
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAME: BLOCK-AWARE MASK EVOLUTION FOR EFFI-
CIENT N:M SPARSE TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

N:M sparsity stands as a progressively important tool for DNN compression, achiev-
ing practical speedups by stipulating at most N non-zero components within M
sequential weights. Unfortunately, most existing works identify the N:M sparse
mask through dense backward propagation to update all weights, which incurs ex-
orbitant training costs. In this paper, we introduce BAME, a method that maintains
consistent sparsity throughout the N:M sparse training process. BAME perpetually
keeps both sparse forward and backward propagation, while iteratively performing
weight pruning-and-regrowing within designated weight blocks to tailor the N:M
mask. These blocks are selected through a joint assessment based on accumulated
mask oscillation frequency and expected loss reduction of mask adaptation, thereby
ensuring stable and efficient identification of the optimal N:M mask. Our empirical
results substantiate the effectiveness of BAME, illustrating it performs comparably
to or better than previous works that fully maintaining dense backward propaga-
tion during training. For instance, BAME attains a 72.0% top-1 accuracy while
training a 1:16 sparse ResNet-50 on ImageNet, eclipsing SR-STE by 0.5%, despite
achieving 2.37× training FLOPs reduction. Code will be released.

1 INTRODUCTION

In recent years, the vision community has precipitously bolstered the performance of Deep Neural
Networks (DNNs) across various tasks, including image classification (He et al., 2016), object
detection (He et al., 2017a), and semantic segmentation (Girshick et al., 2014), etc. These progressions
are chiefly driven by an augmented parameter burden and an increasingly onerous computational
cost. Regrettably, this tendency presents significant impediments for the deployment of DNNs on
resource-constrained edge devices like smartphones and various Internet of Things (IoT) apparatuses.
Consequently, there has been a proliferation of interest in model compression research (Hubara et al.,
2016; Howard et al., 2017; Lin et al., 2020), with the explicit objective of reducing the model’s
computation and parameter complexity whilst preserving comparable performance to the original
model, thereby alleviating the deployment tribulations experienced with DNNs.

Among these techniques, network sparsity has proven many successes (Han et al., 2015; LeCun
et al., 1989; Luo et al., 2017) by zeroizing weights to yield lightweight, sparse networks at different
granularity levels, from fine to coarse. Fine-grained sparsity (unstructured sparsity) (LeCun et al.,
1989; Ding et al., 2019) removes individual weights and is demonstrated to well retain performance
even at high sparsity rates. Regrettably, the deployment of such fine-grained sparse networks onto
mainstream hardware systems becomes exceptionally challenging, given the irregular matrix patterns
created by sparse weights. In contrast, coarse-grained sparsity, otherwise known as structured sparsity,
(He et al., 2017b; Lin et al., 2020) procures substantial acceleration, purging whole convolution filters
in the process (Liu et al., 2019; Lin et al., 2020). Nevertheless, structured sparsity can experience
severe performance degradation, especially under high sparsity conditions. Recent developments
indicate N:M sparsity as an auspicious avenue towards effectively balancing the dual requirements
of acceleration and performance retention (Zhou et al., 2021; Pool & Yu, 2021). By imposing a
restriction of, at most, N non-zero elements within M sequential weights throughout the input channel
dimension, N:M sparsity can substantially enhance the performance of structured sparsity, while
concurrently assuring swift inference, ably facilitated by the N:M sparse tensor core (Nvidia, 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Framework of BAME. It iteratively performs weight pruning-and-regrowing through
Loss-Aware Mask adaption (LMA) and Oscillation-aware Block Freezing (OBF), which leads to
stable and efficient location for the optimal N:M mask.

The crux of maintaining the performance of N:M sparse networks lies in identifying the optimal N:M
sparsity mask. To achieve this, prevalent methodologies involve updating all weights during training
to determine the most effective N:M mask, adopting a straight-through estimator to approximate the
gradients of the pruned weights (Zhou et al., 2021; Zhang et al., 2023b) or learning the importance
criteria for all weights (Zhang et al., 2022). Despite their efficacy, the computation of dense gradients
invariably imposes a substantial training overhead. Notably, the reduction of training costs has been a
focal research point within the sparsity comunity in recent years (Liu et al., 2021; Evci et al., 2020;
Dettmers & Zettlemoyer, 2019). With the ever-growing size of cutting-edge models, the significant
computational demands and energy consumption of training sparse networks are escalating critical
environmental, ethical, and financial concerns. Consequently, the development of efficient and
scalable N:M sparse training methods is paramount, potentially even more urgent, to support the
widespread accessibility and democratization of DNNs.

In this paper, we present BAME as a way of maintaining consistent sparsity in both forward and
backward propagation throughout the N:M sparse training process. As shown in Figure 1, BAME
escapes from dense weight’s update through block-aware N:M mask evolution. It specifically executes
weight pruning-and-regrowing within each consecutive M weights in order to adapt the sparse mask.
Such mask evolution occurs solely when the detrimental effects on loss caused by pruning a certain
weight is outweighed by the gain in loss from restoring another already pruned weight. Concurrently,
we selectively adapt the mask of N:M blocks, as some blocks are experimentally observed to exhibit
frequent oscillations on their masks during training, leading to unstables loss landscape. To this end,
we employ exponential moving averaging (EMA) to accumulate the incidence of mask fluctuations for
each block, choosing those with fewer fluctuations for mask evolution to ensure stable optimization
for the N:M sparse network during training. In this manner, BAME can stably optimize the N:M
mask while conducting N:M sparse training in a dense-backward-free efficient manner.

We conduct extensive experiments on validating the effectiveness and efficacy of BAME for N:M
sparse training. The results show that BAME is able to get state-of-the-art performance when training
N:M sparse networks across a wide range of sparse pattern, datasets, and prevailing DNNs, even
with much fewer training FLOPs compared with existing work. Illustratively, BAME attains a 72.0%
top-1 accuracy while training a 1:16 sparse ResNet-50 on ImageNet, eclipsing SR-STE (Zhou et al.,
2021) by 0.5%, while using far less training FLOPs. Our work provides fresh insights in N:M sparse
training without dense weight updates and we anticipate that BAME will not only equip practitioners
with a robust training tool but also lay the groundwork for subsequent explorations into the training
efficiency of N:M sparsity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 NETWORK SPARSITY

By removing redundant weights to eliminate the parameter and FLOPs burden, network sparsity
has emerged as a fervent area of research over the last decade (LeCun et al., 1989; Han et al.,
2015; Louizos et al., 2017). Traditional approaches can broadly be classified into two categories
based on their pruning granularity: unstructured and structured sparsity. The former involves the
elimination of individual weights at any location within the network, achieving sparsity at a fine-
grained level (Han et al., 2015; Lee et al., 2019; Ding et al., 2019). In essence, unstructured sparsity
can rival the performance of their dense counterparts even at exceedingly high sparsity ratios, such as
90% (Mostafa & Wang, 2019). Nonetheless, the generated sparse weight tensors generally precludes
acceleration on standard hardware platforms unless the sparsity ratio reaches or exceeds 95% (Wang).
Conversely, structured sparsity achieves notable acceleration by extensively removing entire weight
rows or convolution filters (Luo & Wu, 2020; Lin et al., 2020). Regrettably, structured sparsity
often leads to substantial performance degradation at sparsity levels exceeding 50%, attributed to
the constraints imposed on sparsity flexibility. Diverging from conventional sparsity granularities,
this paper delves into N:M sparsity that removes weight in an mid-level granularity and has garnered
significant research interest in recent years (Zhou et al., 2021; Sun et al., 2021; Pool & Yu, 2021).

2.2 N:M SPARSITY

The recent development of N:M sparsity upholds the conservation of N-out-of-M consecutive weights
in DNNs (Nvidia, 2020; Pool & Yu, 2021; Sun et al., 2021; Zhou et al., 2021; Chmiel et al., 2021;
Hubara et al., 2016; Zhang et al., 2022). Supported by the NVIDIA Ampere Core (Ronny Krashinsky,
2020), N:M sparsity fosters superior storage and computational efficiency, establishing an immaculate
harmony between model efficiency and precision, outdoing both unstructured and structured sparsity.
To illustrate, 2:4 sparsity can realize 2× speedups on an NVIDIA A100 GPU, while unstructured
sparsity might further decelerate the inference speed at identical levels of sparsity. As trailblazing
work, ASP (Nvidia, 2020) employs a traditional tri-phase workflow encompassing model pre-training,
high-magnitude weight extraction (Han et al., 2015), and network fine-tuning. Zhou et al. (2021)
subsequently proposed to train N:M sparse network from scratch by introducing the Sparse-refined
Straight-Through Estimator (SR-STE). More specifically, N-out-of-M weights of higher magnitudes
are selected in each forward pass, whileall weights are updated during the backward phase, utilizing
the STE estimator, paired with a uniquely designed sparse penalty term. LBC (Zhang et al., 2022)
further recasts N:M sparsity as a combinatorial problem, learning the optimal mask for each N:M
block. Despite their effectiveness in preserving the performance of sparse networks, most existing
works require dense backward propagation to update all weights to discover the optimal N:M mask,
leading to massive training burden and memory cost. Our proposed BAME in this paper diverges
from existing N:M methods as it performs both sparse forward and backward propagation during the
entire training process, substantially alleviating the training cost.

2.3 SPARSE TRAINING

Sparse training, which dynamically adjusts the sparse masks throughout the training process, has re-
cently emerged as a promising solution to enhance the training efficiency of network sparsity (Hoefler
et al., 2021; Evci et al., 2020; Han et al., 2015; Liu et al., 2021). The most representative method RigL
(Evci et al., 2020) prunes weights of smaller magnitudes during inference and subsequently regrows
the same quantity of weights based on their gradient values throughout backward propagation. Sparse
Momentum (Dettmers & Zettlemoyer, 2019) employs the mean momentum magnitude of each layer
as a benchmark for redistributing parameters. Kusupati et al. (2020) proffer layer-wise learnable
thresholds strategizing the reallocation of parameters across layers. Moreover, Liu et al. (2021)
proposed to gradually increase the sparsity level during training to further enhance the performance
of sparse networks. While these approaches predominantly concentrate on boosting unstructured spar-
sity, our endeavor in this paper differs by targeting the training of N:M sparse networks, innovatively
designing a block-aware selection mechanism for pruning and reviving N:M sparse weights.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

3.1 BACKGROUND

We first recap basic preliminaries of N:M sparsity. For simplicity, we take the weights from a specific
layer within DNNs for illustration. N:M sparsity forces at most N out of M consecutive weights in
the weight row to have non-zero values. The weights can be therefore grouped into K blocks where
each block contains M consecutive weights, denoted as W ∈ RK×M . And then, N:M sparsity can
be formulated as multiplying W with a binary mask B ∈ RK×M , with the following objectives:

min
W,B

L(W ⊙B; D) s.t. ∥Bk,:∥0 = N, (1)

where k = 1, 2, ...,K, ⊙ is the point-wise element-wise multiplication, L(·) denotes training loss
function and D represents the observed training dataset, respectively. The zero elements in B indicate
the removal of corresponding weights in the network, and vice versa.

Challenge of N:M sparse training. The crux of optimizing Equation (1) falls into locating high-
quality masks that correctly preserve important weights. As a pioneer work, ASP (Nvidia, 2020)
chooses to mask out weights that have lower magnitudes, intuitively reducing the output derivation
between dense pre-trained weights and N:M sparse weights. Nevertheless, the pre-training phase
unavoidably carries huge training burden. In the literature, a more popular way to obtain the sparse
mask is performing training-time weight selection by updating all weights (Zhou et al., 2021; Zhang
et al., 2022; Fang et al., 2022; Zhang et al., 2023b). Particularly, the straight-through-estimator
(STE) (Bengio et al., 2013) is leveraged to calculate the gradient of all weights, since the currently
removed weights always receive no gradient as their corresponding multiplied masks are 0s. Formally,
the gradients of W are derived as

∂L
∂W

=
∂L

∂(W ⊙B)
⊙B ≈ ∂L

∂(W ⊙B)
⊙ 1. (2)

In this vein, all weights can be updated during the training process. By dynamically selecting weights
with higher magnitude, such N:M sparse training can effectively boost the model performance, even
without reliance on pre-trained weights. Despite recent efforts to further enhance N:M sparse training
through additional norm constraints on pruned weights (Zhou et al., 2021) or gradual sparsity (Fang
et al., 2022), one significant concern remains that dense back-propagation and weight updates continue
to incur substantial resource consumption, posing challenges to scenarios with limited resources.

In this paper, we address the above hindrance of training inefficiency by proposing Block-Aware
Mask Evolution (BAME), a method that ensures consistent sparsity throughout the forward and
backward propagation phases of the N:M sparse training process. The unique contribution of BAME
encompasses loss-aware mask adaption (LMA) that prune-and-revive weights to effectively decrease
the training loss, and oscillation-aware block selection (OBS), limiting mask modifications within
blocks demonstrating high-frequency mask oscillations, thus stabilizing the N:M training process.
We meticulously present these two components as follows.

3.2 LOSS-AWARE MASK ADAPTION

Owing to the great benefit of training cost reduction, adapting the sparse mask during training while
escaping from dense gradient calculation has been a hot topic within traditional unstructured sparsity
literature (Evci et al., 2020; Dettmers & Zettlemoyer, 2019; Liu et al., 2021; Jayakumar et al., 2020).
The central philosophy of these methods involves performing a global pruning and revival based on
instantaneous gradient information every few training iterations. Specifically, several of the weights
with the highest gradients among all pruned weights are restored and the same number of weights
with the lowest magnitude among all retained weights are pruned, therefore reducing the loss to the
fastest extent.

Regrettably, prior methodologies for globally altering the sparse topology are unsuitable within the
context of N:M sparsity. Following a fixed sparsity budget for each N:M block, pruning-and-reviving
of weights can only be carried out in each independent N:M block. This presents substantial risks
for the mask adaptation: The gradients of the weights in the same block are likely to have minor
differences due to the continuous input received, as is the magnitude of the weights. Hence, directly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

applying traditional sparse methods can have high possibility of resulting in the recovery of weights
yielding less loss benefit compared to the disruption caused by weight pruning, even if the pruned
weights have the smallest magnitude within the N:M block.

To address this challenge, we introduce loss-aware mask adaption (LMA) that ensures weight pruning-
and-reviving always lead to loss decrease during N:M sparse training. LMA performs static sparse
training in both forward and backward propagation, while only calculating dense gradient to perform
mask adaption every ∆T iteration. Here we use a specific N:M block Wk ∈ RM for illustrating
the mask adaption procedure. Considering a currently preserved weight Wk,i where Bk,i = 1, the
loss change, denoted as ∆L(Wk,i), upon its removal can be approximately derived using first-order
Taylor expansion (Molchanov et al., 2017) as:

∆L(Wk,i) = |L(W ⊙B; D, Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|

≈ |L(W ⊙B; D, Bk,i = 1)− ∂L
∂(W ⊙B)k,i

(Wk,i − 0)

+R1(Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|.

(3)

If we ignore the first-order remainder R1(Bk,i = 0), then:

∆L(Wk,i) ≈ | ∂L
∂(W ⊙B)k,i

Wk,i|. (4)

Similarly, if we consider reviving a currently removed weight Wk,j back, the loss change
∆L(Wk,j) = 0 can be derived as:

∆L(Wk,j) = |L(W ⊙B; D, Bk,j = 1)− L(W ⊙B; D, Bk,j = 0)|

≈ |L(W ⊙B; D, Bk,i = 0)− ∂L
∂(W ⊙B)k,j

(
0− (0− η

∂L
∂(W ⊙B)k,j

)

)
+R1(Bk,i = 1)− L(W ⊙B; D, Bk,i = 0)|

≈ η

(
∂L

∂(W ⊙B)k,j

)2

,

(5)

where η is the current learning rate. Based on the preceding derivation, we can articulate the following
conclusions. On one hand, Eq. (4) tells that for the preserved weights, pruning those with comparably
minor ∆L(Wk,i) ensures the loss does not undergo notable alterations. This perspective concurs with
traditional network sparsity knowledge (Molchanov et al., 2017; Zhang et al., 2023a). Conversely,
considering the presently pruned weights, their revival will invariably benefit the minimization of loss
as observed in the derivation of Eq. (5). Simultaneously, it bears mentioning that restoring weights
with significantly larger ∆L(Wk,i) will induce the most substantial degree of loss mitigation.

Therefore, at each mask adaption cycle, we first calculate the loss-aware metric ∆L(Wk,:) of all
weights in an N:M block using Eq. (4) and Eq. (5). Then, we adapt the mask of weights as follows:

B̄k,m =

{
0, if ∆L(Wk,j) < Top(∆L(Wk,:),M - N),
1, otherwise, (6)

where m = 1, 2, ...,M and B̄ is the updated mask. Such mask adaptation perceptively prune-and-
revive weights by looking at the effects imparted on the loss, conducting an inclusive ranking within
each N:M block. Paradoxically, preceding arts that mandates the pruning of lowest magnitude
weights while refurbishing those with highest gradients (Evci et al., 2020; Zhang et al., 2023a),
although justified when executed across the entire weight matrix, may potentially be harmful for N:M
sparsity with limited amount of weights in each block. To explain, the increment to the loss prompted
by restored weights could indeed be considerably less than the disturbance to the loss distribution
induced by pruned weights. Hence, our proposed LMA effectively realizes loss-aware optimization
of sparse typologies.

It is also noteworthy that LMA necessitates the computation of dense gradients only intermittently,
every ∆T iterations, while primarily conducting truly sparse training and weight updates at other
times. This starkly contrasts previous N:M sparse training methods (Zhou et al., 2021; Fang et al.,
2022; Zhang et al., 2023b), which obligate the calculation and storage of full gradients at each stage
of optimization, culminating in a significantly greater training impedance relative to LMA.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Sparse Architecture Divergence (SAD) of N:M blocks during training 2:4, 1:4, and 1:16
sparse ResNet-50 on ImageNet. The majority of blocks remain under minimal mask variation, yet a
minority experience frequent mask oscillations.

3.3 OSCILLATION-AWARE BLOCK FREEZING

Other than LMA which enables efficient mask adaption inner each N:M block, we further stabilize
the N:M sparse training process by oscillation-aware block freezing (OBF). The impetus behind OBF
stems from our observations of the high-frequency mask fluctuation for each block across different
LMA cycles. In particular, we employ the Sparse Architecture Divergence (SAD) (Zhou et al., 2021)
to calculate mask fluctuation at c-th and c+ 1-th LMA cycle as follows:

SAD(Bc−1
k ,Bc

k) =

M∑
m=1

|Bc−1
k,m −Bc

k,m|, (7)

where Bc
k denote the k-th block’s mask at c-th LMA cycle. In Figure 2, we show the accumulated

SAD score of different N:M blocks during N:M sparse training. The observation reveals a significantly
higher frequency of mask alterations occurring in a certain number of blocks compared to others.
On reflecting upon the primary intent of LMA, the apex aim during the LMA process constitutes
the pruning of weights of lesser magnitude, making way for the revival of a more significant one,
thereby pinpointing an enhanced position while ensuring consistent training thereafter. Nevertheless,
some blocks endure recurrent deviations, alternately zeroing the weights, unquestionably inducing
oscillations in loss, and thereby impeding network training. Consequently, we harness the capabilities
of Exponential Moving Average (EMA) to accumulate the episodes of mask perturbations across each
block, electing those exhibiting lesser fluctuations for mask evolution, thereby ensuring stabilized
optimization for the N:M sparse network during the course of training. Concretely, we devise a vector
O ∈ RK , equivalent in magnitude to the count of blocks, devised for logging the frequency of mask
alterations, as

Oc
k = γ Oc−1

k + (1− γ) SAD(Bc−1
k ,Bc

k), (8)

where γ is the momentum of EMA updating. Then, we restrict a β proportion of N:M blocks with
the highest oscillation frequency from being updated by LMA as:

Bc
k,m =

{
Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋),

B̄c
k,m, otherwise.

(9)

Furthermore, within the mask adaptation selection of LMA, the occurrence of gradients is sporadic,
implying the prospect of a particularly extraordinary gradient for a specified weight at a given stage.
This could conceivably prompt an incorrect pruning of a substantial weight, thereby precipitating a
noteworthy effect on network performance. Consequently, we confine LMA to transpire solely within
weight blocks of lesser magnitudes to circumvent such inadvertent erroneous mask adaptations.

Bc
k,m =

{
Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋) and ||Wc

k||2 > Top(Ŵc, ⌊α · k⌋),
B̄c

k,m, otherwise,
(10)

where Ŵc
k = ||Wc

k||2, k = 1, 2, ...,K. For the implementation of BAME, we follow Jayakumar
et al. (2020) to perform a three-step sparse training pipline, with Ti and Tf evenly divides the training
schedule. In particular, we first employ gradual pruning (Zhu & Gupta, 2017) to set the non-zeros
parameters budget linearly decreased from M to the targeted N of each block in the early Ti iterations,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Block-aware Mask Evolution for N:M Sparse Training.
Require : Weights W; Loss function L; Initial and final iterations for performing mask

evolution ti and tf ; Update interval ∆T.
Output : Sparse weights W̄

1 for t ∈ [ti, . . . , tf] do
2 if t % ∆T == 0 then
3 Calculate ∆L(W) via Eq. (4) and Eq. (5)
4 Obtain the adapted mask B̄ via Eq. (6) // Loss-aware mask adaption
5 Get the restricted mask B via Eq. (9) // Oscillation-aware freezing
6 end
7 W̄ = W ⊙B // Apply binary mask to the weights
8 Sparse Forward and backward propagation
9 end

Table 1: Results for sparsifying ResNet-32 and MobileNet-V2 on CIFAR-10.

Model Method N:M Top-1 Epochs FLOPs
Pattern Accuarcy (%) (Train) (Train)

ResNet-32 Baseline - 94.52 300 1×(3.15e16)
ResNet-32 ASP 2:4 94.68 600 1.5×
ResNet-32 SR-STE 2:4 94.52 300 0.83×
ResNet-32 LBC 2:4 94.81 300 0.72×
ResNet-32 BAME(ours) 2:4 94.99 300 0.63×
ResNet-32 SR-STE 1:4 94.52 300 0.74×
ResNet-32 Bi-Mask 1:4 94.43 300 0.49×
ResNet-32 BAME(ours) 1:4 94.71 300 0.39×
ResNet-32 SR-STE 1:16 92.92 300 0.67×
ResNet-32 Bi-Mask 1:16 92.77 300 0.37×
ResNet-32 BAME(ours) 1:16 93.15 300 0.29×

MobileNet-V2 Baseline - 94.55 300 1×(1.41e17)
MobileNet-V2 SR-STE 1:16 93.14 300 0.67×
MobileNet-V2 Bi-Mask 1:16 92.48 300 0.37×
MobileNet-V2 BAME(ours) 1:16 93.32 300 0.29×

which is shown to be effective for performance retention. Then, we perform BAME to find the best
N:M mask from Ti to Tf . At last, we set the masks all freeze and conduct static training for the N:M
sparse network within the remained iterations. The workflow for performing BAME for N:M sparse
training is outlined in Alg. 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets and Networks. We validate the effectiveness of BAME by using it to train N:M sparse
networks on image classification tasks on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-1K
datasets (Deng et al., 2009). For the networks, we sparsify ResNet-32 (He et al., 2016), MobileNet-V2
on CIFAR-10 dataset, and ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016), DeiT-small on
ImageNet-1K dataset.

Implementation Details. We train N:M sparse networks from scratch via the Stochastic Gradient
Descent (SGD) optimizer, paired with a momentum of 0.9 and a batch size of 256. The initial
learning rate is set to 0.1 and gradually decayed based on the cosine annealing scheduler. Following
previous works, we train all networks for 300 epochs on CIFAR-10, with a weight decay of 0.005. On
ImageNet, 120 epochs are given for ResNet and 300 epochs for DeiT-small. For the implementation
of BAME, we set the LMA update interval ∆T = 100 and 0.5 for both α and β in OBF. ALL
experiments are implemented based on PyTorch and executed on NVIDIA Tesla A100 GPUs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results for sparsifying ResNet-50 and DeiT-small on ImageNet.

Model Method N:M Top-1 Epochs FLOPs
Pattern Accuarcy (%) (Train) (Train)

ResNet-50 Baseline - 77.1 120 1×(3.2e18)
ResNet-50 ASP 2:4 76.8 200 1.24×
ResNet-50 SR-STE 2:4 77.0 120 0.83×
ResNet-50 LBC 2:4 77.2 120 0.72×
ResNet-50 BAME(ours) 2:4 77.4 120 0.63×
ResNet-50 SR-STE 1:4 75.3 120 0.74×
ResNet-50 Bi-Mask 1:4 75.6 120 0.49×
ResNet-50 BAME(ours) 1:4 76.1 120 0.39×
ResNet-50 SR-STE 1:16 71.5 120 0.69×
ResNet-50 Bi-Mask 1:16 71.5 120 0.37×
ResNet-50 BAME(ours) 1:16 72.0 120 0.29×
DeiT-small Baseline - 79.8 300 1x(8.9e18)
DeiT-small SR-STE 2:4 79.6 300 0.83×
DeiT-small Bi-Mask 2:4 79.4 300 0.72×
DeiT-small BAME(ours) 2:4 79.7 300 0.63×

Performance Metrics and Baselines. We juxtapose BAME with several state-of-the-art N:M
sparsity methods, including ASP (Nvidia, 2020), SR-STE (Zhou et al., 2021), LBC (Zhang et al.,
2022), Bi-Mask (Zhang et al., 2023b). We experiment with a wide range of N:M patterns for
comparison, including 2:4, 1:4, and 1:16. We report the Top-1 accuracy, the training/inference
float-point operations (FLOPs) and parameter burden of N:M sparse networks.

4.2 IMAGE CLASSIFICATION

CIFAR-10. We first evaluate the efficacy of BAME for training sparse ResNet-32 and MobileNet-V2
on the CIFAR-10 dataset, which includes 50,000 training images and 10,000 validation images
within 10 classes. Tab 1 showcases the performance comparison under different N:M patterns.
BAME achieves state-of-the-art accuracy at all scenarios, even utilizing far fewer training FLOPs
and parameters compared with other methods. For instance, BAME achieves 94.71% top-1 accuracy
when training 1:4 sparse ResNet-32, surpassing the recent baseline Bi-Mask that also pursues efficient
backward propagation by 0.28%. Moreover, even compared with SR-STE which conducts dense
gradient calculation training, BAME still achieves better performance retention for all N:M patterns
even with sparse backward propagation. For example, when training 1:16 sparse MobileNet-V2,
BAME yields 93.32 top-1 accuracy, surpassing SR-STE by 0.18% while only using 0.29% training
FLOPs (0.67% for SR-STE).

ImageNet. For the large-scale ImageNet-1K dataset that contains over 1.2 million images for training
and 50,000 images for validation in 1,000 categories, we first present the quantitative results for
training sparse ResNet with depths of 18 and 50, along with DeiT-small in Table 2. Again, BAME
substantially enlarges the performance of existing methods at all testing scenarios, with the minimum
training FLOPs by efficient weight pruning and growing. For instance, it surpasses SR-STE by 0.5%
Top-1 accuracy when training 1:4 sparse ResNet-50 (76.1% for BAME and 75.3% for SR-STE), while
consumes far fewer training FLOPs (0.39× for BAME and 0.74× for SR-STE). When juxtaposed
with Bi-Mask which also focuses on training efficiency, BAME still lead to better performance at
all N:M patterns. It is also worth mentioning that BAME holds its advantages when training sparse
DeiT-small compared with other methods, demonstrating its scalability for other types of model
structures beyond convolution neural networks. These results demonstrated the efficacy of BAME for
performing loss-aware mask adaption to efficiently locate the best N:M mask during training.

4.3 PERFORMANCE ANALYSIS

In this section, we conduct performance analysis of BAME, including its main components and the
hyper-parameters setting. All experiments are based on training 1:16 ResNet-32 on CIFAR-10.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10 102 103

Update Interval (T)

91.4

91.7

92.0

92.3

92.6

92.9

93.2

To
p-

1
A

cc
ur

ac
y

(%
)

=0.5, =0.5
=0.1, =0.5

=0.5, =0.1
=0.1, =0.1

Figure 3: Results for applying different hyper-
parameters to BAME.

Table 3: Results for applying different sparse
training schedule to BAME.

ti tf Top-1 FLOPs
Accuracy (%) (Train)

0 100 91.87 0.07×
0 200 92.57 0.07×
0 300 92.22 0.07×

100 300 92.81 0.29×
200 300 93.05 0.41×
100 200 93.15 0.29×

Hyper-parameters. We first investigate the influence of hyper-parameters within BAME, including
the two restriction factors α and β, and the updating interval ∆T . As shown in Fig.3, the best
performance is obtained with ∆T = 100, α = 0.5, β = 0.5. To analyze, smaller α and β, larger ϵ
all lead to an insufficient procedure for mask exploration during the training schedule. Setting these
hyper-parameters in the contrast direction, also resulted in poor performance, which fits into our
claim that high frequency of mask oscillations can unavoidably harm the training stability and lead to
sub-optimal results. Nevertheless, it serves as a promising directions to automatically perform N:M
sparse training without hyper-parameter choosen.

Training Schedule. Further, we analyze the training schedule of BAME, i.e, ti and tf for stooping the
gradual pruning and performing mask adaption. Tab. 3 delineates the quantitative results. Intuitively,
establishing a larger ti indicates an increase in training iterations for pre-training with a gradual
attainment of the desired sparsity level. Though this consequently induces a significant training
cost, neglecting gradual pruning simultaneously results in a considerable performance reduction. To
explain, the randomly-initialized weights require a certain degree of pre-training to initiate an effective
importance selection, which is validated in traditional sparsity work (Liu et al., 2021; Jayakumar et al.,
2020). Regarding the mask adaptation schedule, prematurely halting BAME leads to a performance
downturn due to inadequate identification of the optimal mask. In stark contrast, prolonging BAME
until the termination of training, that is, designating tf to the final iteration, results in an even more
precipitous performance degradation. To explain, the freshly grown weights, initialized to zeros as
per Alg. 1, mandate substantial training following restoration to enhance the performance of the
sparse network.

Table 4: Ablation study of BAME.

Method Top-1
Accuracy (%)

Stastic 90.03
RigL 92.01
LMA 92.98

LMA+OBF 93.15

Mask Adaption. At last, we investigate the effectiveness of
our mask adaption methods including LMA and OBF. We set
static training as the baseline, which means the binary masks
are randomly initialized and kept frozen during the entire sparse
training procedure. In addition, we run RigL (Evci et al., 2020),
a representative method for tradition network sparse training
that take weight magnitude and gradient for pruning and re-
viving, respectively. As shown in Tab. 4, both LMA and OBF
contributes to the overall or sparse training performance.

5 CONCLUSION

N:M sparsity has become an increasingly crucial DNN compression tool, delivering functional speed
ups by imposing a maximum of N non-zero constituents within M consecutive weights. We introduce
BAME, a method that enhances the efficiency of the contemporary N:M sparsity methods while
preserving the model’s performance. BAME’s fundamental principle involves carrying out loss-aware
mask adaptation to prune and revitalize weights within specific N:M blocks, whilst maintaining
the stability of frequently-oscillating blocks. BAME surpasses existing methods in sparsifying
mainstream networks across various vision tasks, all while greatly reducing the training FLOPs and
the parameter strain by keeping both sparse forward and backward propagation through training.
Hopefully, BAME will not only provide practitioners with a robust N:M sparse training instrument,
but also set the groundwork for further investigations into efficient N:M sparsity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Brian Chmiel, Itay Hubara, Ron Banner, and Daniel Soudry. Optimal fine-grained N:M sparsity for
activations and neural gradients. In International Conference on Learning Representations (ICLR),
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu, et al. Global sparse momentum
sgd for pruning very deep neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 6382–6394, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning (ICML), pp. 2943–
2952, 2020.

Chao Fang, Aojun Zhou, and Zhongfeng Wang. An algorithm–hardware co-optimized framework for
accelerating N:M sparse transformers. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 30(11):1573–1586, 2022.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In IEEE International Conference on Computer
Vision (ICCV), pp. 580–587, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NeurIPS), pp.
1135–1143, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In IEEE International
Conference on Computer Vision (ICCV), 2017a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vision (ICCV), pp. 1389–1397, 2017b.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22:1–124, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in Neural Information Processing Systems (NeurIPS), 29, 2016.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k
always sparse training. In Advances in Neural Information Processing Systems (NeurIPS), pp.
20744–20754, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International
Conference on Machine Learning (ICML), pp. 5544–5555, 2020.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 598–605, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations (ICLR), 2019.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1529–1538, 2020.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In IEEE
International Conference on Computer Vision (ICCV), pp. 3296–3305, 2019.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. In International Conference on Learning Representations (ICLR), 2017.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for efficient
deep model inference. Pattern Recognition (PR), pp. 107461, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In IEEE International Conference on Computer Vision (ICCV), pp. 5058–
5066, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations (ICLR), 2017.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning (ICML),
pp. 4646–4655, 2019.

Nvidia. Nvidia a100 tensor core gpu architecture. https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf, 2020.

Jeff Pool and Chong Yu. Channel permutations for N:M sparsity. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Olivier Giroux et al. Ronny Krashinsky. Nvidia ampere sparse tensor core. https://developer.
nvidia.com/blog/nvidia-ampere-architecture-in-depth/, 2020.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Ziheng Wang. Sparsert: Accelerating unstructured sparsity on gpus for deep learning inference.
In Proceedings of the ACM International Conference on Parallel Architectures and Compilation
Techniques (ICPACT), pp. 31–42.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong
Ji. Learning best combination for efficient N:M sparsity. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

11

https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https:// developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https:// developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuxin Zhang, Mingbao Lin, Yunshan Zhong, Fei Chao, and Rongrong Ji. Lottery jackpots exist in
pre-trained models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023a.

Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan Zhong, Jingjing Xie, Fei Chao, and Rongrong Ji.
Bi-directional masks for efficient n: M sparse training. In International Conference on Machine
Learning, pp. 41488–41497. PMLR, 2023b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning N:M fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations (ICLR), 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. In International Conference on Learning Representations Workshop (ICLRW), 2017.

12

	Introduction
	Related Work
	Network Sparsity
	N:M Sparsity
	Sparse Training

	Methodology
	Background
	Loss-aware Mask Adaption
	Oscillation-aware Block Freezing

	Experiment
	Experimental Settings
	Image Classification
	Performance Analysis

	Conclusion

