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ABSTRACT

Discrete diffusion models have emerged as a powerful generative modeling frame-
work for discrete data with successful applications spanning from text generation
to image synthesis. However, their deployment faces challenges due to the high
dimensionality of the state space, necessitating the development of efficient in-
ference algorithms. Current inference approaches mainly fall into two categories:
exact simulation and approximate methods such as τ -leaping. While exact meth-
ods suffer from unpredictable inference time and redundant function evaluations,
τ -leaping is limited by its first-order accuracy. In this work, we advance the latter
category by tailoring the first extension of high-order numerical inference schemes
to discrete diffusion models, enabling larger step sizes while reducing error. We
rigorously analyze the proposed schemes and establish the second-order accuracy
of the θ-trapezoidal method in KL divergence. Empirical evaluations on GPT-2
level text and ImageNet-level image generation tasks demonstrate that our method
achieves superior sample quality compared to existing approaches under equiva-
lent computational constraints.

1 INTRODUCTION

Diffusion and flow-based models on discrete spaces (Chen et al., 2022; Austin et al., 2021; Dieleman
et al., 2022; Floto et al., 2023; Hoogeboom et al., 2022; 2021; Meng et al., 2022; Richemond et al.,
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2022; Sun et al., 2023; Santos et al., 2023) have emerged as a cornerstone of modern generative
modeling for categorical data, offering unique advantages in domains where continuity assumptions
fail. Unlike their continuous counterparts, discrete diffusion models inherently accommodate data
with discrete structures, e.g., language tokens, molecular sequences, tokenized images, and graphs,
enabling principled generation and inference in combinatorially complex spaces. These models
have exerted a large impact on numerous applications, from the design of molecules (Kerby &
Moon, 2024), proteins (Frey et al., 2023), and DNA sequences (Avdeyev et al., 2023; Guo et al.,
2024b) under biophysical constraints, to the generation of high-fidelity text (Dat et al., 2024) and
images (Hu et al., 2022) via autoregressive or masked transitions, etc.. Beyond standalone tasks,
discrete diffusion models also synergize with methodologies, ranging from tensor networks (Causer
et al., 2024) to guidance mechanisms Nisonoff et al. (2024); Li et al. (2024b); Schiff et al. (2024).

Discrete diffusion models, despite their broad applicability, face a critical bottleneck: inference in-
efficiency. Current inference methods include: (1) exact simulation methods (Zheng et al., 2024),
which ensure unbiased sampling from the pre-trained model but suffer from unpredictable inference
time and redundant score evaluations, resulting in poor scaling w.r.t. dimensionality; and (2) ap-
proximate methods such as τ -leaping (Campbell et al., 2022), which offer simple and parallelizable
implementation but, due to their first-order accuracy, requires small step sizes to control discretiza-
tion error, forcing a stringent trade-off between speed and sample quality.

To address these limitations in possibly computationally constrained environments, we aim to de-
velop high-order numerical schemes tailored for discrete diffusion model inference. Drawing inspi-
rations from acceleration techniques developed for ordinary differential equations (ODEs) (Butcher,
1987), stochastic differential equations (SDEs) (Burrage & Burrage, 1996; Anderson & Mattingly,
2011), chemical reaction simulations (Hu et al., 2011a), and most recently continuous diffusion
models (Tachibana et al., 2021; Lu et al., 2022a;b), our work represents the first successful adapta-
tion of high-order numerical schemes to the discrete diffusion domain. Through careful design, these
high-order schemes provide an unprecedented efficient and versatile solution for discrete diffusion
model inference. Below we summarize the main contributions of this paper:

• We introduce the first high-order numerical solvers for discrete diffusion model inference, namely
the θ-Runge-Kutta-2 (θ-RK-2) method and the θ-trapezoidal method;

• We rigorously establish the theoretical properties of both methods, proving second-order conver-
gence of θ-trapezoidal method and conditional second-order convergence of θ-RK-2 method;

• We empirically validate our theoretical results and demonstrate the superior performance of the θ-
trapezoidal method through comprehensive evaluations on large-scale text and image generation
benchmarks.

1.1 RELATED WORKS

We briefly review related works here and defer a more detailed discussion to appendix A and B.

Discrete Diffusion Models. Since its introduction, discrete diffusion models have undergone sig-
nificant refinements, including the development of score-entropy loss (Lou et al., 2024) and flow-
matching formulation (Campbell et al., 2024; Gat et al., 2024). These models generally fall into
two categories based on their noise distribution: uniform (Lou et al., 2024; Schiff et al., 2024) and
masked (absorbing state) (Ou et al., 2024; Shi et al., 2024a; Sahoo et al., 2024; Zheng et al., 2024),
each offering unique advantages in modeling discrete distributions. Recent theoretical advances
have emerged through numerous studies (Chen & Ying, 2024; Zhang et al., 2024; Ren et al., 2024).

High-Order Scheme for Continuous Diffusion Models. The development of high-order numer-
ical schemes for solving ODEs and SDEs represents decades of research, as comprehensively re-
viewed in Butcher (1987); Kloeden & Platen (1992); Kloeden et al. (2012). These schemes have
recently been adapted to accelerate continuous diffusion model inference, encompassing approaches
such as the exponential integrators (Zhang & Chen, 2023; Zhang et al., 2023c; Gonzalez et al., 2024),
Adams-Bashforth methods (Lu et al., 2022b; Xue et al., 2024; Zhang et al., 2023b), Taylor meth-
ods (Tachibana et al., 2021; Dockhorn et al., 2022) and (stochastic) Runge-Kutta methods (Liu et al.,
2022a; Lu et al., 2022a; Karras et al., 2022; Zheng et al., 2023b; Li et al., 2024a; Wu et al., 2024a).

High-Order Scheme for Chemical Reaction Systems. Regarding approximate methods de-
veloped for simulating compound Poisson processes and chemical reaction systems with state-
dependent intensities, efforts have been made on the τ -leaping method (Gillespie, 2001), and its

2



Frontiers in Probabilistic Inference (FPI): Sampling Meets Learning @ ICLR 2025

extensions Cao et al. (2004); Burrage & Tian (2004); Hu et al. (2011a); Hu & Li (2009). For a quick
review of the problem setting and these methods, one may refer to E et al. (2021). The adaption of
these methods to discrete diffusion models presents unique challenges due to the presence of both
time and state-inhomogeneous intensities in the underlying Poisson processes.

2 PRELIMINARIES

In this subsection, we review several basic concepts and previous error analysis results of discrete
diffusion models.

2.1 DISCRETE DIFFUSION MODELS

In discrete diffusion models, one considers a continuous-time Markov chain (CTMC) (xt)0≤t≤T on
a finite space X as the forward process. We represent the distribution of xt by a vector pt ∈ ∆|X|,
where ∆|X| denotes the probability simplex in R|X|. Given a target distribution p0, the CTMC
satisfies the following equation:

dpt

dt
= Qtpt, where Qt = (Qt(y, x))x,y∈X (2.1)

is the rate matrix at time t satisfying

(i) For any x ∈ X, Qt(x, x) = −
∑

y ̸=xQt(y, x);

(ii) For any x ̸= y ∈ X, Qt(x, y) ≥ 0.

Below we will use the notation Q0
t = Qt − diagQt. It can be shown that the corresponding

backward process is of the same form but with a different rate matrix (Kelly, 2011):

d ⃗ps

ds
= Qs ⃗ps, (2.2)

where ⃗∗s denotes ∗T−s and the rate matrix is defined by

Qs(y, x) =

{
⃗ps(y)
⃗ps(x)

⃗Qs(x, y), x ̸= y ∈ X,
−
∑

y′ ̸=xQs(y
′, x), x = y ∈ X.

The rate matrix Qt is often chosen to possess certain sparse structures such that the forward pro-
cess converges to a simple distribution that is easy to sample from. Popular choices include the
uniform and absorbing state cases (Lou et al., 2024), where the forward process (2.1) converges to
the uniform distribution on X and a Dirac distribution, respectively. Common training practice is
to define the score function (or rather the score vector) as st(x) = (st(x, y))y∈X := pt

pt(x)
for any

x ∈ X, t ∈ [0, T ] and estimate it by a neural network ŝϕt (x), where the parameters ϕ are trained by
minimizing the score entropy (Lou et al., 2024; Benton et al., 2024b) for some weights ψt ≥ 0 as
follows:

min
ϕ

∫ T

0

ψtExt∼pt

[ ∑
y ̸=xt

Qt(xt, y)
(
st(xt, y) log

st(xt,y)

ŝϕt (xt,y)
− st(xt, y) + ŝϕt (xt, y)

)]
dt. (2.3)

Similar to the continuous case, the backward process is approximated by another CTMC dqs

ds =

Q̂
ϕ

sqs, with q0 = p∞ and rate matrix Q̂
ϕ

s , where Q̂
ϕ

s (y, x) =
⃗ŝs
ϕ(x, y) ⃗Qs(x, y) for any x ̸= y ∈ X.

The inference is done by first sampling from p∞ and then evolving the CTMC accordingly. For
simplicity, we drop the superscript ϕ hereafter.

2.2 STOCHASTIC INTEGRAL FORMULATION OF DISCRETE DIFFUSION MODELS

According to Ren et al. (2024), discrete diffusion models can also be formulated as stochastic in-
tegrals, which is especially useful for their theoretical analysis. In this section, we briefly reca-
pitulate relevant results therein and refer to appendix C for mathematical details. Below we work
on the probability space (Ω,B,P) and denote the pairwise difference set of the state space X by
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D := {x − y : x ̸= y ∈ X}. We first introduce the Poisson random measure with evolving
intensities, a key concept in the formulation.

Definition 2.1 (Informal Definition of Poisson Random Measure). The random measure
N [λ](dt, dν) on R+ × D is called a Poisson random measure with evolving intensity λ w.r.t. a
measure γ on D if, roughly speaking, the number of jumps of magnitude ν during the infinitesimal
time interval (t, t+ dt] is Poisson distributed with mean λt(ν)γ(dν)dt.
The forward process in discrete diffusion models (2.1) can thus be represented by the following
stochastic integral:

xt = x0 +

∫ t

0

∫
D
νN [λ](dt,dν), (2.4)

where the intensity λ is defined as λt(ν, ω) = Q0
t (xt−(ω) + ν, xt−(ω)) if xt−(ω) + ν ∈ X and 0

otherwise. Here, the outcome ω ∈ Ω and xt− denotes the left limit of the càdlàg process xt at time
t with x0− = x0. We will also omit the variable ω, should it be clear from context. The backward
process in discrete diffusion models (2.2) can also be represented similarly as:

ys = y0 +

∫ s

0

∫
D
νN [µ](ds,dν), (2.5)

where the intensity µ is defined as

µs(ν, ω) = ⃗ss(ys− , ys− + ν) ⃗Q
0

s(ys− , ys− + ν) (2.6)

if ys− + ν ∈ X and 0 otherwise. During inference,

ŷs = ŷ0 +

∫ s

0

∫
D
νN [µ̂](ds,dν)

is used instead of (2.5), where the estimated intensity µ̂ is defined by replacing the true score st with
the neural network estimated score ŝt in (2.6). . In the following, we will also denote the intensity
µs(ν, ω) at time s by µs(ν, ys−) with slight abuse of terminology to emphasize its dependency on ω
through ys−(ω).

3 ALGORITHM

In this section, we present the high-order solvers proposed for simulating discrete diffusion models
and their associated stochastic integral formulations. We will primarily focus on two-stage algo-
rithms aiming for second-order accuracy. Specifically, we will introduce the θ-RK-2 method and the
θ-Trapezoidal method. Throughout this section, we assume a time discretization scheme (si)i∈[0:N ]

with

0 = s0 < s1 < · · · < sN = T − δ,

where δ is the early stopping time. We will also use the shorthand notations ∗+ = max{0, ∗}.
For any s ∈ (sn, sn+1] and n ∈ [0 : N − 1], we define ⌊s⌋ = sn, ρs = (1 − θ)sn + θsn+1,
∆n = sn+1 − sn, and θ-section points as ρn = (1 − θ)sn + θsn+1. We choose γ(dν) to be the
counting measure on D.

3.1 θ-RK-2 METHOD

We first present the θ-RK-2 method, which is simple in design and serves as a natural analog of the
second-order RK method for ODEs (B.3) in terms of time and state-dependent Poisson random mea-
sures, as a warm-up for the θ-trapezoidal method. We note that similar methods have been proposed
for simulating SDEs driven by Brownian motions or Poisson processes, such as the stochastic (Bur-
rage & Burrage, 1996) and the Poisson (Burrage & Tian, 2004) RK methods. A summary of this
method is given in algorithm 1.
Intuitively, the θ-RK-2 method is a two-stage algorithm that firstly runs τ -leaping with step size
θ∆n, obtains an intermediate state ŷ∗ρn

at the θ-section point ρn, and evaluates the intensity µ̂∗
ρn

there. Then it runs another step of τ -leaping for a full step ∆n using a weighted sum of the intensities
at the current time point sn and the θ-section point ρn. In order to rigorously analyze and better
illustrate the θ-RK-2 method, we need the following definition:
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Algorithm 1: θ-RK-2 Method for Discrete Diffusion Model Inference

Input: ŷ0 ∼ q0, θ ∈ [ 12 , 1], time discretization (sn, ρn)n∈[0:N−1], µ̂, µ̂∗ as defined
in proposition 3.2.

Output: A sample ŷsN ∼ q̂RK
tN .

1 for n = 0 to N − 1 do
2 ŷ∗ρn

← ŷsn +
∑
ν∈D

νP (µ̂sn(ν)θ∆n);

3 ŷsn+1 ← ŷsn +
∑
ν∈D

νP
(((

1− 1
2θ

)
µ̂sn + 1

2θ µ̂
∗
ρn

)
(ν)∆n

)
;

4 end

Definition 3.1 (Intermediate Process). We define the intermediate process ŷ∗s piecewisely on
(sn, sn+1] as follows

ŷ∗s = ŷsn +

∫ s

sn

∫
D
νN [µ̂sn ] (ds,dν), (3.1)

where the intensity µ̂sn is given by

µ̂sn(ν, ŷsn) =
⃗ŝsn(ŷsn , ŷsn + ν) ⃗Q

0

sn(ŷsn , ŷsn + ν). (3.2)

i.e., ŷ∗s is the process obtained by performing τ -leaping from time sn to s with intensity µ̂.

The following proposition provides the stochastic integral formulation of this method. See ap-
pendix D.1 for the proof.
Proposition 3.2 (Stochastic Integral Formulation of θ-RK-2 Method). The θ-RK-2 method (algo-
rithm 1) is equivalent to solving the following stochastic integral:

ŷRK
s = ŷRK

0 +

∫ s

0

∫
D
νN

[
µ̂RK

]
(ds,dν), (3.3)

in which the intensity µ̂RK is defined as a weighted sum

µ̂RK
s (ν) = (1− 1

2θ )µ̂⌊s⌋(ν, ŷ
RK
⌊s⌋ ) +

1
2θ µ̂

∗
ρs
(ν, ŷ∗ρs

), (3.4)

and the intermediate intensity µ̂∗ is defined piecewisely as

µ̂∗
s(ν, ŷ

∗
s ) =

⃗ŝs(ŷ
∗
s , ŷ

∗
s + ν) ⃗Q

0

s(ŷ
∗
s , ŷ

∗
s + ν), (3.5)

with the intermediate process ŷ∗s defined in (3.1) for the corresponding interval. We will call the
process ŷRK

s the interpolating process of the θ-RK-2 method and denote the distribution of ŷRK
s by

q̂RK
s .

We emphasize that our method is different from the midpoint method proposed in Gillespie (2001)
for simulating chemical reactions, where the Poisson random variable in the first step is replaced by
its expected magnitude. We remark that such modification is in light of the lack of continuity and
orderliness of the state space.

3.2 θ-TRAPEZOIDAL METHOD

As to be shown theoretically and empirically, the conceptually simple θ-RK-2 method may have lim-
itations in terms of both accuracy and efficiency. To this end, we propose the following θ-trapezoidal
method, which is developed based on existing methods proposed for simulating SDEs (Anderson &
Mattingly, 2011) and chemical reactions (Hu et al., 2011a). Below we introduce two parameters that
will be used extensively later:

α1 = 1
2θ(1−θ) and α2 = (1−θ)2+θ2

2θ(1−θ) , with α1 − α2 = 1.

The θ-trapezoidal method is summarized in algorithm 2. Intuitively, this method separates each
interval (sn, sn+1] into two sub-intervals (sn, ρn] and (ρn, sn+1], on which simulations are detached
with two different intensities designed in a balanced way.
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Algorithm 2: θ-Trapezoidal Method for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, θ ∈ (0, 1], time discretization (sn, ρn)n∈[0:N−1], µ̂, µ̂∗ as defined

in proposition 3.3.
Output: A sample ŷsN ∼ q̂

trap
tN .

1 for n = 0 to N − 1 do
2 ŷ∗ρn

← ŷsn +
∑
ν∈D

νP (µ̂sn(ν)θ∆n);

3 ŷsn+1 ← ŷ∗ρn
+
∑
ν∈D

νP
((
α1µ̂

∗
ρn
− α2µ̂sn

)
+
(ν)(1− θ)∆n

)
;

4 end

Compared to the θ-RK-2 method, the θ-trapezoidal method is also a two-stage algorithm with an
identical first step. The second step, however, differs in two major aspects:

(1) The second step starts from the intermediate state ŷ∗ρn
instead of ŷsn and only runs for a frac-

tional step (1− θ)∆n rather than a full step ∆n;
(2) The weighted sum is comprised of an altered pair of coefficients (α1,−α2), which performs an
extrapolation instead of interpolation with coefficients (1 − 1

2θ ,
1
2θ ) as in the θ-RK-2 method with

θ ∈ [ 12 , 1]. This feature will be shown to render the algorithm an unconditionally high-order scheme
effectively.

The following proposition establishes the stochastic integral formulation of the θ-trapezoidal
method, whose proof can be found in appendix D.1.

Proposition 3.3 (Stochastic Integral Formulation of θ-Trapezoidal Method). The θ-trapezoidal
method (algorithm 2) is equivalent to solving the following stochastic integral:

ŷtraps = ŷtrap0 +

∫ s

0

∫
D
N [µ̂trap](ds,dν) (3.6)

where the intensity µ̂trap is defined piecewisely as

µ̂trap
s (ν) = 1s<ρs

µ̂⌊s⌋(ν, ŷ
trap
⌊s⌋ ) + 1s≥ρs

(
α1µ̂

∗
ρs
(ν, ŷ∗ρs

)− α2µ̂⌊s⌋(ν, ŷ
trap
⌊s⌋ )

)
+
. (3.7)

Above, 1(·) denotes the indicator function and the intermediate process ŷ∗s is defined in (3.1) for the
corresponding interval. We will call the process ŷtraps the interpolating process of the θ-trapezoidal
method and denote the distribution of ŷtraps by q̂traps .

4 THEORETICAL ANALYSIS

In this section, we provide the theoretical results of the θ-trapezoidal and θ-RK-2 methods. We
will first present the assumptions and guarantees of the algorithms. Then we will present the error
bounds of the algorithms and discuss the implications of the results. We note that assumptions used
here are all deferred to appendix D.2. The following theorem summarizes our theoretical guarantees
for the θ-trapezoidal method:

Theorem 4.1 (Second Order Convergence of θ-Trapezoidal Method). Suppose θ ∈ (0, 1] and
α1µ̂

∗
ρs
− α2µ̂⌊s⌋ ≥ 0 in (3.7) for all s ∈ [0, T − δ], then the following error bound holds under

assumptions D.1, D.2 and D.3:

DKL(pδ∥q̂trapT−δ) ≲ exp(−T ) + (ϵI + ϵII)T + κ2T, (4.1)

where δ is the early stopping time, κ = maxn∈[0:N−1] ∆n, i.e., the largest stepsize, and T is the
time horizon.

The complete proof is presented in appendix D.4. The outline is to first boundDKL(pδ∥q̂trapT−δ) by the
KL divergence between the corresponding path measures, as established in theorem D.4, and then
decompose the integral in the log-likelihood and bound respectively, where the primary technique
used is Dynkin’s formula (theorem D.9). With a term-by-term comparison with theorem B.1, we
observe a significant improvement in the discretization error term from O(κT ) to O(κ2T ). This
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confirms that the θ-trapezoidal method achieves second-order accuracy given sufficient time horizon
T and accurate score estimation, with empirical validation presented in section 5. However, within
the scope of our analysis, the θ-RK-2 method may not possess a theoretical guarantee as extensive
as the θ-trapezoidal method for all θ ∈ (0, 1]. We briefly summarize our understanding as follows.

Theorem 4.2 (Conditional Second-Order Convergence of θ-RK-2 Method). Suppose θ ∈ (0, 12 ] and
(1 − 1

2θ )µ̂⌊s⌋ +
1
2θ µ̂

∗
ρs
≥ 0 in (3.4) for all s ∈ [0, T − δ], then the following error bound holds for

the practical version (algorithm 4) of algorithm 1 under assumptions D.1, D.2 and D.3:

DKL(pδ∥q̂RK
T−δ) ≲ exp(−T ) + (ϵI + ϵII)T + κ2T,

where δ is the early stopping time, κ = maxn∈[0:N−1] ∆n, i.e., the largest stepsize, and T is the
time horizon.

The proof of the theorem above is provided in appendix D.5. The restricted range of θ is caused
by one specific error term (III.4) (D.3) that permits bounding with Jensen’s inequality only when
θ ∈ (0, 12 ], similar to its counterpart (II.4) (D.5) in the θ-trapezoidal method. The limitation arises
partially because the weighted sum with coefficients (1 − 1

2θ ,
1
2θ ) becomes an extrapolation only

if 1 − 1
2θ < 0, a feature that naturally holds for all θ ∈ (0, 1] in the θ-trapezoidal method. These

theoretical findings are consistent with the empirical observations in fig. 3 of appendix E.4, where
the performance of θ-RK-2 method clearly peaks when θ ∈ (0, 12 ].

Remark 4.3 (Comparison between Trapezoidal and RK-2 Methods). Trapezoidal-type methods
were originally proposed by Anderson & Mattingly (2011) as a minimal second-order scheme in
the weak sense for simulating SDEs. In simulating chemical reaction contexts, Hu et al. (2011a)
claimed that trapezoidal-type methods also achieve second-order convergence for covariance er-
ror apart from the weak error, a property not shared by midpoint (RK-2) methods. Our empirical
results partly reflect these findings, though we defer theoretical investigation of covariance error
convergence in discrete diffusion models to future work.

5 EXPERIMENTS

Based on the theoretical analysis, we expect the θ-trapezoidal method to outperform the τ -leaping
method and the θ-RK-2 method in terms of sample quality given the same amount of function evalu-
ations. This section empirically validates the anticipated effectiveness of our proposed θ-trapezoidal
method (algorithm 2) through comprehensive evaluations across text and image generation tasks.
Our comparative analysis includes established discrete diffusion samplers as baselines, e.g., the Eu-
ler method (Ou et al., 2024), τ -leaping (Campbell et al., 2022), Tweedie τ -leaping (Lou et al., 2024),
and Parallel Decoding (Chang et al., 2022). We conduct evaluations on both uniform and masked
discrete diffusion models, with detailed experimental protocols provided in appendix E.

5.1 15-DIMENSIONAL TOY MODEL

We first evaluate the performance of the θ-trapezoidal method using a 15-dimensional toy model.
The target distribution is uniformly generated from ∆15, with rate matrix Q = 1

15E − I , where
E is the all-one matrix and I is the identity matrix. This setup provides analytically available
score functions, allowing isolation and quantification of numerical errors introduced by inference
algorithms. We apply both the θ-trapezoidal method and the θ-RK-2 method to generate 106 samples
and estimate the KL divergence between the true ground truth p0 and the generated distribution q̂T
with bootstrap confidence intervals. For a fair comparison, we choose θ = 1

2 for both methods, and
the results are presented in fig. 2. While both methods exhibit super-linear convergence as the total
number of steps grows, the θ-trapezoidal method outperforms the θ-RK-2 method in terms of both
absolute value and convergence rate, while the θ-RK-2 method takes longer to enter the asymptotic
regime. Moreover, the fitted line indicates that the θ-trapezoidal method approximately converges
quadratically w.r.t. the step count, confirming our theories.

5.2 TEXT GENERATION

For the text generation task, we employ the pre-trained score function from RADD (Ou et al., 2024)
as our base model for benchmarking inference algorithms. RADD is a masked discrete diffusion
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model with GPT-2-level text generation capabilities (Radford et al., 2019) and is trained on the
OpenWebText dataset (Gokaslan & Cohen, 2019). Our comparative analysis maintains consistent
computational resources across methods, quantified through the number of score function evalua-
tions (NFE), and evaluates the sample quality produced by the Euler method, τ -leaping, Tweedie
τ -leaping, and our proposed θ-trapezoidal method. We generate text sequences of 1024 tokens
and measure their generative perplexity following the evaluation protocol established in Ou et al.
(2024). Table table 1 presents a comprehensive list of results for a wide range of NFE values. which
demonstrate that the θ-trapezoidal method consistently produces better samples under a fixed com-
putation budget compared with existing popular inference algorithms. Notably, it outperforms Euler
and Tweedie τ -leaping, two of the best-performing samplers adopted by RADD, by a large margin.
These results validate the practical efficiency and accuracy of algorithm 2.

5.3 IMAGE GENERATION

Our experiments on the image generation task utilize the pre-trained score function from
MaskGIT (Chang et al., 2022; Besnier & Chen, 2023) as the base model, which can be con-
verted into a masked discrete diffusion model by introducing a noise schedule (see appendix E.4).
MaskGIT employs a masked image transformer architecture trained on ImageNet (Deng et al., 2009)
of 256× 256 resolution, where each image amounts to a sequence of 256 discrete image tokens fol-
lowing VQ-GAN tokenization (Esser et al., 2021b). We evaluate the θ-trapezoidal method against
the Euler method, τ -leaping, and parallel decoding under equivalent NFE budgets ranging from 4
to 64. For each, we generate 5 × 104 images and compute their Fréchet Inception Distance (FID)
against the ImageNet validation split, following the setting in Chang et al. (2022). Figure 5 reveals
that θ-trapezoidal method (algorithm 2) consistently achieves lower (and thus better) FID values
compared to both Euler method and τ -leaping across all NFE values. While parallel decoding shows
advantages at extremely low NFE (≤ 8), its performance saturates with increased computational re-
sources, making it less favorable compared to our rapidly converging method. Additional results are
detailed in appendix E.

6 CONCLUSION AND FUTURE WORKS

In this work, we introduce the θ-RK-2 and θ-trapezoidal methods as pioneering high-order numer-
ical schemes tailored for discrete diffusion model inference. Through rigorous analysis based on
their stochastic integral formulations, we establish second-order convergence of the θ-trapezoidal
method and that of the θ-RK-2 method under specified conditions. Our analysis indicates that the θ-
trapezoidal method generally provides superior robustness and computational efficiency compared
to the θ-RK-2 method. Our empirical evaluations, spanning both a 15-dimensional model with pre-
cise score functions and large-scale text and image generation tasks, validate our theoretical findings
and demonstrate the superiority performance of our proposed θ-trapezoidal method over existing
samplers in terms of sample quality under equivalent computational constraints. Additionally, we
provide a comprehensive analysis of the method’s robustness by examining the optimal choice of
the parameter θ in our schemes. Future research directions include comparative analysis of these
schemes and development of more sophisticated numerical approaches for discrete diffusion model
inference, potentially incorporating adaptive step sizes and parallel sampling methodologies. From
the perspective of applications, these methods may also show promise for tasks in computational
chemistry and biology, particularly in the design of molecules, proteins, and DNA sequences.
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A FURTHER DISCUSSION ON RELATED WORKS

In this section, we provide a more detailed literature review of both continuous and discrete diffusion
models, as well as several studies on the numerical methods for SDEs and chemical reaction systems,
that are highly related to our work.

Discrete Diffusion Models: Methodology, Theory, and Applications. Discrete diffusion and
flow-based models (Chen et al., 2022; Austin et al., 2021; Floto et al., 2023; Hoogeboom et al.,
2021; Meng et al., 2022; Richemond et al., 2022; Campbell et al., 2022; Sun et al., 2023; Santos
et al., 2023) have recently been proposed as generalizations of continuous diffusion models to model
discrete distributions.

Such models have been widely used in various areas of science and engineering, including but
not limited to modeling retrosynthesis (Igashov et al., 2023), solving inverse problems (Murata
et al., 2024), combinatorial optimization (Li et al., 2024c; Sun & Yang, 2023), designing molecules,
proteins, and DNA sequences (Alamdari et al., 2023; Avdeyev et al., 2023; Emami et al., 2023; Frey
et al., 2023; Penzar et al., 2023; Watson et al., 2023; Yang et al., 2023b; Campbell et al., 2024; Stark
et al., 2024; Kerby & Moon, 2024; Yi et al., 2024; Zhu et al., 2024), image synthesis (Esser et al.,
2021a; Lezama et al., 2022; Gu et al., 2022), text summarization (Dat et al., 2024), as well as the
generation of graph (Seff et al., 2019; Niu et al., 2020; Shi et al., 2020; Qin et al., 2023; Vignac
et al., 2022; Haefeli et al., 2022; Qin et al., 2024; Kim et al., 2024), layout (Inoue et al., 2023;
Zhang et al., 2023a), motion (Chi et al., 2024; Lou et al., 2023), sound (Campbell et al., 2022; Yang
et al., 2023a), image (Hu et al., 2022; Bond-Taylor et al., 2022; Tang et al., 2022; Zhu et al., 2022),
speech (Wu et al., 2024b), electronic health record (Han et al., 2024), tabular data (Shi et al., 2024b)
and text (He et al., 2022; Savinov et al., 2021; Wu et al., 2023; Gong et al., 2023; Zheng et al.,
2023c; Zhou et al., 2023; Shi et al., 2024a; Sahoo et al., 2024; Xu et al., 2024; Guo et al., 2024b).
Inspired by the huge success achieved by discrete diffusion models in practice, researchers have also
conducted some studies on the theoretical properties of these models, such as Chen & Ying (2024);
Zhang et al. (2024); Ren et al. (2024).

An extensive amount of work has also explored the possibility of making discrete diffusion models
more effective from many aspects, such as optimizing the sampling schedule Park et al. (2024),
developing fast samplers (Chen et al., 2024c), designing correctors based on information learnt
by the model (Zhao et al., 2024c), simplifying the loss function for training Zhao et al. (2024a),
adding editing-based refinements (Reid et al., 2023), synergizing these models with other techniques
and methodologies like distillation Hayakawa et al. (2024), Ehrenfest processes (Winkler et al.,
2024), Glauber dynamics (Varma et al., 2024), tensor networks (Causer et al., 2024), enhanced
guidance mechanisms (Gruver et al., 2024; Nisonoff et al., 2024; Li et al., 2024b; Schiff et al., 2024),
structured preferential generation (Rissanen et al., 2024), the plan-and-denoise framework (Liu et al.,
2024) and alternative metrics, e.g., the Fisher information metric (Davis et al., 2024). However, to
the best of our knowledge, existing work on accelerating the inference of discrete diffusion models
is relatively sparse compared to the ones we listed above, which makes it a direction worthwhile
exploring and serves as one of the main motivations behind this work.

Numerical Methods for SDEs and Chemical Reaction Systems. Below we review advanced nu-
merical methods proposed for simulating SDEs and chemical reaction systems, which are the main
techniques adopted in our work. For the simulation of SDEs driven by Brownian motions, many
studies have been performed to design more accurate numerical schemes, which have been widely
applied to tackle problems in computational physics, optimization, and Monte Carlo sampling. Ex-
amples of such work include the Milstein method (Mil’shtejn, 1975), explicit methods (Abdulle &
Cirilli, 2008), multistep methods (Buckwar & Winkler, 2006), extrapolation-type methods (Talay &
Tubaro, 1990; Anderson & Mattingly, 2011), stochastic Runge Kutta methods (Burrage & Burrage,
1996; 2000; Burrage & Tian, 2002; Rössler, 2003; Rößler, 2010), splitting methods (Foster et al.,
2024), methods based on gaussian mixtures (Li et al., 2021), randomized midpoint method Shen &
Lee (2019), parallel sampling methods Anari et al. (2024); Yu & Dalalyana (2024) as well as high-
order methods for stochastic gradient Markov Chain Monte Carlo Chen et al. (2015); Durmus et al.
(2016), underdamped and overdamped Langevin Monte Carlo Li et al. (2019); Sabanis & Zhang
(2019); Mou et al. (2021); Monmarché (2021); Foster et al. (2021). For a more comprehensive list
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of related numerical methods, one may refer to (Kloeden & Platen, 1992; Burrage et al., 2004a;
Milstein & Tretyakov, 2004; Kloeden et al., 2012; E et al., 2021).

Regarding the simulation of chemical reaction systems, numerical methods can be categorized into
two classes. The first class consists of exact simulation methods, which are similar to the Kinetic
Monte Carlo (KMC) method Bortz et al. (1975) developed for simulating spin dynamics and crystal
growth in condensed matter physics. Examples of such methods include the Gillespie algorithm
(or the Stochastic Simulation Algorithm, a.k.a. SSA) (Gillespie, 1976; 1977) and its variants for
multiscale modeling (Cao et al., 2005a;c; E et al., 2005; 2007), the next reaction method and its
variants Gibson & Bruck (2000); Anderson (2007), uniformization-based methods Beentjes & Baker
(2019), etc. The second class of methods are approximate simulation methods, including but not
limited to the τ -leaping method (Gillespie, 2001) and its variants Rathinam et al. (2003); Gillespie
& Petzold (2003); Cao et al. (2004); Burrage & Tian (2004); Burrage et al. (2004b); Cao et al.
(2005b); Auger et al. (2006); Cao et al. (2007); Bayati et al. (2009); Cao & Petzold (2008); Xu &
Cai (2008); Hu & Li (2009); Hu et al. (2011a); Anderson & Higham (2012); Moraes et al. (2014);
Padgett & Ilie (2016); Lipková et al. (2019). For a subset of the methods listed above, numerical
analysis has also been performed in many works Rathinam et al. (2005); Li (2007); Hu et al. (2011b);
Anderson et al. (2014); Chen & Liu (2017) to justify their validity.

Continuous Diffusion Models: Methodology, Theory, and Acceleration. Continuous diffusion
and probability flow-based models (Sohl-Dickstein et al., 2015; Zhang et al., 2018; Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020; 2021; Lipman et al., 2022; Liu et al., 2022b; Albergo &
Vanden-Eijnden, 2022; Albergo et al., 2023) have also been the most popular methods in generative
modeling, with a wide range of applications in science and engineering. For a list of related work
on the theoretical studies and applications of these models, one may refer to the literature review
conducted in (Chen et al., 2024a; Ren et al., 2024). Here we will only review studies on accelerating
the inference of continuous diffusion models, which motivates our work.

An incomplete list of accelerating methods includes approximate mean direction solver (Zhou
et al., 2024), restart sampling Xu et al. (2023), gaussian mixture solvers Guo et al. (2024a),
self-consistency Heek et al. (2024); Song et al. (2023); Song & Dhariwal (2023); Lu & Song
(2024), knowledge distillation Luhman & Luhman (2021); Meng et al. (2023); Salimans & Ho
(2022), combination with underdamped Langevin dynamics Dockhorn et al. (2021), operator learn-
ing Zheng et al. (2023a) and more recently ideas from accelerating large language models (LLMs)
like caching (Ma et al., 2024) and speculative decoding De Bortoli et al. (2025). Among all the
proposed accelerating methods, one major class of methods are developed based on techniques from
numerical analysis like adaptive step sizes Jolicoeur-Martineau et al. (2021), exponential integra-
tors (Zhang & Chen, 2023; Zhang et al., 2023c), predictor-corrector solver Zhao et al. (2024b),
Adams-Bashforth methods (Lu et al., 2022b; Xue et al., 2024; Zhang et al., 2023b), Taylor meth-
ods (Tachibana et al., 2021; Dockhorn et al., 2022), Picard iteration and parallel sampling (Shih
et al., 2024; Chung et al., 2023; Tang et al., 2024; Cao et al., 2024; Selvam et al., 2024; Chen et al.,
2024a), (stochastic) Runge-Kutta methods (Liu et al., 2022a; Lu et al., 2022a; Karras et al., 2022;
Zheng et al., 2023b; Li et al., 2024a; Wu et al., 2024a) and randomized midpoint method (Kan-
dasamy & Nagaraj, 2024; Gupta et al., 2024). In contrast, there has been much fewer studies on the
acceleration of discrete diffusion models via techniques from numerical analysis, which inspires the
study undertaken in this paper.

B NUMERICAL SCHEMES FOR DISCRETE DIFFUSION MODEL INFERENCE

In this section, we discuss existing numerical schemes for discrete diffusion models, including exact
simulation methods and the τ -leaping method.

B.1 EXACT SIMULATION METHODS

Unlike continuous diffusion models, where exact simulation is beyond reach, discrete diffusion mod-
els permit inference without discretization error. Notable examples of unbiased samplers include the
uniformization algorithm (Chen & Ying, 2024) for the uniform state case and the First-Hitting Sam-
pler (FHS) (Zheng et al., 2024) for the absorbing state case. The main idea behind these methods is
to first sample the next jump time and then the jump itself. Theoretical analysis Ren et al. (2024) re-
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veals that such schemes lack guarantees with finite computation budget, since the number of required
jumps (and thus the inference time) follows a random distribution with expectation Ω(d), where d
is the data dimension. This computational restriction may be less favorable for high-dimensional
applications, such as generative modeling of DNA or protein sequences.

Furthermore, the absence of discretization error does not necessarily translate to superior sample
quality, given the inherent estimation errors in neural network-based score functions. This limitation
is further amplified by the highly skewed distribution of jumps, with a significant concentration oc-
curring during the terminal phase of the backward process, precisely when the neural network-based
score function exhibits the highest estimation error. This phenomenon stems from the potential sin-
gularity of the target distribution p0, which induces singularities in the true score function, making
accurate neural network estimation particularly challenging during the terminal phase of the back-
ward process (cf. Assumption 4.4 in Ren et al. (2024)).
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Figure 1: An illustrative application of the uniformization algorithm to discrete diffusion models for
text generation. The x-axis denotes the time of the backward process, and the y-axis denotes the fre-
quency of jumps reflected by NFE. Perplexity convergence occurs well before the NFE experiences
unbounded growth.

Figure 1 illustrates an application of the uniformization algorithm to discrete diffusion model in-
ference for text generation, with detailed experimental parameters presented in section 5.3 and ap-
pendix E.4. As the process approaches the target distribution (t→ T ), the number of required jumps
grows unbounded, while perplexity improvements become negligible. This skewed distribution of
computational effort results in numerous redundant function evaluations.

Although early stopping is commonly adopted at T − δ for some small δ ≪ 1 to alleviate this
inefficiency, this approach introduces challenges in the parameter selection of δ, particularly un-
der computational constraints or when efficiency-accuracy trade-offs are desired. Moreover, the
variable jump schedules across batch samples complicate parallelization efforts in exact methods,
highlighting the need for more adaptable and efficient algorithmic solutions.

B.2 APPROXIMATE METHOD: τ -LEAPING METHOD

The τ -leaping method (Gillespie, 2001; Campbell et al., 2022) represents a widely adopted scheme
that effectively addresses both dimensionality scaling and inference time control challenges. This
Euler-type scheme approximates the backward process with time-dependent intensity µ̂t via the
following updates:

ŷt+δ = ŷt +
∑
ν∈D

νP (µ̂t(ν)δ) . (B.1)

In general, one may design different discretization schemes for τ -leaping, and the summation
in (B.1) is parallelizable, underscoring the method’s flexibility and efficiency. We refer to algo-
rithm 3 and appendix C.2 for a detailed description of the τ -leaping method for discrete diffusion
model inference. Regarding convergence properties as the time discretization becomes increasingly
refined, theoretical analyses by Campbell et al. (2022); Ren et al. (2024) have established the error
bounds of the τ -leaping method, the results of which are summarized in the following theorem.
Further discussion can be found in appendix C.2.

Theorem B.1 (Thm. 4.7 in Ren et al. (2024)). For the state space X = [S]d, with S sites along each
dimension, under certain discretization scheme and assumptions and given an ϵ-accurate score
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function, the following error bound holds:

DKL(pδ∥q̂T−δ) ≲ exp(−T ) + ϵ+ κT, (B.2)

where δ ≪ 1 is the early stopping time, κ is the parameter controlling the step size, and T is the
time horizon. The notation ≲ means that the left-hand side is bounded by the right-hand side up to
a constant factor as κ→ 0.

The error bound (B.2) decouples three error sources of the τ -leaping scheme: the truncation error
O(e−T ), the score estimation error ϵ, and the discretization error O(κT ). Similar to the case for
the Euler method for ODEs and the Euler-Maruyama scheme for SDEs, the τ -leaping method is a
first-order scheme in terms of the discretization error O(κT ).

B.3 APPROXIMATE METHOD: HIGH-ORDER SCHEMES

A natural improvement of τ -leaping is to develop high-order schemes for discrete diffusion mod-
els. As a foundational example, consider the second-order Runge-Kutta (RK-2) method with two
stages (Butcher, 1987) for solving the ODE dxt = ft(xt)dt. This method represents one of the
simplest high-order numerical schemes:

x̂∗t+θδ = x̂t + ft(x̂t)θδ,

x̂t+δ = x̂t +
[
(1− 1

2θ )ft(x̂t) +
1
2θft+θδ(x̂

∗
t+θδ)

]
δ.

(B.3)

This scheme reduces to the exact midpoint method when θ = 1
2 and Heun’s method when θ = 1.

The underlying intuition stems from the observation that for f ∈ C2(R),[(
1− 1

2θ

)
f(a) + 1

2θf(a+ θδ)
]
δ

offers a second-order approximation of
∫ a+δ

a
f(x)dx in contrast to f(a)δ, which is only first-order.

This approach has been successfully adapted for SDE simulation (Burrage & Burrage, 1996) and
continuous diffusion model inference (Karras et al., 2022; Lu et al., 2022a;b; Zheng et al., 2023b;
Wu et al., 2024a). Notably, these methods enhance sample quality and computational efficiency
without requiring additional model training, making the development of high-order schemes for
discrete diffusion inference both theoretically appealing and practically viable.

C MATHEMATICAL BACKGROUND

In this section, we provide the mathematical background for the stochastic integral formulation of
discrete diffusion models, the error analysis of the τ -leaping method, and useful lemmas for the
theoretical analysis of high-order schemes for discrete diffusion models.

C.1 STOCHASTIC INTEGRAL FORMULATION OF DISCRETE DIFFUSION MODELS

Throughout this section, we will assume that (Ω,F ,P) is a probability space, X is a finite-state
space, and denote the pairwise difference set of the state space by D := {x − y : x ̸= y ∈ X}. We
also assume that the pairwise difference set X is equipped with a metric ∥ · ∥, a finite measure γ, and
a σ-algebra B.

As a warm-up, we introduce the definition of the Poisson random measure for a time-homogeneous
counting process.
Definition C.1 (Poisson Random Measure (Ren et al., 2024, Definition A.1)). The random measure
N(dt,dν) on R+×D is called a Poisson random measure w.r.t. measure γ if it is a random counting
measure satisfying the following properties:

(i) For any B ∈ B and 0 ≤ s < t,

N((s, t]×B) ∼ P (γ(B)(t− s)) ;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt(Bi) := N((0, t]×Bi)}i∈[n]

are independent stochastic processes.
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Then we define the Poisson random measure with evolving intensities. The term “evolving” refers
to that the intensity is both time and state-dependent.
Definition C.2 (Poisson Random Measure with Evolving Intensity (Ren et al., 2024, Defini-
tion A.3)). Suppose λt(y) is a non-negative predictable process on R+ × D × Ω satisfying that
for any 0 ≤ T < T ,

∫ T

0
λt(ν)dt <∞, a.s..

The random measure N [λ](dt,dν) on R+ × D is called a Poisson random measure with evolving
intensity λt(y) w.r.t. measure γ if it is a random counting measure satisfying the following proper-
ties:

(i) For any B ∈ B and 0 ≤ s < t,

N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B

λτ (ν)γ(dν)dτ

)
;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n]

are independent stochastic processes.

Remark C.3 (Construction of Poisson Random Measure with Evolving Intensity). As discussed
in Thm. A.4 in Ren et al. (2024) and originally proposed by Protter (1983), the Poisson random
measure with evolving intensity can be constructed in the following way.

One first augments the (X,B, ν) measure space to a product space (D × R,B × B(R), γ × m),
where m is the Lebesgue measure on R, and B(R) is the Borel σ-algebra on R. The Poisson
random measure with evolving intensity λt(ν) can be defined in the augmented measure space as

N [λ]((s, t]×B) :=

∫ t

s

∫
B

∫
R
10≤ξ≤λτ (ν)N(dτ,dν, dξ), (C.1)

where N(dτ,dν, dξ) is the Poisson random measure on R+ × D× R w.r.t. measure ν(dy)dξ.

The following theorem provides the change of measure theorem for Poisson random measure with
evolving intensity, which is crucial for the theoretical analysis of numerical schemes for discrete
diffusion models.
Theorem C.4 (Change of Measure for Poisson Random Measure with Evolving Density (Ren et al.,
2024, Thm. 3.3)). Let N [λ](dt,dν) be a Poisson random measure with evolving intensity λt(ν),
and ht(ν) a positive predictable process on R+×D×Ω. Suppose the following exponential process
is a local Ft-martingale:

Zt[h] := exp

(∫ t

0

∫
D
log ht(ν)N [λ](dt× dν)−

∫ t

0

∫
D
(ht(ν)− 1)λt(ν)γ(dν)

)
, (C.2)

and Q is another probability measure on (Ω,F) such that Q ≪ P with Radon-Nikodym derivative
dQ/dP|Ft

= Zt[h].

Then the Poisson random measure N [λ](dt,dν) under the measure Q is a Poisson random measure
with evolving intensity λt(ν)ht(ν).

C.2 ERROR ANALYSIS OF τ -LEAPING

The τ -leaping method was originally proposed by Gillespie (2001) and adopted for the inference of
discrete diffusion models by Campbell et al. (2022). A summary of the algorithm is given in algo-
rithm 3. In this subsection, we provide a sketch for the error analysis of the τ -leaping method when
applied to discrete diffusion models, which will be compared with that of high-order schemes later
on.

Proof of theorem B.1. As we are considering the case where X = [S]d, i.e. the state space is a d-
dimensional grid with S states along each dimension, we have log |X| = d logS. Then we consider
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Algorithm 3: τ -Leaping Method for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, θ ∈ [0, 1], time discretization (sn, ρn)n∈[0:N−1], µ̂, µ̂∗ as defined

in proposition 3.2.
Output: A sample ŷsN ∼ q̂RK

tN .
1 for n = 0 to N − 1 do
2 ŷsn+1 ← ŷsn +

∑
ν∈D

νP (µ̂sn(ν)∆n);

3 end

a simple time-homogeneous transition matrix Qt ≡ Q that allows jumps between neighboring states
with equal probability. Specifically, we have

Q(y, x) =

{
1, ∥x− y∥1 = 1,

−2d, x = y,

which can be verified to satisfy Assumption 4.3(i) in Ren et al. (2024) withC = 1 andD = D = 2d.
Assumption 4.3(ii) is also satisfied, as shown in Example B.10 of Ren et al. (2024).

Then we may apply Thm. 4.7 in Ren et al. (2024) by using the required time discretization scheme
according to the properties of the target distribution and plugging in the corresponding values of
C,D,D. The result follows eventually by scaling the transition matrix Q by 1

d , equivalent to scaling
the time by d.

D PROOFS

In this section, we provide the missing proofs in the main text. We will first provide the proofs of the
stochastic integral formulations of high-order schemes for discrete diffusion models in appendix D.1.
Then we will provide the proofs of the main results for the θ-trapezoidal method in appendix D.4
and the θ-RK-2 method in appendix D.5. We remark that the proof for the θ-trapezoidal method
requires more techniques and is more involved, to which the proof for the θ-RK-2 method is anal-
ogous. In appendix D.6, we provide the detailed lemmas and computations omitted in the proofs
of theorem 4.1 and theorem 4.2.

D.1 STOCHASTIC INTEGRAL FORMULATIONS OF HIGH-ORDER SCHEMES

Proof of proposition 3.2 and proposition 3.3. Without loss of generality, we give the proof on the
interval (sn, sn+1] for n ∈ [0 : N − 1], and the generalization to the whole interval [0, T ] is
straightforward.

Notice that once we condition on the filtrationFsn and construct the intermediate process ŷ∗s as spec-
ified in (3.1) along the interval (sn, sn+1], the intermediate intensity µ̂∗ and the piecewise intensity
µ̂⌊s⌋ do not evolve with time s or the interpolating processes ŷRK

s (or ŷtraps , respectively) since it
only depends on the state, the intensity at the beginning of the interval sn and other randomness that
is independent of the interpolating process.

Therefore, the stochastic integral on this interval can be rewritten as for the θ-RK-2 scheme that

ŷRK
sn+1

= ŷRK
sn +

∫ sn+1

sn

∫
D
νN [µ̂trap](ds,dν)

= ŷRK
sn +

∫
D
νN [µ̂RK]((sn, sn+1],dν)

= ŷRK
sn +

∫
D
νP(µ̂RK

sn (ν)(sn+1 − sn))γ(dν),
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and for the θ-Trapezoidal scheme that

ŷtrapsn+1
= ŷtrapsn +

∫ sn+1

sn

∫
D
νN [µ̂trap](ds,dν)

= ŷtrapsn +

∫
D
νN [µ̂trap]((sn, sn+1],dν)

= ŷtrapsn +

∫
D
νP(µ̂trap

sn (ν)(sn+1 − sn))γ(dν),

and the statement follows by taking γ(dν) as the counting measure.

D.2 ASSUMPTIONS

We will primarily consider the following assumptions for the analysis of the θ-trapezoidal and θ-
RK-2 methods.
Assumption D.1 (Convergence of Forward Process). The forward process converges to the station-
ary distribution exponentially fast, i.e., DKL(pT ∥p∞) ≤ exp(−ρT ), where ρ > 0 is the exponential
convergence rate.
This assumption ensures rapid convergence of the forward process, controlling error when termi-
nated at a sufficiently large time horizon T , and is automatically satisfied in the masked state case
and the uniform state case, given sufficient connectivity of the graph (cf. Ren et al. (2024)). The
exponential rate aligns with continuous diffusion models (cf. in Benton et al. (2024a)).
Assumption D.2 (Regularity of Intensity). For the true intensity µs(ν, ys−) and the estimated inten-
sity µ̂s(ν, ys−), the following two claims hold almost everywhere w.r.t. µs(ν, ys−)γ(dν) ⃗ps−(dys−):
(I) Both intensities belong to C2([0, T − δ]); (II) Both intensities are upper and lower bounded on
[0, T − δ].
This essentially assumes two key requirements of the scores: (1) the forward process evolution main-
tains sufficient smoothness, which is achievable through appropriate time reparametrization; and (2)
if a state y ∈ X is achievable by the forward process and ν is a permissible jump therefrom, then both
its true and estimated intensity are bounded. This assumption corresponds to Assumps. 4.3(i), 4.4
and 4.5 in Ren et al. (2024).
Assumption D.3 (Estimation Error). For all grid points and θ-section points, the estimation error
of the neural network-based score is small, i.e., for any s ∈ ∪n∈[0:N−1]{sn, ρn},

(i) E
[∫

D

(
µs(ν) log

µs(ν)
µ̂s(ν)

− µs(ν) + µ̂s(ν)
)
γ(dν)

]
≤ ϵI;

(ii) E
[∫

D
|µs(ν)− µ̂s(ν)| γ(dν)

]
≤ ϵII.

This assumption quantifies the proximity of the estimated intensity µ̂ to the true intensity µ after
sufficient training. Compared with Ren et al. (2024), the additional L∞ part in (ii) is required for
technical reasons, which is similar to Chen et al. (2024b); Wu et al. (2024a). In practice, such
additional assumptions may be realized by adding extra penalty terms to the objective function
during training.

D.3 CONVERGENCE GUARANTEES

D.4 CONVERGENCE ANALYSIS OF THE θ-TRAPEZOIDAL METHOD

Theorem D.4. Let ⃗p0:T−δ and q̂trap0:T−δ be the path measures of the backward process with the
stochastic integral formulation (2.5) and the interpolating process (3.6) of the θ-trapezoidal method
(algorithm 2), then it holds that

DKL( ⃗pT−δ∥q̂
trap
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂

trap
0:T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
,

(D.1)
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where the intensity µ̂trap is defined in (3.6), and the expectation is taken w.r.t. both paths generated
by the backward process (2.5) and the randomness of the Poisson random measure used in the first
step of each iteration of the algorithm, i.e., the construction of the intermediate process (3.1), which
is assumed to be independent of that of the backward process.

Proof. First, we will handle the randomness introduced by the Poisson random measure in the first
step of each iteration of the θ-trapezoidal method. For the ease of presentation, we encode the afore-
mentioned randomness as a random variable ζ and suppose it is still supported on the probability
space (Ω,F ,P) while being independent of the backward process. Then for each realization of ζ,
the intermediate process ŷ∗s is constructed as in (3.1) and the corresponding intensity µ̂∗

s is defined
in (3.5).

Given the stochastic integral formulation of the backward process (2.5) and the interpolating process
of the θ-trapezoidal method (3.6), we have by theorem C.4 that this particular realization of the path
measure q̂trap0:T−δ can be obtained by changing the path measure ⃗p0:T−δ with the Radon-Nikodym
derivative

Zt

[
µ̂trap

µ

]
= exp

(
−
∫ t

0

∫
D
log

µs(ν)

µ̂trap
s (ν)

N [µ](ds,dν) +

∫ t

0

∫
D

(
µs(ν)− µ̂trap

s (ν)
)
γ(dν)ds

)
,

i.e.,

DKL( ⃗p0:T−δ∥q̂
trap
0:T−δ|ζ) = E

[
logZ−1

T−δ

[
µ̂trap

µ

]]
=E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
.

Then it is easy to see by the data processing inequality and the chain rule of KL divergence that

DKL( ⃗pT−δ∥q̂
trap
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂

trap
0:T−δ) ≤ E

[
DKL( ⃗pT−δ∥q̂

trap
T−δ|ζ)

]
=DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]
,

and the proof is complete.

In the following, we will provide the outline of the proof of theorem 4.1, where we leave the proof
of several lemmas and detailed calculations to appendix D.6 for the clarity of presentation.

Proof of theorem 4.1. Throughout this proof, including the subsequent lemmas and propositions
that will be detailed in appendix D.6, we will assume that (ys)s∈[0,T ] is a process generated by the
path measure ⃗p0:T of the backward process with the stochastic integral formulation (2.5) and set it
as the underlying paths of the expectation in (D.1) as required by theorem D.4. Especially, ys ∼ ⃗ps
holds for any s ∈ [0, T ]. For simplicity, we will assume that the process ys is left-continuous at each
grid point si for i ∈ [0 : N ], which happens with probability one.

We first consider the interval (sn, sn+1] for n ∈ [0 : N − 1], and thus we have ⌊s⌋ = sn and
ρs = ρn. Within this interval, we will denote its intermediate process as appeared in (3.1) as y∗s , and
the corresponding intermediate intensity as appeared in (3.5) as µ̂∗

s . In the following discussion, we
will assume implicitly that the processes are conditioned on the filtration Fsn .

By the definition of the intensity µ̂trap(ν) as specified in (3.7)

µ̂trap
s = 1s<ρs µ̂⌊s⌋ + 1s≥ρs

(
α1µ̂

∗
ρs
− α2µ̂⌊s⌋

)
+
,

27



Frontiers in Probabilistic Inference (FPI): Sampling Meets Learning @ ICLR 2025

we can rewrite the corresponding part of the integral in (D.1) as∫ sn+1

sn

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

=

(∫ ρn

sn

+

∫ sn+1

ρn

)∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

=

∫ ρn

sn

∫
D

(
µs(ν) log

µs(ν)

µ̂sn(ν)
− µs(ν) + µ̂sn(ν)

)
γ(dν)ds︸ ︷︷ ︸

(I)

+

∫ sn+1

ρn

∫
D

(
µs(ν) log

µs(ν)

α1µ̂∗
ρn
(ν)− α2µ̂sn(ν)

− µs(ν) + α1µ̂
∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds︸ ︷︷ ︸

(II)

,

where the assumption that α1µ̂
∗
ρs
− α2µ̂⌊s⌋ ≥ 0 for all s ∈ [0, T − δ] is applied here for the second

term (II) above. We note that such positivity assumption also exists in the analysis performed
by Anderson & Mattingly (2011) and Hu et al. (2011a) and a more detailed discussion on such
assumption is deferred to remark D.5.

Decomposition of the Integral. Next, we decompose the integral (I) and (II) into several terms,
the magnitudes of which or combinations of which are to be bounded.

(i) The first term is decomposed as

(I) = (I.1) + (I.2) + (I.3) + (I.4),

where each term is defined as

(I.1) =

∫ ρn

sn

∫
D

(
µsn(ν) log

µsn(ν)

µ̂sn(ν)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds,

(I.2) =

∫ ρn

sn

∫
D
(µs(ν) logµs(ν)− µs(ν)− µsn(ν) logµsn(ν) + µsn(ν)) γ(dν)ds,

(I.3) =

∫ ρn

sn

∫
D
(µs(ν)− µsn(ν))

(
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

)
γ(dν)ds,

(I.4) =

∫ ρn

sn

∫
D
µsn(ν) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−
∫ ρn

sn

∫
D
µs(ν) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds.

(ii) The second term is decomposed as

(II) = (II.1) + (II.2) + (II.3) + (II.4) + (II.5) + (II.6),

where each term is defined as

(II.1) = α1

∫ sn+1

ρn

∫
D

(
µρn

(ν) log
µρn

(ν)

µ̂ρn(ν)
− µρn(ν) + µ̂ρn(ν)

)
γ(dν)ds

− α2

∫ sn+1

ρn

∫
D

(
µsn(ν) log

µsn(ν)

µ̂sn(ν)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds

(II.2) =

∫ sn+1

ρn

∫
D
(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D

(
α1(µρn(ν) logµρn(ν)− µρn(ν))− α2(µsn(ν) logµsn(ν)− µsn(ν))

)
γ(dν)ds

(II.3) =

∫ sn+1

ρn

∫
D
α1

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds,
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(II.4) =

∫ sn+1

ρn

∫
D
(α1µρn(ν) log µ̂ρn(ν)− α2µsn(ν) log µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log (α1µ̂ρn
(ν)− α2µ̂sn(ν)) γ(dν)ds

(II.5) =

∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log (α1µ̂ρn
(ν)− α2µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µρn(ν)− α2µsn(ν)) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

(II.6) =

∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−
∫ sn+1

ρn

∫
D
µs(ν) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds.

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques
used in the bound of the terms above, and the detailed calculations and proofs of the lemmas and
propositions are deferred to appendix D.6.

(i) Error due to estimation error associated with the intensity: The terms (I.1) and (II.1) are
bounded by the assumption on the estimation error of the intensity µ̂s (assumption D.3), as

E [(I.1) + (II.1)] ≤ θ∆nϵI + α1(1− θ)∆nϵI = θ∆nϵI +
1

2θ
∆nϵI ≲ ∆nϵI,

for any θ ∈ (0, 1].

The term (II.4) is bounded by proposition D.8, as

E [(II.4)] ≲ ∆nϵII,

where Jensen’s inequality is applied here based on the convexity of the loss.

(ii) Error related to the smoothness of intensity: By corollary D.12, the terms (I.2) and (II.2)
are bounded by

E [(I.2) + (II.2)] ≤ ∆3
n.

By corollary D.13, the terms (I.4) and (II.6) are bounded by

E [(I.4) + (II.6)] ≤ ∆3
n.

Intuitively, the bounds on these terms closely relate to the properties of the jump process
and quantify the smoothness assumption on the intensity µs (assumption D.2), especially
when the intensity does not vary significantly within the interval (sn, sn+1]. The main
technique used for bounding these terms is Dynkin’s Formula (theorem D.9). The third-
order accuracy here directly follows from the intuition provided in appendix B.3 based on
numerical quadrature.

(iii) Error involving the intermediate process: The terms (II.3) and (II.5) are bounded
by proposition D.17 and corollary D.18 respectively as follows

E [(II.3)] ≲ ∆3
n +∆2

nϵII, and E [(II.5)] ≲ ∆3
n +∆2

nϵII,

The term (I.3) is bounded by proposition D.19 as below

E [(I.3)] ≲ ∆3
nϵII +∆4

n ≲ ∆2
nϵII +∆3

n.

The three terms above all involve the intermediate process y∗s and the corresponding inter-
mediate density µ̂∗

s .
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In conclusion, by summing up all these terms, we have∫ sn+1

sn

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

≲∆n(ϵI + ϵII) + ∆3
n +∆2

nϵII ≲ ∆n(ϵI + ϵII) + ∆3
n.

Therefore, the overall error is bounded by first applying theorem D.4 and then the upper bound
derived above to each interval (sn, sn+1], which yields

DKL( ⃗pT−δ∥q̂
trap
T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂trap
s (ν)

− µs(ν) + µ̂trap
s (ν)

)
γ(dν)ds

]

≲DKL( ⃗p0∥q̂0) +
N−1∑
n=0

(
∆n(ϵI + ϵII) + ∆3

n

)
≲ exp(−T ) + T (ϵI + ϵII) + κ2T,

as desired.

Remark D.5 (Discussion on the Positivity Assumption). In the statement of theorem 4.1, we have
assumed that

α1µ̂
∗
ρs
(ν)− α2µ̂⌊s⌋(ν) ≥ 0

in (3.7) for all s ∈ [0, T−δ], which allows us to replace
(
α1µ̂

∗
ρs
(ν)− α2µ̂⌊s⌋(ν)

)
+

by the difference
itself. Anderson & Mattingly (2011) showed that this approximation is at most of O(∆3

n) within
the corresponding interval and Hu et al. (2011a) further proved that for any order p ≥ 1, there
exists a step size ∆ such that this approximation is at least p-th order, i.e., of order O(∆p) for that
step. Therefore, we believe the positive part approximation would not affect the performance of
the proposed algorithm for the case of discrete diffusion models when the step size is not too large,
which is also supported by our empirical studies.

D.5 CONVERGENCE ANALYSIS OF THE θ-RK-2 METHOD

Here we may again apply the data processing inequality and the chain rule of KL divergence to upper
bound the error associated with the θ-RK-2 method. A statement of the upper bound is provided
in theorem D.6 below, whose proof is omitted here since it is similar to that of theorem D.4 above.

Theorem D.6. Let ⃗p0:T−δ and q̂RK
0:T−δ be the path measures of the backward process with the

stochastic integral formulation (2.5) and the interpolating process (3.3) of the θ-RK-2 method (
algorithm 1), then it holds that

DKL( ⃗pT−δ∥q̂RK
T−δ) ≤ DKL( ⃗p0:T−δ∥q̂RK

0:T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

]
,

(D.2)

where the intensity µ̂RK is defined in (3.3), and the expectation is taken w.r.t. both paths generated
by the backward process (2.5) and the randomnesss of the Poisson random measure used in the first
step of each iteration of the algorithm, i.e., the construction of the intermediate process (3.1), which
is assumed to be independent of that of the backward process.

Following the same flow as in the proof of theorem 4.1, we will first provide an outline of the
proof of theorem 4.2, and defer the proof of several key lemmas and detailed calculations are to ap-
pendix D.6 for the clarity of presentation. We will also comment on the differences that may lead to
the less desirable numerical properties of the θ-RK-2 method.

Proof of theorem 4.2. In the following proof sketch, we will be using the same notation as in the
proof of theorem 4.1, and we will assume that the process ys is left-continuous at each grid point si
for i ∈ [0 : N ]. We also start by taking a closer look at the integral within each interval (sn, sn+1] for
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n ∈ [0 : N−1], and denote the intermediate process as appeared in (3.1) as y∗s and the corresponding
intermediate intensity as appeared in (3.5) as µ̂∗

s .

As defined in (3.4), the intensity µ̂RK(ν) is given by

µ̂RK
s (ν) =

(
1− 1

2θ

)
µ̂⌊s⌋(ν) +

1

2θ
µ̂∗
ρs
(ν),

which helps us rewrite the corresponding part of the integral in (D.2) as∫ sn+1

sn

∫
D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

=

∫ sn+1

sn

∫
D

(
µs(ν) log

µs(ν)

(1− 1
2θ )µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)
− µs(ν) +

(
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν)ds︸ ︷︷ ︸

(III)

.

Above we again use the positivity assumption that (1 − 1
2θ )µ̂⌊s⌋ +

1
2θ µ̂

∗
ρs
≥ 0 for the term (III)

above, just as what we have done in the proof and discussion of theorem 4.1 above.

Decomposition of the Integral. Then we perform a similar decomposition of the integral as in the
proof of theorem 4.1 as follows:

(III) = (III.1) + (III.2) + (III.3) + (III.4) + (III.5) + (III.6),

where each term is defined as

(III.1) =

(
1− 1

2θ

)∫ sn+1

sn

∫
D

(
µsn(ν) log

(
µsn(ν)

µ̂sn(ν)

)
− µsn(ν) + µ̂sn(ν)

)
γ(dν)ds

+
1

2θ

∫ sn+1

sn

∫
D

(
µρn(ν) log

(
µρn

(ν)

µ̂ρn(ν)

)
− µρn(ν) + µ̂ρn(ν)

)
γ(dν)ds

(III.2) =

∫ sn+1

sn

∫
D
(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
(µsn(ν) logµsn(ν)− µsn) +

1

2θ
(µρn(ν) logµρn(ν)− µρn(ν))

)
γ(dν)ds

(III.3) =

∫ sn+1

sn

∫
D

1

2θ

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds

(III.4) =

∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1

2θ
µρn(ν) log µ̂ρn(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1

2θ
µρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂ρn

(ν)

)
γ(dν)ds

(III.5) =

∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1
2θµρn(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂ρn(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1

2θ
µρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1
2θ µ̂

∗
ρn
(ν)

)
γ(dν)ds

(III.6) =

∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1

2θ
µρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D
µs(ν) log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν)ds

Bounding the Error Terms. Then we briefly summarize the intuitions and related techniques used
in the bound of the terms above,. Detailed calculations and proofs of the lemmas and propositions
used here are deferred to appendix D.6.
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(i) Error due to the intensity estimation: The terms in (III.1) are bounded by the assumption
on the estimation error of the intensity µ̂s (assumption D.3) as follows

E [(III.1)] ≤
(
1− 1

2θ

)
∆nϵI +

1

2θ
∆nϵI = ∆nϵI,

for any θ ∈ (0, 1].

(ii) Error related to the smoothness of intensity: By corollary D.15 and corollary D.16, the
terms (III.2) and (III.6) are bounded by

E [(III.2)] ≤ ∆3
n, and E [(III.6)] ≤ ∆3

n,

respectively.

(iii) Error involving the intermediate process: The term (III.3) and (III.5) are bounded in
almost the same way as that of proposition D.17 and corollary D.18. By simply altering
the integral upper limits, we obtain that

E [(III.3)] ≲ ∆3
n +∆2

nϵII, E [(III.5)] ≲ ∆3
n +∆2

nϵII.

The only term that cannot be directly bounded based on results in appendix D.6 is (III.4), which is
given by

E [(III.4)] = E
[ ∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1

2θ
µρn(ν) log µ̂ρn(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1

2θ
µρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂ρn

(ν)

)
γ(dν)ds

]
(D.3)

Recall that in the proof of its counterpart (proposition D.8), we utilized the convexity of the loss
function and the extrapolation nature of the second step in the θ-trapezoidal method (3.7) to bound
the error term. However, the same technique cannot be directly applied to the θ-RK-2 method for
any θ ∈ [0, 1], as the intensity µ̂RK

s is an interpolation of the intensity µ̂s when θ ∈ ( 12 , 1]. Therefore,
below we will first focus on the case when θ ∈ (0, 12 ].

To be specific, by the assumption on the estimation error (assumption D.3), we can reduce (D.3) to

E
[ ∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µ̂sn(ν) log µ̂sn(ν) +

1

2θ
µρn(ν) log µ̂ρn(ν)

)
−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂ρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂ρn

(ν)

)
γ(dν)ds

]
,

(D.4)
which can then be upper bounded based on Jensen’s inequality and the convexity of the loss function
for θ ∈ (0, 12 ].

Summing up the bounds of the terms above, we have∫ sn+1

sn

∫
D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

≲∆n(ϵI + ϵII) + ∆3
n +∆2

nϵII ≲ ∆n(ϵI + ϵII) + ∆3
n,

Consequentially, the overall error of the θ-RK-2 method is bounded by

DKL( ⃗pT−δ∥q̂RK
T−δ)

≤DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
D

(
µs(ν) log

µs(ν)

µ̂RK
s (ν)

− µs(ν) + µ̂RK
s (ν)

)
γ(dν)ds

]

≲DKL( ⃗p0∥q̂0) +
N−1∑
n=0

(
∆n(ϵI + ϵII) + ∆3

n

)
≲ exp(−T ) + T (ϵI + ϵII) + κ2T,

which suggests that the θ-RK-2 is also of second order when θ ∈ (0, 12 ]. For the other case when
θ ∈ ( 12 , 1], we will provide a brief discussion in the remakr below.
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Remark D.7 (Discussions on the case when θ ∈ ( 12 , 1]). For θ ∈ ( 12 , 1], the term (D.4) is positive
and thus not necessarily bounded. One may wonder if, despite being positive, this term is still of
at least second order. However, the answer seems negative. By applying the Dynkin’s formula
(theorem D.9 and corollary D.10) to µs log µ̂s in the term (III.4), we have that the first integral
in (D.3) can be expanded as follows

E
[∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) log µ̂sn(ν) +

1

2θ
µρn

(ν) log µ̂ρn
(ν)

)
γ(dν)ds

]
=

1

2θ

∫ sn+1

sn

∫
D
(µsn(ν) log µ̂sn(ν) + θ∆nL (µsn(ν) log µ̂sn(ν))) γ(dν)ds

+

(
1− 1

2θ

)∫ sn+1

sn

∫
D
µsn(ν) log µ̂sn(ν)γ(dν)ds+O(∆2

n)

=∆n

∫
D
µsn(ν) log µ̂sn(ν)γ(dν) +

1

2
∆2

n

∫
D
L (µsn(ν) log µ̂sn(ν)) γ(dν) +O(∆3

n).

Similarly, applying the Dynkin’s formula to the following function

Gs(ν, ys−) =

(
1

2θ
µs(ν, ys−) +

(
1− 1

2θ

)
µsn(ν, ys−)

)
log

(
1

2θ
µ̂s(ν, ys−) +

(
1− 1

2θ

)
µ̂sn(ν, ys−)

)
,

with G0(ν, ysn) = µsn(ν, ysn) log µ̂sn(ν, ysn) allows us to expand the second integral in (D.3) as
below

E
[∫ sn+1

sn

∫
D

(
1

2θ
µρn

(ν) +

(
1− 1

2θ

)
µsn(ν)

)
log

(
1

2θ
µ̂ρn

(ν) +

(
1− 1

2θ

)
µ̂sn(ν)

)
γ(dν)ds

]
=∆n

∫
D
Gsn(ysn)γ(dν) + θ∆2

n

∫
D
LGsn(ysn)γ(dν) +O(∆3

n),

where

LGsn(ν, ysn) =
1

2θ
∂sµsn(ν, ysn) log µ̂sn(ν, ysn) +

1

2θ
µsn(ν, ysn)

1

2θ

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+
1

2θ

∫
D
µsn(ν, ysn + ν′) log

(
1

2θ
µ̂s(ν, ysn + ν′) +

(
1− 1

2θ

)
µ̂sn(ν, ysn + ν′)

)
γ(dν′)

− 1

2θ

∫
D
µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν

′)

+

(
1− 1

2θ

)
µsn(ν, ysn)

1

2θ

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+

(
1− 1

2θ

)∫
D
µsn(ν, ysn + ν′) log

(
1

2θ
µ̂s(ν, ysn + ν′) +

(
1− 1

2θ

)
µ̂sn(ν, ysn + ν′)

)
γ(dν′)

−
(
1− 1

2θ

)∫
D
µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν

′)

=
1

2θ
∂sµsn(ν, ysn) log µ̂sn(ν, ysn) +

1

2θ
µsn(ν, ysn)

∂sµ̂sn(ν, ysn)

µ̂sn(ν, ysn)

+
1

2θ

∫
D
µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)γ(dν′)

+

(
1− 1

2θ

)∫
D
µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)γ(dν′)

− 1

2θ

∫
D
µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν

′)−
(
1− 1

2θ

)∫
D
µsn(ν, ysn) log µ̂sn(ν, ysn)γ(dν

′).

This further implies that

θLGsn(ysn) =
1

2
L (µsn(ν) log µ̂sn(ν))

+
1

2θ

∫
D
(µsn(ν, ysn + ν′) log µ̂s(ν, ysn + ν′)− µsn(ν, ysn) log µ̂sn(ν, ysn)) γ(dν

′).

Comparing the first and second order terms in the two expansions of the two integrals in (D.3) above
then implies that the term (III.4) is of at most second order.
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D.6 LEMMAS AND PROPOSITIONS

In this section, we provide the detailed proofs of the lemmas and propositions omitted in the proof
of theorem 4.1 and theorem 4.2.

Error due to the Intensity Estimation. Apart from the terms (I.1) and (II.1) in the proof of theo-
rem 4.1 and the term (III.1) in the proof of theorem 4.2, we also need to bound the error terms (II.4)
in terms of the intensity estimation error, which is given by the following proposition. Notably, the
following bound also utilizes the convexity of the loss function and the extrapolation nature of the
second step in the θ-trapezoidal method (3.7).

Proposition D.8. For the interval (sn, sn+1] for n ∈ [0 : N − 1], we have the following error
bound:

E [(II.4)] = E
[ ∫ sn+1

ρn

∫
D
(α1µρn(ν) log µ̂ρn(ν)− α2µsn(ν) log µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µρn(ν)− α2µsn(ν)) log (α1µ̂ρn(ν)− α2µ̂sn(ν)) γ(dν)ds

]
≲ ∆nϵII.

(D.5)

Proof. We first define and bound three error terms (II.4.1), (II.4.2), and (II.4.3) with score estima-
tion error (assumption D.3) as follows:

E [|(II.4.1)|] =E
[∣∣∣∣∫ sn+1

ρn

∫
D
α1 (µρn(ν) log µ̂ρn(ν)− µ̂ρn(ν) log µ̂ρn(ν)) γ(dν)ds

∣∣∣∣]
≤α1E

[∫ sn+1

ρn

∫
D
|µρn(ν)− µ̂ρn(ν)| |log µ̂ρn(ν)| γ(dν)ds

]
≲E

[∫ sn+1

ρn

∫
D
|µρn

(ν)− µ̂ρn
(ν)| γ(dν)ds

]
≲ ∆nϵII,

Similarly, we also have

E [|(II.4.2)|] = E
[∣∣∣∣∫ sn+1

ρn

∫
D
α2 (µsn(ν) log µ̂sn(ν)− µ̂sn(ν) log µ̂sn(ν)) γ(dν)ds

∣∣∣∣] ≲ ∆nϵII,

and

E [|(II.4.3)|] = E
[∣∣∣∣ ∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log (α1µ̂ρn
(ν)− α2µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µ̂ρn(ν)− α2µ̂sn(ν)) log (α1µ̂ρn(ν)− α2µ̂sn(ν)) γ(dν)ds

∣∣∣∣] ≲ ∆nϵII.

The remaining term (II.4.4) = (II.4)− (II.4.1)− (II.4.2)− (II.4.3) is then given by

(II.4.4) =

∫ sn+1

ρn

∫
D
(α1µ̂ρn(ν) log µ̂ρn(ν)− α2µ̂sn(ν) log µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µ̂ρn

(ν)− α2µ̂sn(ν)) log (α1µ̂ρn
(ν)− α2µ̂sn(ν)) γ(dν)ds ≤ 0,

where the last inequality follows from Jensen’s inequality, i.e.,

α1x log x− α2y log y ≤ (α1x− α2y) log(α1x− α2y),

for α1, α2 ≥ 0 and α1 − α2 = 1. Therefore, by summing up the terms above, we have

E [(II.4)] ≤ E [(II.4.1) + (II.4.2) + (II.4.3) + (II.4.4)] ≲ ∆nϵII,

and the proof is complete.
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Error Related to the Smoothness of Intensity. Below we first present the Dynkin’s formula,
which is the most essential tool for the proof of the error related to the smoothness of the intensity.

Theorem D.9 (Dynkin’s Formula). Let (yt)t∈[0,τ ] be the following process:

yt = y0 +

∫ t

0

∫
D
νN [µ](ds,dν),

where N [µ](ds,dν) is a Poisson random measure with intensity µ of the form µs(ν, ys−). For any
f ∈ C1([0, τ ]× X), we define the generator of the process (yt)t∈[0,τ ] as below

Lft(y) = lim
τ→0+

[
ft+τ (yt+τ )− ft(yt)

τ

∣∣∣∣yt = y

]
= ∂tft(y)+

∫
D
(ft(y + ν)− ft(y))µt(ν, y)γ(dν).

(D.6)
Then we have that

E [ft(yt)] = f0(y0) + E
[∫ t

0

Lfs(ys)ds
]
.

Proof. The definition and the form of the generator L, as well as the Dynkin’s formula are all well-
known in the literature of jump processes. We refer readers to detailed discussions on these topics
in Øksendal & Sulem (2019).

Here we take X(t) = (t, yt), z = (ν, ξ), α(t,X(t)) = 0, σ(t,X(t)) = 0, γ(t,X(t−), z) =
ν10≤ξ≤µt(ν,yt− ) in the statement of Thm. 1.19 in Øksendal & Sulem (2019) and replace the com-
pensated Poisson random measure Ñ(dt, dz) with the Poisson random measure N(ds,dν, dξ) de-
fined as remark C.3. Then we are allowed to use the ordinary Poisson random measure instead of
the compensated one since we are working with a finite measure γ(dν).

From Thm. 1.22 in Øksendal & Sulem (2019), we have that

Lft(y) = ∂tft(y) +

∫
D

∫
R

(
ft(y + ν10≤ξ≤µt(ν,y))− ft(y)

)
γ(dν)dξ

= ∂tft(y) +

∫
D
(ft(y + ν)− ft(y))µt(ν, y)γ(dν),

and the proof is complete.

In many cases below, we will need the following first-order expansion of the expectation of the
function ft(yt) by assuming the second-order smoothness of the function f .

Corollary D.10. Suppose that the process (yt)t∈[0,τ ] and the generator L are defined as in theo-
rem D.9. If we further assume that f ∈ C2([0, τ ]× X), then it holds that

E [ft(yt)] = f0(y0) + tLf0(y0) +O(t2).

Proof. We expand the function fs(ys) from t = 0 as follows

E [ft(yt)] =f0(y0) + E
[∫ t

0

Lfs(ys)ds
]

=f0(y0) + E
[∫ t

0

L
(
f0(y0) +

∫ s

0

Lfσ(yσ)dσ
)
ds

]
=f0(y0) + Lf0(y0)t+ E

[∫ t

0

∫ s

0

L2fσ(yσ)dσds

]
,
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where L2 is the second-order generator of the process (yt)t∈[0,τ ] defined as follows

L2fσ(y) = L
(
∂σfσ(y) +

∫
D
(fσ(y + ν)− fσ(y))µσ(ν)γ(dν)

)
= ∂2σfσ(y) + 2

∫
D
(∂σfσ(y + ν)− ∂σfσ(y))µσ(ν)γ(dν)

+

∫
D
(fσ(y + ν)− fσ(y)) ∂σµσ(ν)γ(dν)

+

∫
D

∫
D

(
fσ(y + ν + ν′)− fσ(y + ν′)− fσ(y + ν) + fσ(y)

)
µσ(ν)µσ(ν

′)γ(dν)γ(dν′),

which is bounded uniformly by a constant based on the assumption on the smoothness of the function
f up to the second order and the boundedness of the measure γ(dν). Therefore, the second order
term above is of magnitude O(t2) and the proof is complete.

The following lemma provides a general recipe for bounding a combination of errors, which resem-
bles standard analysis performed for numerical quadratures. In fact, the following lemma can be
easily proved by Taylor expansion when the process (yt)t∈[0,τ ] is constant, i.e., yt ≡ y. corol-
lary D.10 offers an analogous approach to perform the expansion when the process (yt)t∈[0,τ ] is not
constant.
Lemma D.11. For any function f ∈ C2([0, τ ] × X) and the true backward process (yt)t∈[0,τ ]

defined in (2.5), it holds that∣∣∣∣∣E
[∫ θτ

0

f0(y0)ds+

∫ τ

θτ

(α1fθτ (yθτ )− α2f0(y0)) ds−
∫ τ

0

fs(ys)ds

]∣∣∣∣∣ ≲ τ3.

Proof. Let L be the generator defined in theorem D.9. By applying the Dynkin’s formula (theo-
rem D.9 and corollary D.10) to the function ft(yt) and plugging in the expression of the generator
L, we have that

E

[∫ θτ

0

f0(y0)ds− α2

∫ τ

θτ

f0(y0)ds+ α1

∫ τ

θτ

fθτ (yθτ )ds−
∫ τ

0

fs(ys)ds

]
=θτf0(y0)− α2(1− θ)τf0(y0) + α1(1− θ)τ (f0(y0) + θτLf0(y0))

−
∫ τ

0

(f0(y0) + sLf0(y0)) ds+O(τ3)

= (θ − α2(1− θ) + α1(1− θ)− 1) τf0(y0) + α1(1− θ)θτ2Lf0(y0)−
τ2

2
Lf0(y0) +O(τ3),

which is of the order O(τ3) by noticing that

θ − α2(1− θ) + α1(1− θ)− 1 =

(
1

2θ(1− θ)
− θ2 + (1− θ)2

2θ(1− θ)

)
(1− θ)− (1− θ) = 0

α1(1− θ)θ −
1

2
=

1

2θ(1− θ)
(1− θ)θ − 1

2
= 0,

and the proof is complete.

Then we are ready to bound some of the error terms in the proof of theorem 4.1 with lemma D.11.
Corollary D.12. For the interval (sn, sn+1] for n ∈ [0 : N−1], we have the following error bound:
|E [(I.2) + (II.2)]|

=

∣∣∣∣E[ ∫ sn+1

sn

∫
D
(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−
∫ ρn

sn

∫
D
(µsn(ν) logµsn(ν) + µsn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D

(
α1(µρn

(ν) logµρn
(ν)− µρn

(ν))− α2(µsn(ν) logµsn(ν)− µsn(ν))
)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.
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Proof. The bound is obtained by applying lemma D.11 with f being the function

fs(ys) =

∫
D
µs(ν) logµs(ν)γ(dν),

Strictly speaking, fs(ys) is actually in the form of fs(ys−), but the argument can be easily extended
to this case by assuming time continuity of the function f .

Corollary D.13. For the interval (sn, sn+1] for n ∈ [0 : N−1], we have the following error bound:

|E [(I.4) + (II.6)]|

=

∣∣∣∣E[ ∫ ρn

sn

∫
D
µsn(ν) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

+

∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D
µs(ν) log

(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.

Proof. Note that the intermediate process y∗s defined in (3.1) is driven by a Poisson random mea-
sure that is independent of the Poisson random measure driving the process ys within the interval
(sn, sn+1]. Therefore, the error bound is obtained by

(1) Taking the expectation w.r.t. the intermediate process y∗s and thus the intermediate intensity
µ̂∗
s , and

(2) Then applying lemma D.11 with f being the following function

fs(ys) =

∫
D
µs(ν)E

[
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)]
γ(dν).

The result follows directly.

Now we turn to the error term (III.6) in theorem 4.2, for which we need the following variant
of lemma D.11.
Lemma D.14. For any function f ∈ C2([0, τ ] × X) and the true backward process (yt)t∈[0,τ ]

defined in (2.5), it holds that∣∣∣∣E [∫ τ

0

((
1− 1

2θ

)
f0(y0) +

1

2θ
fθτ (yθτ )

)
ds−

∫ τ

0

fs(ys)ds

]∣∣∣∣ ≲ τ3.

Proof. The proof is similar to that of lemma D.11. Specifically, we let L be the generator defined
in theorem D.9, apply the Dynkin’s formula (theorem D.9 and corollary D.10) to the function ft(yt)
and plug in the expression of the generator L, which yields

E
[∫ τ

0

((
1− 1

2θ

)
f0(y0) +

1

2θ
fθτ (yθτ )

)
ds−

∫ τ

0

fs(ys)ds

]
=

(
1− 1

2θ

)
τf0(y0) +

1

2θ

∫ τ

0

(f0(y0) + θτLf0(y0)) ds−
∫ τ

0

(f0(y0) + sLf0(y0)) ds+O(τ3) = O(τ3),

as desired.

Corollary D.15. For the interval (sn, sn+1] for n ∈ [0 : N−1], we have the following error bound:

|E [(III.2)]|

=

∣∣∣∣E[ ∫ sn+1

sn

∫
D
(µs(ν) logµs(ν)− µs(ν)) γ(dν)ds

−
∫ sn+1

sn

∫
D

((
1− 1

2θ

)
(µsn(ν) logµsn(ν)− µsn) +

1

2θ
(µρn

(ν) logµρn
(ν)− µρn

(ν))

)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.
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Proof. By applying lemma D.14 with f being the function

fs(ys) =

∫
D
µs(ν) logµs(ν)γ(dν),

we have that the result follows directly.

Corollary D.16. For any n ∈ [0 : N − 1] and the corresponding interval (sn, sn+1], we have the
following error bound:

|E [(III.6)]|

=

∣∣∣∣E[ ∫ sn+1

sn

∫
D

((
1− 1

2θ

)
µsn(ν) +

1

2θ
µρn

(ν)

)
log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν)ds

−
∫ sn+1

sn

∫
D
µs(ν) log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν)ds

]∣∣∣∣ ≲ ∆3
n.

Proof. Following the arguments in the proof of corollary D.13, the error bound is obtained by first
taking the expectation w.r.t. the intermediate process y∗s and thus the intermediate intensity µ̂∗

s , and
then applying lemma D.14 with f being the function

fs(ys) =

∫
D
µs(ν) log

((
1− 1

2θ

)
µ̂sn(ν) +

1

2θ
µ̂∗
ρn
(ν)

)
γ(dν),

as desired.

Error involving the Intermediate Process.
Proposition D.17. For the interval (sn, sn+1] with n ∈ [0 : N − 1], we have the following error
bound:

E [(II.3)] = E
[∫ sn+1

ρn

∫
D

(
µ̂∗
ρn
(ν)− µ̂ρn

(ν)
)
γ(dν)ds

]
≲ ∆3

n +∆2
nϵII.

Proof. First, we rewrite the error term (II.3) as

E [(II.3)] = E
[∫ sn+1

ρn

∫
D

(
µ̂∗
ρn
(ν)− µ̂ρn(ν)

)
γ(dν)ds

]
≲
∫ sn+1

ρn

∫
D

(
E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]
)
γ(dν)ds.

(D.7)

Then we expand the integrand by applying the Dynkin’s formula (theorem D.9 and corollary D.10)
to the function µ̂s(ν) w.r.t. the intermediate process (y∗s )s∈[sn,ρn] and the process (ys)s∈[sn,ρn]

respectively as follows

E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]

=E
[
µ̂sn(ν) + L∗µ̂sn(ν)∆n +O(∆2

n)
]
− E

[
µ̂sn(ν) + Lµ̂sn(ν)∆n +O(∆2

n)
]

=E [(L∗ − L)µ̂sn(ν)∆n] +O(∆2
n),

where the generators L∗ and L are defined as in (D.6) w.r.t. the processes (y∗s )s∈[sn,ρn] and
(ys)s∈[sn,ρn], respectively, i.e., for any function f ∈ C1([sn, ρn]× X), we have

L∗fs(y) = ∂sfs(y) +

∫
D
(fs(y + ν)− fs(y)) µ̂sn(ν)γ(dν),

Lfs(y) = ∂sfs(y) +

∫
D
(fs(y + ν)− fs(y))µs(ν)γ(dν).

(D.8)
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Therefore, for the term E [|(L∗ − L)µ̂sn(ν)|] evaluated at s = sn, we have

E [|(L∗ − L)µ̂sn(ν)|] = E
[∣∣∣∣∫

D
(µ̂sn(y + ν)− µ̂sn(y)) (µ̂sn(ν)− µsn(ν)) γ(dν)

∣∣∣∣]
≲ E

[∫
D
|µ̂sn(ν)− µsn(ν)| γ(dν)

]
≲ ϵII,

(D.9)

where we used the assumption on the estimation error (assumption D.3) in the last inequality. Then
we can further reduce (D.7) to∫ sn+1

ρn

∫
D

(
E
[
µ̂∗
ρn
(ν)
]
− E [µ̂ρn

(ν)]
)
γ(dν)ds ≲

∫ sn+1

ρn

(
ϵII∆n +O(∆2

n)
)
ds ≲ ϵII∆

2
n +∆3

n,

and the proof is complete.

Corollary D.18. For the interval (sn, sn+1] for n ∈ [0 : N−1], we have the following error bound:

E [(II.5)] =E
[ ∫ sn+1

ρn

∫
D
(α1µρn(ν)− α2µsn(ν)) log (α1µ̂ρn(ν)− α2µ̂sn(ν)) γ(dν)ds

−
∫ sn+1

ρn

∫
D
(α1µρn

(ν)− α2µsn(ν)) log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
γ(dν)ds

]
≲ ∆3

n +∆2
nϵII.

Proof. Since the two integrands in (II.5) only differ by replacing µ̂∗
ρn
(ν) with µ̂ρn

(ν), we have
the following upper bound by using the assumption on the boundedness of the intensities (assump-
tion D.2 (II))

E [(II.5)] ≲E
[∫ sn+1

ρn

∫
D
|α1µρn(ν)− α2µsn(ν)|

1

α1µ̂ρn
(ν)− α2µ̂sn(ν)

α1

∣∣µ̂ρn
(ν)− µ̂∗

ρn
(ν)
∣∣ γ(dν)ds]

≲E
[∫ sn+1

ρn

∫
D

∣∣µ̂ρn(ν)− µ̂∗
ρn
(ν)
∣∣ γ(dν)ds] ≲ ∆nE

[∫
D

∣∣µ̂ρn(ν)− µ̂∗
ρn
(ν)
∣∣ γ(dν)]

=∆n

∫
D
E
[∣∣µ̂ρn

(ν)− µ̂∗
ρn
(ν)
∣∣] γ(dν)

(D.10)
Applying the same arguments as in proposition D.17, which uses the generators L and L∗ defined
in (D.8), we can bound the RHS above as follows

E
[∣∣µ̂∗

ρn
(ν)− µ̂ρn(ν)

∣∣] =E
[∣∣(µ̂sn(ν) + L∗µ̂sn(ν)∆n +O(∆2

n)
)
−
(
µ̂sn(ν) + Lµ̂sn(ν)∆n +O(∆2

n)
)∣∣]

≲∆nE [|(L∗ − L)µ̂sn(ν)|] +O(∆2
n) ≲ ∆nϵII +O(∆2

n)
(D.11)

where the last inequality follows from (D.9). Substituting (D.11) into (D.10) then yields the desired
upper bound.

Proposition D.19. For the interval (sn, sn+1] with n ∈ [0 : N − 1], we have the following error
bound:

E [(I.3)] = E
[∫ ρn

sn

∫
D
(µs(ν)− µsn(ν))

(
log
(
α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

)
γ(dν)ds

]
≲ ∆3

nϵII +∆4
n.

Proof. First, we observe by Dynkin’s formula (theorem D.9) that

E [|µs(ν)− µsn(ν)|] = E
[∣∣∣∣∫ ρn

sn

Lµsnds+O(∆2
n)

∣∣∣∣] ≲ ∆n,
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Secondly, applying the given assumption (assumption D.2 (II)) on the boundedness of the intensities
yields

E
[∣∣log (α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)

)
− log µ̂sn(ν)

∣∣] ≲ 1

µ̂sn(ν)
E
[∣∣α1µ̂

∗
ρn
(ν)− α2µ̂sn(ν)− µ̂sn(ν)

∣∣]
≲E

[∣∣α1µ̂
∗
ρn
(ν)− α2µ̂sn(ν)− µ̂sn(ν)

∣∣]
≤E

[∣∣µ̂∗
ρn
(ν)− µ̂ρn

(ν)
∣∣] ≲ ∆nϵII +O(∆2

n),
(D.12)

where the last inequality follows from (D.11) proved above. Therefore, we may further deduce that

E [(I.3)] ≤
∫ ρn

sn

∫
D
E [|µs(ν)− µsn(ν)|]E

[∣∣log (α1µ̂
∗
ρn
(ν)− α2µ̂sn(ν)

)
− log (α1µ̂ρn(ν)− α2µ̂sn(ν))

∣∣] γ(dν)ds
≲∆2

n(∆nϵII +∆2
n) ≲ ∆3

nϵII +∆4
n,

where the first inequality is due to the independency of ys and y∗s for s ∈ [sn, ρn], and the proof is
complete.

E DETAILS OF NUMERICAL EXPERIMENTS

In this section, we describe in detail the setting for each numerical experiment. In appendix E.1,
we discuss a revision of θ-RK-2 (algorithm 1) for a more practical and better-performing imple-
mentation in real cases. In appendices E.2 to E.4, we present additional numerical results for the
15-dimension toy model, text generation, and image generation respectively.

E.1 PRACTICAL IMPLEMENTATION OF θ-RUNGE KUTTA-2

As is mentioned in theorem 4.2, when we fix θ ∈ (0, 12 ] for the θ-RK-2 method, the algorithm also
enjoys a second order convergence in theory conditioned on the fact that the extrapolated transition
rate matrix (1 − 1

2θ )µ̂sn + 1
2θ µ̂

∗
ρn

is everywhere non-negative. In practice, we force this condi-
tion to be true by only taking the positive parts of this rate matrix, leading to the revised practical
implementation in algorithm 4.

By introducing this modification, we manage to extend the θ range to (0, 1], the same as the θ-
Trapezoidal algorithm. In the following sections, we will also present results for θ-RK-2, and it is
realized by implementing the version of algorithm 4 with a feasible θ ∈ (0, 1].

Algorithm 4: Practical Implementation of θ-Runge Kutta-2 Algorithm
Input: ŷ0 ∼ q0, θ ∈ (0, 1], time discretization (sn, ρn)n∈[0:N−1], µ̂, µ̂∗ as defined

in proposition 3.2.
Output: A sample ŷsN ∼ q̂RK

tN .
1 for n = 0 to N − 1 do
2 ŷ∗ρn

← ŷsn +
∑
ν∈D

νP (µ̂sn(ν)θ∆n);

3 ŷsn+1
← ŷsn +

∑
ν∈D

νP
((

(1− 1
2θ )µ̂sn + 1

2θ µ̂
∗
ρn

)
+
(ν)∆n

)
;

4 end

E.2 15-DIMENSIONAL TOY MODEL

We first derive the closed-form formula of the marginal distributions pt in this model. Recall that
the state space X = {1, 2, ..., d}with d = 15, and the initial distribution is p0 ∈ ∆d. The rate matrix
at any time is Q = 1

dE − I . By solving (2.1), we see that

pt = etQp0 =

(
1− e−t

d
E + e−tI

)
p0,
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and therefore pt converges to the uniform distribution p∞ = 1
d1 as t → ∞. The formula of pt

directly yields the scores st(x) = pt

pt(x)
.

During inference, we initialize at the uniform distribution q0 = p∞ and run from time 0 to T =
12. The truncation error of this choice of time horizon is of the magnitude of 10−12 reflected by
DKL(pT ∥p∞), and therefore negligible. The discrete time points form an arithmetic sequence.

We generate 106 samples for each algorithm and use np.bincount to obtain the empirical distri-
bution q̂T as the output distribution. Finally, the KL divergence is computed by

DKL(p0∥q̂T ) =
d∑

i=1

p0(i) log
p0(i)

q̂T (i)
.

We also perform bootstrapping for 1000 times to obtain the 95% confidence interval of the KL
divergence, the results are shown by the shaded area in fig. 2. The fitted lines are obtained by
standard linear regression on the log-log scale with the slopes marked beside each line in fig. 2.

16 32 64 128 256 512 1024
Number of Steps

10 4

10 3

10 2

10 1

D
KL

(p
0||

q T
) slope = -1.543

slope = -1.937

slope = -1.819
-RK-2
-Trapezoidal
-RK-2 Fitted
-Trapezoidal Fitted
-RK-2 Fitted (last 4 points)

Figure 2: Empirical KL divergence between the true distribution and the generated distribution of
the toy model vs. the number of steps. Data are fitted with linear regression and shaded with 95%
confidence intervals by bootstrapping.

E.3 TEXT GENERATION

For text generation, we use the small version of RADD (Ou et al., 2024) checkpoint1 trained with
λ-DCE loss. We choose an early stopping time δ = 10−3 for a stable numerical simulation. Since
RADD is a masked discrete diffusion model, we can freely choose the noise schedule σ(t) used
in the inference process. We consider the following log-linear noise schedule used in the model
training,

σ(t) =
1− ϵ

1− (1− ϵ)t
, σ̄(t) =

∫ t

0

σ(s)ds = − log(1− (1− ϵ)t) (E.1)

where we choose ϵ = 10−3.

The score function sθ(xt, t) used for computing the transition rate matrix can be computed from the
RADD score model pθ using the following formula from Ou et al. (2024),

sθt (xt) =
e−σ̄(t)

1− e−σ̄(t)
pθ(xt), (E.2)

where the model pθ is trained to approximate the conditional distribution of the masked positions
given all unmasked positions. More specifically, let d be the length of the sequence and {1, 2, ..., S}
be the vocabulary set (not including the mask token). Then given a partially masked sequence
x = (x1, ..., xd), the model pθ(x) outputs a d × S matrix whose (ℓ, s) element approximates
PX∼pdata

(xℓ = s|XUM = xUM) when xℓ is mask, and is 1Xℓ,s if otherwise. Here, xUM represents
the unmasked portion of the sequence x.

We adopt a uniform discretization of the time interval (δ, 1]. For θ-RK-2 and θ-Trapezoidal, we
pick θ = 1

2 . We compare our proposed θ-RK-2 and θ-Trapezoidal with the Euler method, Tweedie
τ -leaping, τ -leaping, and we present full results across all NFEs ranging from 16 to 1024 in table 1.
For each method, we generate 1024 samples with it and compute the averaged perplexities. All the
experiments are run on a single NVIDIA A100 GPU.

1https://huggingface.co/JingyangOu/radd-lambda-dce
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Table 1: Generative perplexity of texts generated by different sampling algorithms. Lower values
are better, with the best in bold.

Sampling Methods NFE = 16 NFE = 32 NFE = 64 NFE = 128 NFE = 256 NFE = 512 NFE = 1024

Euler ≤ 277.962 ≤ 160.586 ≤ 111.597 ≤ 86.276 ≤ 68.092 ≤ 55.622 ≤ 44.686
Tweedie τ -leaping ≤ 277.133 ≤ 160.248 ≤ 110.848 ≤ 85.738 ≤ 70.102 ≤ 55.194 ≤ 44.257
τ -leaping ≤ 126.835 ≤ 96.321 ≤ 69.226 ≤ 52.366 ≤ 41.694 ≤ 33.789 ≤ 28.797
θ-RK-2 ≤ 127.363 ≤ 109.351 ≤ 86.102 ≤ 64.317 ≤ 49.816 ≤ 40.375 ≤ 33.971
θ-Trapezoidal ≤ 123.585 ≤ 89.912 ≤ 66.549 ≤ 49.051 ≤ 39.959 ≤ 32.456 ≤ 27.553

From the table, we observe that θ-Trapezoidal consistently outperforms all other approaches and
generates samplers with better perplexities across all NFEs. We also noticed that both the Euler
method and Tweedie τ -leaping share a similar performance, which is beaten by a large margin by
θ-RK-2 and τ -leaping.
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Figure 3: Sampling quality v.s. θ ∈ (0, 1] in θ-RK-2 algorithm. Sampling quality is quantified
through FID.

In fig. 3, we present the performance of θ-RK-2 with respect to different choices of θ at NFE 32 and
64. We observe that the performance of θ-RK-2 has a flat landscape around the optimal θ choices,
which falls in the range [0.15, 0.4]. In general, as is evident from the curve, the method performs
better when using extrapolation to compute the transition rate matrix, which once again certifies the
correctness of our theoretical results (theorem 4.2) and discussions therebelow.

E.4 IMAGE GENERATION

For the image generation, we use the checkpoint of MaskGIT (Chang et al., 2022; Besnier & Chen,
2023) reproduced in Pytorch2. Recall that the MaskGIT is a masked image model which, given
a partially masked sequence, outputs the conditional distributions of the masked positions given
the unmasked portion, just like the model pθ(·) in the aforementioned masked text model, RADD.
Therefore, by similarly introducing a time noise schedule σ(t) (for which we adopt the same log-
linear schedule (E.1) in our experiment), we obtain a masked discrete diffusion model akin to the
RADD. The score function can be computed accordingly using the model output as in (E.2).

We choose an early stopping time δ = 10−3, and adopt a uniform discretization of the time interval
(δ, 1] for θ-RK-2, θ-Trapezoidal, τ -leaping and the Euler method. For parallel decoding, we use
a linear randomization strategy in the re-masking step and an arccos masking scheduler, the same
as the recommended practice in Chang et al. (2022). For each method, we generate 50k samples
in a class-conditioned way and compute its FID against the validation split of ImageNet. We use
classifier-free guidance to enhance the generation quality and choose the guidance strength to be
w = 3.

We present the full results for NFE ranging from 4 to 64 in fig. 4. All the experiments are run
on 1 NVIDIA A100. Notably, θ-Trapezoidal with θ = 1

3 is the best-performing method except
for extremely low NFE budgets. While θ-Trapezoidal with θ = 1

2 in general demonstrates a less

2https://github.com/valeoai/Maskgit-pytorch
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Figure 4: FID of images generated by sampling algorithms vs. number of function evaluations
(NFE) with different parameter choices. Lower values are better.

competitive performance, it converges to the same generation quality as θ = 1
3 in high NFE regime.

We also noticed that when using extrapolation with θ = 1
3 , θ-RK-2 beats τ -leaping for NFE larger

than 8, which again accords with our theoretical prediction of its competitive performance in θ ∈
(0, 12 ] regime.

To investigate the robustness of θ-RK-2 with respect to the choice of θ, we also benchmark its
performance across multiple choices at NFE 32 and 64, and we present the results in fig. 3. Again,
similar to the behavior of θ-Trapezoidal, the performance of θ-RK-2 has a flat landscape around the
optimal θ choices, which typically falls in the range [0.3, 0.5]. In general, as is evident from the
curve, the method performs better when using extrapolation to compute the transition rate matrix,
which once again certifies the correctness of our theoretical results.

Finally, we visualize some images generated with θ-Trapezoidal on 6 different classes in fig. 5. θ-
Trapezoidal consistently generates high-fidelity images that are visually similar to the ground truth
ones and well aligned with the concept.

E.5 ALGORITHM HYPERPARAMETERS

We evaluate the performance of the θ-trapezoidal method across various θ and NFE values for both
text and image generation tasks. As illustrated in fig. 6, we observe that the θ-trapezoidal method
demonstrates notable robustness to θ, with a flat landscape near the optimal choice. Our empirical
analysis suggests that θ ∈ [0.3, 0.5] consistently yield competitive performance across different
tasks.
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Figure 5: Visualization of samples generated by θ-Trapezoidal. Upper Left: Aircraft carrier
(ImageNet-1k class: 933); Upper Middle: Pirate (ImageNet-1k class: 724); Upper Right: Vol-
cano (ImageNet-1k class: 980); Lower Left: Ostrich (ImageNet-1k class: 009); Lower Middle:
Cheeseburger (ImageNet-1k class: 933); Lower Right: Beer bottle (ImageNet-1k class: 440).
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Figure 6: Sampling quality v.s. θ ∈ (0, 1] in θ-Trapezoid method. Upper: Image generation, the
metric is FID; Lower: Text generation, the metric is generative perplexity. Lower values are better.
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