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Abstract— Recent studies on Vision-Language-Action (VLA)
models have shifted from the end-to-end action-generation
paradigm toward a pipeline involving task planning followed
by action generation, demonstrating improved performance on
various complex, long-horizon manipulation tasks. However,
existing approaches vary significantly in terms of network
architectures, planning paradigms, representations, and training
data sources, making it challenging for researchers to identify
the precise sources of performance gains and components to
be further improved. To systematically investigate the impacts
of different planning paradigms and representations isolating
from network architectures and training data, in this paper,
we introduce VLA-OS, a unified VLA architecture series
capable of various task planning paradigms, and design a
comprehensive suite of controlled experiments across diverse
object categories (rigid and deformable), visual modalities
(2D and 3D), environments (simulation and real-world), and
end-effectors (grippers and dexterous hands). Our results
demonstrate that: 1) visually grounded planning representations
are generally better than language planning representations;
2) the Hierarchical-VLA paradigm generally achieves superior
or comparable performance than other paradigms on task
performance, pretraining, generalization ability, scalability, and
continual learning ability, albeit at the cost of slower training
and inference speeds. Experiment results are in https://nus-lins-
lab.github.io/vlaos/.

I. INTRODUCTION

Building intelligent and generalizable robots capable of
perceiving, reasoning about, and interacting with physical
environments remains a persistent challenge in the robotics
community [1], [2]. Recent studies have increasingly em-
phasized the development of foundational models for robot
manipulation tasks by training large Vision-Language-Action
models (VLASs) on extensive datasets [3], [4], [5], [6], [7],
[8], [9], [10]. Different from end-to-end foundation models
in computer vision [11], [12], [13] and natural language
processing tasks [14], [15], [16], recent studies of VLAs
have shifted toward a new paradigm capable of performing
task planning and policy learning either simultaneously
or sequentially [17], [18], [19], [20], [21], [22], [23], [4].
This shift arises from the inherent complexity of robotic
manipulation tasks, which naturally exhibit hierarchical
structures involving both high-level task planning and low-
level physical interactions [24]. Compared to end-to-end
VLAs that only generate actions, these methods demonstrate
stronger capabilities in task reasoning and comprehension for
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long-horizon tasks [25], [4], better success rates [18], [20],
and higher sample efficiency [26], [19], [27].

However, current task-planning approaches in VLA are
mainly based on intuitive designs and lack fair and systematic
comparisons, as these methods vary along multiple dimen-
sions, including network architectures, planning paradigms,
data representations, and training data sources. This makes it
difficult for researchers to clearly identify which specific
component contributes to performance gains or requires
further improvement, hindering progress in the field.

Among these challenges, five core questions stand out:
1) Representation: What representation should we adopt
for task planning and policy learning? Does using multiple
representations yield better results, or could they conflict
with one another? 2) Paradigm: Should we employ a
monolithic model that jointly performs task planning and
policy learning, or should we opt for a hierarchical paradigm
where two separate models handle these tasks independently?
3) Bottleneck: Between task planning and policy learning,
which presents a greater challenge for current manipulation
tasks? 4) Scalability and Pretraining: Do VLAs that incor-
porate task planning preserve the advantageous properties
of end-to-end foundation models, such as model and data
scalability, as well as benefits derived from pretraining? and
5) Performance: Do VLAs employing task planning have
better generalization and continual learning ability than end-
to-end VLAs? Addressing these questions will provide the
community with a clearer understanding of how task planning
works in VLA models, and offer empirical evidence and
guidance for future developments.

In this work, we aim to answer these questions with
systematic and controllable experiments. First, to avoid biases
introduced by specific neural network choices, we develop
VLA—OSﬂ model series: a unified and composable family
of VLA models for general-purpose manipulation tasks
capable of different task planning paradigms. Concretely,
we designed VLA-OS-A, VLA-OS-I, and VLA-OS-H that
correspond to three mainstream VLA paradigms (ActionOnly-
VLA, Integrated-VLA, Hierarchical-VLA), respectively, as
illustrated in Figure I VLA-OS series features a unified,
interchangeable VLM backbone that can be directly down-
loaded from HuggingFace, various plug-and-play planning
heads for different representations, and two different action
heads both supporting 2D/3D tasks, as shown in Figure [2]

1408 stands for “Operating System” and designates that our model family
provides unified and organized interfaces of advanced VLA architectures
with various planning heads and different paradigms for users.
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Fig. 1: Left: four different VLA paradigms. Note in this paper, we didn’t explore PlanningOnly-VLA since they usually
cannot be trained with the provided datasets and perform worse than others. Right: VLA paradigm comparison results.
Hierarchical-VLA exhibits a generally better performance than ActionOnly-VLA and Integrated-VLA, while it incurs larger
training and inference costs. This motivates future work on improving training and inference speeds for them.

We show in our experiments that VLA-OS exhibits superior
performance compared to most existing VLA methods with
fewer parameters and without pretraining.

Next, to answer the representation question, we an-
notate three kinds of task reasoning representations, in-
cluding language reasoning, visual reasoning, and goal
images, and conducted exhaustive combinatorial experiments
with Integrated-VLA and Hierarchical-VLA models on
LIBERO [28] benchmark to identify representations that
yield optimal performance. Subsequently, employing the
optimal representations identified, we conducted performance
comparisons among three VLA paradigms on six benchmarks
to answer the paradigm question, including rigid body
manipulation tasks [28], visual generalization tasks [29],
complex long-horizon tasks [30], real-world deformable
manipulation tasks, dexterous manipulation tasks [31], and
dual-arm manipulation tasks [32]. Furthermore, to answer the
bottleneck question, we designed a novel set of evaluation
metrics tailored to separately assess the performance of task
planning and policy learning parts. To answer the scalability
question, we use LIBERO [28] to test the model and data
scalability as well as the effects of pretraining among different
paradigms. And lastly, we test the generalization capabilities
and continual learning ability of different VLA paradigms to
answer the performance question.

Our experiments yield three primary findings: 1) Visually
grounded planning representations (visual reasoning and im-

age foresight planning) outperform language-based planning
representations across multiple dimensions including task
performance, generalization, training and speed, and low-level
policy execution; 2) Hierarchical-VLA matches or exceeds
the performance of Integrated-VLA and ActionOnly-VLA in
terms of task performance, generalization, scalability, plan-
ning scores, continual learning, and gains from task-planning
pretraining, albeit at the expense of increased training cost and
slower inference; 3) On LIBERO [28] benchmark tasks, policy
learning is consistently more challenging than task planning,
regardless of which planning representation is used. We
believe that our findings (as well as source codes, annotated
datasets, and checkpoints) will provide significant help and
guidance for future research within the VLA community and
the broader robotics community.

II. RELATED WORKS
A. VLA Paradigms for Robot Manipulation

a) PlanningOnly-VLA: These works leverage pretrained
LLMs or VLMs to reason and perform task planning without
generating the low-level action. They break up the given
task into simpler sub-tasks that can be performed by either
using a set of pre-trained sub-skills [33], [7], [34], [35], [36],
or outputting the parameters of pre-defined motions or cost
functions for optimization [37], [38], [39], [40], [41], [42],
[43], [44]. The problem is that their VLMs and low-level
skills usually cannot be trained with further datasets, which



frequently places them at a disadvantage compared to other
VLA paradigms capable of training on given datasets [45],
[46]. So we do not include PlanningOnly-VLA in this study.

b) ActionOnly-VLA: These works employ an end-to-
end fashion to directly map visual and language inputs to
robot actions with a multi-modal network. Pioneering works
mainly focus on verifying the effectiveness of large-scale
robot learning [47], [48], [49], [50], while later works start
to explore different model architectures, training objectives,
and extra multi-modal representations and information fusion
designs to make this paradigm more effective and efficient [3],
(6], [51, [511, [52], [53], [54], [55], [56], [57], [58], [59].
In this work, we design VLA-OS-A for this paradigm by
synthesizing several advanced model designs that have been
verified to be superior in recent works [60], [3], [57].

c) Integrated-VLA: These works use a single model to
perform task planning and policy learning simultaneously.
According to whether the action generation process is
conditioned on the planning embeddings or results, they can
be further divided into explicit planning and implicit planning.
For explicit planning, EmbodiedCoT [18] and CotVLA [17]
generate either language-based or goal-image-based embodied
chain-of-thought [61] reasoning before generating actions,
and the action generation process is conditioned on the
embeddings of CoT. For implicit planning, MDT [62] and
PIDM [23] use goal image foresight generation loss as an
auxiliary objective for planning, while RoboBrain [26] and
ChatVLA [25] train VLA with auxiliary task reasoning loss
in language representations. Some recent works also seek
to use latent action tokens [63], [64], [65], [66], [67] that
serve as forward dynamics representations to generate future
images as image foresight planning, and decode these latent
actions to real actions with another action head. The inputs to
the action head are from the VLM encoder, and they do not
need the planning heads (decoder) during inference [63], [64],
[65], [66] or they only need one planning forward pass [67],
so we also see these methods as implicit planning. In this
work, we design VLA-OS-I for this paradigm with various
plug-and-play planning heads upon VLA-OS-A for different
planning representations.

d) Hierarchical-VLA: These works use two separate
models for task planning and policy learning, with no
connection or gradient between them. The idea of hierarchical
models has always existed in robotics research [43], [44],
[27], [68], [69]. RT-H [22] is the first work of this paradigm,
where they use two identical VLMs to generate languages
and actions respectively. Later works [20], [70], [4] also
follow this idea but use different model architectures for
task planning and action generation. Other works seek to
generate multi-modal planning results for policy learning,
such as image flows or trajectories [71], [19], [21], future
videos [72], [73], affordance [74], [75], keypose [76], and
keypoints [77]. In this work, we design VLA-OS-H for them.
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Fig. 2: The VLA-OS model family. Left: the VLM and the
composable heads. Our VLM has the same architecture with
different numbers of parameters. Although we only draw
Qwen2.5 here, our code supports any kind of LLM backbone
from HuggingFace. Right: four VLA-OS architectures used in
our experiments. To minimize the effects of different numbers
of parameters in different models, we restrict the number of
parameters of all heads to about 5% of the VLM.

III. VLA-OS MODEL FAMILY DESIGN

A. Preliminaries

We study imitation learning for robot manipulation tasks.
Specifically, for each task .7, we assume a set of demon-
strations 27 = {(o},a}),(0?,a?),--- ,(oiT",aiT")}{\’:l and a lan-
guage goal are given, where 7; is the episode length, o
is the observation, a is the robot action, and N is the
number of demonstrations. We use a history of multi-view
images and proprioception information as observations. In
this work, we set the image resolution as 224 x 224. For
actions, we use a normalized continuous delta end-effector
pose 0, action space and gripper open/close action ¢ for
training. We also let the policy generate action chunks, i.e.,
ar = ([8p, 0], ,[8,,0)"FL~1). For dexterous hands, we use
the delta joint values as the action space. We train the policy
with either flow matching [78], [79] loss (for multi-modal
demonstration datasets) or L1 loss (for simple and uni-modal
demonstration datasets) under the suggestion of previous
works [80], [3], [57], [60].

B. VLA-OS-A for ActionOnly-VLA Paradigm

VLA-OS-A model series directly generates actions without
task planning stages. It is also used as the base model for
other paradigms. We design a block-wise causal attention
VLA drawing inspiration from [3], as shown in Figure 2| First,
a VLM encodes the visual and language inputs, where the
vision encoder will encode input image patches and project
them into language embedding space with an MLP. Then,
we use a separate set of weights as an action head for the
robotics-specific tokens (action and proprioception states).
The action head is a transformer decoder that has the same
number of layers as the LLM, and for each layer, the queries
of the proprioception tokens can attend to both the keys and
values from the LLM and the proprioception keys and values,
and the queries of the action tokens can attend to the keys and
values from the LLM, proprioception tokens, and themselves.
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C. VLA-OS-I for Integrated-VLA Paradigm

To perform task planning with different kinds of repre-
sentations, we design three kinds of task planning heads for
VLA-OS. We first annotate three kinds of task reasoning
datasets corresponding to each planning representation, as
shown in Figure [3] Details of the dataset can be found on
our website.

We then design language planning head, visual planning
head, and image foresight planning head for each kind
of representation, as shown in Figure |Z[ All of them are
transformers that have the same number of layers with the
LLM backbone, and use the block-wise causal attention
mechanism to acquire the keys and values from each layer
of the LLM backbone as conditions. The language planning
head uses the LLM’s tokenizer for decoding, whereas the
visual planning head uses an extended tokenizer vocabulary to
predict location tokens. The image foresight planning head is
an autoregressive image generation model similar to the recent
SOTA image generator [81]. It auto-regressively generates the
image in a coarse-to-fine paradigm proposed by VAR [82].
The language and visual planning heads are trained with
cross-entropy loss, while the image foresight planning head
is trained with the special loss in [81].

D. VLA-OS-H for Hierarchical-VLA Paradigm

This model uses two networks for task planning and policy
learning respectively. As shown in Figure 2] we use the
VLM together with planning heads for task planning, and
modify the action head to an encoder-decoder transformer for
policy learning. This action head can take as input the images,
proprioception observations, and the planning representations
to generate actions. To keep the comparison fair, we make the
layer of the encoder and decoder of the action head half of
the other two VLA-OS paradigms. We also give frozen image
features from AM-Radio [83] and language features from
Qwen2.5 [16] for the inputs of the action head to compensate

for deficiencies in visual and linguistic features not captured
by the VLM. Training details are on our website.

IV. EXPERIMENTS AND FINDINGS

In this section, we perform systematic and controllable
experiments with the VLA-OS model series on various
manipulation tasks to answer the research questions in Section
I Detailed experimental settings are on our website. All
models are trained on 8 xNVIDIA A100 80G GPUs.

V. CONCLUSION AND LIMITATION

We provide a systematic investigation across different
VLA paradigms and task planning representations through
various kinds of manipulation tasks. Experiments show the
superiority of visually grounded planning representations and
the Hierarchical-VLA paradigm. Specifically, our findings
can be summarized as follows:

1. The time has not yet come to scale up VLA model sizes.

2. Visually grounded representations (visual and image
foresight) are better than language planning representa-
tions in terms of success rates, low-level following, and
continual learning.

3. Integrated-VLA and Hierarchical-VLA outperform
ActionOnly-VLA on task performance and generalization
ability, but incur faster forgetting.

4. Integrated-VLA and Hierarchical-VLA perform compara-
bly on task performance and Planning Head Pretraining,
but Hierarchical-VLA generalizes better and has better
task-planning performance.

5. All VLA paradigms have the data scalability. For tasks
trained from scratch with roughly 5,000 demonstrations,
the LLM backbone should be limited to 0.5B parameters,
or keeping the total model size under 1B parameters.

We believe our findings offer meaningful insights that
can inform future research in VLA and the broader robotics
community. We recommend the following research directions
for the community based on our findings:

1. Why are visually grounded representations better than
language?

2. How to avoid gradient conflict between planning head
losses and action head losses on the VLM backbone?
This is because that in both explicit v.s. implicit and
Hierarchical v.s. Integrated comparisons, reducing the
influence of action head training on VLM improves the
performance.

3. How to design network architectures to effectively
extract information from VLM? There could be better
mechanism than the current KV extraction method.

4. How to design faster planning heads for autoregressive
planning heads?

5. How to design better low-level action heads with better
planning-following ability?

6. How to construct large-scale task planning datasets for
VLA? How to transfer current datasets to task planning
datasets? This is because that our finding 6 shows that
task planning pretraining is useful.
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