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ABSTRACT

N:M sparsity stands as a progressively important tool for DNN compression, achiev-
ing practical speedups by stipulating at most N non-zero components within M
sequential weights. Unfortunately, most existing works identify the N:M sparse
mask through dense backward propagation to update all weights, which incurs ex-
orbitant training costs. In this paper, we introduce BAME, a method that maintains
consistent sparsity throughout the N:M sparse training process. BAME perpetually
keeps both sparse forward and backward propagation, while iteratively performing
weight pruning-and-regrowing within designated weight blocks to tailor the N:M
mask. These blocks are selected through a joint assessment based on accumulated
mask oscillation frequency and expected loss reduction of mask adaptation, thereby
ensuring stable and efficient identification of the optimal N:M mask. Our empirical
results substantiate the effectiveness of BAME, illustrating it performs comparably
to or better than previous works that fully maintaining dense backward propaga-
tion during training. For instance, BAME attains a 72.0% top-1 accuracy while
training a 1:16 sparse ResNet-50 on ImageNet, eclipsing SR-STE by 0.5%, despite
achieving 2.37× training FLOPs reduction. Code will be released.

1 INTRODUCTION

In recent years, the vision community has precipitously bolstered the performance of Deep Neural
Networks (DNNs) across various tasks, including image classification (He et al., 2016), object
detection (He et al., 2017a), and semantic segmentation (Girshick et al., 2014), etc. These progressions
are chiefly driven by an augmented parameter burden and an increasingly onerous computational
cost. Regrettably, this tendency presents significant impediments for the deployment of DNNs on
resource-constrained edge devices like smartphones and various Internet of Things (IoT) apparatuses.
Consequently, there has been a proliferation of interest in model compression research (Hubara et al.,
2016; Howard et al., 2017; Lin et al., 2020), with the explicit objective of reducing the model’s
computation and parameter complexity whilst preserving comparable performance to the original
model, thereby alleviating the deployment tribulations experienced with DNNs.

Among these techniques, network sparsity has proven many successes (Han et al., 2015; LeCun
et al., 1989; Luo et al., 2017) by zeroizing weights to yield lightweight, sparse networks at different
granularity levels, from fine to coarse. Fine-grained sparsity (unstructured sparsity) (LeCun et al.,
1989; Ding et al., 2019) removes individual weights and is demonstrated to well retain performance
even at high sparsity rates. Regrettably, the deployment of such fine-grained sparse networks onto
mainstream hardware systems becomes exceptionally challenging, given the irregular matrix patterns
created by sparse weights. In contrast, coarse-grained sparsity, otherwise known as structured sparsity,
(He et al., 2017b; Lin et al., 2020) procures substantial acceleration, purging whole convolution filters
in the process (Liu et al., 2019; Lin et al., 2020). Nevertheless, structured sparsity can experience
severe performance degradation, especially under high sparsity conditions. Recent developments
indicate N:M sparsity as an auspicious avenue towards effectively balancing the dual requirements
of acceleration and performance retention (Zhou et al., 2021; Pool & Yu, 2021). By imposing a
restriction of, at most, N non-zero elements within M sequential weights throughout the input channel
dimension, N:M sparsity can substantially enhance the performance of structured sparsity, while
concurrently assuring swift inference, ably facilitated by the N:M sparse tensor core (Nvidia, 2020).
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Figure 1: Framework of BAME. It iteratively performs weight pruning-and-regrowing through
Loss-Aware Mask adaption (LMA) and Oscillation-aware Block Freezing (OBF), which leads to
stable and efficient location for the optimal N:M mask.

The crux of maintaining the performance of N:M sparse networks lies in identifying the optimal N:M
sparsity mask. To achieve this, prevalent methodologies involve updating all weights during training
to determine the most effective N:M mask, adopting a straight-through estimator to approximate the
gradients of the pruned weights (Zhou et al., 2021; Zhang et al., 2023b) or learning the importance
criteria for all weights (Zhang et al., 2022). Despite their efficacy, the computation of dense gradients
invariably imposes a substantial training overhead. Notably, the reduction of training costs has been a
focal research point within the sparsity comunity in recent years (Liu et al., 2021; Evci et al., 2020;
Dettmers & Zettlemoyer, 2019). With the ever-growing size of cutting-edge models, the significant
computational demands and energy consumption of training sparse networks are escalating critical
environmental, ethical, and financial concerns. Consequently, the development of efficient and
scalable N:M sparse training methods is paramount, potentially even more urgent, to support the
widespread accessibility and democratization of DNNs.

In this paper, we present BAME as a way of maintaining consistent sparsity in both forward and
backward propagation throughout the N:M sparse training process. As shown in Figure 1, BAME
escapes from dense weight’s update through block-aware N:M mask evolution. It specifically executes
weight pruning-and-regrowing within each consecutive M weights in order to adapt the sparse mask.
Such mask evolution occurs solely when the detrimental effects on loss caused by pruning a certain
weight is outweighed by the gain in loss from restoring another already pruned weight. Concurrently,
we selectively adapt the mask of N:M blocks, as some blocks are experimentally observed to exhibit
frequent oscillations on their masks during training, leading to unstables loss landscape. To this end,
we employ exponential moving averaging (EMA) to accumulate the incidence of mask fluctuations for
each block, choosing those with fewer fluctuations for mask evolution to ensure stable optimization
for the N:M sparse network during training. In this manner, BAME can stably optimize the N:M
mask while conducting N:M sparse training in a dense-backward-free efficient manner.

We conduct extensive experiments on validating the effectiveness and efficacy of BAME for N:M
sparse training. The results show that BAME is able to get state-of-the-art performance when training
N:M sparse networks across a wide range of sparse pattern, datasets, and prevailing DNNs, even
with much fewer training FLOPs compared with existing work. Illustratively, BAME attains a 72.0%
top-1 accuracy while training a 1:16 sparse ResNet-50 on ImageNet, eclipsing SR-STE (Zhou et al.,
2021) by 0.5%, while using far less training FLOPs. Our work provides fresh insights in N:M sparse
training without dense weight updates and we anticipate that BAME will not only equip practitioners
with a robust training tool but also lay the groundwork for subsequent explorations into the training
efficiency of N:M sparsity.
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2 RELATED WORK

2.1 NETWORK SPARSITY

By removing redundant weights to eliminate the parameter and FLOPs burden, network sparsity
has emerged as a fervent area of research over the last decade (LeCun et al., 1989; Han et al.,
2015; Louizos et al., 2017). Traditional approaches can broadly be classified into two categories
based on their pruning granularity: unstructured and structured sparsity. The former involves the
elimination of individual weights at any location within the network, achieving sparsity at a fine-
grained level (Han et al., 2015; Lee et al., 2019; Ding et al., 2019). In essence, unstructured sparsity
can rival the performance of their dense counterparts even at exceedingly high sparsity ratios, such as
90% (Mostafa & Wang, 2019). Nonetheless, the generated sparse weight tensors generally precludes
acceleration on standard hardware platforms unless the sparsity ratio reaches or exceeds 95% (Wang).
Conversely, structured sparsity achieves notable acceleration by extensively removing entire weight
rows or convolution filters (Luo & Wu, 2020; Lin et al., 2020). Regrettably, structured sparsity
often leads to substantial performance degradation at sparsity levels exceeding 50%, attributed to
the constraints imposed on sparsity flexibility. Diverging from conventional sparsity granularities,
this paper delves into N:M sparsity that removes weight in an mid-level granularity and has garnered
significant research interest in recent years (Zhou et al., 2021; Sun et al., 2021; Pool & Yu, 2021).

2.2 N:M SPARSITY

The recent development of N:M sparsity upholds the conservation of N-out-of-M consecutive weights
in DNNs (Nvidia, 2020; Pool & Yu, 2021; Sun et al., 2021; Zhou et al., 2021; Chmiel et al., 2021;
Hubara et al., 2016; Zhang et al., 2022). Supported by the NVIDIA Ampere Core (Ronny Krashinsky,
2020), N:M sparsity fosters superior storage and computational efficiency, establishing an immaculate
harmony between model efficiency and precision, outdoing both unstructured and structured sparsity.
To illustrate, 2:4 sparsity can realize 2× speedups on an NVIDIA A100 GPU, while unstructured
sparsity might further decelerate the inference speed at identical levels of sparsity. As trailblazing
work, ASP (Nvidia, 2020) employs a traditional tri-phase workflow encompassing model pre-training,
high-magnitude weight extraction (Han et al., 2015), and network fine-tuning. Zhou et al. (2021)
subsequently proposed to train N:M sparse network from scratch by introducing the Sparse-refined
Straight-Through Estimator (SR-STE). More specifically, N-out-of-M weights of higher magnitudes
are selected in each forward pass, whileall weights are updated during the backward phase, utilizing
the STE estimator, paired with a uniquely designed sparse penalty term. LBC (Zhang et al., 2022)
further recasts N:M sparsity as a combinatorial problem, learning the optimal mask for each N:M
block. Despite their effectiveness in preserving the performance of sparse networks, most existing
works require dense backward propagation to update all weights to discover the optimal N:M mask,
leading to massive training burden and memory cost. Our proposed BAME in this paper diverges
from existing N:M methods as it performs both sparse forward and backward propagation during the
entire training process, substantially alleviating the training cost.

2.3 SPARSE TRAINING

Sparse training, which dynamically adjusts the sparse masks throughout the training process, has re-
cently emerged as a promising solution to enhance the training efficiency of network sparsity (Hoefler
et al., 2021; Evci et al., 2020; Han et al., 2015; Liu et al., 2021). The most representative method RigL
(Evci et al., 2020) prunes weights of smaller magnitudes during inference and subsequently regrows
the same quantity of weights based on their gradient values throughout backward propagation. Sparse
Momentum (Dettmers & Zettlemoyer, 2019) employs the mean momentum magnitude of each layer
as a benchmark for redistributing parameters. Kusupati et al. (2020) proffer layer-wise learnable
thresholds strategizing the reallocation of parameters across layers. Moreover, Liu et al. (2021)
proposed to gradually increase the sparsity level during training to further enhance the performance
of sparse networks. While these approaches predominantly concentrate on boosting unstructured spar-
sity, our endeavor in this paper differs by targeting the training of N:M sparse networks, innovatively
designing a block-aware selection mechanism for pruning and reviving N:M sparse weights.
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3 METHODOLOGY

3.1 BACKGROUND

We first recap basic preliminaries of N:M sparsity. For simplicity, we take the weights from a specific
layer within DNNs for illustration. N:M sparsity forces at most N out of M consecutive weights in
the weight row to have non-zero values. The weights can be therefore grouped into K blocks where
each block contains M consecutive weights, denoted as W ∈ RK×M . And then, N:M sparsity can
be formulated as multiplying W with a binary mask B ∈ RK×M , with the following objectives:

min
W,B

L(W ⊙B; D) s.t. ∥Bk,:∥0 = N, (1)

where k = 1, 2, ...,K, ⊙ is the point-wise element-wise multiplication, L(·) denotes training loss
function and D represents the observed training dataset, respectively. The zero elements in B indicate
the removal of corresponding weights in the network, and vice versa.

Challenge of N:M sparse training. The crux of optimizing Equation (1) falls into locating high-
quality masks that correctly preserve important weights. As a pioneer work, ASP (Nvidia, 2020)
chooses to mask out weights that have lower magnitudes, intuitively reducing the output derivation
between dense pre-trained weights and N:M sparse weights. Nevertheless, the pre-training phase
unavoidably carries huge training burden. In the literature, a more popular way to obtain the sparse
mask is performing training-time weight selection by updating all weights (Zhou et al., 2021; Zhang
et al., 2022; Fang et al., 2022; Zhang et al., 2023b). Particularly, the straight-through-estimator
(STE) (Bengio et al., 2013) is leveraged to calculate the gradient of all weights, since the currently
removed weights always receive no gradient as their corresponding multiplied masks are 0s. Formally,
the gradients of W are derived as

∂L
∂W

=
∂L

∂(W ⊙B)
⊙B ≈ ∂L

∂(W ⊙B)
⊙ 1. (2)

In this vein, all weights can be updated during the training process. By dynamically selecting weights
with higher magnitude, such N:M sparse training can effectively boost the model performance, even
without reliance on pre-trained weights. Despite recent efforts to further enhance N:M sparse training
through additional norm constraints on pruned weights (Zhou et al., 2021) or gradual sparsity (Fang
et al., 2022), one significant concern remains that dense back-propagation and weight updates continue
to incur substantial resource consumption, posing challenges to scenarios with limited resources.

In this paper, we address the above hindrance of training inefficiency by proposing Block-Aware
Mask Evolution (BAME), a method that ensures consistent sparsity throughout the forward and
backward propagation phases of the N:M sparse training process. The unique contribution of BAME
encompasses loss-aware mask adaption (LMA) that prune-and-revive weights to effectively decrease
the training loss, and oscillation-aware block selection (OBS), limiting mask modifications within
blocks demonstrating high-frequency mask oscillations, thus stabilizing the N:M training process.
We meticulously present these two components as follows.

3.2 LOSS-AWARE MASK ADAPTION

Owing to the great benefit of training cost reduction, adapting the sparse mask during training while
escaping from dense gradient calculation has been a hot topic within traditional unstructured sparsity
literature (Evci et al., 2020; Dettmers & Zettlemoyer, 2019; Liu et al., 2021; Jayakumar et al., 2020).
The central philosophy of these methods involves performing a global pruning and revival based on
instantaneous gradient information every few training iterations. Specifically, several of the weights
with the highest gradients among all pruned weights are restored and the same number of weights
with the lowest magnitude among all retained weights are pruned, therefore reducing the loss to the
fastest extent.

Regrettably, prior methodologies for globally altering the sparse topology are unsuitable within the
context of N:M sparsity. Following a fixed sparsity budget for each N:M block, pruning-and-reviving
of weights can only be carried out in each independent N:M block. This presents substantial risks
for the mask adaptation: The gradients of the weights in the same block are likely to have minor
differences due to the continuous input received, as is the magnitude of the weights. Hence, directly
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applying traditional sparse methods can have high possibility of resulting in the recovery of weights
yielding less loss benefit compared to the disruption caused by weight pruning, even if the pruned
weights have the smallest magnitude within the N:M block.

To address this challenge, we introduce loss-aware mask adaption (LMA) that ensures weight pruning-
and-reviving always lead to loss decrease during N:M sparse training. LMA performs static sparse
training in both forward and backward propagation, while only calculating dense gradient to perform
mask adaption every ∆T iteration. Here we use a specific N:M block Wk ∈ RM for illustrating
the mask adaption procedure. Considering a currently preserved weight Wk,i where Bk,i = 1, the
loss change, denoted as ∆L(Wk,i), upon its removal can be approximately derived using first-order
Taylor expansion (Molchanov et al., 2017) as:

∆L(Wk,i) = |L(W ⊙B; D, Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|

≈ |L(W ⊙B; D, Bk,i = 1)− ∂L
∂(W ⊙B)k,i

(Wk,i − 0)

+R1(Bk,i = 0)− L(W ⊙B; D, Bk,i = 1)|.

(3)

If we ignore the first-order remainder R1(Bk,i = 0), then:

∆L(Wk,i) ≈ | ∂L
∂(W ⊙B)k,i

Wk,i|. (4)

Similarly, if we consider reviving a currently removed weight Wk,j back, the loss change
∆L(Wk,j) = 0 can be derived as:

∆L(Wk,j) = |L(W ⊙B; D, Bk,j = 1)− L(W ⊙B; D, Bk,j = 0)|

≈ |L(W ⊙B; D, Bk,i = 0)− ∂L
∂(W ⊙B)k,j

(
0− (0− η

∂L
∂(W ⊙B)k,j

)

)
+R1(Bk,i = 1)− L(W ⊙B; D, Bk,i = 0)|

≈ η

(
∂L

∂(W ⊙B)k,j

)2

,

(5)

where η is the current learning rate. Based on the preceding derivation, we can articulate the following
conclusions. On one hand, Eq. (4) tells that for the preserved weights, pruning those with comparably
minor ∆L(Wk,i) ensures the loss does not undergo notable alterations. This perspective concurs with
traditional network sparsity knowledge (Molchanov et al., 2017; Zhang et al., 2023a). Conversely,
considering the presently pruned weights, their revival will invariably benefit the minimization of loss
as observed in the derivation of Eq. (5). Simultaneously, it bears mentioning that restoring weights
with significantly larger ∆L(Wk,i) will induce the most substantial degree of loss mitigation.

Therefore, at each mask adaption cycle, we first calculate the loss-aware metric ∆L(Wk,:) of all
weights in an N:M block using Eq. (4) and Eq. (5). Then, we adapt the mask of weights as follows:

B̄k,m =

{
0, if ∆L(Wk,j) < Top(∆L(Wk,:),M - N),
1, otherwise, (6)

where m = 1, 2, ...,M and B̄ is the updated mask. Such mask adaptation perceptively prune-and-
revive weights by looking at the effects imparted on the loss, conducting an inclusive ranking within
each N:M block. Paradoxically, preceding arts that mandates the pruning of lowest magnitude
weights while refurbishing those with highest gradients (Evci et al., 2020; Zhang et al., 2023a),
although justified when executed across the entire weight matrix, may potentially be harmful for N:M
sparsity with limited amount of weights in each block. To explain, the increment to the loss prompted
by restored weights could indeed be considerably less than the disturbance to the loss distribution
induced by pruned weights. Hence, our proposed LMA effectively realizes loss-aware optimization
of sparse typologies.

It is also noteworthy that LMA necessitates the computation of dense gradients only intermittently,
every ∆T iterations, while primarily conducting truly sparse training and weight updates at other
times. This starkly contrasts previous N:M sparse training methods (Zhou et al., 2021; Fang et al.,
2022; Zhang et al., 2023b), which obligate the calculation and storage of full gradients at each stage
of optimization, culminating in a significantly greater training impedance relative to LMA.
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Figure 2: Sparse Architecture Divergence (SAD) of N:M blocks during training 2:4, 1:4, and 1:16
sparse ResNet-50 on ImageNet. The majority of blocks remain under minimal mask variation, yet a
minority experience frequent mask oscillations.

3.3 OSCILLATION-AWARE BLOCK FREEZING

Other than LMA which enables efficient mask adaption inner each N:M block, we further stabilize
the N:M sparse training process by oscillation-aware block freezing (OBF). The impetus behind OBF
stems from our observations of the high-frequency mask fluctuation for each block across different
LMA cycles. In particular, we employ the Sparse Architecture Divergence (SAD) (Zhou et al., 2021)
to calculate mask fluctuation at c-th and c+ 1-th LMA cycle as follows:

SAD(Bc−1
k ,Bc

k) =

M∑
m=1

|Bc−1
k,m −Bc

k,m|, (7)

where Bc
k denote the k-th block’s mask at c-th LMA cycle. In Figure 2, we show the accumulated

SAD score of different N:M blocks during N:M sparse training. The observation reveals a significantly
higher frequency of mask alterations occurring in a certain number of blocks compared to others.
On reflecting upon the primary intent of LMA, the apex aim during the LMA process constitutes
the pruning of weights of lesser magnitude, making way for the revival of a more significant one,
thereby pinpointing an enhanced position while ensuring consistent training thereafter. Nevertheless,
some blocks endure recurrent deviations, alternately zeroing the weights, unquestionably inducing
oscillations in loss, and thereby impeding network training. Consequently, we harness the capabilities
of Exponential Moving Average (EMA) to accumulate the episodes of mask perturbations across each
block, electing those exhibiting lesser fluctuations for mask evolution, thereby ensuring stabilized
optimization for the N:M sparse network during the course of training. Concretely, we devise a vector
O ∈ RK , equivalent in magnitude to the count of blocks, devised for logging the frequency of mask
alterations, as

Oc
k = γ Oc−1

k + (1− γ) SAD(Bc−1
k ,Bc

k), (8)

where γ is the momentum of EMA updating. Then, we restrict a β proportion of N:M blocks with
the highest oscillation frequency from being updated by LMA as:

Bc
k,m =

{
Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋),

B̄c
k,m, otherwise.

(9)

Furthermore, within the mask adaptation selection of LMA, the occurrence of gradients is sporadic,
implying the prospect of a particularly extraordinary gradient for a specified weight at a given stage.
This could conceivably prompt an incorrect pruning of a substantial weight, thereby precipitating a
noteworthy effect on network performance. Consequently, we confine LMA to transpire solely within
weight blocks of lesser magnitudes to circumvent such inadvertent erroneous mask adaptations.

Bc
k,m =

{
Bc−1

k,m, if Oc
k > Top(Oc, ⌊β · k⌋) and ||Wc

k||2 > Top(Ŵc, ⌊α · k⌋),
B̄c

k,m, otherwise,
(10)

where Ŵc
k = ||Wc

k||2, k = 1, 2, ...,K. For the implementation of BAME, we follow Jayakumar
et al. (2020) to perform a three-step sparse training pipline, with Ti and Tf evenly divides the training
schedule. In particular, we first employ gradual pruning (Zhu & Gupta, 2017) to set the non-zeros
parameters budget linearly decreased from M to the targeted N of each block in the early Ti iterations,
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Algorithm 1: Block-aware Mask Evolution for N:M Sparse Training.
Require : Weights W; Loss function L; Initial and final iterations for performing mask

evolution ti and tf ; Update interval ∆T.
Output : Sparse weights W̄

1 for t ∈ [ti, . . . , tf ] do
2 if t % ∆T == 0 then
3 Calculate ∆L(W) via Eq. (4) and Eq. (5)
4 Obtain the adapted mask B̄ via Eq. (6) // Loss-aware mask adaption
5 Get the restricted mask B via Eq. (9) // Oscillation-aware freezing
6 end
7 W̄ = W ⊙B // Apply binary mask to the weights
8 Sparse Forward and backward propagation
9 end

Table 1: Results for sparsifying ResNet-32 and MobileNet-V2 on CIFAR-10.

Model Method N:M Top-1 Epochs FLOPs
Pattern Accuarcy (%) (Train) (Train)

ResNet-32 Baseline - 94.52 300 1×(3.15e16)
ResNet-32 ASP 2:4 94.68 600 1.5×
ResNet-32 SR-STE 2:4 94.52 300 0.83×
ResNet-32 LBC 2:4 94.81 300 0.72×
ResNet-32 BAME(ours) 2:4 94.99 300 0.63×
ResNet-32 SR-STE 1:4 94.52 300 0.74×
ResNet-32 Bi-Mask 1:4 94.43 300 0.49×
ResNet-32 BAME(ours) 1:4 94.71 300 0.39×
ResNet-32 SR-STE 1:16 92.92 300 0.67×
ResNet-32 Bi-Mask 1:16 92.77 300 0.37×
ResNet-32 BAME(ours) 1:16 93.15 300 0.29×

MobileNet-V2 Baseline - 94.55 300 1×(1.41e17)
MobileNet-V2 SR-STE 1:16 93.14 300 0.67×
MobileNet-V2 Bi-Mask 1:16 92.48 300 0.37×
MobileNet-V2 BAME(ours) 1:16 93.32 300 0.29×

which is shown to be effective for performance retention. Then, we perform BAME to find the best
N:M mask from Ti to Tf . At last, we set the masks all freeze and conduct static training for the N:M
sparse network within the remained iterations. The workflow for performing BAME for N:M sparse
training is outlined in Alg. 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets and Networks. We validate the effectiveness of BAME by using it to train N:M sparse
networks on image classification tasks on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-1K
datasets (Deng et al., 2009). For the networks, we sparsify ResNet-32 (He et al., 2016), MobileNet-V2
on CIFAR-10 dataset, and ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016), DeiT-small on
ImageNet-1K dataset.

Implementation Details. We train N:M sparse networks from scratch via the Stochastic Gradient
Descent (SGD) optimizer, paired with a momentum of 0.9 and a batch size of 256. The initial
learning rate is set to 0.1 and gradually decayed based on the cosine annealing scheduler. Following
previous works, we train all networks for 300 epochs on CIFAR-10, with a weight decay of 0.005. On
ImageNet, 120 epochs are given for ResNet and 300 epochs for DeiT-small. For the implementation
of BAME, we set the LMA update interval ∆T = 100 and 0.5 for both α and β in OBF. ALL
experiments are implemented based on PyTorch and executed on NVIDIA Tesla A100 GPUs.

7
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Table 2: Results for sparsifying ResNet-50 and DeiT-small on ImageNet.

Model Method N:M Top-1 Epochs FLOPs
Pattern Accuarcy (%) (Train) (Train)

ResNet-50 Baseline - 77.1 120 1×(3.2e18)
ResNet-50 ASP 2:4 76.8 200 1.24×
ResNet-50 SR-STE 2:4 77.0 120 0.83×
ResNet-50 LBC 2:4 77.2 120 0.72×
ResNet-50 BAME(ours) 2:4 77.4 120 0.63×
ResNet-50 SR-STE 1:4 75.3 120 0.74×
ResNet-50 Bi-Mask 1:4 75.6 120 0.49×
ResNet-50 BAME(ours) 1:4 76.1 120 0.39×
ResNet-50 SR-STE 1:16 71.5 120 0.69×
ResNet-50 Bi-Mask 1:16 71.5 120 0.37×
ResNet-50 BAME(ours) 1:16 72.0 120 0.29×
DeiT-small Baseline - 79.8 300 1x(8.9e18)
DeiT-small SR-STE 2:4 79.6 300 0.83×
DeiT-small Bi-Mask 2:4 79.4 300 0.72×
DeiT-small BAME(ours) 2:4 79.7 300 0.63×

Performance Metrics and Baselines. We juxtapose BAME with several state-of-the-art N:M
sparsity methods, including ASP (Nvidia, 2020), SR-STE (Zhou et al., 2021), LBC (Zhang et al.,
2022), Bi-Mask (Zhang et al., 2023b). We experiment with a wide range of N:M patterns for
comparison, including 2:4, 1:4, and 1:16. We report the Top-1 accuracy, the training/inference
float-point operations (FLOPs) and parameter burden of N:M sparse networks.

4.2 IMAGE CLASSIFICATION

CIFAR-10. We first evaluate the efficacy of BAME for training sparse ResNet-32 and MobileNet-V2
on the CIFAR-10 dataset, which includes 50,000 training images and 10,000 validation images
within 10 classes. Tab 1 showcases the performance comparison under different N:M patterns.
BAME achieves state-of-the-art accuracy at all scenarios, even utilizing far fewer training FLOPs
and parameters compared with other methods. For instance, BAME achieves 94.71% top-1 accuracy
when training 1:4 sparse ResNet-32, surpassing the recent baseline Bi-Mask that also pursues efficient
backward propagation by 0.28%. Moreover, even compared with SR-STE which conducts dense
gradient calculation training, BAME still achieves better performance retention for all N:M patterns
even with sparse backward propagation. For example, when training 1:16 sparse MobileNet-V2,
BAME yields 93.32 top-1 accuracy, surpassing SR-STE by 0.18% while only using 0.29% training
FLOPs (0.67% for SR-STE).

ImageNet. For the large-scale ImageNet-1K dataset that contains over 1.2 million images for training
and 50,000 images for validation in 1,000 categories, we first present the quantitative results for
training sparse ResNet with depths of 18 and 50, along with DeiT-small in Table 2. Again, BAME
substantially enlarges the performance of existing methods at all testing scenarios, with the minimum
training FLOPs by efficient weight pruning and growing. For instance, it surpasses SR-STE by 0.5%
Top-1 accuracy when training 1:4 sparse ResNet-50 (76.1% for BAME and 75.3% for SR-STE), while
consumes far fewer training FLOPs (0.39× for BAME and 0.74× for SR-STE). When juxtaposed
with Bi-Mask which also focuses on training efficiency, BAME still lead to better performance at
all N:M patterns. It is also worth mentioning that BAME holds its advantages when training sparse
DeiT-small compared with other methods, demonstrating its scalability for other types of model
structures beyond convolution neural networks. These results demonstrated the efficacy of BAME for
performing loss-aware mask adaption to efficiently locate the best N:M mask during training.

4.3 PERFORMANCE ANALYSIS

In this section, we conduct performance analysis of BAME, including its main components and the
hyper-parameters setting. All experiments are based on training 1:16 ResNet-32 on CIFAR-10.
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Figure 3: Results for applying different hyper-
parameters to BAME.

Table 3: Results for applying different sparse
training schedule to BAME.

ti tf Top-1 FLOPs
Accuracy (%) (Train)

0 100 91.87 0.07×
0 200 92.57 0.07×
0 300 92.22 0.07×

100 300 92.81 0.29×
200 300 93.05 0.41×
100 200 93.15 0.29×

Hyper-parameters. We first investigate the influence of hyper-parameters within BAME, including
the two restriction factors α and β, and the updating interval ∆T . As shown in Fig.3, the best
performance is obtained with ∆T = 100, α = 0.5, β = 0.5. To analyze, smaller α and β, larger ϵ
all lead to an insufficient procedure for mask exploration during the training schedule. Setting these
hyper-parameters in the contrast direction, also resulted in poor performance, which fits into our
claim that high frequency of mask oscillations can unavoidably harm the training stability and lead to
sub-optimal results. Nevertheless, it serves as a promising directions to automatically perform N:M
sparse training without hyper-parameter choosen.

Training Schedule. Further, we analyze the training schedule of BAME, i.e, ti and tf for stooping the
gradual pruning and performing mask adaption. Tab. 3 delineates the quantitative results. Intuitively,
establishing a larger ti indicates an increase in training iterations for pre-training with a gradual
attainment of the desired sparsity level. Though this consequently induces a significant training
cost, neglecting gradual pruning simultaneously results in a considerable performance reduction. To
explain, the randomly-initialized weights require a certain degree of pre-training to initiate an effective
importance selection, which is validated in traditional sparsity work (Liu et al., 2021; Jayakumar et al.,
2020). Regarding the mask adaptation schedule, prematurely halting BAME leads to a performance
downturn due to inadequate identification of the optimal mask. In stark contrast, prolonging BAME
until the termination of training, that is, designating tf to the final iteration, results in an even more
precipitous performance degradation. To explain, the freshly grown weights, initialized to zeros as
per Alg. 1, mandate substantial training following restoration to enhance the performance of the
sparse network.

Table 4: Ablation study of BAME.

Method Top-1
Accuracy (%)

Stastic 90.03
RigL 92.01
LMA 92.98

LMA+OBF 93.15

Mask Adaption. At last, we investigate the effectiveness of
our mask adaption methods including LMA and OBF. We set
static training as the baseline, which means the binary masks
are randomly initialized and kept frozen during the entire sparse
training procedure. In addition, we run RigL (Evci et al., 2020),
a representative method for tradition network sparse training
that take weight magnitude and gradient for pruning and re-
viving, respectively. As shown in Tab. 4, both LMA and OBF
contributes to the overall or sparse training performance.

5 CONCLUSION

N:M sparsity has become an increasingly crucial DNN compression tool, delivering functional speed
ups by imposing a maximum of N non-zero constituents within M consecutive weights. We introduce
BAME, a method that enhances the efficiency of the contemporary N:M sparsity methods while
preserving the model’s performance. BAME’s fundamental principle involves carrying out loss-aware
mask adaptation to prune and revitalize weights within specific N:M blocks, whilst maintaining
the stability of frequently-oscillating blocks. BAME surpasses existing methods in sparsifying
mainstream networks across various vision tasks, all while greatly reducing the training FLOPs and
the parameter strain by keeping both sparse forward and backward propagation through training.
Hopefully, BAME will not only provide practitioners with a robust N:M sparse training instrument,
but also set the groundwork for further investigations into efficient N:M sparsity.
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