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Abstract

Synthetic chain-of-thought (CoT) traces are widely used to train large reasoning
models (LRMs), improving generalization by providing step-level supervision. Yet
most approaches require ground-truth labels to seed or filter these traces—an expen-
sive bottleneck in domains like biology where wet-lab data are scarce. We propose
a label-free alternative: uncertainty-based filtering, which uses a model’s own con-
fidence—quantified through established uncertainty metrics like self-consistency
and predictive perplexity—as a substitute for external labels. We sample multiple
reasoning traces and retain only low-uncertainty subsets. Applied to biological per-
turbation prediction, a domain where wet-lab labels are especially costly, we show
that the filtered subset has higher accuracy, and that supervised fine-tuning (SFT)
on uncertainty-filtered data outperforms unfiltered synthetic data, narrows the gap
to ground-truth training, and surpasses strong LRM baselines. Ablations show
that per-class filtering corrects for class-specific uncertainty scales and that hybrid
uncertainty metrics yield higher-quality datasets. Our results suggest that model-
internal confidence is a powerful signal for efficient reasoning dataset creation,
enabling LRMs in domains where supervision is expensive.

1 Introduction

Synthetic chain-of-thought (CoT) traces have become a cornerstone for training large reasoning
models (LRMs), providing step-level supervision that improves generalization across mathematics,
coding, and symbolic tasks [9, 11, 8]. However, most pipelines for generating such traces rely
on ground-truth labels to filter sampled generations [9, 11, 8]. While feasible in domains with
abundant labels or automatic checkers, this creates a bottleneck where high-quality labels are costly
or unavailable.

Applications in biology particularly highlight this challenge. Ground-truth labels, when available at
all, often require costly experimental measurement, limiting the scale of supervision. In particular,
cellular perturbation prediction—predicting how a given perturbation (e.g. drug or gene knockout)
affects target gene expression levels (up, down, or unchanged)—is a fundamental task underlying
drug discovery and disease modeling. The challenge is compounded by fundamental epistemic
uncertainty: even when outcomes can be measured, the underlying causal mechanisms (e.g. gene
regulatory networks) remain poorly understood, precluding external validation of synthetic reasoning
traces [20]. Moreover, approaches that distill carefully curated reasoning traces into open-source
models have shown to achieve task-specific performance that exceeds that of frontier LRMs [14].

We address these challenges with uncertainty-filtered synthetic reasoning. Our method samples
multiple reasoning traces per example and filters them using the model’s own confidence—quantified
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by self-consistency and predictive perplexity—without any external supervision or verifiers. This ap-
proach aims to simultaneously mitigate label scarcity (by reducing dependence on wet-lab outcomes)
and guard against epistemic gaps (by discarding examples where the model itself is least confident),
to yield cleaner and more reliable synthetic training data. Our contributions are threefold:

• We introduce a label-free dataset curation pipeline that filters synthetic reasoning traces by
uncertainty, enabling efficient reasoning data construction in unlabeled domains.

• Applied to biological perturbation prediction and evaluated on the established PerturbQA
benchmark, we show that filtering traces by internal uncertainty yields subsets with higher
accuracy on final predictions. Moreover, training on uncertainty-filtered data outperforms
unfiltered synthetic data and narrows the gap to ground-truth training, reducing reliance on
costly wet-lab experiments.

• Through ablations, we find that per-class filtering corrects for class-specific uncertainty
scales and that using an existing hybrid uncertainty score [21] leads to highest quality
synthetic data, suggesting general principles for data-efficient LLM reasoning.

2 Background

Synthetic Reasoning Datasets. Chain-of-thought (CoT) prompting [24] elicits intermediate rea-
soning steps, and reliability can be improved via sampling and consistency filtering [30, 22]. LLM
prompting has become a general tool for generating synthetic datasets [27, 7, 23]. Recent work
combines these directions to produce synthetic reasoning traces [9, 11, 8, 29, 28, 18, 17]. However,
most methods still require ground-truth labels [9, 11], sometimes falling back on heuristics like
self-consistency when labels are absent [29, 28], and are therefore not fully label-free.

Biological Perturbation Prediction. Predicting how genetic or chemical perturbations alter cellular
states is a central challenge in computational biology. Many aspects of perturbation prediction
remain unknown [20] , making it a canonical testbed for label-scarce domains. Classical approaches
(e.g., GEARS [15], scGPT [5]) often underperform simple baselines [2, 10]. Recent LLM-based
models—GenePT [4], SUMMER [25], and SynthPert [14]—adapt embeddings, retrieval, or synthetic
reasoning. SynthPert shows that CoT traces can aid generalization, but the method relies on labeled
outcomes.

LLM Uncertainty Quantification. LLM uncertainty measures [16, 6, 19] include predictive entropy
and probability margins [26, 12], or consistency-based agreement across multiple generations [1, 3].
Hybrid methods such as CoCoA show that combining both yields the strongest correlation with
correctness [21], which we use as a substitute for lables.

3 Methods

Problem formulation. We study perturbation prediction: given a tuple (c, g, p) of cell type c,
perturbation p, and gene g, the task is to predict whether g’s expression increases (up), decreases
(down), or remains unchanged (non-regulated). This three-class formulation follows [25] and
reflects realistic biological workflows. As prior knowledge of gene responses is often unavailable, we
generated synthetic reasoning data for this task, as illustrated in Figure 1.

Synthetic reasoning generation. To address the scarcity of labeled perturbation outcomes, we
generate synthetic chain-of-thought (CoT) traces using a frontier LLM. For each input tuple (c, g, p),
we produce k + 1 reasoning paths: one greedy-decoded trace r0 and k high-temperature sampled
traces {ri}ki=1, keeping r0 as the response. Each trace consists of a natural-language explanation
paired with a final prediction in {up, down, non-regulated}. See appendix H for a runtime analysis.

Uncertainty filtering. We estimate the reliability of synthetic traces using the CoCoA metric [21],
which combines semantic consistency across sampled traces {ri}ki=0 with predictive perplexity of
r0. We compute CoCoA on the combined reasoning and final answer. For each class, we retain the
top-x% traces with the lowest CoCoA, ensuring balanced coverage across outcomes. Details are in
appendix A.

Supervised fine-tuning. Finally, we perform supervised fine-tuning (SFT) of a base LLM on the
filtered dataset. The model is trained to reproduce both the reasoning trace and the final prediction,
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Figure 1: Uncertainty-filtered synthetic reasoning pipeline. Step 1: Generate multiple synthetic
reasoning traces with predicted outcomes from unlabeled perturbation–gene pairs. Step 2: Score each
trace for internal uncertainty (self-consistency and perplexity) and retain only low-uncertainty traces.
Step 3: Use the retained traces as a label-free dataset for supervised fine-tuning (SFT), improving
reasoning models without ground-truth labels.

distilling patterns from the synthetic pool. We choose SFT over reinforcement learning objectives,
since in this setting the base model is not strong enough for a cold-start RL setup. This procedure
does not require ground-truth experimental labels, enabling adaptation to perturbation prediction
under extreme label scarcity.

4 Experiments

Dataset. We evaluate on the established PerturbQA benchmark [25], which reformulates pertur-
bation prediction as natural language tuples (cell type, perturbation, gene) with labels up, down,
non-regulated. Class imbalance (non-regulated dominates) motivates per-class filtering. We
generate 48k synthetic traces and retain the top x = 10 percent per class under CoCoA [21], yielding
a training set of 4.8k samples. We use the official train/test split provided with the dataset.

Baselines. We benchmark our label-free approach against both zero-shot and supervised baselines: (i)
Zero-shot: out-of-the-box performance of teacher and student models. (ii) Ground Truth + Synthetic
Data SFT [14]: Augmentation with label-conditioned synthetic traces, followed by filtering to retain
only those with correct predictions. This represents the best-performing label-dependent strategy. (iii)
Random-sampling (10%): a size-matched control that selects traces uniformly at random, isolating
the effect of uncertainty filtering. (iv) Unfiltered (100%): training on the entire synthetic pool, testing
whether more data alone suffices.

We use Gemini 2.5 Pro for synthetic data generation due to strong reasoning performance and access
to token-level log-probabilities, with results for Qwen3-32B model in Appendix D, and we train
Qwen3-32B. Implementation details are reported in Appendix B. We report means with stratified
bootstrapped standard errors (5,000 resamples) for each metric.

4.1 Main Results

Lower-uncertainty subsets contain more predictive traces. Table 1 shows that uncertainty
filtering provides clear signal: quality improves monotonically as we retain progressively lower-
uncertainty data. Accuracy rises from 0.42 (full 48k) to 0.49 (top 1%, 480 examples), with consistent
gains at every threshold. Per-class F1 for minority classes improves substantially—from 0.12/0.14
(Up/Down) to 0.30/0.21—demonstrating that uncertainty identifies not just correct predictions but
more balanced, higher-quality reasoning. Appendix Figures 2–3 further visualize this trend across
deciles. As a qualitative check, expert annotation of sample traces confirmed this pattern: low-
uncertainty examples contained sound biological reasoning, while high-uncertainty ones exhibited
errors undermining their conclusions (Appendix E).

Finetuning on uncertainty filtered traces leads to better performance. Table 2 shows that zero-
shot Qwen3-32B achieves only 0.40 accuracy. Ground-truth SFT remains strongest at 0.62 accuracy.
Among label-free methods, unfiltered training (100%) reaches 0.52, and random 10% sampling falls
to 0.48. Crucially, our uncertainty-filtered 10% subset achieves 0.57 accuracy and F1 scores of
0.26 (Up) and 0.28 (Down), substantially improving over both random and unfiltered subsets, and
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Data Up Down Non-reg. Acc # samples
Prec Rec F1 Prec Rec F1 Prec Rec F1

All data 0.07 ± 0.001 0.31 ± 0.005 0.12 ± 0.004 0.08 ± 0.003 0.64 ± 0.009 0.14 ± 0.003 0.93 ± 0.001 0.39 ± 0.001 0.55 ± 0.001 0.42 ± 0.009 48k
Top 20% 0.11 ± 0.006 0.34 ± 0.009 0.16 ± 0.011 0.10 ± 0.010 0.65 ± 0.012 0.17 ± 0.013 0.91 ± 0.010 0.55 ± 0.009 0.32 ± 0.009 0.44 ± 0.019 9.6k
Top 10% 0.12 ± 0.004 0.36 ± 0.006 0.18 ± 0.007 0.11 ± 0.008 0.66 ± 0.010 0.19 ± 0.009 0.88 ± 0.015 0.39 ± 0.007 0.54 ± 0.018 0.45 ± 0.013 4.8k
Top 5% 0.14 ± 0.002 0.35 ± 0.003 0.20 ± 0.005 0.12 ± 0.012 0.68 ± 0.014 0.20 ± 0.016 0.87 ± 0.021 0.39 ± 0.013 0.54 ± 0.024 0.46 ± 0.015 2.4k
Top 1% 0.23 ± 0.015 0.43 ± 0.020 0.30 ± 0.018 0.12 ± 0.017 0.69 ± 0.028 0.21 ± 0.020 0.88 ± 0.012 0.41 ± 0.018 0.56 ± 0.014 0.49 ± 0.023 480

Table 1: Lower-uncertainty subsets contain more predictive traces. on (Prec), recall (Rec), and
F1 score of synthetic data generated zero-shot by Gemini 2.5 Pro via the approach described in
Figure 1. The rows correspond to the top x% of data retained after filtering by CoCoA metric. Lower
uncertainty subsets achieve higher Acc and F1, indicating improved quality.

Method Up Down Non-reg. Acc
Prec Rec F1 Prec Rec F1 Prec Rec F1

Zero-shot baseline
Zero-shot Gemini 2.5 Pro 0.20 ± 0.02 0.19 ± 0.01 0.20 ± 0.01 0.18 ± 0.01 0.22 ± 0.01 0.20 ± 0.01 0.79 ± 0.02 0.58 ± 0.02 0.67 ± 0.02 0.50 ± 0.02
Zero-shot Qwen3-32B 0.11 ± 0.01 0.27 ± 0.02 0.16 ± 0.01 0.18 ± 0.01 0.10 ± 0.01 0.13 ± 0.01 0.78 ± 0.02 0.45 ± 0.02 0.57 ± 0.02 0.40 ± 0.02

Label-based Training (Upper bound)
Ground truth + Synth data 0.28 ± 0.02 0.51 ± 0.03 0.36 ± 0.02 0.16 ± 0.01 0.77 ± 0.02 0.27 ± 0.02 0.97 ± 0.01 0.61 ± 0.02 0.75 ± 0.02 0.62 ± 0.01

Label-free Training
100%-Unfiltered 0.12 ± 0.04 0.31 ± 0.05 0.17 ± 0.04 0.17 ± 0.02 0.21 ± 0.03 0.19 ± 0.02 0.88 ± 0.02 0.59 ± 0.02 0.71 ± 0.02 0.52 ± 0.01
10%-Random-sampling 0.11 ± 0.02 0.28 ± 0.03 0.16 ± 0.03 0.17 ± 0.02 0.19 ± 0.05 0.18 ± 0.03 0.79 ± 0.02 0.49 ± 0.03 0.60 ± 0.03 0.48 ± 0.03
10%-Uncertainty-filtered (Ours) 0.22 ± 0.03 0.32 ± 0.04 0.26 ± 0.03 0.19 ± 0.02 0.55 ± 0.05 0.28 ± 0.02 0.91 ± 0.02 0.60 ± 0.01 0.72 ± 0.02 0.57 ± 0.02

Table 2: Finetuning on uncertainty filtered traces leads to better performance. Precision (Prec),
recall (Rec), F1 per class (Up, Down, Non-regulated), and overall accuracy (Acc) are shown for
zero-shot baselines (teacher: Gemini 2.5 Pro; student: Qwen3-32B), fully supervised methods
(with/without synthetic reasoning traces), and label-free training on uncertainty-filtered, random, or
full synthetic datasets. Best scores for label-free training are bolded.

surpassing the strong LRM Gemini 2.5 Pro. This demonstrates that how data is selected matters:
uncertainty filtering enables strong performance with only 10% of synthetic traces, outperforming
both random sampling at the same scale and unfiltered training on 10× more data.

4.2 Ablation Studies

Per-class filtering outperforms global selection. Table 4 shows that random sampling keeps
performance near unfiltered data (Up F1 0.10 vs 0.12). Global filtering improves recall for Down
(0.71 vs 0.64), but collapses Non-regulated F1 to 0.12, hurting overall accuracy (0.16). In contrast,
per-class filtering maintains balance across classes (Up F1 0.18, Down F1 0.19, Non-reg. F1 0.31)
and yields the highest accuracy (0.25), suggesting the importance of class-aware selection.

Hybrid uncertainty metrics outperform single signals. Table 5 shows that perplexity alone
performs worst (Up F1 0.14, Down F1 0.15). Consistency improves quality (Up F1 0.16, Down F1
0.20, Acc 0.24). The hybrid CoCoA score achieves the strongest balance (Up F1 0.18, Down F1 0.19,
Non-reg. F1 0.31, Acc 0.25), suggesting that combining perplexity and self-consistency produces a
more reliable label-free filter than either approach individually.

5 Discussion

We demonstrate that model-internal uncertainty enables label-free filtering of synthetic reasoning
traces, addressing an underexplored axis of efficiency: supervision efficiency. While prior work
focuses on algorithmic or system-level gains, experimental sciences and many other domains are
constrained by the cost and availability of labels. On biological perturbation prediction—where
each label requires costly wet-lab experiments—filtering by self-consistency and perplexity yields
training data with higher accuracy than random or unfiltered baselines. Fine-tuning on this filtered
data narrows the gap to fully supervised training without ground-truth labels.

Our results suggest that LLMs can self-curate training data, decoupling reasoning improvements from
costly supervision. Although validated on biology — a domain with both label scarcity and epistemic
uncertainty about underlying mechanisms — our method is domain-agnostic and applicable to any
setting where experimental data or supervision is costly.
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Limitations and future directions. Uncertainty filtering adds computational overhead for trace
generation and scoring, though this cost is parallelizable and amortized across datasets (see Appendix
H). Like any self-supervised signal, uncertainty filtering relies on the model’s learned representations
and may be sensitive to distribution shift. However, combining filtered synthetic data with even small
amounts of ground-truth labels could provide validation and improve robustness. Future work should
explore complementary uncertainty signals, validate generalization across diverse domains and shifts,
and investigate such semi-supervised setups to improve robustness while reducing reliance on costly
ground-truth labels.
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Synthetic Data Up Down Non-reg. Acc # samples

Prec Rec F1 Prec Rec F1 Prec Rec F1

1% lowest uncertainty 0.12 ± 0.025 0.33 ± 0.041 0.18 ± 0.033 0.08 ± 0.021 0.50 ± 0.052 0.14 ± 0.027 0.95 ± 0.018 0.54 ± 0.035 0.69 ± 0.030 0.53 ± 0.038 40
5% lowest uncertainty 0.12 ± 0.015 0.27 ± 0.025 0.17 ± 0.020 0.09 ± 0.014 0.43 ± 0.032 0.14 ± 0.018 0.90 ± 0.010 0.54 ± 0.020 0.68 ± 0.017 0.51 ± 0.021 121
10% lowest uncertainty 0.09 ± 0.012 0.23 ± 0.021 0.13 ± 0.016 0.07 ± 0.011 0.38 ± 0.025 0.11 ± 0.013 0.90 ± 0.009 0.53 ± 0.018 0.67 ± 0.015 0.50 ± 0.019 160
20% lowest uncertainty 0.10 ± 0.010 0.29 ± 0.018 0.15 ± 0.013 0.07 ± 0.009 0.29 ± 0.021 0.11 ± 0.011 0.89 ± 0.008 0.53 ± 0.015 0.66 ± 0.013 0.50 ± 0.016 200
All data (100%) 0.10 ± 0.003 0.24 ± 0.018 0.14 ± 0.014 0.10 ± 0.011 0.34 ± 0.032 0.15 ± 0.011 0.86 ± 0.004 0.53 ± 0.007 0.65 ± 0.007 0.49 ± 0.008 4000

Table 3: Synthetic reasoning dataset quality using Qwen3-32B model. Each row shows the
precision (Prec), recall (Rec), and F1 score per class, as well as overall accuracy (Acc). Uncertainty
filtering via CoCoA metric.

A Uncertainty Definition

The CoCoA score [21] combines semantic consistency and perplexity. Let r0 be the greedy trace and
{ri}ki=1 the sampled traces. We define uncertainty as:

CoCoA(x) =
2

k

k∑
i=1

(
1− sim(r0, ri)

)
· UPPL(r0), (1)

where sim(r0, ri) is the semantic similarity between r0 and ri (computed via a cross-encoder [13]
as in [21]), and UPPL(r0) is the perplexity of r0. Higher CoCoA indicates higher uncertainty. For
each class, we retain the top-x% traces with the lowest CoCoA, ensuring balanced coverage across
outcomes.

Our aim is not to design a new uncertainty estimator — indeed, both perplexity and self-consistency
are well-studied. Instead, our contribution is to demonstrate that when combined and repurposed,
these familiar measures provide a practical, scalable criterion for filtering synthetic chain-of-thought
traces, yielding label-free datasets that are significantly more effective for downstream fine-tuning.

B Implementation details

Synthetic traces are sampled from Gemini 2.5 Pro. For each input we draw k = 8 high-temperature
(temperature=1, top-p=1.0, top-k=50) completions plus one greedy trace. The student is Qwen3-32B,
fine-tuned with QLoRA (1e−5 learning rate, batch size 4, 20 epochs) on one A100 GPU for 4 hours.
We report per-class precision, recall, F1, and overall accuracy on the held-out test set, bootstrapped
over 5,000 resampling iterations to compute standard errors and 95% confidence intervals for each
metric. Prompt are reported in G.

We set k = 8 samples per query because this provides a tractable balance between (i) sufficient
diversity for self-consistency estimation and (ii) manageable computational cost. Larger k increases
stability but with diminishing returns.” We retain the top 10% per class based on CoCoA because this
threshold reliably yields a strong quality–quantity trade-off (see Table 1): retaining fewer examples
leads to under-coverage of minority classes, while higher thresholds reintroduce noisy traces. In
preliminary training sweeps (5–20%), 10% consistently provided the best downstream accuracy.

We plan to open source our code and dataset upon publication.

C Visualising Uncertainty as a Dataset Quality Signal

We present visualizations of the fact that that groups with lower uncertainty consistently achieve
higher F1 scores. Figures 2 3 show that F1 scores monotonically decrease across CoCoA uncertainty
deciles, with the lowest-uncertainty bin yielding the cleanest traces.

D Results for Qwen3-32B model

To illustrate the trends in uncertainty and data quality also for an open source model, we present a
synthetic dataset generated by the Qwen3-32B model. The details are summarized in Table 3.
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Figure 2: F1 score of upregulated genes stratified by CoCoA uncertainty deciles. Lower-uncertainty
subsets yield consistently higher F1, with a clear monotonic trend across deciles. This confirms that
uncertainty is strongly predictive of reasoning quality.

Figure 3: F1 score of downregulated genes stratified by CoCoA uncertainty deciles. Lower-uncertainty
subsets yield consistently higher F1, with a clear monotonic trend across deciles. This confirms that
uncertainty is strongly predictive of reasoning quality.

E Illustrative Expert Annotation of Reasoning Traces

We asked a PhD-trained biologist to annotate reasoning traces. Below is one drawn from the low-
CoCoA (low uncertainty) subset and one from the high-CoCoA (high uncertainty) subset. The low-
uncertainty trace was found to be correct throughout, whereas the high-uncertainty trace contained an
early factual error that propagated and rendered the overall conclusion incorrect.

Low-Uncertainty Example (All Steps Correct)

Prompt

Analyze the regulatory effect of knocking down the ALG2 gene on the PDIA6 gene in a
single-cell K562 cell line using CRISPR interference.

8



Dataset Up Down Non-reg. Acc

Prec Rec F1 Prec Rec F1 Prec Rec F1

All data 0.07 ± 0.001 0.31 ± 0.005 0.12 ± 0.004 0.08 ± 0.003 0.64 ± 0.009 0.14 ± 0.003 0.93 ± 0.001 0.19 ± 0.002 0.31 ± 0.002 0.22 ± 0.003
10% random sampling 0.06 ± 0.004 0.26 ± 0.007 0.10 ± 0.006 0.08 ± 0.005 0.63 ± 0.012 0.14 ± 0.004 0.93 ± 0.003 0.19 ± 0.005 0.31 ± 0.004 0.22 ± 0.006
Keep lowest 10% per class 0.12 ± 0.005 0.36 ± 0.008 0.18 ± 0.007 0.11 ± 0.006 0.66 ± 0.014 0.19 ± 0.007 0.88 ± 0.004 0.19 ± 0.006 0.31 ± 0.005 0.25 ± 0.006
Keep lowest 10% global 0.12 ± 0.006 0.38 ± 0.010 0.18 ± 0.008 0.11 ± 0.007 0.71 ± 0.016 0.19 ± 0.009 0.88 ± 0.005 0.06 ± 0.007 0.12 ± 0.008 0.16 ± 0.009

Table 4: Synthetic data quality under different filtering strategies. Random sampling selects
traces uniformly, global uncertainty filtering selects the lowest 10% CoCoA overall, and per-class
filtering selects the lowest 10% CoCoA within each class. Metrics include per-class precision (Prec),
recall (Rec), F1, and overall coverage (Acc).

Expert annotation (selected points):

• ALG2 functions in N-linked glycosylation (TRUE).
• PDIA6 is an ER chaperone induced by UPR (TRUE).
• ALG2 knockdown impairs glycosylation, induces ER stress, and activates UPR

(TRUE).
• UPR upregulates PDIA6 via XBP1s/ATF6 (TRUE).
• Context: K562 cells are sensitive to ER stress (TRUE).

Conclusion: Expert judged the chain of reasoning correct, predicting PDIA6 upregulation.

High-Uncertainty Example (Early Factual Error)

Prompt

Analyze the regulatory effect of knocking down the CD3EAP gene on the RPTOR gene in a
single-cell K562 cell line using CRISPR interference.

Expert annotation (selected points):

• CD3EAP is incorrectly identified as calpastatin (FALSE).
• Downstream reasoning (calpain hyperactivation → mTORC1 suppression) is partly

biologically plausible, but depends on the incorrect gene assignment.
• Final conclusion (RPTOR downregulation) judged not supported.

Conclusion: A single early factual error misdirects the reasoning chain, making the overall conclusion
unreliable despite plausible intermediate statements.

F Ablation Details

Table 4 evaluates different filtering strategies for the synthetic dataset. Random sampling selects
traces uniformly, global uncertainty filtering selects the lowest 10% CoCoA across all examples, and
per-class filtering selects the lowest 10% within each class. The results show that per-class filtering
consistently yields higher-quality traces, as uncertainties are not directly comparable across classes;
without per-class selection, minority classes tend to be underrepresented.

Table 5 compares different uncertainty metrics for selecting synthetic traces: perplexity alone,
consistency across multiple generations, and the CoCoA score, which combines both signals. The
results indicate that using CoCoA produces the most reliable traces across all classes, demonstrating
that combining perplexity and self-consistency is superior to either metric alone for identifying
high-quality reasoning data.
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Dataset Up Down Non-reg. Acc

Prec Rec F1 Prec Rec F1 Prec Rec F1

All data 0.07 ± 0.001 0.31 ± 0.005 0.12 ± 0.004 0.08 ± 0.003 0.64 ± 0.009 0.14 ± 0.003 0.93 ± 0.001 0.19 ± 0.002 0.31 ± 0.002 0.22 ± 0.003
Keep lowest 10% CoCoA 0.12 ± 0.005 0.36 ± 0.008 0.18 ± 0.007 0.11 ± 0.006 0.66 ± 0.014 0.19 ± 0.007 0.88 ± 0.004 0.19 ± 0.006 0.31 ± 0.005 0.25 ± 0.006
Keep lowest 10% consistency 0.11 ± 0.005 0.30 ± 0.008 0.16 ± 0.007 0.12 ± 0.006 0.69 ± 0.014 0.20 ± 0.007 0.89 ± 0.004 0.20 ± 0.006 0.31 ± 0.005 0.24 ± 0.006
Keep lowest 10% perplexity 0.09 ± 0.004 0.34 ± 0.007 0.14 ± 0.006 0.08 ± 0.005 0.64 ± 0.012 0.15 ± 0.004 0.91 ± 0.003 0.18 ± 0.005 0.31 ± 0.004 0.23 ± 0.006

Table 5: Synthetic data quality when selecting traces based on different uncertainty metrics.
Perplexity measures fluency, consistency captures agreement across multiple traces, and CoCoA
combines both signals. Metrics include per-class precision (Prec), recall (Rec), F1, and overall
coverage (Acc).

Prompt

System message: You are an molecular and cellular biology expert analyzing gene regulation
upon CRISPRi knockdown. First, provide your reasoning process within <think> </think>
tags. Consider relevant pathways (e.g., cell-type specific biology, ribosome biogenesis,
transcription, mitochondrial function, stress response), gene interactions, and cell-specific
context. Then, choose one option from the following and place your choice within <answer>
</answer> tags: ’upregulated’, ’downregulated’, or ’not differentially expressed’. Exam-
ple: <think> [Your reasoning here] </think><answer> [upregulated / downregulated / not
differentially expressed] </answer>
User message: Analyze the regulatory effect of knocking down the perturbation gene on the
gene gene in a single-cell cell_type cell line using CRISPR interference.

Figure 4: Prompt template used for data generation, SFT, and evaluation.

G Prompt

Figure 4 shows the prompt used both for synthetic data generation, SFT training and evaluation.

H Computational Efficiency

We measured and verified the compute requirements of our generation and filtering pipeline, reporting
both per-example and dataset-level costs. Table 6 summarizes the results for 50k examples.

Component Operation Cost per example Total (50k)
Trace generation 9 traces (∼2k tokens) ∼0.0019 GPUh 95 GPUh
Self-consistency 8 cross-encoder passes ∼0.000088 GPUh 4.4 GPUh
Perplexity log-probs of greedy trace ≈0 (free at generation) ≈0
Aggregation + ranking CPU-side sort negligible negligible

Total (ours) generation + filtering ∼0.0020 GPUh 99.4 GPUh
Table 6: Measured compute costs for generating and filtering 50k synthetic examples. GPUh
denotes GPU-hours. Estimates are based on runs with Gemini 2.5 Pro (trace generation) and a
medium cross-encoder (filtering).

Overall, generation dominates compute requirements at ∼95 GPUh, while filtering adds only ∼4–5%
overhead (driven entirely by the cross-encoder self-consistency checks). Perplexity calculation
incurs no additional cost when log-probs are retained during decoding. Aggregation and ranking are
negligible.

By comparison, SynthPert’s label-conditioned generation requires both synthetic trace generation and
label checking. The latter depends on experimental outcomes and cannot be parallelized across GPUs,
making the cost effectively dominated by human/biological supervision. In practice, one wet-lab
label requires days of bench work; thus, even a 10× compute overhead is negligible compared to the
cost of experimental supervision.
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