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Abstract

The value of text classification’s future research001
has encountered challenges and uncertainties,002
due to the extraordinary efficacy demonstrated003
by large language models (LLMs) across nu-004
merous downstream NLP tasks. In this era005
of open-ended language modeling, where task006
boundaries are gradually fading, an urgent007
question emerges: have we made significant008
progress in text classification with the full ben-009
efit of LLMs? To answer this question, we pro-010
pose RGPT, an adaptive boosting framework011
tailored to produce a specialized text classifica-012
tion LLM by recurrently ensembling a pool of013
strong base learners. The base learners are con-014
structed by adaptively adjusting the distribution015
of training samples and iteratively fine-tuning016
LLMs with them. Such base learners are then017
ensembled to be a specialized text classifica-018
tion LLM, by recurrently incorporating the his-019
torical predictions from the previous learners.020
Through a comprehensive empirical compari-021
son, we show that RGPT significantly outper-022
forms 8 SOTA PLMs and 7 SOTA LLMs on023
four benchmarks by 1.36% on average. Further024
evaluation experiments reveal a clear superior-025
ity of RGPT over average human classification026
performance1.027

1 Introduction028

Text classification aims to assign pre-defined cat-029

egories to a given informative text, including sen-030

timent analysis, topic labeling, news classifica-031

tion, etc. It has always been an active task across032

the eras of knowledge engineering and feature033

engineering (Cunha et al., 2023; Minaee et al.,034

2021). Recently, remarkable advances in LLMs,035

e.g., ChatGPT2, GPT-4 (OpenAI et al., 2023),036

ChatGLM 2 (Zeng et al., 2023), LLaMA 2 (Tou-037

vron et al., 2023), etc., have demonstrated their038

1Our codes are available at
https://github.com/annoymity2024/RGPT_2024

2https://chat.openai.com/

outstanding performance across downstream NLP 039

tasks. Through instruction fine-tuning and in- 040

context learning, LLMs have possessed marvelous 041

language understanding, generation and reasoning 042

abilities. 043

Sustained efforts and investments from both 044

academia and industry have been primarily ded- 045

icated to two directions: (1) general LLMs capable 046

of providing encyclopaedic domain knowledge and 047

performing well across a range of tasks, such as 048

Mistral (Jiang et al., 2023), LLaMA series, etc.; 049

(2) specialized LLMs tailored for vertical domains 050

such as healthcare (Chen et al., 2023; Singhal et al., 051

2023), law (Cui et al., 2023), finance (Wu et al., 052

2023), education (Milano et al., 2023), etc., via 053

task-specific architectures and knowledge. Ad- 054

ditionally, arming LLMs with strategies such as 055

mixture-of-experts (MoE) (Shen et al., 2023), tool 056

learning (Qin et al., 2023) or modularization (Ye 057

et al., 2023) have also garnered considerable atten- 058

tion. Strong LLMs intertwined with sophisticated 059

optimization approaches are propelling LLM re- 060

search to new heights. 061

Despite the spotlight shining brighter on compli- 062

cated tasks and exquisite domains, text classifica- 063

tion languishes in the shadows with limited atten- 064

tion. Hence, an urgent research question emerges: 065

RQ: have we made significant progress in text 066

classification with the full benefit of LLMs? 067

To answer this question, it is important to in- 068

vestigate whether specialized text classification 069

LLM can create substantial value over the exist- 070

ing approaches. We thus present RGPT, an adap- 071

tive boosting framework designed to investigate 072

the limit of LLMs’ classification ability. The 073

main distinction from the recent text classifica- 074

tion approaches, e.g., CARP (Xiaofei et al., 2023), 075

QLFR (Wu et al., 2024) and PromptBoosting (Hou 076

et al., 2023) is that RGPT does not directly optimize 077

the prompt space but instead builds a specialized 078

LLM by adjusting sample distribution and recur- 079
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rently ensembling strong base learners, thus demon-080

strating less sensitivity to prompts and stronger081

stability across various tasks (see Sec. 4.1 and 4.2).082

In particular, the base learners are constructed083

by iteratively fine-tuning LLMs with training sam-084

ples. The distribution of training samples will be085

adaptively adjusted based on the error rates of the086

base learners. The misclassified samples will be087

given more weight, where the weights of correctly088

classified samples will be decreased. Such base089

learners are then ensembled to be a specialized090

LLM, by taking the prediction and error rate of091

the previous learner as the contexts to prompt the092

current learner. This chain-like nature ensures that093

subsequent learners can improve and complement094

upon the existing knowledge.095

We offer a comprehensive evaluation of the pro-096

posed RGPT model across four benchmark datasets097

and compare the results against 8 SOTA PLMs098

(e.g., DeBERTa, ERNIE, T5, etc.) and 7 SOTA099

LLMs (e.g., ChatGLM 2, LLaMA 2, GPT-4, etc.).100

The experimental results show the effectiveness of101

RGPT with the margin of 0.88%, 1.21%, 1.47%102

and 1.88% for four datasets. The study reveals103

that RGPT with only 7 iterations achieves the state-104

of-the-art results with performance continuing to105

grow as the number of iterations increases. Further106

human evaluation experiments demonstrate a clear107

surpassing of RGPT over average human classi-108

fication. A series of sub-experiments also prove109

that RGPT can universally boost varies base model110

structures. Hence, our study comes to a clear con-111

clusion: our approach has pushed the limit of LLM112

capacity for text classification. The main contribu-113

tions are concluded as follows:114

• We make the first attempt to explore the ongo-115

ing research value of text classification in the116

era of LLMs.117

• We propose RGPT, an adaptive boosting118

framework to push the limit of LLMs’ classi-119

fication ability.120

• Comprehensive experiments over four121

datasets demonstrate the effectiveness of122

RGPT in zero-shot text classification.123

2 Preliminaries124

2.1 Problem Definition125

Text classification is transformed as a conditional126

generative task, where the ouput Y will be the127

labels. Given a set of input documents X = 128

{x1, x2, . . . , xN} where each document xi is aug- 129

mented with a designed prompt Prompti ∈ P that 130

provides contextual guidance, i.e., Prompti = 131

INSi ⊕ xi, where INSi represents the task in- 132

struction, P represents the prompt set. Our 133

task is to learn a text classification LLM M(θ) 134

which maps an input document to its target label: 135

M(X ,P, θ) → Y , where Y = {y1, y2, . . . , yN} 136

denotes the label sequence generated by the LLM 137

M(θ) based on its comprehension of the docu- 138

ments and the provided prompts and yi ∈ Rc, 139

where c is the class of yi. We formulate the classi- 140

fication problem as: 141

M(θ) = arg max
c

∏
i Prob (yi = c|xi, P rompti, θ) (1) 142

2.2 Algorithm Overview 143

The recent LLM based approaches focus on elab- 144

orating prompts to improve classification perfor- 145

mance. However, the performance gains from 146

prompt engineering are limited, and the potential of 147

classification performance for LLMs has not been 148

fully investigated. 149

In contrast, RGPT is able to quickly generate a 150

large pool of strong base learners through adjusting 151

the distribution of training samples and fine-tuning 152

LLMs, and proposes a recurrent ensembling ap- 153

proach to harnesses their complementarity, leading 154

to improved effectiveness and generalization (see 155

Sec. 4.2). As shown in Fig. 1, RGPT consists of 156

the following key steps. 157

Step 1: Initialization. Assign each training sam- 158

ple the same weight: 1
N , and select a general LLM 159

as initial base learner LM0
3. 160

Step 2: Constructing K base learners LMK . 161

The kth base learner, LMk, is optimized under 162

its respective loss function, which is essentially 163

a weighted loss over training samples with larger 164

weights on those that are misclassified by the pre- 165

vious learner LMk−1. 166

Step 3: Integrating K base learners using a re- 167

current ensembling approach. More details will be 168

provided in Sec. 3 and Algorithm 1 in App.B. 169

3 The Proposed Framework: RGPT 170

3.1 Initialization and Base Learner Selection 171

To lay the groundwork for subsequent base learner 172

construction and ensembling, we commence with 173

3It has been proven that boosting can also effectively com-
bine strong base learners (Wyner et al., 2017).
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Figure 1: Overview of RGPT.

initialization. Let D(0) be the initial training set174

including N samples. Each sample (x
(0)
i , y

(0)
i ) ∈175

D(0), where x
(0)
i ∈ X is an input document and176

y
(0)
i ∈ Y its corresponding label.177

(1) Weight initialization. Suppose W(0) =178 {
w

(0)
1 , w

(0)
2 , ..., w

(0)
N

}
, where W(0) represents the179

weight distribution of the initial training samples.180

Each sample will be initialized as the same weight,181

i.e., w(0)
i = 1

N , where W(0) ∼ U
(
1
N , 1

N , ..., 1
N

)
.182

These weights will later be updated based on the183

error rate of the base learner.184

(2) Initial base learner selection. In boosting,185

base learner can not only be a simple model (e.g.,186

decision tree), but also be a strong learner that has187

yet considerable room to achieve optimal perfor-188

mance, such as DCNN (Moghimi et al., 2016).189

We prove that our model works almost equally190

well on different base learners such as PLMs (i.e.,191

RoBERTa) and LLMs (i.e., Alpaca4, LLaMA 2,192

ChatGLM 2). LLaMA 2 is selected as an ini-193

tial base learner LM0, in view that it empirically194

yields the best result (see Sec. 4.5).195

3.2 Constructing Base Learners196

The construction of K base learners involves (1)197

prompt construction; (2) fine-tuning LLMs with198

training samples; and (3) iteratively updating the199

weight distribution of training samples.200

We follow the zero-shot prompting paradigm for201

text classification tasks. At each iteration k, the202

zero-shot prompt template Prompti consists of203

two components: task instruction INSi and input204

document x(k)i . Task instruction INSi provides205

specifications for a text classification target and206

states the output constraint, e.g., “Classify the SEN-207

4https://crfm.stanford.edu/2023/03/13/alpaca.html.

TIMENT of the INPUT, and assign an accuracy 208

label from [‘Positive’, ‘Negative’]. ” 209

The kth base learner LMk involves fine- 210

tuning a general LLM using the training sam- 211

ples with the weight distribution, W(k) = 212{
w

(k)
1 , w

(k)
2 , ..., w

(k)
N

}
, effectively adjusting the 213

model’s focus on challenging samples. The objec- 214

tive is achieved by minimizing the weighted loss 215

function: 216

LMk = arg min
θ(k)

∑
D(k) w

(k)
i · L(y(k)i , f(x

(k)
i ; θ(k))) (2) 217

where θ(k) represents the parameters, L is the loss 218

function, f (·) is a general LLM (e.g., LLaMA 2). 219

Then, we compute its error rate ϵ(k) and weight 220

coefficient α(k), and thus update the distribution of 221

training samples to guide the next iteration’s focus 222

towards misclassified samples: 223

ϵ(k) = Pri∼D(k)

[
LMk

(
x
(k)
i

)
̸= y

(k)
i

]
α(k) = log

1− ϵ(k)

ϵ(k)
+ log (c− 1)

W(k+1) =
W(k)

Zk
×

e−α(k)
if LMk

(
x
(k)
i

)
= y

(k)
i

eα
(k)

if LMk

(
x
(k)
i

)
̸= y

(k)
i


(3) 224

where c denotes the number of class, Zk represents 225

the normalizing factor. Eq. 3 will assign higher 226

weights to samples with higher errors, and ensure 227

that subsequent learners address the weaknesses 228

of the current learner. After K iterations, we con- 229

struct K complementary and strong base learners 230

{LM1,LM2, ...,LMk} (More explanations are 231

provided in App. A). 232

3.3 Recurrently Ensembling the Base 233

Learners 234

We propose a recurrent ensembling approach, 235

which selectively leverages the historical outputs 236
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Figure 2: Recurrent ensembling K base learners.

Dataset Task Class Avg. Length #Train #Test
SST-2 Sentiment 2 17 6,920 1821
MR Sentiment 2 20 8,662 2,000

AG News News 4 47 120,000 7,600
Ohsumed Topic 23 136 3,357 4,043

Table 1: Dataset statistics.

generated by the previous learners. More specif-237

ically, the prediction result ŷk−1
i of the previous238

learner LMk−1 along with its error rate ϵ(k−1) will239

be incorporated into the input prompt for the cur-240

rent learner LMk, which can be written as:241

Prompti = INSi ⊕ xki ⊕ {ŷk−1
i , ϵ(k−1)} (4)242

where ŷk−1
i is considered the supplementary knowl-243

edge for LMk. The error rate ϵ(k−1) acts as a244

trustworthiness metric, determining whether to rely245

on and adopt the prediction result of LMk−1, as246

shown in Fig. 2.247

This chain-like nature ensures that each subse-248

quent learner can improve and complement upon249

the existing knowledge and producing a knowledge250

accumulation effect. Finally, a strong, specialized251

LLM M(θ) is constructed.252

4 Experiments253

4.1 Experiment Setups254

Datasets. Four benchmarking datasets are selected255

as the experimental beds, viz. SST-2 (Socher et al.,256

2013), MR (Pang et al., 2002), AG News (Zhang257

et al., 2015), Ohsumed5. The statistics for each258

dataset are shown in Table 1.259

Baselines. A wide range of SOTA baselines260

are included for comparison. They are: (1)261

RoBERTa (Liu et al., 2019), (2) XLNet (Yang262

et al., 2019), (3) RoBERTa-GCN (Lin et al., 2021),263

5http://davis.wpi.edu/xmdv/datasets/ohsumed.html

(4) DeBERTa (He et al., 2020), (5) ERNIE (Sun 264

et al., 2021) and (6) T5 (Raffel et al., 2020) are 265

six strong PLMs for text classification via masked 266

language modeling and pretrained representations. 267

(7) E2SC-IS (Cunha et al., 2023) selects the most 268

representative documents for training classification 269

model. (8) ContGCN (Yao et al., 2018) focuses 270

on the misclassifed training samples as the target 271

for explainable text classification. (9) BBTv2 (Sun 272

et al., 2022), (10) PromptBoosting (Hou et al., 273

2023) and (11) CARP (Xiaofei et al., 2023) are 274

three SOTA prompt based approaches that focus on 275

how to find the best prompts given a specific clas- 276

sification task. (12) ChatGLM 2, (13) LLaMA 2 277

and (14) GPT-4 are three SOTA LLMs that have 278

broad domain knowledge and outstanding perfor- 279

mance across various NLP tasks. (15) QLFR (Wu 280

et al., 2024) decomposes the text classification task 281

into four distinct reasoning steps and presents a 282

fine-tuned LLaMA 2-13B model. 283

Implementation. Training a base learner will 284

cost about 1 hours on 8 × A100-SXM4-40GB 285

GPUs. The micro batch size, batch size, the num- 286

ber of epoch and learning rate are set to be 8, 128, 287

10 and 3e-4 respectively. In the process of updating 288

sample weights, we control the weights of samples 289

by increasing or decreasing the number of sam- 290

ples. For a misclassified sample xki , whose weight 291

should increase to wk+1
i (see Eq.3), we proportion- 292

ally augment its quantity. To improve generaliza- 293

tion and avoid overfitting, we utilize ChatGPT to 294

generate additional samples similar to xki . 295

4.2 Main Results 296

We report both Accuracy and Macro-F1 results 297

for RGPT and baselines in a zero-shot setting in Ta- 298

ble 2. The mean and variance over 5 runs are calcu- 299

lated. We observe that RGPT consistently achieves 300

state-of-the-art performance on four datasets, i.e., 301

0.88%↑, 1.21%↑, 1.47%↑, 1.88%↑ respectively. It 302

outperforms PLMs based, prompt based and stan- 303

dard fine-tuning approaches. Despite that LLMs 304

(i.e., ChatGLM 2, LLaMA 2, GPT-4) have shown 305

extraordinary efficacy across general-domain tasks, 306

their weak adaptation into text classification is also 307

proved, in view of their worst classification perfor- 308

mance. Among them, GPT-4 performs better than 309

another two. By fine-tuning LLaMA 2-13B or opti- 310

mizing in prompt space, QLFR, BBTv2, Prompt- 311

Boosting and CARP gain significant improvements 312

over general LLMs. QLFR, BBTv2 and Prompt- 313

Boosting have been trading victories on different 314
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Method SST-2 AG Ohsumed MR Avg. of Acc.
Acc. Ma-F1 Acc. Ma-F1 Acc. Ma-F1 Acc. Ma-F1 No Ohsumed All

RoBERTa 96.40 96.23 94.69 94.35 72.80 72.57 89.42 - 93.50 88.32
XLNet 96.80 96.67 95.51 95.18 70.70 70.41 87.20 - 93.17 87.55
RoBERTa-GCN 95.80 - 95.68 - 72.94 - 89.70 - 93.73 87.53
DeBERTa 94.75 94.15 95.32 - 75.94 - 90.21 90.70 93.43 89.01
ERNIE 97.80 - - - 73.33 - 89.53 - - -
T5-11B 97.50 97.18 92.21 - 51.72 44.10 91.15 - 93.62 83.15

E2SC-IS - 93.10 - 86.30 - 76.10 - 88.60 89.33 86.02
ContGCN - - - - 73.40 - 91.30 - - -

BBTv2 90.33 - 85.28 - - - 83.70 - 86.44 -
PromptBoosting 87.60 - 85.20 - - - 84.70 - 85.83 -
CARP 97.39 97.14 96.40 - - - 92.39 - 95.39 -

ChatGLM 2 81.36 80.11 83.67 83.67 54.33 41.84 74.39 74.27 79.57 74.01
LLaMA 2 60.50 61.08 79.40 80.67 48.08 40.21 71.49 71.03 62.69 64.89
QLFR - - 89.14 89.28 61.10 51.85 81.70 81.72 - -
GPT-4 82.52 81.17 84.62 84.50 55.20 51.26 77.90 77.63 81.68 75.06

RGPT 98.68±0.2 98.67 97.61±0.3 97.52 77.41±0.2 73.68 94.27±0.5 94.15 96.85 91.99
Gain △ 0.88% 1.49% 1.21% 2.34% 1.47% 0.76% 1.88% 3.45% 1.46% 2.98%

Table 2: Performance on four datasets. Bold and blue indicate the best and second-best results for each dataset.

Method SST-2 AG News Ohsumed MR
w/o Boosting 89.23 90.53 67.73 88.08
w/o LLM 97.47 95.84 74.70 93.28
w/o Recurrent ensemble 98.18 96.90 76.99 93.71

RGPT 98.68 97.61 77.41 94.27

Table 3: Ablation study in a zero-shot setting.

benchmarks, but they are inferior to other methods315

using PLMs, e.g., RoBERTa, DeBERTa, T5, etc.316

CARP achieves the best performance on AG News317

and MR datasets among all the baselines, and ob-318

tain comparable results against ERNIE on SST-2319

dataset. This suggests that prompt learning indeed320

elicits LLMs to outperform traditional PLMs based321

approaches, but the design of prompts is critically322

important.323

4.3 Ablation Study324

Table 3 shows the result of ablation studies on four325

datasets. For w/o Boosting, we choose to directly326

fine-tune LLaMA 2-7B with initial training sam-327

ples, removing the boosting strategy. For w/o LLM,328

we substitute LLaMA 2-7B with small language329

model (namely RoBERTa) to be the backbone lan-330

guage model. For w/o Recurrent ensemble, we331

perform a weighted combination of K strong base332

learners according their coefficients α(k). From333

the experiment results above, we highlight the fol-334

lowing conclusions: (a) boosting LLM making the335

greatest contribution in improving the classifica-336

tion performance; (b) LLMs demonstrating greater337

advancedness over PLMs for text classification; (c)338

Figure 3: Performance of RGPT with increasing number
of learners.

the effectiveness of our proposed recurrent ensem- 339

bling approach. In a summary, each module in our 340

method contributes to the final performance. 341

4.4 Effect of K 342

In our main experiments, we adopt K = 7 due to 343

its significant SOTA performance. Intuitively, a 344

large learners pool increases the diversity of base 345

learners which could improve the performance. We 346

empirically present the relationship between the 347

number of learners and the model performance in 348

Fig. 3. As we have discussed in Table 3, an indi- 349

vidual fine-tuned LLM performs very poorly (i.e., 350

83.89% accuracy on average). However, by using 351

our recurrent boosting framework, the performance 352

can be boosted to 90.67% when 6 base learners are 353

provided, which slightly overcomes all the base- 354

lines. Further, when K = 7, the performance can 355

be boosted to 91.99%, which significantly outper- 356
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Method SST-2 AG News Ohsumed MR
RoBERTa 96.40 94.69 72.80 89.42
RGPT+RoBERTa 97.47 95.84 74.70 93.28

Alpaca 57.81 71.23 46.55 53.78
RGPT+Alpaca 97.81 96.45 75.26 93.55

ChatGLM 2 81.36 83.67 54.33 74.39
RGPT+ChatGLM 2 98.10 96.77 75.16 93.02

LLaMA 2 60.50 79.40 48.08 71.49
RGPT+LLaMA 2 98.68 97.61 77.41 94.27

Table 4: The impact of different base learners.

forms others with performance continuing to grow357

as the number of iterations increase (e.g., K = 8).358

But the performance increase plateaus as the num-359

ber of base learners rises from 7 to 8, suggesting360

that 7 base learners makes a good balance between361

performance and training cost.362

4.5 How RGPT Varies With Different Base363

Learners364

We select LLaMA 2-7B to the initial base model by365

default. In order to evaluate the effect of different366

base learners, we have also tried another two SOTA367

LLMs and one strong PLM, i.e., Alpaca, ChatGLM368

2 and RoBERTa, as shown in Table 4. We notice369

that RGPT+RoBERTa performs the worst on four370

tasks, but still significantly outperforms the stan-371

dard RoBERTa with the margin of 2.26% on aver-372

age. Additionally, RGPT+Alpaca obtains slightly373

improvements over RGPT+RoBERTa, but is infe-374

rior to ChatGLM 2 and LLaMA 2. The reason is375

that latter models have adopted more advanced ar-376

chitectures and training methodologies. In addition,377

three standard SOTA LLMs perform very poorly378

without boosting, which implies that general LLMs379

are still insufficient to directly cope with various380

text classification tasks. But their performance sig-381

nificantly improves using RGPT, with an increase382

of over 21.0%↑. Different base models can achieve383

comparable results using RGPT. We demonstrate384

that RGPT universally boosts varies base model385

structures.386

4.6 Zero-shot v/s Few-shot Prompting387

We perform zero-shot and few-shot experiments to388

evaluate whether RGPT can perform better when389

a limited number of contextual examples are avail-390

able. The results are shown in Table 5. We design391

four k-shot settings: zero-shot, one-shot, five-shot,392

ten-shot. For each setting, we randomly sample393

k = {0, 1, 5, 10} examples from the training set.394

The impact of adding shots varies with the num-395

ber of shots. The change from zero-shot to one-shot 396

results in a slight improvement in classification per- 397

formance. With the gradual increase in the number 398

of shots, the performance drops down. This po- 399

tentially arises from RGPT learning redundant in- 400

formation when handling too long contextual data. 401

This implies that crudely increasing the number of 402

extra shots does not necessarily result in a stable 403

performance improvement. 404

Prompt SST-2 AG News Ohsumed MR

0-shot 98.68 97.61 77.41 94.27
1-shot 98.97 98.01 77.83 94.65
3-shot 98.31 97.57 77.32 94.11
10-shot 97.95 96.60 76.85 93.52

Table 5: Few shot performance testing.

4.7 Human v/s Machine 405

We create a new test set including 200 sam- 406

ples randomly sampled from three datasets, e.g., 407

IMDB (Maas et al., 2011), R86 and DBPedia (Auer 408

et al., 2007), where their proportion is 4:3:3. Then, 409

we recruit three volunteers7 to evaluate the senti- 410

ment, news and topic labels. We ask the first two an- 411

notators to proceed at their standard speeds, where 412

the third annotator should annotate meticulously 413

and conduct a double-check. Their classification 414

scores and time costs will be compared with RGPT 415

in Table 6. It can be seen that RGPT consistently 416

outperforms two humans in terms of accuracy and 417

efficiency. Despite that RGPT underperforms the 418

third annotator, its time cost is 1
7 of that of the third 419

annotator. It is foreseeable that with the continuous 420

improvement of future LLMs, their classification 421

capabilities will further enhance. RGPT also sur- 422

passes the average performance of three annotators, 423

proving that we have made much progress in text 424

classification over the existing approaches. 425

4.8 Overfitting Study 426

To confirm that our model doesn’t overfit when 427

consistently adjusting the sample distribution, we 428

adopt three strategies: (1) early stopping approach 429

is used; (2) we present the learning curves to show 430

how the training loss changes, as shown in Fig. 4. 431

This visual representation helps us understand if 432

6https://www.cs.umb.edu/ smimarog/textmining/datasets/
7They all signed on the consent form before the study and

were paid an equal $5.0/hour. Prior to annotation, they re-
ceived professional guidance covering the criteria for labeling,
positive and negative examples, etc.
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Method Accuracy Efficiency (minutes)

Human 1 89.21 53.3
Human 2 90.05 56.9
Human 3 96.59 80.6

Avg. 91.95 63.6

RGPT 92.54 10.9

Table 6: The human classification results against RGPT.
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Figure 4: The training loss of RGPT.

the model’s performance improves consistently on433

both new and seen data during training; (3) in ad-434

dition, we do not directly increase (e.g., replicate)435

the number of those misclassified samples. Instead,436

we choose to increase similar style samples gen-437

erated by ChatGPT. This strategy can improve the438

diversity of samples to avoid overfitting.439

4.9 Data Visualization440

We present a visual comparison chart between the441

distribution of testing set and the distribution of442

training set after K = 7 iterations, as shown in443

Fig. 5. We notice that the distribution of the train-444

ing set at K = 0 differs significantly from the test445

set distribution, while at K = 7, the distribution of446

the training set becomes more aligned with the dis-447

tribution of the testing set. This indicates that our448

RGPT method effectively adjusts the distribution449

of the training set to be more similar to the true dis- 450

tribution, thereby enhancing the classification per- 451

formance of the model. In addition, the distribution 452

of the training set, evolving through iterative adjust- 453

ments in boosting, exhibits concentration around 454

previously misclassified samples, indicating the 455

algorithm’s focus on challenging cases. The visual- 456

ization provides a nuanced understanding of how 457

the model adjusts the training data. This analysis 458

aids in assessing the model’s potential overfitting 459

tendencies, and its ability to generalize effectively 460

to new instances. 461

4.10 Error Analysis 462

The detailed error analysis is also conducted via 463

the confusion matrices that are shown in Figure 6. 464

Each cell (i, j) represents the percentage of class 465

i is classified to be class j. Upon reviewing the 466

classification results produced by RGPT on four 467

datasets, we discover that imbalanced categories 468

and the similarity across different categories are 469

the key factors contributing to misclassification. 470

By examining the diagonal elements of the matri- 471

ces, RGPT demonstrates effective true-positive cat- 472

egorization for most fine-grained categories across 473

four datasets. However, it exhibits a tendency to 474

misclassify the “negative” utterances to be “posi- 475

tive”, particularly on the SST-2 and MR datasets. 476

In addition, RGPT tends to misclassify “Bussi- 477

ness” to be “World” and “Technology” on AGNews 478

dataset. RGPT has high error rate on Ohsumed 479

dataset. There are two possible reasons: (1) the 480

highly unbalanced samples leads to the model’s 481

misclassification, e.g., C18, C20, etc.; (2) the simi- 482

larity across several categories, e.g., C4, C11, C12, 483

C13, etc., may pose a challenge for the model to 484

accurately distinguish them. 485

5 Related Work 486

In recent years, significant advancements in NLP 487

have been attributed to the emergence of LLMs. 488

OpenAI has achieved significant milestones with 489

the creation of two groundbreaking models: Chat- 490

GPT and GPT-4. However, due to their proprietary 491

nature, There has been numerous LLM variants fea- 492

turing tens or even hundreds of billions of parame- 493

ters (Zhao et al., 2023). We categorize these LLMs 494

into two groups based on their specialization: gen- 495

eral LLMs and specialized LLMs. General LLMs 496

are designed for versatility across a wide spectrum 497

of NLP tasks. Prominent examples of these models 498

7



Figure 5: Distribution of training samples and initial test samples during K iterations.

Figure 6: The normalized confusion matrices for RGPT
across four datasets. The columns represent the truth
label, where the rows represent the predicted labels.

are GPT-4, ChatGLM, LLaMA 2, PanGu-Σ (Ren 499

et al., 2023), Falcon (Penedo et al., 2023), etc. In 500

contrast, specialized LLMs are fine-tuned for spe- 501

cific tasks via task-specific architectures and knowl- 502

edge, allowing them to achieve higher performance. 503

An increasing number of studies are raging over 504

medical, law, finance and education domains, e.g., 505

HuaTuo (Zhang et al., 2023), FinGPT (Yang et al., 506

2023), ChatLaw (Cui et al., 2023), etc. 507

Different from the above-mentioned studies, we 508

pioneer a specialized LLM by iteratively refining 509

and integrating base LLMs, unlocking its untapped 510

potential on text classification tasks. 511

6 Conclusions 512

In this work, we propose RGPT, an adaptive boost- 513

ing framework tailored to produce a specialized text 514

classification LLM. we efficiently train a pool of 515

strong base learners by adjusting the distribution of 516

training samples and iteratively fine-tuning LLMs 517

with them. Such base learners are then recurrently 518

ensembled to be a specialized LLM. We offer a 519

comprehensive evaluation and our model achieves 520

the state-of-the-art results. This proves that boost- 521

ing LLMs will yield significant improvements over 522

other PLM and prompt based approaches. Human 523

evaluation experiments proves that RGPT can out- 524

perform average human performance. 525
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7 Limitations.526

The proposed RGPT model also has several limita-527

tions: (1) High computational cost. The iterative528

nature of its boosting-based mechanism, which in-529

volves multiple rounds of fine-tuning LLMs, leads530

to a significant computational cost. (2) Limited531

testing sets. RGPT has shown significant per-532

formance improvements across four benchmark533

datasets. However, the study does not thoroughly534

examine how well the model may work on a wider535

range of text classification tasks. (3) Monotony536

of base learners. Base learner should not only be537

homogeneous, but also can be heterogeneous. Lim-538

iting the RGPT framework’s base learners solely539

to LLaMA 2 may hinder the method’s innovation540

and its potential for improvement. Ensembling541

different LLMs may enhance the adaptability and542

versatility of the approach when facing new chal-543

lenges.544

Potential Risks. Even though RGPT addresses545

overfitting by increasing similar samples instead546

of the misclassified samples themselves, there re-547

mains a risk of overfitting during the repeated fine-548

tuning of large language models. This risk becomes549

more prominent in situations with a small training550

set.551
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A Explanations of The Complementary753

and Robustness Across Base Learners754

The complementarity among multiple base learn-755

ers, as observed in ensemble learning frameworks756

like boosting, refers to the ability of different foun-757

dational models to recognize and process distinct758

features or patterns within the data. For RGPT,759

which employs LLMs as base learners, this com-760

plementarity is manifested in several aspects:761

(1) Feature space coverage. Each fine-tuned762

LLM may exhibit varying degrees of understanding763

and capturing capabilities for different semantic,764

syntactic structures, or contextual information in765

the input text. For instance, one LLM may excel at766

handling long-distance dependency relationships,767

while another may demonstrate greater accuracy in768

understanding domain-specific terms.769

(2) Error distribution. As the sample weights770

are adjusted based on the prediction errors of the771

preceding weak learners during each iteration, sub-772

sequent learners focus more on the previously mis-773

classified samples. Consequently, even if the foun-774

dational architectures of all LLMs are similar, they775

address and correct different subsets of data, creat-776

ing complementarity.777

(3) Randomness and robustness. Despite fine-778

tuning for the same task, different initialization779

states and random factors during the training pro-780

cess (such as the stochastic nature of gradient de-781

scent) may lead LLMs to produce distinct decision782

boundaries. These boundaries may intersect or mis-783

align in complex data distributions, enhancing the784

overall robustness and generalization performance785

of the ensemble model.786

(4) Model capacity. While LLMs possess high787

capacity, a single model may not fully leverage788

all its parameters to adapt to complex tasks, espe-789

cially with limited training data. Through multiple790

rounds of fine-tuning and ensemble combination,791

the model potential can be better explored, allow-792

ing each learner to focus on specific aspects of the793

task, resulting in overall optimization. 794

B Recurrent Ensembling The Base 795

Learners: Algorithm and Illustration 796

Here, we present further details of RGPT in Algo- 797

rithm 1 and the overall architecture of ensembling 798

in Fig. 2

Algorithm 1 Recurrent ensemble Learning of
RGPT
Require:
1: Input:
2: D(0): Original training dataset with N samples

(x
(0)
i , y

(0)
i )

3: LM0: LLaMA 2 as initial base learner
4: K: Number of base learners

Ensure:
5: Output:
6: Mensemble: Recursively ensembled model
7: Training:
8: Initialize data weights W(0) =

{
w

(0)
1 , . . . , w

(0)
N

}
where w

(0)
i = 1

N
, ∀i ∈ N

9: for k = 1, 2, . . . ,K do
10: Construct prompt Prompt(k)i = INSi ⊕ x

(k)
i

11: Fine-tune LMk with weighted training samples:

LMk = argminθ(k)

∑
D(k)

w
(k)
i · L(y(k)

i , fk(x
(k)
i ; θ(k)))

12: Compute error rate ϵ(k) of LMk

13: Calculate weight coefficient α(k) = log 1−ϵ(k)

ϵ(k) +

log(c− 1)
14: Update data weights for k + 1th iteration:

W(k+1)
i =


w

(k)
i
Zk

e−α(k)

if LMk(x
(k)
i ) = y

(k)
i

w
(k)
i
Zk

eα
(k)

if LMk(x
(k)
i ) ̸= y

(k)
i

15: Normalize weights by Zk to ensure
∑N

i=1 w
(k+1)
i =

1
16: Inference:
17: for k = 1, 2, . . . ,K do
18: Forward the prompt through kth base learner LMk

19: Obtain the classification result ŷ(k)
i

20: Update prompt for next iteration:

Prompt(k+1)
i = Prompt(k)i ⊕ {ŷ(k)

i , ϵ(k)}

21: return Mensemble = F (LM1,LM2, . . . ,LMK)

799
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