This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SparseLaneSTP: Leveraging Spatio-Temporal Priors with Sparse Transformers
for 3D Lane Detection

Maximilian Pittner"-2, Joel Janai', Mario Faigle*!*, Alexandru Paul Condurache'-?
"Bosch Mobility Solutions, Robert Bosch GmbH
2Institute of Neuro- and Bioinformatics, University of Liibeck
3Institute for Signal Processing and System Theory, University of Stuttgart

{Maximilian.Pittner, Joel.Janai, Mario.Faigle, AlexandruPaul.Condurache}@de.bosch.com

Abstract

3D lane detection has emerged as a critical challenge in au-
tonomous driving, encompassing identification and local-
ization of lane markings and the 3D road surface. Con-
ventional 3D methods detect lanes from dense birds-eye-
viewed (BEV) features, though erroneous transformations
often result in a poor feature representation misaligned with
the true 3D road surface. While recent sparse lane detec-
tors have surpassed dense BEV approaches, they completely
disregard valuable lane-specific priors. Furthermore, exist-
ing methods fail to utilize historic lane observations, which
vield the potential to resolve ambiguities in situations of
poor visibility. To address these challenges, we present
SparseLaneSTP, a novel method that integrates both geo-
metric properties of the lane structure and temporal infor-
mation into a sparse lane transformer. It introduces a new
lane-specific spatio-temporal attention mechanism, a con-
tinuous lane representation tailored for sparse architectures
as well as temporal regularization.

Identifying weaknesses of existing 3D lane datasets, we
also introduce a precise and consistent 3D lane dataset us-
ing a simple yet effective auto-labeling strategy. Our exper-
imental section proves the benefits of our contributions and
demonstrates state-of-the-art performance across all detec-
tion and error metrics on existing 3D lane detection bench-
marks as well as on our novel dataset.

1. Introduction

Accurate and robust 3D lane detection forms a pivotal task
in autonomous driving addressing safe and reliable identi-
fication and localization of the road surface and lane mark-
ings. While significant progress has been made in 2D lane
detection [10, 13, 17-19, 21, 35, 36, 40, 41, 46, 48, 55], the
prediction output is only provided in image space lacking

*Work done in context of master’s thesis at Bosch.

depth information, which is crucial for autonomous nav-
igation in the 3D world. In contrast, 3D lane detection
jointly estimates lane markings and the road surface, di-
rectly producing 3D lanes in a vehicle-centered coordinate
system. Conventional methods operate on dense feature
maps that are transformed from the front-viewed (FV) to
the birds-eye-viewed (BEV) perspective using inverse per-
spective mapping (IPM) [9, 11, 38] or learned mappings
[6, 39, 49]. Although this step yields a suitable interme-
diate representation to capture the road, potential errors in
the transformation cause misalignment between the result-
ing BEV and the true road surface that can hardly be com-
pensated in the subsequent lane estimation step.

As opposed to this two-stage approach, sparse detection
methods have gained popularity in object detection [34] and
have recently been adapted to 3D lane detection [2, 31].
These methods model 3D lane points as queries and asso-
ciate them with uncorrupted FV image features - avoiding
the necessity of error-prone BEV representations. Queries
composed of learned context embedding vectors are inte-
grated into transformer architectures [3, 54] leveraging their
ability to learn global context. However, current approaches
completely ignore valuable well-known priors about lane
and road geometry. Spatial priors have already been uti-
lized in [39]. Based on lane continuity and other properties
like line parallelism, a continuous lane representation was
introduced together with an efficient regularization. Despite
notable advances brought by this approach, the architecture
is based on dense BEV representations and the proposed
priors have not been successfully customized for sparse ar-
chitectures. Another class of prior knowledge is grounded
in the history of observations. Among various temporal fu-
sion paradigms, object-centric query propagation [50] has
recently been proposed for 3D object detection in sparse
architectures. In lane detection, temporal information has
the potential to resolve ambiguities, particularly in scenar-
ios with limited visibility or occlusions. Though, it has not
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been applied effectively so far.

We therefore present a new method SparseLaneSTP that
combines spatial and temporal priors with a sparse 3D lane
transformer architecture. Our model features a transformer-
tailored continuous lane representation providing smooth
curves directly. This, combined with robust regularization
using additional spatial and temporal objectives, enables the
model to learn regression and visibility estimation more ac-
curately. Additionally, spatial and temporal knowledge is
integrated into the attention mechanism in a novel way. In-
stead of standard global self-attention, we design the layers
to focus on relevant relations based on lane-structure. Fi-
nally, lane queries are temporally propagated and incorpo-
rated into the attention to leverage valuable historic keys.

On top of that, we provide a novel 3D lane dataset us-
ing a simple yet efficient auto-labeling pipeline. Existing
datasets often yield inaccurate labels containing noise and
outliers, particularly in the far-range, since they rely on Li-
DAR to recover 3D information. Our auto-labeling instead
uses temporal aggregation along video-sequences resulting
in consistent and accurate 3D lane labels up to 250 meters,
making a valuable contribution to the research community.
Our contributions can be summarized as follows:

* We present a novel 3D lane detector that integrates spatial
and temporal knowledge into a sparse transformer.

* We propose a new attention mechanism that focuses on
learning lane-structure and successfully leverages tempo-
ral keys from past lane observations.

* We formulate a continuous lane representation tailored
for sparse architectures and a temporal regularization.

¢ Our method achieves state-of-the-art performance on all
3D lane benchmarks.

* We provide a new dataset for 3D lane detection providing
accurate and consistent long-range labels.

2. Related work

Dense BEV vs. sparse query-based detection. A com-
mon strategy in 3D lane detection involves operating on an
intermediate dense BEV representation generated from the
FV. Early methods, such as 3D-LaneNet [9], GenLaneNet
[11] and 3D-SpLineNet [38], applied IPM to project FV
features onto a flat ground plane. However, the assump-
tion of a perfectly flat road is often violated, leading to
degraded BEV features. Alternatively, methods from re-
lated fields like 3D object detection [14, 15, 23] and BEV
segmentation [37] proposed to learn the BEV representa-
tion. These concepts were applied to 3D lane detection
with PersFormer [6] leveraging deformable cross-attention
(DCA) [54], whereas BEV-LaneDet [49] relies on simple
multi-layer perceptrons (MLPs). LaneCPP [39] incorpo-
rates surface priors to learn 3D features using depth clas-
sification inspired by Lift-Splat-Shoot (LSS) [37]. Despite
these advancements, all methods remain constrained by an

intermediate error-prone BEV representation.

In contrast, sparse methods based on DETR [3, 54] avoid
BEV representation by modeling 3D objects as queries that
exchange information via attention mechanisms. In 3D ob-
ject detection, 3D position-aware object queries were in-
troduced that are directly associated with the perspective
view through DCA [26, 34]. Similarly, in 3D lane detection,
CurveFormer [2] adapts the sparse query design to lanes us-
ing polynomial-based curve queries, though these lack the
flexibility to capture diverse lane structures in real-world
scenarios. LATR [31] refines this approach by representing
lanes as individual points but fails to incorporate crucial pri-
ors in both the attention mechanism and lane representation.

Priors in lane detection. An indisputable property about
lanes lies in their smoothness and continuity. Several meth-
ods have proposed continuous lane representations in both
2D [8, 29, 47] and 3D [2, 28, 38, 39] lane detection. In con-
trast to discrete approaches [6, 9, 11, 16, 49], continuous
methods directly provide smooth curves, requiring almost
no post-processing and exploit the entire available dense
ground truth during training [38, 39]. While CLGO [28] and
CurveFormer [2] use simple polynomials, 3D-SpLineNet
[38] and LaneCPP [39] use a B-Spline [7] representation,
which offers local control over curve segments enabling it
to model complex shapes. Additionally, lane structures ex-
hibit inherent properties, such as parallelism between lanes.
E.g. SGNet [44] introduces a penalty term to enforce a fixed
lane width, but assumes a flat ground plane. GP [20] em-
ploys a parallelism loss to maintain a constant local dis-
tance between neighboring points, though its effectiveness
is influenced by the number of anchor points used. In con-
trast, LaneCPP [39] demonstrates a more elegant way to en-
courage parallelism as well as other spatial properties like
surface smoothness and curvature restriction using regular-
ization losses. Motivated by LaneCPP, we propose a more
suitable Catmull-Rom spline [4] representation tailored for
the transformer’s attention with sparse queries. We further
present more sophisticated loss formulations and integrate
prior knowledge into the transformer attention mechanism
enhancing the focus on relevant relations. While a concur-
rent work also uses priors in attention [5], our approach fo-
cuses on explicit modeling of structural lane relations and
even effectively incorporates temporal knowledge in lane
detection for the first time.

Temporal modeling. Another source of prior knowledge
is grounded in the history of observations. For video-based
3D object detection various approaches exist to model tem-
poral interactions. BEV-based methods [23] transform past
BEV features according to the ego-motion and fuse them
with the current representation. More advanced perspec-
tive view (PV) methods [26, 30, 32] instead follow the
sparse query design but require storing dense historic PV
feature maps to interact with object queries. Recently,
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Figure 1. Overview of our method SparseLaneSTP. Sparse lane queries are processed by a transformer integrating temporal knowledge
and spatial lane structure priors in a novel spatio-temporal attention. Based on these priors, we formulate spatial and temporally consistent
regularization. Finally, our network predicts control points defining our new continuous 3D lane representation.

object-centric temporal modeling [27, 50] has been pro-
posed, which only stores sparse historic object queries and
propagates them according to ego- and object-motion in 3D
space. In particular, Sparse4Dv2 [27] and StreamPETR
[50] leverage the sparse query design and model object
queries as hidden states of a transformer, where the relation
between current and historic queries is learned via attention.
In 3D lane detection, only few approaches exist that
use temporal modeling. STLane3D [51] follows a BEV-
based method, PETRv2 [30] fuses historic PV features to-
gether with propagated 3D positional embeddings. On the
other hand, Anchor3DLane-T [16] leverages temporal in-
formation by associating 3D anchors from the current frame
with features from previous frames. In contrast, our sparse
query-based architecture is more suitable for the effective
memory-efficient object-centric paradigm. Consequently,
we propose a temporal attention mechanism inspired by
[27, 50], which exploits lane-specific properties by reinforc-
ing most relevant query interactions. The static nature of
lane markings also allows us to formulate regularization to
encourage temporally consistent perception behavior.

3. Methodology

In the following, we describe our 3D lane detection method
illustrated in Fig. 1. Given an image I, the model pre-
dicts a set of N lanes as continuous curves in 3D space,
parameterized by our novel tailored spline representation
with M control points P (see Section 3.1) and lane cate-
gories C. The core component of our architecture is the
transformer decoder, where each control point, inspired by
sparse query design, is paired with a learned context embed-
ding and is iteratively processed through L decoder layers.

20 -15-10 -5 0
x

(b) BEV

(a) Front-view

Figure 2. CR spline and B-Spline control points in comparison,
both fit to the ground truth. B-Spline control points do not align
with the curve and are therefore not suiting the sparse query de-
sign, whereas CR control points exactly match curve geometry.

In contrast to previous work [2, 24, 31] that simply adapt
the DETR [3, 54] framework, our transformer architecture
introduces a novel spatio-temporal attention layer to cap-
ture spatial intra- and inter-lane relations, while a tempo-
ral cross-attention mechanism integrates past observations
via propagated lane queries from a memory queue. Finally,
besides standard detection losses, our model is cautiously
regularized by spatial and temporal objectives to enhance
robust and consistent detection behavior.

3.1. 3D lane representation

For the 3D lane representation, we take inspiration from
prior work [38, 39] that demonstrated significant benefits
of continuous curves. In these frameworks, the model out-
put serves as control points of B-Spline curves that do not
necessarily align with the curve geometry. However, using
the sparse query design, the 3D position of control points
serve as the model’s internal state and should therefore cor-
respond to the exact 3D position of lane points. Thus, spline
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control points should directly lie on the curve, which is not
the case for B-Splines (see Fig. 2). Therefore, we choose
Catmull-Rom (CR) splines [4], a class of piece-wise defined
smooth third-order polynomial splines, for which the curve
inherently passes through its control points.

We adapt this spline-model to define a curve represen-
tation f;(s) € R* representing the entire " line proposal
parameterized by M control points with 3 spatial (x5, ¥,
z;;) and 1 visibility (v;;) dimension as

fZ(S) = [83 s2 s 1] -Mcr - P;  with @))

Ti1 Yi1 Zil (%31
P, =[PpPuil= | zi; wij 25 vij |, 2
TiM  YiM  ZiM UiM

with curve argument s € [0, 1]. P; € RM*4 denotes the
control point matrix composed of P3p; € RM*3 defining
the curve 3D shape and visibility P, ; € RM*1, [.|.] is the
concatenation operator and Mg the CR coefficient matrix.
Note that we can eventually express the curve computation
as a simple matrix multiplication between the pre-computed
spline arguments and the entire predicted control points P.

3.2. Overall architecture

Backbone and query initialization. The RGB input image
I € RFXWX3 is first processed by a CNN backbone (e.g.
ResNet [12]) to extract image features of F € RHFxWrxC
where C' is the channel size. Similar to [31], we then feed
F through a lane instance segmentation branch to obtain
initial query embedding vectors °Q € RV*Mx*C where N
denotes the number of line proposals and M the number of
spline control points. An MLP then predicts initial control
points °P € RV*Mx4 from °Q.

Transformer decoder. In each transformer decoder layer [,
queries are processed by two attention layers

'Qsta = STA("'Q, " 'P, Quiem, Priem)  (3)
'‘Qpca = DCA('Qsra, F, ''Pap), 4)

STA(:) denotes our proposed spatio-temporal attention,
which is explained in Section 3.3, and DCA(-) the stan-
dard deformable cross-attention presented in [54]. Pop are
the 2D spline control points in image coordinates resulting
from re-projecting P3p. Finally, the query embeddings are
fed through a feed-forward network Q = FFN(ZQDC A)
composed of an MLP and layer normalization.

Prediction layer. After each transformer attention layer, the
emerging query embeddings 'Q are fed through a predic-
tion layer that outputs the spline control points 'P as well
as classification probabilities C € RV*(K+1) for K lane
categories and one background class per line. Particularly,
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Figure 3. Overview of our spatio-temporal attention module.

for each layer [ and query lQij three MLPs with shared
weights among all layers are used to predict the -, z- and
v-component of the control point matrix

lPﬂU;ij = U(MLPJC(IQU)) . (xe - .1‘5) + s (5)
P =0(MLP.('Qij)) - (ze — 25) + 25 (6)
'P,i; = o(MLP,('Qyj)) (7

where the sigmoid o (-) normalizes the MLP output to [0, 1].
The start-/end- of x- and z-range /., 2,/ scales up the
normalized output to the desired range. The longitudinal y-
component le’ij is pre-defined and uniformly distributed
between y, and y. to avoid over-parameterization and po-
tential overfitting as argued in [39]. For classification, all
queries belonging to the same line proposal are averaged
and fed into an MLP followed by a softmax layer.

Finally, the formulation of our supervised losses is inspired
by [39], with L1 loss for regression of x and z, binary cross-
entropy for visibility v and focal loss [25] for classification.

3.3. Integrating spatial and temporal knowledge

Memory queue. To facilitate attention to past observations,
queries are stored within a memory queue. Following a sim-
ilar approach to [50], this queue is recursively updated af-
ter each prediction step and retains queries from the past 7’
frames. Therefore, embedding vectors and their associated
control points are recursively pushed into the queue using a
first-in, first-out (FIFO) strategy, which yields

Quen = [QiN,) QN |- [Q,.)] and  ®)
Pyien = [P} [P | [PRDT, ©)

where Q' € RMWnxMxO) denotes the embedding
vectors from the Ny, most confident predictions of frame
t and Quiem € R(T"Nuen) XM *C) the fyll memory queue.

Temporal propagation. Since the model is supposed to
learn spatio-temporal context, it must incorporate the posi-
tional information of 3D control points from past frames.
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However, due to the vehicle’s ego-motion, lane positions
shift relative to the vehicle. Therefore, the 3D coordinates
of past lane control points stored in the memory queue must
be transformed according to the ego-pose E(*) of frame ¢,
which is represented as a homogeneous transformation ma-

trix. Consequently, a control point Pg-fk)%(t) propagated
from frame ¢ — k to present frame ¢ is given as
t—k)—(t t —k)  pli=Fk
Pl (B, - B PEHPINT, 10

where E;,,, denotes the inverted matrix E. Obviously, only
the geometry component is affected by the propagation,
whereas the visibility component remains unchanged. To
incorporate spatio-temporal information from propagated
control points into queries, we apply a positional encoding
(PE) based on 3D geometry and visibility (see Fig. 3). This
process yields position-informed embedding vectors

Q(t E)—=(t) _ Qi(;fk)a(t) n PE(ngk)a(t)) Can
which are processed by the spatio-temporal attention layer.
Spatio-temporal attention. Most methods [2, 31] rely
solely on global self-attention, which contains a majority of
redundant lane query interactions that can distract the model
from learning relevant context. To address this, we leverage
spatial and temporal priors, distinguishing three key rela-
tion types: intra-lane (between adjacent points on the same
lane), inter-lane (between parallel lanes), and historic (be-
tween current and past queries in the memory queue).

We therefore introduce same line attention (SLA), paral-
lel neighbor attention (PNA) and temporal cross-attention
(TCA). Applying specific masking, SLA restricts interac-
tions to queries QSL A within the same line, PNA facilitates
interactions with queries Qpna from neighboring lines, and
TCA enables interactions with closest past queries Qrca
in the memory queue (see Fig. 3). Such restriction of query
interactions reduces redundancy, encourages the model to
focus on critical lane-specific spatial context and integrates
valuable temporal information from past observations.
Regularization. Based on spatial and temporal priors we
can formulate regularization techniques that promote ro-
bust and consistent detection behavior. For the spatial reg-
ularization Lpqtiq We adopt the scheme proposed in [39]
encouraging lane parallelism, surface smoothness and sup-
pressing excessive curvature. Besides, temporal consis-
tency can be achieved by optimizing a smoothness loss

Eu = 20 120 0.0~

where ﬂ(,‘;), ;(s)or f&) (s) is an exponentially moving average
of the past predictions

)], (12)

£ =a T+ (1-a)-F"7Y (13)

with smoothing factor « € [0, 1].
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Figure 5. Examples from OpenLane compared to ours.

4. Auto-labeling and our 3D lane dataset

In this section, we describe our auto-labeling pipeline and
provide details about our new 3D lane dataset.

4.1. Auto-labeling strategy

While 3D lane datasets like OpenLane [6] and ONCE-
3DLanes [52] have contributed significantly to the field,
they possess specific shortcomings that our auto-labeling
strategy addresses. As illustrated in Fig. 5a the LiDAR-
based annotation approach, which recovers 3D information
of 2D lane labels, introduces noise and outliers, particularly
in the far range due to sparse scan points, while also pos-
ing calibration and synchronization challenges. To over-
come these limitations, we propose an automated labeling
approach (see Fig. 4) that leverages confident near-range
lane point estimates from a 2D detector, which are tem-
porally accumulated in 3D space along an accurate ego-
trajectory. More precisely, common visual odometry meth-
ods [1, 42, 43] are applied to recover the vehicle ego-
trajectory from the input video sequence. Our road surface
generator then fits a spline surface to the vehicle’s trajectory
and orientations. On the other hand, lane pseudo-labels in
image space are obtained from a state-of-the-art 2D lane de-
tector [21, 46], providing particularly reliable detection re-
sults in in the near-range. Lane and surface information are
then combined in 3D by projecting near-range detection re-
sults to the road surface and accumulating line points frame
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Figure 6. Qualitative comparison of two models, one without tem-
poral and one with temporal for three consecutive frames.

by frame along the ego-trajectory of the sequence. Finally,
we apply an accurate semantic segmentation network to au-
tomatically assign occlusion labels to each lane point.

4.2. Dataset properties

Using the approach described in 4.1, we are able to automat-
ically generate temporally consistent, high-quality 3D lane
labels in a range up to 250 m (see Fig. 5b). Besides 3D lane
geometry, we provide camera intrinsics and extrinsics, lane
categories, lane visibility information and consistent track
IDs. We further supply relational information about lanes
(like line parallelism), local 3D ego-trajectory and global
pose information for each frame. Important to mention is
also that in contrast to former datasets, our visibility infor-
mation contains occlusions caused by other traffic partici-
pants, enabling models to consistently learn lane structure
independent of interruptions and lane occlusions. We refer
to the supplementary material for additional information.

5. Experiments

In this section, we first outline our experimental setup, fol-
lowed by a comprehensive analysis of our approach on two
public and our own novel 3D lane dataset.

5.1. Datasets and evaluation metrics

OpenLane [6] based on the Waymo Open dataset [45] re-
mains the most prominent real-world 3D lane dataset to
date. It is comprised of 200K images from 1000 sequences
recorded in several cities in the USA.

ONCE-3DLanes [52] is another real-world dataset derived
from the ONCE dataset [33]. It consists of 211K images
collected from multiple cities in China.

Our 3D lane dataset, which was introduced in Section 4,
was gathered from multiple regions and countries across
the globe. It consists of 511K images with a 90 % / 10 %
train/test split.

Evaluation metrics. The OpenLane evaluation scheme
[6, 11] uses the euclidean distance at uniformly distributed

Continuous Rep. STA Regularization H F1(%)T Gain(%)
61.8 (baseline)

v 62.9 +1.1
v v 65.0 +2.1
v v v 65.3 +0.3

Table 1. Performance gain for different contributions on Open-
Lane using our novel Continuous Lane Representation, Spatio-
Temporal Attention (STA) and Regularization.

Attention || Global | SLA | PNA | SLA +PNA | SLA + PNA + TCA
F1-Score || 62.9 | 628 | 635 | 638 | 65.0

Table 2. Analysis of spatio-temporal attention. Same line atten-
tion (SLA), parallel neighbor attention (PNA) and temporal cross-
attention (TCA) and combinations compared to global attention.

Num. Frames (1) H 0 1 2 3 4 5
F1(%)1 | 63.8 641 646 650 645 639

Table 3. Analysis of number of frames in the memory for STA.

points and a range-IoU to compute the F1-Score. Moreover,
x- and z-errors in near- (0-40 m) and far-range (40-100 m)
evaluate the geometric accuracy. ONCE-3DLanes instead
uses the uni-lateral chamfer distance (CD) and computes
Precision (P), Recall (R) and F1-Score based on it.

For our dataset, we extend the well-established Open-
Lane evaluation framework [6, 11]. Due to the long-range
labels, we add x-/z-error intervals for the ranges 100-150 m
and 150-200 m. Since our dataset offers visibility labels for
occlusions, we also add a visibility Intersection-over-Union
metric (Vis-IoU). This score helps to gain understanding
about the model’s capability of distinguishing visible lane
segments from parts occluded by other traffic participants
and provides a measure for start-end range detection.

5.2. Implementation details

We use an image input size 720 x 960 and ResNet-50 [12]
as our standard backbone. The query generator is trained
on the auxiliary task of lane instance segmentation similar
to [31]. The transformer decoder applied in the large model
used for the evaluation in Section 5.4 consists of L = 6 lay-
ers, whereas the lighter model used for ablation studies in
Sec. 5.3 has 2 layers. The lane representation uses M = 20
control points on OpenLane and ONCE-3DLanes and 30
control points on our dataset due to the larger range. The
number of lane proposals is set to N = 40 for OpenLane
and ours and 10 for ONCE-3DLanes, which is sufficient
for the small number of occurring lanes per frame. Regard-
ing temporal fusion, our best model uses propagated queries
from T' = 3 historic frames.
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. X-error X-error  Z-error  Z-error F1-Score(%) per Scenario T

Method Backbone Resolution F1-Score(%)7 near(m)| far(m), near(m), far(m)| | U&D C EW N I M&S
3D-LaneNet [9] VGG-16 360 x 480 44.1 0.479 0.572 0.367 0.443 40.8  46.5 475 415 321 417
Gen-LaneNet [11] ERFNet 360 x 480 32.3 0.591 0.684 0.411 0.521 254 335 281 187 214 31.0
PersFormer [6] EfficientNet-B7 360 x 480 50.5 0.485 0.553 0.364 0.431 424 55.6 48.6 46.6 40.0 50.7
CurveFormer [2] EfficientNet-B7 360 x 480 50.5 0.340 0.772 0.207 0.651 45.2 56.6 49.7 49.1 429 45.4
BEV-LaneDet [49] ResNet-34 360 x 480 58.4 0.309 0.659 0.244 0.631 48.7 63.1 534 534 503 53.7
Anchor3DLane-T [16]  ResNet-18 360 x 480 54.3 0.275 0.310 0.105 0.135 47.2  58.0 52.7 487 458 51.7
PETRv2 [30] VoV-99 360 x 480 61.2 0.400 0.573 0.265 0.413 - — — — — -

LATR [31] ResNet-50 720 x 960 61.9 0.219 0.259 0.075 0.104 55.2  68.2 57.1 554 523 61.5
LaneCPP [39] EfficientNet-B7 360 x 480 60.3 0.264 0.310 0.077 0.117 53.6  64.4 56.7 54.9 52.0 58.7
PVALane [53] Swin-B 720 x 960 63.4 0.226 0.257 0.093 0.119 56.1 67.7 64.0 586 53.6 60.8
GroupLane [22] ConvNext-Base  not specified 64.1 0.320 0.441 0.233 0.402 — — — — — —

SparseLaneSTP (Ours) ResNet-50 720 x 960 66.1 0.203 0.240 0.066 0.092 57.3 73.0 60.1 583 582 66.5

Table 4. Quantitative comparison on OpenLane [6]. Best performance and second best are highlighted.

X-error / Z-error (m)] .
Method F1-Score(®)T | gm-40m  40m-100m  100m-150m 150m-200m | VSToUT
PersFormer [6] 59.2 0.191/0.072  0.344/0.145 0.671/0.220  0.845/0.379 70.1
LaneCPP [39] 63.1 0.144/0.040  0.298/0.093  0.494/0.188  0.761/0.293 7.5
Baseline (LATR) [31] 65.1 0.122/0.038  0.263/0.098  0.468/0.185  0.700/0.264 78.3
SparseLaneSTP (ours) 68.2 0.109/0.033 0.233/0.092 0.443/0.182 0.646/0.263 81.4

Table 5. Quantitative comparison on our 3D lane dataset. Best performance and second best are highlighted.
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Figure 7. Efficiency analysis of SparseLaneSTP.

Method F1(%)t P(%)t R(%)T CD(m))
3D-LaneNet [9] 44.73 61.46 35.16 0.127
Gen-LaneNet [11] 45.59 63.95 35.42 0.121
SALAD [52] 64.07 75.90 55.42 0.098
PersFormer [6] 74.33 80.30 69.18 0.074
Anchor3DLane [16] 74.87 80.85 69.71 0.060
LATR [31] 80.59 86.12 75.73 0.052
PVALane [53] 76.35 82.81 70.83 0.059
GroupLane [22] 80.73 82.56 78.90 0.053
SparseLaneSTP (ours) 82.75 86.47 79.33 0.048

Table 6. Quantitative comparison on ONCE-3DLanes [52].

5.3. Ablation studies

We perform a comprehensive analysis validating the effec-
tiveness of our design choices in SparseLaneSTP. For these
experiments, we used a smaller model consisting of two de-
coder layers evaluated on OpenLane.

Table 1 summarizes the impact of our contributions.
Our CR spline based lane representation improves the F1-
Score by over 1 percentage point compared to the discrete
one (baseline). The most significant gain in F1-Score is

achieved by the novel STA component, which encourages
focus on relevant relations based on lane structure and, more
importantly, on related past observations by integrating tem-
poral cross-attention. Eventually, regularization enhances
robustness and consistency, leading to improved general-
ization, as evidenced by the additional F1-Score gain.

As shown in Table 2, global self-attention apparently
fails to capture important relations of lane structures. The
combination of our proposed SLA and PNA demonstrates
the benefits of enhancing the focus on intra- and inter-
lane relations by an F1-Score increase +0.9 %. Integrating
knowledge about past observations via our suggested TCA
yields the greatest improvement of additional +1.2%. As
indicated by Table 3, " = 3 frames in the memory pro-
duces the best results. Using too few frames provides in-
sufficient temporal context, whereas too many frames ap-
parently introduce redundancy and distract the model from
relevant information. We further qualitatively demonstrate
the beneficial impact of our primary contribution on tem-
poral fusion in Fig. 6. The non-temporal model fails to re-
tain the detection from frame ¢ = 1 in subsequent frames
as lane visibility deteriorates. In contrast, the temporally-
aware model maintains the detection despite partial occlu-
sions, demonstrating improved robustness. Regularization
further preserves temporal consistency mitigating the grad-
ual disappearing and drifting in the non-temporal model.

Finally, Fig. 7 reveals efficiency benefits of our ap-
proach. SparseLaneSTP with six decoder layers achieves
11.0 FPS, comparable to LATR at 12.1 FPS. While our pro-
posed temporal integration (memory queue and STA) in-
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Figure 8. Qualitative comparison of LATR and SparseLaneSTP on OpenLane with ground truth. Main differences are highlighted.

troduces a modest 9 % overhead, it also enables a smaller
model with only two layers to reach 65.3% FI-Score
(+3.4% over six-layer LATR) at a significantly higher
speed of 16.5 FPS.

5.4. Main results

In this section, we compare our method to other 3D lane de-
tectors on public benchmarks as well as on our own dataset.
Results on OpenLane. Table 4 presents a quantitative
comparison demonstrating the superiority of our approach.
SparseLaneSTP reaches the highest F1-Score, exceeding
66 %, significantly surpassing the second-best model de-
spite its larger backbone and even achieves the lowest ge-
ometric errors.

Fig. 8 illustrates the advantages of our approach quali-
tatively across multiple aspects. We compare our Sparse-
LaneSTP to LATR [31], which is most related to our base-
line. As shown in Fig. 8a, our continuous lane represen-
tation enables precise visibility estimation with accurate
detection of start/end of markings, whereas LATR - con-
strained by fixed discrete anchor points - produces erro-
neous estimates. In Fig. 8b, our temporal fusion preserves
the line despite partial occlusions, whereas non-temporal
LATR fails. It also struggles to estimate faint lane mark-
ings on the far side of the junction shown in Fig. 8c, while
with STA our model captures lane structures more effec-
tively. Eventually, in Fig. 8d our model exhibits a stronger
reliance on priors resulting in robust and consistent behav-
ior, most likely due to the incorporated regularization.
Results on ONCE-3DLanes. As shown in Table 6, our
method achieves the highest detection scores and demon-
strates accurate regression with a significantly lower CD,
despite the inaccurate camera parameters provided by the
dataset. Notably, even though ONCE-3DLanes has a lower
frame rate, our temporal approach performs effectively.
Results on our 3D lane dataset. Initial results on our
novel dataset are presented in Table 5. Our proposed ex-
tension of the evaluation metrics provides a more compre-
hensive assessment of overall performance, particularly in
the far-range and for occlusion detection. To facilitate a fair

29106

100

150~y 200
Top-view

50 100

5 150y 200
Height profil

e

Front-view

Figure 9. Qualitative example of SparseLaneSTP on our data.

comparison, we train the baseline and other methods with
specific modifications to range and capacity. Our method
excels in F1-Score, error metrics and notably in the Vis-
IoU, highlighting the superior performance of our temporal
model in detecting occlusions. Fig. 9 shows a qualitative
result on our dataset, showcasing accurate long-range lane
estimation (200 m). For more qualitative results with com-
parisons to the baseline we refer to the supplementary.

6. Conclusion

In this work, we presented a novel 3D lane detection
approach that combines sparse lane transformers with
spatial and temporal priors. We proposed a continuous
lane representation, tailored for the sparse query design,
thereby overcoming limitations of discrete representations.
Additionally, we developed a novel attention layer that
effectively captures intra- and inter-lane relations while
integrating temporal information through propagated lane
queries. Furthermore, we introduced a dedicated regu-
larization scheme enhancing temporal consistency. Our
experiments validate the effective integration of temporal
information and spatial priors, as well as the benefits of our
lane representation, leading to state-of-the-art performance
across all evaluated 3D lane datasets. Moreover, we pre-
sented a new 3D lane dataset, constructed using a simple yet
effective auto-labeling pipeline, providing geometrically
accurate labels that span long distances and explicitly anno-
tate occlusions, fostering further advancements in the field.
In future, we will explore an extension to 3D lane track-
ing to leverage the full potential of temporal information.
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