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Abstract

Domain generalization aims to learn a model over multiple training environments
to generalize to unseen environments. Recently, Wang et al. [2022] proposed
Invariant-feature Subspace Recovery (ISR), a domain generalization algorithm
that uses the means of class-conditional data distributions to provably identify the
invariant-feature subspace under a given causal model. However, due to the specific
assumptions of the causal model, the original ISR algorithm is conditioned on a
single class only, without utilizing information from the rest of the classes. In this
work, we consider the setting of multi-class classification under a more general
causal model, and propose an extension of the ISR algorithm, called ISR-Multiclass.
This proposed algorithm can provably recover the invariant-feature subspace with
⌈dspu/k⌉ + 1 environments, where dspu is the number of spurious features and
k is the number of classes. Empirically, we first examine ISR-Multiclass in a
synthetic dataset, and demonstrate its superiority over the original ISR in the
multi-class setting. Furthermore, we conduct experiments in Multiclass Coloured
MNIST, a semi-synthetic dataset with strong spurious correlations, and show that
ISR-Multiclass can significantly improve the robustness of neural nets trained by
various methods (e.g., ERM and IRM) against spurious correlations.

1 Introduction

Domain generalization involves a learner having access to several domains during training time,
which can be leveraged together to generalize better to unseen domains during test time. Notably, a
recent line of work (Wang et al. [2022], Rosenfeld et al. [2022], Kirichenko et al. [2022]) focuses on
achieving robustness to spurious correlations via simple linear transformations/last layer re-training.
In this work, we focus on and aim to extend the post-processing procedure proposed by Wang et al.
[2022]. Wang et al. [2022] present the ISR-Mean1, an algorithm that provably recovers the invariant
feature subspace by using the 1st order moments of the class conditional data distribution, under a
causal model for classification considered by Rosenfeld et al. [2022], Arjovsky et al. [2019].

However, in the more realistic multi-class setting, it is unclear whether there exists any relation
between the number of classes and the number of training environments required to recover invariant
features. Further, Singla and Feizi [2021] demonstrates that features that are spurious for a given
target label may be the core features for another. One could apply class-specific transformations to
mitigate this. However, this is infeasible as we do not know the class labels during testing. In light of
the above challenges, we are specifically motivated by the following question:

1Referred to as ISR in this paper.
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Figure 1: ISR-Multiclass enables faster recovery (left) of invariant features and improves accuracy by
large margin on coloured MNIST (right).

In the context of linear causal models, can the number of classes compensate for the number of
training environments in recovering the invariant features?

In order to answer the above questions, we propose ISR-Multiclass, an extension of the ISR-Mean
algorithm that provably recovers the invariant subspace in ⌈dspu/k⌉+ 1 environments, where dspu is
the number of spurious features (i.e., the dimensionality of the spurious-feature subspace) and k is
the number of classes. Note that our result improves over the original environmental complexity of
dspu + 1 for binary classification problem.2, hence it provides an affirmative answer to the above
problem. Furthermore, our result shows that the benefits of k-class classification problems help to
reduce the environmental complexity by an order of k.

Additionally, we introduce a new multi-class benchmark as a linear unit test based on Aubin et al.
[2021] and show that ISR-Multiclass can leverage class information to its advantage for faster
recovery of invariant features. We also demonstrate significant improvements in performance on the
multi-class Coloured MNIST dataset (Ahuja et al. [2021]. A summary is shown in Figure 1.

2 ISR Multiclass

In this section, we introduce ISR-Multiclass i.e. Invariant Feature Subspace Recovery for Multi
Class classification.

2.1 Setup

We study the causal model as shown in Figure 2, similar to that of Rosenfeld et al. [2020].

Figure 2: Data Model. Shading indicates that the variables are observed.

Let y be sampled from a prior distribution of labels {y1, y2, ...., yk}. Let the dimension of the
invariant and spurious features be dc and ds respectively, such that dc + ds = d, which is the total
input dimension. Then, we sample:

zc ∼ N (µy, σ
2
cIdc), ze ∼ N (µye, σ

2
eIds) (1)

2When k = 2, the environmental complexity in Wang et al. [2022] is dspu +1 instead of dspu/2+1 because
of one specific assumption on the symmetry of the conditional feature distributions, which we also remove in
this work.
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where µy ∈ Rdc , µye ∈ Rds and σc, σe ∈ R+. As a comparison, in the original causal model for
binary classification considered in Wang et al. [2022], Rosenfeld et al. [2020], the invariant feature
distribution is given by zc ∼ N (yµc, σ

2
cIdc), where y ∈ {+1,−1}. We point out that this is an

unnecessary assumption on the causal model mainly imposed for technical convenience. Furthermore,
as it will become clear shortly, this symmetry assumption on the means of the invariant feature
distributions also artificially increases the environmental complexity from dspu/2 + 1 to dspu + 1.

Finally, the input x is generated from a linear transformation of the concatenated invariant and
spurious features as follows:

x← [A B]

[
zc
ze

]
(2)

= Azc +Bze = Rz ∈ Rd (3)
As a consequence, the marginal distribution of x is the following:

N (Aµy +Bµye, σ
2
cAAT + σ2

eBBT ) (4)

Here, A = Rd×dc , B = Rd×ds are transformation matrices and R = [A,B] ∈ Rd×d.

In this work, we mainly focus on the design of the recovery algorithm itself, so for clarity of the
derivation and discussion, we conveniently assume that the algorithm has access to infinite amount of
data sampled according to the data model described above to limit the impact of finite samples, as a
common practice also used in the prior works [Wang et al., 2022, Rosenfeld et al., 2020].

Similar to Wang et al. [2022], we adopt the full-rank assumption on the means of the spurious features
from different environments and different classes.

Assumption 1 For the set of environmental means, {µye}Ee=1,
k
y=1, we assume that

dim(span({µye : y ∈ [k], e ∈ [E]})) = min(E × k, ds) (5)

Intuitively, this assumption ensures that the spurious (and thus invariant) subspace can be recovered
and multiple classes / multiple environments do not trivially replicate information.

Further, we also assume the following as per Rosenfeld et al. [2020].

Assumption 2 R is injective.

2.2 ISR-Multiclass

We now present ISR-Multiclass, as outlined in Algorithm 1.The detailed steps can be found in
Appendix A.1.

Briefly, consider the means x̄ek = Aµk +Bµke for a given class k and environment e. Then, let:

Mk:=
[
x̄T
1k · · · x̄T

Ek

]T
(6)

Eigendecomposition of each Mk results in E − 1 eigenvectors (from Assumption 1 and Wang et al.
[2022]). Now, consider Mtotal defined as:

Mtotal:= [P1|P2| · · · |Pk] ∈ Rd×(E−1)k (7)

where Pi is the set of E − 1 eigenvectors obtained from the eigendecomposition of Mk. We now
present Theorem 1 which formally states the proposed improvement. The proof can be found in
Appendix A.2.

Theorem 1 (ISR-Multiclass) Assume that E ≥ ⌈ds/k⌉+ 1 and we have infinite data samples from
every environment. We perform SVD forMtotal (defined in (7)), let {λ1, . . . , λd} denote the set of
singular values obtained in descending order. It is guaranteed that the top ds singular values are
non-zero, i.e.,

∀1 ≤ i ≤ ds, λi > 0

The eigenvectors corresponding to these top ds singular values, i.e., {P ′
1, . . . , P

′
ds
}, correspond to

the ds spurious dimensions. Consequently, the null space NullSpace([P ′
1, . . . , P

′
ds
]T ∈ Rds×d) =

[P ′′
1 , . . . , P

′′
dc
]T ∈ Rdc×d corresponds to the invariant dimension subspace. A classifier f fitted to

training data transformed by x 7→ [P ′′
1 , . . . , P

′′
dc
]Tx recovers the invariant optimal predictor.
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Algorithm 1 ISR-Multiclass
Input: Data of all training environments, {De}e∈[E] across all classes y ∈ {y1, y2, . . . , yk}.
for y = y1, y2, . . . , yk do

for e = 1, 2, . . . , E do
Estimate the sample mean of {x|(x, y) ∈ De, y = yk} as x̄ke ∈ Rd

end for
end for
1. Construct k matricesMk ∈ RE×d with the e-th row of the k-th matrix as x̄T

ke for e ∈ [E]
2. Apply PCA to eachMk to obtain set of eigenvectors. From these, chose eigenvectors corre-
sponding to E − 1 highest eigenvalues to construct Pk:=

[
P1k|P2k| · · · |P(E−1)k

]
∈ Rd×(E−1)

3. Stack each Pk to obtainMtotal:= [P1|P2| · · · |Pk] ∈ Rd×(E−1)k

4. Apply SVD of Mtotal to obtain eigenvectors {P ′
1, ..., P

′
d} with eigenvalues {λ1, ..., λd}

5. Stack ds eigenvectors with the highest eigenvalues to obtain a transformation matrix P ′ ∈ Rds×d

6. Take the null space of P ′ ∈ Rds×d to obtain P ′′ ∈ Rdc×d

7. Apply transformation x 7→ P ′′x on the training data and fit a linear classifier (with w ∈ Rdc ,
b ∈ R)
Resulting predictor is f(x) = wTP ′′x+ b

Optimality Our method involves applying an additional SVD operation over ISR-Mean, and thus
the global optimality holds: a classifier trained on these features is globally optimal, similar to
arguments in Wang et al. [2022].

Environment Complexity The environment complexity of ISR-Multiclass is ⌈ds/k⌉+ 1 (detailed
proof in A.2). The key observation here is that the column space of each Pi matrix for i ∈ [k] only
consists of the span of {µie}Ee=1. So in order to identify the subspace of spurious features, one needs
at least ds linearly independent components. Hence, we only need to ensure that (E − 1)k ≥ ds so
that the column space ofMtotal is full rank. Solving this inequality leads us to the desired bound on
the environmental complexity. This implies that we can leverage information from multiple classes
to reduce the environmental complexity by a factor of 1/k, as compared to ds + 1 proposed in
Wang et al. [2022], while only relying on the 1st order moments of the data generating distribution.
Intuitively, our method leverages additional information from multiple classes to find the common
spurious feature subspace in lesser number of environments.

3 Experiments

We now present empirical improvements demonstrated by ISR-Multiclass on 2 datasets.
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Figure 3: Evaluation on Multiclass Linear Unit Test Example 3s, where the y-axis denotes mean
error over the test set. We have fixed ds = 5 and dc = 5, while k varies from 2 to 7. As indicated by
our theoretical claim: ISR-Multiclass recovers features roughly in ⌈ds/k⌉ + 1 environments. For
example, when k = 3, we achieve optimal error in ⌈5/3⌉+ 1 ≈ 3 environments. Similarly, beyond
k = 5, we achieve optimality in 2 environments itself.

3.1 Multi-Class Linear Unit Test

We construct a multi-class version of Example 3 (and its scrabled version, Example 3s) as used in
Aubin et al. [2021]. This is a synthetic dataset based on our causal model in section 2.1. Specific
details of our construction can be found in Appendix B. Figure 3 depicts the improvement of ISR-
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Multiclass compared to the original ISR-Mean 3 and ERM Vapnik [1991]. Evaluation is performed
on the test split where the spurious dimensions are randomized. The Oracle is trained on this test
split.

From figure 3, we observe that ISR-Multiclass is indeed able to leverage class information and recover
invariant features to achieve optimal error with the number of environments inversely proportional
to k, confirmed by our theoretical claim. Especially in the last three plots - with greater classes
and lesser environments (k > 5 and nenv < 5), both ISR-Mean and ERM incur higher error, but
ISR-Multiclass takes advantage of multiple classes to improve its performance instead and match the
oracle.

3.2 Multi-Class Coloured MNIST (MC-CMNIST)

We consider the 10-class classification task of Coloured MNIST as proposed in Ahuja et al. [2021].
Note that in the train environments, every digit is highly correlated with a specific color, as depicted in
Figure 1. This correlation breaks down in the test environment, i.e., every digit is randomly colored.

Evaluation Table 1 presents the results on MC-CMNIST. Performance is evaluated on every group,
which denotes a specific combination of (y, color) ∈ G = Y × E . Note that there are 10× 10 = 100
groups on this dataset. During training, the samples across input groups are imbalanced owing to the
spurious correlation where every digit majorly occurs in its associated color. During test, samples
across groups become balanced - thus testing a method’s ability to generalize to minority groups
existing in the training set.

Algorithm Average Accuracy Worst-Group Accuracy Worst-10 Group Accuracy
Original ISR-Multiclass Original ISR-Multiclass Original ISR-Multiclass

ERM 58.20±1.03 78.50±0.76 0.00±0.00 21.93±13.40 2.35±0.59 39.60±7.90
IB-ERM 70.58±1.24 81.40±1.15 0.94±1.07 27.36±11.42 10.06±2.66 42.63±6.77

IRM 73.85±0.79 82.01±0.97 8.31±2.55 34.33±9.27 25.66±3.14 45.36±6.46
IB-IRM 77.81±0.84 82.95±2.42 9.73±5.20 32.29±6.66 32.14±2.48 49.17±5.63

Table 1: Evaluation of ISR Multiclass on MC-CMNIST. We report the test accuracy (%) with standard
deviation over 5 random trials. A value in bold indicates higher accuracy. ISR-Multiclass outperforms
both average and worst group accuracies, especially for ERM. Note that the variance for worst group
accuracies is high because of the less number of samples per group (≈ 300).

We report the average accuracy (across all groups), worst group accuracy, and worst-10 group
accuracy (average across 10 worst groups). We compare the performance of ISR-Multiclass with
ERM, IB-ERM, IRM 4 and IB-IRM which are proposed by Arjovsky et al. [2019] and Ahuja et al.
[2021]. The oracle on this dataset achieves 99.03 ± 0.08 average accuracy as per Ahuja et al. [2021].
More details can be found in Appendix B.

It is evident that post-processing with ISR-Multiclass significantly improves both the average and
worst-group accuracies, especially prevalent for ERM and IB-ERM. While IRM and IB-IRM perform
better than their ERM counterparts, ISR-Multiclass still improves the accuracy by ≈ 5− 10%. Note
that ISR-Multiclass is a simple post-processing technique as compared to other methods which rely
on end-to-end training. We discuss the merits of this in more detail in Appendix C.

4 Conclusion

In this work, we propose ISR-Multiclass, an extension of ISR-Mean to a more practical setting of
multi-class classification. We theoretically prove that ISR-Multiclass can recover invariant features
in fewer environments by using class information, specifically in ⌈dspu/k⌉+ 1 environments. We
corroborate our theory with empirical results by curating a new multi-class linear unit test and
demonstrate faster recovery of invariant features by ISR-Multiclass. Further, our method outperforms
current methods on the MC-CMNIST by a large margin, both for average and worst group accuracy.

3Note that we condition on a fixed class (0) to enable this comparison.
4To ensure a fair comparison, IRM was re-trained with the groups denoted by digit color.
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A Appendix

A.1 Detailed Steps for ISR-Mutliclass

Step 1. Estimating sample means for every environment and every class

Construct the following matrix Mk for class k where each row contains the sample mean conditioned
on a given environment e, for class k. In other words, each row is x̄ek = Aµk +Bµke. Note that in
the infinite sample setting considered in our work, this is exactly the mean as per Equation (4).

Mk:=

 x̄T
1k
...

x̄T
Ek

 (8)

Step 2. Eigendecompose every Mk

For every class, eigen-decompose to obtain eigenvectors {Pi}di∈d corresponding to eigenvalues
{λi}di=1. By assumption 1, we obtain E− 1 eigenvectors (-1 from the mean centering in PCA) which
correspond to non-zero eigenvalues.
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Pk:=
[
P1k|P2k| · · · |P(E−1)k

]
∈ Rd×(E−1) (9)

where Pik is the itheigenvector corresponding to a non-zero eigenvalue in the phase transition of Mk.
Thus, Pk recovers spurious dimensions corresponding to class k, as follows from ISR-Mean in Wang
et al. [2022].

Note that unlike Wang et al. [2022], we do not impose the condition that E > ds as information from
a single class may not be sufficient to recover all spurious (and thus invariant) features.

Step 3: Stack all Pk and take SVD (Singular Value Decomposition) After obtaining Pk for every
class yk, we stack all Pk to obtain a new matrix Mtotal as follows:

Mtotal:= [P1|P2| · · · |Pk] ∈ Rd×(E−1)k (10)

Next, take the SVD of Pk. Note that this step is motivated by the flag-mean Marrinan et al. [2014] to
find the common spurious subspace for all class labels.

Step 4: Extract Spurious Feature Subspace In Theorem 1, we prove that SVD of Mtotal leads to
ds non zero singular values, where the corresponding vectors {P ′

1, . . . , P
′
ds
} recover the underlying

spurious subspace. We stack these vectors as a matrix P ′.

P ′ := [P ′
1, . . . , P

′
ds
]T ∈ Rds×d (11)

Step 5: Train a Classifier in the Null Space of Spurious-Feature Subspace This final step involves
training a classifier in the null space of the extracted spurious feature subspace, which is the invariant
feature subspace:

P ′′ = NullSpace(P ′) ∈ Rd×dc (12)

A.2 Proof for Theorem 1

Consider the matrix Mtotal as defined in (10):

Mtotal:= [P1|P2| · · · |Pk] ∈ Rd×(E−1)k (13)

By definition, rank(Mtotal) ≤ min(d, (E − 1)× k). This trivially implies that: rank(Mtotal) ≤
(E − 1)× k.

Recall that each Pk recovers the spurious dimension specific to class k. In order to recover the
underlying ds dimensional subspace, the rank of Mtotal = ds. Combining this fact with the above
statement, we obtain the following inequality:

E − 1 ≥ ds/k (14)
E ≥ ds/k + 1 (15)

Thus, the minimum number of environments required to recover the spurious (thus invariant) feature
subspace benefits by leveraging information from classes. The greater the number of classes, the
lesser the number of training environments we require to recover the dc dimensional invariant features.
It should be noted that this decrease is observed while only leveraging the 1st order moments of the
class conditional data distribution.

Assuming condition (12) is satisfied, the rank of Mtotal is capped at ds. Thus, the SVD will lead to
ds positive singular values. We can then obtain the ds eigenvectors corresponding to these non-zero
singular values, which span the spurious dimensions. The transformation matrix will be P ′ ∈ Rds×d.
Since zs ⊥ zc as per the setup 4, the null space of P ′ will correspond to vectors spanning the
d− ds = dc dimensions as follows:

NullSpace(P ′) = P ′′ ∈ Rdc×d (16)

Finally, training on this invariant subspace will help us obtain the optimal invariant predictor as
defined in Rosenfeld et al. [2020], which completes the proof.
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B Experimental Details

B.1 Multiclass Linear Unit Test

We now discuss experimental details for constructing and evaluating on Example3/3s-Multiclass, a
Multi Class Linear Unit Test.

Construction First, we sample y from a multinomial distribution of uniform probability 1/k, where k
is the number of classes. Then, the first dc invariant features are sampled from a Gaussian distribution
where the mean depends on the class label. Similarly, the next ds spurious features are sampled from
a Gaussian distribution where the mean now depends on the class label as well as the environment
label. This can be formulated as follows:

For a given environment e,

y ∼ Multinomial
(
1

k

)
,

zc ∼ { N (µk, σcIdc) ∗ νinv for y = k,

ze ∼ { N (µke, σeIds) ∗ νspu for y = k, env = e,

z ←
[
zc
ze

]
, x = Rz

For Example3-Multiclass, R = Id, and for Example3s-Multiclass (scrambled variation), R ∈ Rd×d

is an orthonormal matrix.

The sampling of means µk, µke is done from a uniform distribution between [0, 1). νinv and νspu are
the scale of invariant and spurious features. We set µinv = 0.1 and µspu = 1 as regularization may
encourage learning spurious features, making it harder to learn the invariant features. This is similar
to Example2 in Aubin et al. [2021].

In our experiments, σc = 0.1, σe = 0.1, ds = 5, dc = 5. We sample 10,000 points per environment.
k varies from 2 to 7.

Code and Hyperparameters For all methods, we perform a hyperparameter search over 5 data seeds
and 5 model trials. In every trial, we train the algorithm on the train split and use the Adam Kingma
and Ba [2014] optimizer for optimization. The model with the least mean validation error across
all environments is chosen. For ISR-Mean, we use the implementation from their released code at
https://github.com/Haoxiang-Wang/ISR.

B.2 Multiclass Coloured MNIST (MC-CMNIST)

Figure B.2 depicts a summary of the dataset - for every digit, the corresponding colour is highly
correlated in the training set. This correlation breaks during testing.

Figure 4: Multiclass Coloured MNIST dataset.

We directly employ the Multiclass coloured MNIST dataset, models and hyperparameters provided
by Ahuja et al. [2021] at https://github.com/ahujak/IB-IRM.

For ERM, IB-ERM, IRM and IB-IRM, we run a sweep over hyperparameters using the grid as
suggested above. The best model is chosen by using train domain validation (Gulrajani and Lopez-
Paz [2020]). ISR-Multiclass is applied on the last-layer over the classification weights to enable the
invariant feature subspace transformation. Note that ISR-Multiclass uses colour labels as the group
information, and we ensure this same definition applies to IRM to ensure a fair comparison. It should
also be noted that similar to Wang et al. [2022], we adopt a strategy of scaling down the spurious
dimensions extracted from convolutional networks.
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C Post-processing v/s end-to-end training

It should be noted that ISR-Multiclass is a post-processing technique and can be applied on top of any
pretrained embeddings, while other methods rely on end-to-end training. This further demonstrates
the possibility of using such a linear transformation on any embeddings obtained from large pretrained
models. Fine-tuning such models maybe infeasible, and applying ISR-Multiclass (vis-a-vis linear
probing) can give us the additional benefit of robustness to spurious correlations.
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