the task similarity threshold to control the degree of network expansion
during training. As shown in the figure, the model achieved its optimal performance at 0.28. This
result demonstrated that our method reused existing modules for similar tasks while allocating new
modules for more diverse tasks to mitigate catastrophic forgetting.

The parameter λ served as the weight to fuse the features of similar tasks. Because the parameter
shows little sensitivity to performance, it is set to 0.5 throughout our experiments.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, we utilized ChatGPT for language polishing and refinement. The
model was used solely to improve the clarity, coherence, and fluency of the text. We remain solely
responsible for the content, ideas, and integrity of the work.

17


	Introduction
	Related Work
	Method
	Preliminaries
	Task-Aware Expansion Strategy
	Constructing Task-Specific Representation
	Task-Aware Expansion

	Dual-Mode Initialization
	Task Inference

	Experimental Design
	Environments
	MiniHack Environment.
	Atari Environment.

	Evaluation Metrics
	Methods for Comparison
	Implementation Details
	Results
	Ablation Study
	Analysis of the Task-Aware Expansion
	Influence of the Initialization of New Module


	Limitation
	Conclusion
	Environments
	MiniHack Environment
	Atari Environment


	Details on Experiments
	Network Achitecture
	Hyperparameters

	The Final Reward of MiniHack and Atari Tasks
	Network Expansion During Training
	Parameters Analysis
	The Use of Large Language Models (LLMs)

