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Abstract
We identify and exactly solve the learning dynamics of a one-hidden-layer linear model at any
finite width whose limits exhibit both the kernel phase and the feature learning phase. Our solution
identifies three novel prototype mechanisms of feature learning: (1) learning by alignment, (2)
learning by disalignment, and (3) learning by rescaling. In sharp contrast, none of these mechanisms
is present in the kernel regime of the model. We empirically demonstrate that these discoveries also
appear in deep nonlinear networks in real tasks.

1. Introduction
It has been shown that for a neural network under certain types of scaling towards infinite width
(or certain parameters), the learning dynamics can be precisely described by the neural tangent
kernel (NTK) dynamics [22], or the "kernel regime". We say that a model is in the kernel regime
if the NTK of the model remains unchanged throughout training, and the learning dynamics is
linear in the model parameters. When the learning dynamics is not linear, we say that the model
is in the feature learning regime. Since then, a lot of works have been devoted to the study of
how the kernel evolves during training as it sheds light on nonlinear mechanisms of learning
[5, 7, 8, 11, 16, 19, 20, 26, 30, 33]. However, despite the progress in understanding these infinite-
width models, there have been limited results in understanding how feature learning actually happens
and the relationship between these two limiting regimes. Arguably, the main theoretical gap is that
until now, we do not know a single example of a finite-width exactly solvable model, whose NTK
dynamics can be analytically and precisely described and exhibits both the NTK and feature learning
regimes. In this paper, we analytically solve the evolution dynamics of a minimal finite-width
model for arbitrary hyperparameters and initialization choices. The minimal model we address is a
one-hidden-layer linear network. While the model is simple in nature, its loss landscape is nonconvex
and its training involves strongly coupled dynamics, and the exact solution of its learning dynamics
is previously unknown. Our results reveal three novel mechanisms of learning that are only existent
in the feature learning phase of the network. Related literatures are reviewed in Appendix A. Proofs
and additional theoretical results are in Appendix B. Additional experiments are in Appendix C.

2. An Exactly Solvable Model
Let us consider a two-layer linear network f(x) = γ

∑d
i=1

∑d0
j=1 uiwijxj , where d0 is the input

size, d is the network width, u and w are the weight vector/matrix of the first and the second layer,
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THREE MECHANISMS OF FEATURE LEARNING

respectively, and γ is a normalization factor, which is essential for the mean-field scaling [8, 15, 35].
We consider that the network is trained on the MSE loss:

L̃ = E
[
(γ

d∑
i=1

d0∑
j=1

uiwij x̃j − y(x̃))2
]
, (1)

where we treated the target y as a function of x̃. Throughout this work, we write E := N−1
∑

x̃ to
denote the averaging over the training set (although it does not have to be a finite sum). The training
proceeds with the gradient flow algorithm. A little more general than the conventional study of NTK,
we allow the two layers to have different learning rates, ηu and ηw:

dui
dt

= −ηu
∂L̃

∂ui
,

dwij

dt
= −ηw

∂L̃

∂wij
. (2)

We restrict to when the data lies on a 1d manifold, and the following proposition shows that the
learning dynamics under Eq.(1) is equivalent to that under a simplified loss.

Proposition 1 Let x̃ = an, where a ∈ R is a random variable and n is a fixed unit vector. Let
x =

√
E[a2]n and y = E[ay(x̃)]√

E[a2]
. Then, the gradient flow of Eq.(1) equals the gradient flow of

L =

[
γ
∑d

i=1

∑d0
j=1 uiwijxj − y

]2
.

Despite this being the simplest type of linear networks, its learning dynamics has not been analytically
found in previous works. For this problem, only in two special settings, the dynamics of gradient
descent (GD) have been solved. One is the standard kernel regime, where the dynamics are exactly
linear [22]; the second case is when the two layers are initialized to be perfectly aligned, where u
is a left eigenvector of w [10, 32]. The following theorem gives a precise characterization of the
dynamics of ui and wi for arbitrary initialization and hyperparameter choices.

Theorem 2 Let {
pi(t) :=

1
2ρ(

√
ηu

∑d0
j=1wij(t)xj +

√
ηwρui(t)),

qi(t) :=
1
2ρ(

√
ηu

∑d0
j=1wij(t)xj −

√
ηwρui(t)),

(3)

where ρ :=
√

1
d0

∑d0
i=0 x

2
i , and P := 1

d

∑d
j=1 pj(0)

2, Q := 1
d

∑d
j=1 qj(0)

2. If P ̸= 0, thenpi(t) = pi(0)
[
α++ξ(t)α−

1−ξ(t)

]1/2
,

qi(t) = qi(0)
[
α++ξ(t)α−

1−ξ(t)

]−1/2
,

(4)

where
ξ(t) :=

1− α+

1 + α−
exp (−4t/tc) , (5)

tc := 1/
(√

ηuηwγ2ρ2y2 + 4ρ4(γ2d)2PQ
)
, (6)

α± :=
1

2(γ2d)ρ2P

(√
ηuηwγρy ± t−1

c

)
. (7)
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Let us begin by analyzing each term and clarifying their meanings. In the theorem, we have
transformed ui and wij into an alternative basis pi and qi, and ξ(t) is the only time-dependent term.
Note that ξ decays exponentially towards zero at the time scale tc. ui and wij are obtained through{

ui(t) =
1√
ηw

(pi(t)− qi(t)),

wij(t) = wij(0) + (pi(t)− pi(0) + qi(t)− qi(0))
xj√
ηuρ

.

The constants α+α− = Q/P are two asymptotic scale factors. In the limit t → ∞, we have that

pi(∞) = pi(0)
√
α+, qi(∞) = qi(0)/

√
α+. (8)

This directly gives us the mapping between the initialization to the converged solution. Unlike a
strongly convex problem where the solution is independent of the initialization, we see that the
converged solution for our model is strongly dependent on the initialization and on the choice of
hyperparameters. Perhaps surprisingly, because α± in (7) are functions of the learning rates, the
converged solution (8) depends directly on the magnitudes of the learning rates. This directly tells
us the implicit bias of gradient-descent training for this problem. Another special feature of the
solution is that for any direction orthogonal to x, the model will remain unchanged during training.
Let m ⊥ x, we have that

∑
j wij(t)mj =

∑
j wij(0)mj . Namely, the output of the model in the

subspace where there is no data remains constant during training.
In the theorem, what is especially important is the characteristic time scale tc, which is roughly

the time it takes for learning to happen. Notably, the squared learning speed t−2
c depends on two

competing factors:

t−2
c = ηuηwγ

2ρ2y2︸ ︷︷ ︸
contribution from feature learning

+ 4ρ4(γ2d)2PQ︸ ︷︷ ︸
contribution from kernel learning

The first factor depends on the input-output correlation and learning rate, which we will see is
indicative of feature learning. The second term depends only on the input data and on the model
initialization. We will see that when this term is dominant, the model is in the kernel regime. In fact,
this result already invites a strong interpretation: the learning of the kernel regime is driven by the
initialization and the input feature, whereas the learning in the feature learning regime is driven by
the target mapping and large learning rates.

Using this theorem, one can compute the evolution of the NTK. Note that when different
learning rates are used for different layers, the NTK needs to be defined slightly differently from
the conventional definition. For the MSE loss, the NTK is the quantity K that enters the following
dynamics: df(x)

dt = 2K(x, x′)(f(x′)− y). This implies that for our problem,

K(x, x′) = γ2xT (ηwW
TW + ηu||u||2I)x′, (9)

according to Eq. (2) and Proposition 1. This definition agrees with the standard NTK if ηw = ηu.

3. Three Mechanisms of Feature Learning
We focus on a crucial effect predicted by this theorem, which differentiates it from previous results
on similar problems. An important quantity our theory enables us to study is the evolution of the
layer alignment ζ(t) := uTw/||u||||w||, which represents the cosine similarity between u and w.
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Figure 1: The evolution of ζ of two-layer networks with different settings. Specifically, we test linear, ReLU,
sigmoid, swish, and leaky ReLU activations for both alignment (upper) and disalignment (lower)
cases. For the linear network, we show the theoretical predictions obtained from (10) as lines and
experimental results as points. The results for nonlinear networks are qualitatively similar.

Here, we set x to be 1d, because Theorem 2 suggests that the dynamics of GD training has only a
rank-1 effect on the model. This quantity is especially interesting because it tells us how well-aligned
the two layers are during training. Notably, this quantity vanishes as d → ∞ if and only if the model
is in the kernel regime, so it serves as a great metric for probing how feature learning happens.

Alignment and Disalignment. Let x = 1 and denoting α(t) = α++ξα−
1−ξ . By Theorem 2,

ζ(t) =
α(t)P −Q/α(t)√

(α(t)P +Q/α(t))2 − (2d
∑

piqi)2
, (10)

where 4piqi = u2i − w2
i = const does not change during training. In general, the angle evolves

by an O(1) amount during training. In fact, the angle remains unchanged only in the orthogonal
initialization case or in the kernel phase, where α(t) = 0/1 throughout training (see Appendix C).

Let us first consider the kernel case. Here, the easiest way to see that ζ remains zero is to
note that in the kernel regime, ∥u∥ and ∥w∥ are of order

√
d, whereas uTw is always of order 1/γ.

Therefore, ζ(t) = o(1) in the kernel phase (see Appendix B.3) and vanishes in the limit d → ∞.
Alternatively, one can see this from Theorem 2, which implies that in the kernel regime, α(t) = 1
is a constant (see Appendix B.3), and in turn ζ(t) = 0. Therefore, in the kernel regime, the two
layers are essentially orthogonal to each other throughout training. This suggests one mechanism
for the failure of the kernel learning phase. For a data point x, the hidden representation is wx, but
predominant information in wx is ignored after the the layer u. This implies that the model will have
a disproportionately larger norm than what is actually required to fit the data, which could in turn
imply strong overfitting.

The second case is when the two layers are initialized in a parallel way. This setting is often
called the “orthogonal initialization" [32]. In the orthogonal initialization, u is parallel to w, and
so pi = Cqi for a constant C. In this case, it is easy to very that ζ(t)2 = 1, meaning that u and w
remain parallel or anti-parallel throughout training. Therefore, prior theory offers no clue regarding
how ζ evolves in general.

Our solution implies a rather remarkable fact: ζ is always a monotonic function of t. To see this,

its derivative is dζ
dα =

(P+ Q

α2 )(4PQ−( 2
d

∑
piqi)

2)

[(α(t)P+Q/α(t))2−( 2
d

∑
piqi)2]3/2

. When u and w are parallel, this quantity is
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zero, in agreement with our discussion about orthogonal initialization. When they are not parallel,
we have that 4PQ − (2d

∑
piqi)

2 > 0 by the Cauchy inequality, and thus dζ/dα > 0. Because
α(t) monotonically evolves from 1 to α+ > 0, the evolution of ζ is also simple: ζ(t) monotonically
increases if α+ > 1 or, equivalently, if

√
ηuηwy

2γdρP
+

√(√
ηuηwy

2γdρP

)2

+
Q

P
> 1 (11)

and monotonically decreases if α+ < 1. ζ does not change if α+ = 1.
When does condition (11) hold? Let us focus on the case y > 0 because the theory is symmetric

in the sign of y. The first observation is that it holds whenever Q ≥ P , which is equivalent to
uT (0)w(0) < 0. Namely, if the model is making wrong predictions from the beginning, it will learn
by aligning different layers. Moreover, this quantity also depends on the balance of the two learning
rates. Notably, when the learning rates for the two different layers are the same, the change in ζ is
independent of the learning rate. This implies that under the standard GD, the angle can be quite
independent of the learning rates. However, the dependence on the learning rate becomes significant
once we use different learning rates on the two layers. For example, when ηu ≫ ηw (or vice versa),
this condition depends monotonically and (essentially) linearly on ηw, and making ηw close to ηu
has the effect of making the two layers more aligned.

See Figure 1, where we show that the evolution of ζ between u and v of two-layer networks
with d = 10000. It is trained on a regression task. Similar experimental results are observed for a
classification task trained with the cross-entropy loss (Appendix C). We choose γ = 1/

√
d for the

kernel phase and γ = 1/d for the feature learning phase. The initial weights are sampled from i.i.d.
Gaussian distribution N (0, 1). Therefore, we have P ≈ Q and the initial ζ(0) ≈ 0. From (7) we
have α+ > 1 if y > 0, so ζ(t) monotonically increases, but the increase is negligible in the kernel
phase. Therefore, in this case, the model learns features by alignment. Meanwhile, the orthogonal
initialization refers to the initialization scheme in [32], that is, ζ is initialized to be 1, so it remains 1
as predicted. In the near orthogonal case of Figure 1, we set ζ(0) ≈ 1 and the initial model output to
be large. As predicted, ζ(t) monotonically decreases. In this case, the model learns by disalignment.
From Figure 1, we also see that this phenomenon holds for all non-linear activation functions. The
generalization of layer alignment and disalignment effects to higher dimension and deeper networks
is given in Appendix C.
Learning by Rescaling. Learning can also happen by rescaling the output. The evolution of ||u||
and ||w|| are given by

||u||2 = d(αP +
Q

α
)− 2

d∑
i=1

piqi, ||w||2 = d(αP +
Q

α
) + 2

d∑
i=1

piqi,

and, thus, d||u||2
dα = d||w||2

dα = d(P − Q
α2 ), which is positive when ζ > 0, and negative when ζ < 0.

Thus, the rescaling coincides with the alignment, namely, ||u|| and ||w|| become larger when they
are being aligned (|ζ| gets larger), and become smaller when they are being disaligned (|ζ| gets
smaller). More explicitly, (1) P > Q and α+ > 1, or P < Q and α+ < 1, or P = Q: ||u|| and ||w||
monotonically increase. (2) P > Q and 1 > α+ ≥

√
Q/P , or P < Q and 1 < α+ ≤

√
Q/P : ||u||

and ||w|| and monotonically decrease. (3) P > Q and α+ <
√
Q/P , or P < Q and α+ >

√
Q/P :

||u|| and ||w|| first decrease, and then increase. (4) α+ = 1: everything keeps unchanged. Again, in
the kernel phase, the scale change of the model vanishes. In the orthogonal initialization, however,
this quantity changes by an O(1) amount. Therefore, the orthogonal initialization essentially learns
by rescaling the magnitude of the output.
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Appendix A. Related Work
Kernel and feature learning. Due to the importance of the NTK in understanding the training and
generalization of neural networks, a lot of works are devoted to understanding its structure and when
and how it changes as training proceeds. Under the NTK scaling, it is shown that NTK remains
unchanged in the infinite-width limit [4, 22, 24], where the network is asymptotically equivalent to
the kernel regression using NTK. Higher order feature learning corrections of the NTK have also
been studied [1, 13, 18, 31]. An important alternative to the NTK parameterization is the mean-field
(or µP ) parameterization where features evolve at infinite width [8, 27, 35]. Within this literature,
the works closest to ours are those computing finite width corrections [9, 28, 29]. However, these
results are perturbative in nature and applicable when the width is large. Our study has the same
goal of understanding the learning dynamics but with a different approach. We solve an analytically
solvable model that admits analysis both when the model size is finite and infinite.
Deep linear networks. Our work is also related to the analysis of deep linear networks, which
has provided significant insights into the loss landscape [6, 14], optimization [10, 21, 32, 34],
generalization [17, 23] and learning dynamics[2, 3, 37] of neural networks. Closely related to ours
are Refs. [5, 10, 32], which solve the learning dynamics of linear models under special initializations.
Our main advancement in this respect is to exactly solve the learning dynamics from arbitrary
initializations, which we then utilize to analyze the effect of the initialization scale for learning.

Appendix B. Theoretical Concerns

B.1. Proof of Proposition 1

Proof To make the analysis more concrete, we consider the standard loss function L̃(u,w) =
1
N

∑N
k=1(γ

∑d
i=1

∑d0
j=1 uiwij x̃jk − ỹk)

2, where N is the size of the training set.
Data points lie in a 1d-subspace, meaning that x̃jk = aknj for a constant unit vector n. Because

of the 1d nature of the data, the training dynamics on this loss function is completely identical to

training on the following loss L(u,w) = (γ
∑d

i=1

∑d0
j=1 uiwijxj − y), where xj =

√∑N
k=1 a

2
knj

and y =
∑N

k=1 akỹk√∑N
k=1 a

2
k

. This is because

L̃(u,w) = (
N∑
k=1

a2k)(γ
d∑

i=1

d0∑
j=1

uiwijnj)
2 − 2(

N∑
k=1

akỹk)(γ
d∑

i=1

d0∑
j=1

uiwijnj) +
N∑
k=1

y2k

= L(u,w) +

N∑
k=1

y2k − y2.

(12)

Therefore, without loss of generality, the training on the standard loss L̃ is identical to the training
on L because the difference is only by a constant that does not affect gradient descent training.
This setting is thus equivalent to the case when the dataset contains only a single data point (x, y).1

As is clearly shown from this example, using the notation in terms of x and y is much simpler to
understand than using x̃jk and yk. We believe that this notation is necessary and greatly facilitates
the later discussions once the readers accept it.

1. Essentially, this is because we only need two points to specify a line. Also, it is trivial to extend to the case when y is a
vector that spans only a one-dimensional subspace.
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Finally, all these notations can also be written in terms of Ex := 1
N

∑N
k=1, which is the notation

we chose for introducing the lemma.

B.2. Proof of Theorem 2

Proof By the definition of the gradient flow algorithm,

dui
dt

= −ηu
∂L

∂ui
= −2ηuγ

d0∑
j=1

wijxj

γ

d∑
i=1

d0∑
j=1

uiwijxj − y

 ,

dwij

dt
= −ηw

∂L

∂wij
= −2ηwγuixj

γ

d∑
i=1

d0∑
j=1

uiwijxj − y

 ,

(13)

which implies the following two conservation laws:

d

dt
(ηu

d0∑
j=1

w2
ij − ηwu

2
i ) = 0, (14)

d

dt

(
wij

xj
−

wij′

xj′

)
=

1

xj

dwij

dt
− 1

xj′

dwij′

dt
= 0. (15)

From Eq. (13), we can denote dwij

dt = uixjA, which implies

d

dt

 d0∑
j=1

w2
ij −

1∑d0
j=1 x

2
j

(
N∑
j=1

wijxj)
2


= 2

d0∑
j=1

uiwijxjA− 2

∑d0
j=1 uiwijxj∑d0

j=1 x
2
j

d0∑
j=1

x2jA = 0.

(16)

Now we denote pi(t) := 1
2ρ(

√
ηu

∑d0
j=1wij(t)xj+

√
ηwρui(t)) and qi(t) ≡:= 1

2ρ(
√
ηu

∑d0
j=1wij(t)xj−√

ηwρui(t)), and thus

pi(t)qi(t) =
1

4ρ2

ηu(
N∑
j=1

wij(t)xj)
2 − ηwρ

2ui(t)
2

 . (17)

Take derivatives on both sides and use (14) and (16). Then we have

d

dt
(pi(t)qi(t)) =

1

4

d

dt

 ηu∑d0
j=1 x

2
j

(

N∑
j=1

wijxj)
2 − ηwu

2
i


=

1

4

d

dt

ηu

d0∑
j=1

w2
ij − ηwu

2
i

 = 0

. (18)

10
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Further, substituting (13) into the definition of pi and qi, we have

dpi
dt

= −2γ
√
ηuηwpiρ

 d∑
j=1

(p2j − q2j )
γρ

√
ηuηw

− y

 . (19)

(19) implies 1
pi

dpi
dt = 1

pi′
dpi′
dt , further leading to another conservation law

d

dt

pi(t)

pi′(t)
= 0. (20)

for all i, i′ = 1, 2, · · · , d. Then according to (18) and (20), we have pi′(t) = pi′(0)
pi(t)
pi(0)

and

qi′(t) = qi′(0)
pi′ (0)
pi′ (t)

. Substituting them into (19), and we obtain a differential equation with only one
variable pi

dpi
dt

= −2pi

(
(γ2d)ρ2P

pi(0)2
p2i −

(γ2d)ρ2Qpi(0)
2

p2i
− γρy

√
ηuηw

)
, (21)

where

P =
1

d

d∑
i=1

pi(0)
2, Q =

1

d

d∑
i=1

qi(0)
2. (22)

This differential equation is analytically solvable by integration

t = −
∫ p2i

pi(0)2

dζ

4
(
(γ2d)ρ2P
pi(0)2

ζ2 − γxy
√
ηuηwζ − (γ2d)ρ2Qpi(0)2

) (23)

Because the denominator as a quadratic polynomial has two different roots α±, the result of the
integration is

t = − tc
4
log

pi(t)
2/pi(0)

2 − α+

pi(t)2/pi(0)2 − α−
+ const, (24)

leading to
pi(t)

2/pi(0)
2 − α+

pi(t)2/pi(0)2 − α−
=

1− α+

1− α−
exp (−4t/tc) , (25)

which gives (4).

Proposition 3 Under the condition in Theorem 2, if P = 0 and Q ̸= 0, the result becomes

pi(t) = 0 (26)

qi(t) = qi(0)

√
α′ξ′(t)

1− ξ′(t)
(27)

where
ξ′(t) :=

1

1 + α′ exp (−4
√
ηuηwγρyt) , (28)

11
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and

α′ :=

√
ηuηwγρy

(γ2d)ρ2Q
. (29)

Specially, if P = Q = 0, we have pi(t) = q(t) = 0, so the gradient flow will be stuck at the trivial
saddle point.

The proof is similar to the proof of Theorem 2, because we can similarly obtain

dqi
dt

= −2qi

(
(γ2d)ρ2Q

qi(0)2
q2i + γρy

√
ηuηw

)
. (30)

Its solution gives Proposition 3.
We note that the behavior of the solution is quite different from P ̸= 0: when y ≤ 0, we can

obtain a solution with zero loss in the end, but when y > 0, the gradient flow will converge to the
trivial saddle point pi = qi = 0.

B.3. Phase Diagrams
Our theory can be applied to study the learning of different scaling limits, where we scale the
hyperparameters with a scaling parameter κ towards infinity. Here, κ is an abstract quantity that
increases linearly, and all the hyperparameters including the width are a power-law function of κ.
Conventionally, the choice of κ is the model width; however, this excludes the discussion of the lazy
training regime in the theory, where the model width is kept fixed and the scaling parameter is the
model output scale γ.

We first establish the necessary and sufficient condition for learning to happen: the learning time
tc needs to be of order Θ(1). When it diverges, learning is stationary and frozen at initialization.
When it vanishes to zero, the discrete-time SGD algorithm will be unstable, a point that is first
pointed out by [35]. Therefore, we first study the condition for tc to be of order 1, which is equivalent
to the condition that (assuming x, y are order 1)

ηuηwγ
2 + (γ2d)2PQ = Θ(1). (31)

For Gaussian initialization ui0 ∼ N (0, σ2
u) and wi0 ∼ N (0, σ2

w), P and Q are random variables with
expectation (ηwσ

2
u + ηuσ

2
w)/4 and variance (ηwσ

2
u + ηuσ

2
w)

2/8d. Generally, all hyperparameters
are powers of κ: d ∝ κcd , γ ∝ κcγ , σ2

w ∝ κcw , σ2
u ∝ κcu , ηw ∝ κcηw and ηu ∝ κcηu . For simplicity,

we set the input dimension d0 to be a constant.
Equation (31) implies

max {2cγ + cηu + cηw , 2cγ + cd +max{cηw + cu, cηu + cw}} = 0. (32)

Whatever choice of the exponents that solves the above equation is a valid learning limit for a neural
network. The phase of the network depends on the relative order of the above two terms.

Definition 4 A model is in the kernel phase if (1) Eq. (9) is independent of t as κ → ∞ (2)
NTK = Θ(1).

When tc = Θ(1), a model is said to be in the feature learning phase if it is not in the kernel phase.

12
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Theorem 5 When Eq. (32) holds, a model is in the kernel phase if and only if limκ→∞ P/Q = 1,
a.s.. and

cd +max{cηw + cu, cηu + cw} > cηu + cηw . (33)

Proof Using P/Q = 1 and (33), we have

lim
κ→∞

α+ = lim
κ→∞

2ρ2(γ2d)
√
PQ

2ρ2(γ2d)P
= 1. a.s. (34)

By definition, ξ(t) is a monotonic function. As α+−ξα−
1−ξ = α+−α−

1−ξ + α− is monotonous to ξ,
it evolves from 1 to α+ monotonously. Then according to Equation (9), limκ→∞K(x, x′)(t) =
limκ→∞K(x, x′)(0) if and only if limκ→∞ α+ = 1.

From Equation (32), Equation (33) also implies

2cγ + cd +max{cηw + cu, cηu + cw} = 0. (35)

Therefore, we can see that the NTK remains Θ(1) because

γ2dα+P = Θ(κ2cγ+cd+max{cηw+cu,cηu+cw}) = Θ(1). (36)

The proof is complete.

The necessary condition P/Q = 1 for the model being in the kernel phase is interesting and highlights
the important role of initialization in deep learning. There are three common cases when this holds:
1. d → ∞ and u0 and w0 are independent (standard NTK);
2. d is finite and the initial model output is zero:

∑d
i=1

∑d0
j=1 uiwijxj = 0 (lazy training)

3. d is finite, κ → ∞ and cu + cηw ̸= cw + cηu ;
The first case is the standard way of initialization, from which one can derive the classic analysis of
the kernel phase by invoking the law of large numbers. The second case is the assumption used in
the lazy training regime [12]. ([12] assumes cγ = 1, cηu = cηw = −2 and cu = cw = 0, satisfying
the conditions of the exponents (32) and (33).) This case, however, relies on a special initialization,
and thus our results better illustrate the occurrence of the kernel phase for advanced initialization
methods where different weights can be correlated. The third case happens when the learning rate
and the initialization are not balanced. This suggests that to achieve feature learning, one should
make sure that the learning rate and the initialization are well balanced: cu = cw.

In conclusion, the overall phase is (1) kernel phase, if the first term in (32) is strictly smaller
than the second term: 0 = cγ + cd +max{cηw + cu, cηu + cw} > cηu + cηw and limκ→∞ P/Q = 1,
(2) feature learning phase if otherwise. A key difference between these two phases is whether the
evolution of the NTK is O(1), or equivalently whether the model learns features.

An intriguing fact is that layers tend to align in the feature learning phase. Suppose P ≈ Q
and

∑d
i=1 piqi ≈ 0, which holds for Gaussian initialization and d sufficiently large, (10) leads to

ζ(t) ≈ α(t)2−1
α(t)2+1

, which monotonously changes from 0 to
α2
+−1

α2
++1

. In the feature learning phase, two

terms in (6) are of the same order, so we can suppose
√
ηuηwγρy ≥ 2Kρ2γ2dP without loss of

generality, where K is a certain constant. This further leads to a non-zero upper bound of the
alignment ζ(∞) ≥ (K+1)2−1

(K+1)2+1
, in clear contrast to the kernel phase, where the alignment remains

asymptotically zero for Gaussian initialization.

13
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Figure 2: A two-layer fully connected ReLU net with d neurons trained on the CIFAR-10 dataset for 10000
epochs with batch size 128. The kernel phase is shown in solid lines and the feature learning phase
is shown in dashed lines. As the theory predicts, both types of initialization can be turned into
either the feature learning or the kernel phase by choosing different combinations of γ and η. Left:
the best test accuracy during training. Right: relative distance from the initialization.

Table 1: Phases of learning in different scaling limits. For brevity, the learning rates of the two layers are set
to be equal. The first block shows that the models can be frozen or unstable if we do not scale η
accordingly. The second block shows that one can always choose η such that the model training is
stable and does not freeze. The third and fourth blocks show that one can always choose a pair of η
and γ such that the model is either in the feature learning phase or the kernel phase.

scaling NTK Mean Field [27] Xavier init. Kaiming init. lazy [12]

cd 1 1 1 1 0
cγ -1/2 -1 0 0 1
cu 0 0 -1 0 0
cw 0 0 -1 -1 0
cη 0 0 0 0 0

phase kernel frozen learning unstable unstable
c∗η 0 1 0 -1 -2

phase kernel learning learning kernel kernel
c+η 1 1 0 1 0
c+γ -1 -1 0 -1 0

phase learning learning learning learning learning
c−η 0 0 -2 -1 -2
c−γ -1/2 -1/2 1 0 1

phase kernel kernel kernel kernel kernel

B.3.1. PHASES DIAGRAM OF INFINITE-WIDTH MODELS

Now, let us focus on the case when κ = d → ∞ (thus cd = 1), corresponding to the infinite width
limit considered in the NTK and feature learning literature [22, 25, 35]. In this limit, limκ→∞ P/Q =
1 naturally holds by law of large numbers. Therefore, a sufficient and necessary condition for the
kernel phase is 0 = cγ + cd +max{cηw + cu, cηu + cw} > cηu + cηw .

The following corollaries are direct consequences of Eq. (32).

Corollary 6 For any cγ , cu and cw, choosing cηu = cηw = min{−cγ ,−2cγ − cd −max{cu, cw}}
ensures that the model is stable.

14
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Corollary 7 For any cu and cw, choosing cηu = cηw = cη and cγ = −cη with cη ≥ cd +
max{cu, cw} leads to a feature learning phase.

Corollary 8 For any cu and cw, choosing cγ = −1
2(cd + max{cu, cw} + cη) and cη < cd +

max{cu, cw} leads to a kernel phase.

They imply two important messages: for every initialization scheme, (1) one can choose an optimal
learning rate such that the learning is stable; (2) one can choose an optimal pair of learning rate and
output scale γ such that the model is in the feature learning phase. Point (1) agrees with the analysis
in [35], whereas point (2) is a new insight we offer. See Table 1 for the classification of different
common scalings. We choose scalings according to Corollary 7 and 8, to turn each model into the
feature learning or the kernel phase.

See Figure 2. We implement a two-layer FCN on the CIFAR-10 dataset with ReLU activation.
We run experiments with the scalings of the standard NTK, standard mean-field, Kaiming model,
and Xavier model. cγ and cη are chosen according to Table 1. Here, we use the superscript + to
denote the type of scaling that leads to a feature learning phase, and − denotes the kernel phase.
For the Kaiming and Xavier model, we choose both c±η and c±γ , and refer them as Kaiming± and
Xavier±, respectively. The left figure shows that turning the Kaiming model into the feature learning
phase improves the test accuracy by approximately 5%, similar to the gap between the standard
NTK model and the mean-field model. Meanwhile, turning the Xavier model into the kernel phase
decreases the test accuracy by approximately 10%. This is because the fixed kernel restricts the
generalization ability in the kernel phase, and the difference between these models in the kernel
phase might be attributed to their different kernels. Thus, in agreement with the theory, choosing
different combinations of the output scale γ and η can turn any initialization into the feature learning
phase. This insight could be very useful in practice, as the Kaiming init. is predominantly used in
deep learning practice and is often observed to have better performance at common widths of the
network. Our result thus suggests that it is possible to keep its advantage even if we scale up the
network. Further, our results also imply that any valid learning regimes transfer well when the model
gets larger, while in the feature learning phase, a larger model generally leads to better performance.
This is consistent with earlier work [36].

B.3.2. PHASE DIAGRAM FOR INITIALIZATIONS

Now, we study the case when d is kept fixed, while other variables scale with κ → ∞. In this case, the
phase diagram is also given by Theorem 5. See Figure 3 for an experiment. We set cu = max{0, cw}
and cγ = min{−cw/2, 0}. This choice ensures that the initial model output is O(1). In this case,
(32) is satisfied. By Theorem 5, the network is in the kernel phase if and only if cw > 0. One
important example for this section is the lazy training regime, where cu = cw = cd = 0, and we can
choose cγ = 1 and cη = −2 according to Corollary 8, leading to a kernel phase in finite width.

Another example is to consider large initialization, i.e., cu = cw = c > 0. In this case, we can
choose cη = c and cγ = −c according to Corollary 7, leading to a feature learning phase. Actually,
this choice of the normalization factor γ cancels out the scaling of the initialization. On the other
hand, if we choose γ = 1 as commonly done, we have to choose cη = −c according to Corollary 8,
leading to a kernel space. This might be another possible explanation that larger initialization often
leads to worse performance empirically. Like before, we implement a two-layer fully connected
ReLU network on the CIFAR-10 dataset with d = 2000. We choose κ = 10 for illustration purposes.
A clear distinction is observed between the feature learning phase and the kernel phase. (1) In
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Figure 3: A two-layer FCN with different initialization scales trained on the CIFAR-10 dataset. We see
that finite-width models can also exhibit qualitative differences between the feature learning and
the kernel phases when other hyperparameters are scaled toward infinity. Notably, this scaling is
different from the lazy training scaling, implying that there are numerous (actually infinitely many)
ways for the model to enter the kernel phase, even at a finite width.

(a) alignment in a 4-layer FCN (b) alignment vs. initialization scale

Figure 4: The alignment angle ζ between different layers of a four-layer FCN with ReLU activation trained
on MNIST. (b) shows the final alignment for different initialization scale σ, while (a) shows training
curves corresponding to σ = 1. The dashed lines in (b) show the initial alignment.

Figure 3(a), the training accuracy can reach 1.0 in the feature learning phase but not the kernel phase,
because the NTK in the kernel phase is fixed, and thus the best training accuracy is limited by the
fixed kernel. (2) As discussed in the previous section, the test accuracy In Figure 3(a) is about 5%
higher in the feature learning phase due to its trainable kernel. (3) In Figure 3(b), the weight matrices
evolve significantly in the feature learning phase but not the kernel phase.

Appendix C. Additional Experimental Concerns

C.1. Additional Experiments in Section 3

In Figure 1, we choose x = 1, y = 2, and for others we randomly sample 100 points from N (0, 1)
as data points x, and set y = 2x+N (0, 1)/10 as the target. The learning rates are chosen such that
the model converges well within given iterations. For the orthogonal initialization, we initialize the
model as u ∼ N (0, 10Id) and w ∼ u+N (0, 0.1Id).

To generalize layer alignment and disalignment effects to higher dimension and deeper networks,
we define ζ := ||UW ||

||U ||||W || , where U,W are the weight matrices of two consecutive layers and the L2
norm for matrices is used. See Figure 4 for a four-layer fully connected network (FCN) with ReLU
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(a) alignment in a 6-layer FCN (b) alignment vs. initialization scale

Figure 5: The alignment angle ζ between different layers of a six-layer FCN trained on MNIST, with the
same settings as Figure 4.

activation and different initialization scales trained on MNIST datasets. Figure 4 (a) shows that the
alignment between consecutive layers increases during training, and Figure 4 (b) demonstrates that
layers stop being aligned for large initialization. These results are consistent with simpler settings,
verifying that our analysis applies to deeper networks with non-linear activation.

In Figure 4, to avoid the implicit bias of SGD to make layers aligned [37], we consider full-batch
GD with batch size 2000 and constant learning rate. The learning rates are chosen separately for each
model such that the model converges well in 1000 iterations, with training accuracy above 95%. All
models use the standard Kaiming initialization, but we scale each layer by σ. The results in Figure 4
also extend to deeper networks, although the training dynamics of deeper FCNs are less stable, as
shown in Figure 5.

Moreover, we observe qualitatively the same phenomenon for all kinds of activation functions
in the classification task in Figure 6, where the task is to classify training samples from N (0, 1)
and N (4, 1). Initialization is the same as in Figure 1, but the binary cross-entropy loss is used.
From Figure 6 we can also see that layers tend to align in the feature learning regime when they are
initialized to be disaligned, and vice versa. Note that because of the binary cross-entropy loss, ζ
keeps decreasing even after the loss converges. Further, because of the binary cross-entropy loss, ζ
deviates from one for non-linear activation functions other than ReLU.

In Figure 7, we train a Resnet18 network on the CIFAR-10 dataset with hyperparameters
borrowed from https://github.com/kuangliu/pytorch-cifar. The only difference is that we scale each
layer by σ and record the test accuracy together with the sum of the norm of all layers. Figure 7 shows
that a larger initialization leads to worse performance. Note that this example can only be explained
through the disalignment effect because (1) the model achieves 100% train accuracy in all settings,
yet (2) a larger initialization leads to a larger norm at the end of the training, which also correlates
with worse performance. Another piece of evidence is the commonly observed underperformance of
kernel models. In the kernel phase, the model norm diverges and the model alignment is always zero,
which could be a hint of strong overfitting. Therefore, our theory suggests that it would be a great
idea for future works to develop algorithms that maximize layer alignment while minimizing the
change in the output scale.

C.2. Experiments in Section B.3.1

In Section B.3.1, we utilize a two-layer FCN with the ReLU activation and d hidden units. The input
is vectorized and normalized, so the input dimension is d0 = 3072. The cross-entropy loss and the
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Figure 6: The evolution of the alignment angle ζ between u and v across two-layer ReLU, sigmoid, swish,
and leaky ReLU networks with d = 10000. The task is to classify two Gaussian distributions.

Figure 7: The initialization scale σ correlates negatively with the performance of Resnet-18 on the CIFAR-10
dataset. Left: test accuracy. Here, σ is a constant multiplier we apply to the initialized weights
of the model under the Kaiming init. Right: the norm of all weights. While all models achieve a
100% training accuracy, models initialized with a larger scale converge to solutions with higher
weight norms, which is a sign that the layers are misaligned.

stochastic gradient descent without moment or weight decay are used during training. We use a batch
size of 128 and report the best training and test accuracy among all epochs.

We choose γ = 1√
d

and η = 0.05 for the standard NTK model, γ = 10
d and learning rate

η = 0.05d/100 for the standard mean-field model, γ = 1 and η = 0.05d/100 for the Kaiming−

model, γ = 100
d and η = 0.05d/100 for the Kaiming+ model, γ = 1 and η = 0.05 for the Xavier+

model, γ = 0.01d and η = 0.05(100/d)2 for the Xavier− model. The choice of hyperparameters
guarantees that the standard NTK model and the standard mean-field model, the Kaiming+ and
Kaiming− model, and the Xavier+ and Xavier− model are the same for d = 100, respectively.

C.3. Experiments in Section B.3.2

The experiment in Section B.3.2 is similar to that in B.3.1. The only difference is that we fix d = 2000
and change the initialization scale. More specifically, we set κ = 10, σ2

u = κc, σ2
w = κmax{c,0} and

γ = κ−min{0,−c/2}. We also fix η = 0.005.
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