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Abstract

Shapley values are widely used in machine learning to interpret model predictions. However,
they have an important drawback in their computational time, which is exponential in the
number of variables in the data. Recent work has yielded algorithms that can efficiently
and exactly calculate the Shapley values of specific model families, such as Decision Trees
and Generalized Additive Models (GAMs). Unfortunately, these model families are fairly
restricted. Consequently, we present STAR-SHAP, an algorithm for efficiently calculating
the Shapley values of Structured Additive Regression (STAR) models, a generalization of
GAMs which allow any number of variable interactions. While the computational cost
of STAR-SHAP scales exponentially in the size of these interactions, it is independent of
the total number of variables. This allows the interpretation of more complex and flexible
models. As long as the variable interactions are moderately-sized, the computation of the
Shapley values will be fast, even on high-dimensional datasets. Since STAR models with
more than pairwise interactions (e.g. GA2Ms) are seldom used in practice, we also present
a new class of STAR models built on the RKHS Weightings of Functions paradigm. More
precisely, we introduce a new RKHS Weighting instantiation, and show how to transform
it and other RKHS Weightings into STAR models. We therefore introduce a new family of
STAR models, as well as the means to interpret their outputs in a timely manner.

1 Introduction

The ability to interpret a machine learning model is an increasingly important consideration. Highly complex
models can achieve great accuracy, but understanding their inner workings is challenging. Why did the
model offer this particular prediction for this input? The decision was based on which features of the
data? On the other hand, simpler models, like Generalized Additive Models (GAMs1, Hastie (2017)) or
Decision Trees (Kotsiantis, 2013), are inherently easier to understand, but do not always reach the same
levels of performance (though recent work appears to show otherwise (Rudin et al., 2024)). Work to improve
explanation methods, especially the interpretation of more complex models, can help bridge this gap.

Informally, we mean by interpreting a model the task of explaining its output. In sensitive contexts such as
healthcare (Caruana et al., 2015), energy systems (Zhang & Chen, 2024) or machine fault diagnosis (Brusa
et al., 2023), to give only a few examples, mistakes can be costly, and so the ability to understand, and
thus trust, an AI model is crucial. In this paper, we specifically consider the attribution problem, which
consists in distributing the prediction score between the data features (Sundararajan & Najmi, 2020). On one

1Table 1 lists all the acronyms used in this paper.
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end of the spectrum of interpretability lie linear models, where the contribution of each variable is obvious
and independent of all other variables. On the other end, we have large deep neural networks, the incredibly
complex inner workings of which are singularly difficult to elucidate (Montavon et al., 2018).

Post-hoc interpretability methods attempt to explain even complex models through various means. Just some
examples are LIME (Ribeiro et al., 2016), which explains the prediction of a complex model by approximating
the model locally around the instance using a simple predictor, and Partial Dependance Plots (Friedman,
2001), which visualize the effect of a variable by holding others constant.

Another widely used tool for interpreting models, and the subject of this paper, is the Shapley value (see
e.g. Winter (2002)), originally devised in the context of game theory (Shapley et al., 1953). Adapted to
the machine or statistical learning context, it can be used to assess the contribution of each variable to the
output of a model, for a given example. Additionally, it can be averaged over a dataset to see the relative
importance of each variable.

With all of this in mind, the purpose of this paper is twofold. First, we present an algorithm for efficiently
calculating the Shapley values of a large family of prediction models, Structured Additive Regression (STAR)
models. STAR models are a further generalization of GAMs that allow any number of variable interactions
in each term, making them potentially much more expressive models. The algorithm that we present does
have an exponential complexity in the size of these interactions, but has no explicit dependency on the
total number of variables. This allows interpreting models with many more variable interactions, helping
to make complex models more viable in sensitive domains. We show that our algorithm is especially useful
in the context of high-dimensional datasets, such as Wood et al. (2015), because of this lack of an explicit
dependency on the total number of variables.

Second, we improve the understanding and usability of a newly introduced class of models, the RKHS
Weightings of Functions (Dubé & Marchand, 2024), mainly in the context of STAR models. To do so, we
present a new RKHS Weighting instantiation (Dubé & Marchand, 2024) which is better suited to regression.
Then, we show how to transform it and other RKHS Weightings into STAR models. This yields an entirely
new family of STAR models. We hope that these developments will foster interest and further research into
RKHS Weightings, which we believe have significant untapped potential.

The rest of the paper is as follows. Section 2 covers Shapley values and RKHS Weightings of Functions.
Section 3 presents the formula and corresponding algorithm for calculating the Shapley values of a STAR
model. Section 4 presents a new RKHS Weighting instantiation, and shows how to transform an RKHS
Weighting model into a STAR model. Section 5 contains various experiments, showing the computation
time of Shapley values using our new algorithm, the regression and time series performance of the models
introduced in this paper, and an example of interpreting a model using our new algorithm. Finally, in
Section 6, we go over some limitations of this paper as well as future work to be done, and conclude in
Section 7.

2 Review of Shapley values and RKHS Weightings

The two main subjects of this paper are Shapley values and RKHS Weightings, two tools we use within the
context of machine learning. We start by defining the basic machine learning notions that we use in this
paper. Then, we present our definition of the Shapley value, and end on a summary of RKHS Weightings.

2.1 Machine learning

The regression setting in machine learning consists of learning to predict real values from examples.
Given an instance space X , usually X = Rn, the label space Y = R, and a dataset of examples
S = {(xi, yi)}m

i=1 ⊂ X × Y, our task is to find a predictor (also called model) h : X → Y that optimizes
some objective function of the sample data. To measure the quality of a model, we use a loss function
ℓ : Y × Y → R, which in this paper is the squared loss:

ℓ(h(x), y) := 1
2(h(x)− y)2. (1)
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Acronym Meaning Relevant link
GAM Generalized Additive Model Hastie (2017)
GA2M GAM with pairwise interactions Lou et al. (2013)
STAR (model) Structured Additive Regression (model) Equation (16)
k-STAR model STAR model using only k-way interactions
RKHS Reproducing Kernel Hilbert Space Berlinet & Thomas-Agnan (2011)
MSE Mean Square Error Equation (2)
R2 Coefficient of determination Equation (3)
SHAP SHapley Additive exPlanations Lundberg & Lee (2017)
SHAP-IQ SHAPley Interaction Quantification Fumagalli et al. (2023)
STAR-SHAP Structured Additive Regression SHAP Algorithm 1
erf Error function, erf(x) := 2√

π

∫ x

0 e−t2dt

ReLU Rectified Linear Unit, ReLU(z) := max(0, z)
RWSign RKHS Weighting using sign function as base predictor I1 in Dubé & Marchand (2024)
RWStumps RKHS Weighting using decisions stumps as base predictor I2 in Dubé & Marchand (2024)
RWReLU RKHS Weighting using ReLU as base predictor Section 4.1
EBM Explainable Boosting Machine Lou et al. (2013)
SVR Support Vector Regression Pedregosa et al. (2011)

Table 1: Acronyms used in this paper.

The empirical risk is the sample average loss. When using the squared loss, this is called the Mean
Square Error (MSE):

MSES(h) := 1
2m

m∑
i=1

(h(xi)− yi)2. (2)

The MSE has units of the labels squared. To successfully compare experimental results on different datasets,
we instead report the coefficient of determination:

R2
S(h) := 1−

∑m
i=1(yi − h(xi))2∑m

i=1(yi − ȳ)2 , (3)

where ȳ := 1
m

∑m
i=1 yi is the average label.

In practice, simply minimizing the sample MSE is insufficient. We seek a model that will successfully
generalize to new, yet-to-be-seen instances. Indeed, we can assume that the data comes from some unknown
distribution D over X × Y. The true risk, or true MSE, is the expected squared loss over this distribution:

MSED(h) := 1
2 E

(x,y)∼D

[
(h(x)− y)2]. (4)

We estimate this value by calculating the MSE on a set of examples distinct from the sample.

A learning algorithm A is a function that takes in a sample S, and returns a predictor, i.e. A(S) = h(x).
It is this algorithm that seeks to minimize the true risk by optimizing a function of the best available proxy,
the empirical MSE. Most learning algorithms have hyperparameters; the number of trees in a random
forest; the learning rate of a neural network; the regularization parameter of the kernel ridge regression.
Each combination of parameters yields an algorithm. Suppose we have C combinations to choose from. This
implies we have the candidate algorithms A1 to AC . To select the best one, we use cross-validation, more
specifically k-fold cross-validation. The sample S is first divided into k equal disjoint subsets S1 to Sk. Each
algorithm Ac is applied k times, giving us the k models Ac(S \S1), . . . ,Ac(S \Sk). We can estimate the true
risk of each of these models through its MSE on the holdout set, e.g. MSED(Ac(S\S1)) ≈ MSES1(Ac(S\S1)).
In turn, we can estimate the true risk of Ac(S) (the model trained on the entire dataset) as the average
MSE of these k models:

MSED(Ac(S)) ≈ 1
k

k∑
i=1

MSESi
(Ac(S \ Si)). (5)
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The algorithm with the lowest approximated MSE is chosen, and trained again on the entire sample.

2.2 Shapley values

The Shapley value was originally derived by Shapley et al. (1953) as a uniquely interesting attribution
method in the context of a game with n players. Denoting [n] := {1, . . . , n} the set of natural numbers up
to n, and P([n]) its power set, the Shapley value revolves around a value function ν : P([n])→ R. Given
a coalition of players I ⊆ [n], ν is the payoff that this coalition can achieve in the game by playing together.
The Shapley value of player i is defined as:

ϕi(ν) =
∑

I⊆[n]\{i}

|I|! (n− |I| − 1)!
n! (ν(I ∪ {i})− ν(I)) . (6)

It is the average value added by player i when it joins a coalition where i is initially absent. The Shapley
value is the unique attribution method that satisfies four key properties (Fryer et al., 2021):

1. Efficiency. The Shapley values of all players sum to the value of all players together:

n∑
i=1

ϕi(ν) = ν([n]). (7)

In simpler words, the gain is distributed among all the agents/players.

2. Symmetry. Two players with equal contributions have equal Shapley values:(
∀I ⊆ [n] \ {i, j}, ν(I ∪ {i}) = ν(I ∪ {j})

)
=⇒ ϕi(ν) = ϕj(ν). (8)

3. Null player. A player that has no contribution has a Shapley value of 0:(
∀I ⊆ [n] \ {i}, ν(I ∪ {i}) = ν(I)

)
=⇒ ϕi(ν) = 0. (9)

4. Linearity. The Shapley values of a sum ν1 +ν2 of value functions are the sum of the Shapley values
of the individual functions:

∀i ∈ [n], ϕi(ν1 + ν2) = ϕi(ν1) + ϕi(ν2). (10)

These properties make the Shapley value a uniquely interesting attribution method for the contribution of
each variable to the prediction of a model. Although some raise doubts on its reliability (Huang & Marques-
Silva, 2023) or the desirability of these four properties (Fryer et al., 2021), we do not address this debate in
this paper.

Different value functions yield different Shapley values, so the choice of value function is crucial. In this
paper, we wish to attribute to each variable in a dataset its contribution to the output of a model. Consider
the instance space X = Rn, so that the natural numbers up to n, which we denoted [n] := {1, . . . , n}, identify
the n variables that make up an instance x = (x1, . . . , xn) ∈ X . For some model h : X → R, what is the
contribution of variable i ∈ [n] to the model output h(x)? In general, it is not possible to see what a model
would output given a coalition I ⊂ [n] of variables, since most models are undefined with missing values. To
sidestep this issue, the solution most commonly used (Lundberg & Lee, 2017) is to intervene on the values
of x on the variables outside of the coalition. To that end, we define the replacement function. For any
feature subset P ⊆ [n], and x, z ∈ X , the vector rP (z, x) is z, except for the variables in P that are replaced
by the values in x:

rP (z, x)i =
{

zi i /∈ P

xi i ∈ P.
(11)
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Finally, suppose that we have an instance x of interest and a background S ⊆ X consisting of a set of
instances. Denote by U(S) the uniform distribution over S. The value function ν : P([n]) → R that we
focus on is:

ν(I) := E
z∼U(S)

[h(rI(z, x))]. (12)

In simple words, the output of h is averaged over the background, but the variables in I are fixed to their
value in x. This value function yields a so-called interventional Shapley value, after the act of replacing
feature values with those from another instance, i.e. “intervening” on these features. This is the Shapley
value calculated by SHAP (Lundberg & Lee, 2017).

Rather than Equation (6), we use an equivalent form using permutations of [n] (see e.g. Equation (3)
of Khorrami Chokami & Rabitti (2024)). A permutation is a bijective function π : [n] → [n]; π(i) is the
position of variable i in the permutation. Let Ω be the set of all permutations of [n], and U(Ω) be the
uniform distribution over Ω. Also define:

π:i :=
{

j ∈ [n]
∣∣∣ π(j) < π(i)

}
, (13)

the set of variables preceding (but excluding i) in the order implied by the permutation π. Given all of these
notations, the Shapley value of variable i, for example x, for the predictor h, is defined as:

ϕSHAP
i (h, x) := E

z∼U(S)
E

π∼U(Ω)

[
h(rπ:i∪{i}(z, x))− h(rπ:i(z, x))

]
. (14)

(Definition taken from Laberge et al. (2023).)

Calculating Equation (14) directly is in O(n!), as it requires enumerating every permutation of [n]. It
therefore cannot reasonably be used except on particularly low-dimensional datasets. However, some model
families admit much faster formulas or algorithms for calculating the Shapley values. Such model families in-
clude linear models (Lundberg & Lee, 2017), Generalized Additive Models (GAMs), and Trees and ensembles
of Trees (Lundberg et al., 2018). The common characteristic of these models is limited variable interactions,
so that the contribution of a particular variable can be calculated independently of the variables with which
it does not interact. For example, the Shapley values of a linear model h(x) =

∑
j wjxj are obtained easily

from its coefficients by the formula ϕSHAP
i (h, x) = wi

(
xi − Ez∼U(S) zi

)
(Lundberg & Lee, 2017); the Shapley

values of a GAM h(x) =
∑

j fj(xj) are given by:

ϕSHAP
i (h, x) = fi(xi)− E

z∼U(S)
[fi(zi)]. (15)

(The proof is in the appendix.)

Structured Additive Regression (STAR) models are a generalization of both linear models and GAMs (see
e.g. Mayer et al. (2021)). A STAR model allows variable interactions by defining the predictor over subsets
of the data features:

h(x) =
∑

I⊆[n]

fI(xI), (16)

where xI is the partial vector (xI1 , . . . , xI|I|), and fI is a function defined over the feature subset I. Impor-
tantly, not all of these functions fI need to be nonzero. We can indeed choose which variable interactions
are desired by selecting which feature subsets I are associated with a nonzero fI . For example, GAMs use
only singleton feature subsets, i.e. individual variables, while GA2Ms (Lou et al., 2013) use up to pairwise
interactions between the variables.

STAR models have various names in the literature. Bordt & von Luxburg (2023) define Generalized Additive
Models of order k as models of the form:

h(x) =
∑

I⊆[n],|I|≤k

fI(xI), (17)

and introduce k-Shapley Values, which attribute a contribution to each feature subset, instead of only in-
dividual variables. This generalizes Shapley values, but suffers from the same high computational cost.
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Laberge et al. (2024) call Equation (16) a Functional Decomposition, following previous work on the sub-
ject (Hooker, 2004; Kuo et al., 2010), and show among other things how to obtain the Shapley values of a
function from its Interventional Decomposition (Kuo et al., 2010). This, again, is a high cost procedure.

In short, there are two types of formulas or algorithms for exactly calculating the Shapley values of a model.
Model-agnostic formulas like the original Equation (13) of Shapley et al. (1953), Equation 14, Equation (11)
of Bordt & von Luxburg (2023); and algorithms like SHAP Lundberg & Lee (2017). These algorithms all
suffer from the same delibitating complexity with regard to the total number of variables. On the other hand,
model-specific formulas, such as those previously mentioned for linear models and GAMs, and algorithms,
like TreeSHAP (Lundberg et al., 2018), are vastly more efficient, but are constrained to their respective
model families.

In order to work with higher dimensional data and arbitrary models, model-agnostic approximation algo-
rithms have been developed. Notably among these are KernelSHAP (Lundberg & Lee, 2017), Unbiased
KernelSHAP (Covert & Lee, 2020) and SHAP-IQ (Fumagalli et al., 2023). These provide approximative
Shapley values (and even k-Shapley values in the case of SHAP-IQ) without the exponential complexity in
the number of variables. Although the values are approximations, rather than the exact Shapley values,
Unbiased KernelSHAP and SHAP-IQ have been shown to be unbiased, i.e. they return values which, in
expectation, are the correct ones, and consistent, meaning that the variance of the approximations goes to
zero at the limit as the Monte Carlo sampling size increases. Approximation is therefore a valid alternative
when efficient model-specific exact formulas or algorithms are not known or do not exist.

In Section 3, we present STAR-SHAP, a model-specific algorithm for calculating the exact Shapley values of
any STAR model. As long as the maximal number k of interactions is limited, this is an efficient algorithm.
Specifically, its computational complexity does scale exponentially in the maximal size k of the feature
subsets and scales linearly in the number of subsets I used in Equation (16), but does not explicitly depend
on the dimensionality n of the data. This allows using many more interaction terms, while maintaining the
ability to interpret the model predictions through its Shapley values.

In Section 5.2, we compare the computation time of this algorithm to the model-agnostic methods we
previously mentioned: SHAP, KernelSHAP, Unbiased KernelSHAP, and SHAP-IQ. We also study the quality
of these approximations in relation to the exact values provided by our algorithm.

As a final note to this section, we wish to mention the recent work of Khorrami Chokami & Rabitti (2024),
who provides an exact formula for the Shapley values of GAMs, however using a different value function.
Where we seek to explain the output of a model on specific instances, Khorrami Chokami & Rabitti (2024)
are interested in the variance explained by each variable across the entire data distribution. They therefore
use the value function ν(I) := Varx

[∑
i∈I fi(xi)

]
, which yields, as the corresponding Shapley value, a global

variable importance index, as opposed to a granular instance-specific explanation of the output of the model.
This shows how rich the space of possible Shapley values are when considering all the possible value functions
that can be used. This thought aside, we focus on the value function given by Equation (12) for the remainder
of this paper.

2.3 RKHS Weightings

Dubé & Marchand (2024) introduced a new and flexible model family, parameterized through the tuple
(W, ϕ,K, p) of a parameter space W; base predictor ϕ : W ×X → R; kernel K : W ×W → R; distribution
p over W. The kernel K implicitly defines a reproducing kernel Hilbert space (RKHS) H, a space of
functions of the form α : W → R with particular properties. (A thorough understanding of reproducing
kernel Hilbert spaces is not required for this paper, but the interested reader can see Dubé & Marchand
(2024) for a short primer on RKHS.) They define the operator Λ : H → L∞(X ), which takes as input a
weight function α ∈ H, and returns the bounded predictor Λα : X → R via the equation:

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]. (18)
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In practice, the weight function α ∈ H takes the form of a sum
∑T

t=1 atK(wt, ·) (a property of the RKHS),
for some real coefficients a1, . . . , aT and w1, . . . , wT ∈ W. The model can then be written as:

Λα(x) =
T∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)]. (19)

Therefore, an RKHS Weighting model is a weighted sum of the partial functions defined by the expec-
tations Ew∼p [K(wt, w)ϕ(w, x)]. Each such function of x is parameterized by a wt ∈ W. While this is in
theory a highly flexible family of models, the current bottleneck for its utilization is the requirement for ex-
actly calculating these expectations. This can be done, depending on the choice of instantiation (W, ϕ,K, p).
Dubé & Marchand (2024) presented two instantiations of the model, which they called I1 and I2. We will
refer to these as RWSign and RWStumps respectively after their base predictor ϕ, a simple sign function
for RWSign, and a decision stump for RWStumps, with RW standing for RKHS Weighting. The reader can
refer to Table 3 in Section 4 for the explicit definition of RWSign and RWStumps, and to Table 1 of Dubé
& Marchand (2024) for the analytical form of the expectation Ew∼p [K(wt, w)ϕ(w, x)]. In both cases, the
entire model (Equation (19)) becomes a weighted sum of error functions2, a highly expressive form.

Since Equation (18) represents an aggregation of base predictor predictions (with regard to a distribution p
and a weight function α), and since the base predictor, in both cases, can only take two values, we surmise
that while these instantiations can be used for regression, they are first of all intended for classification.
We introduce in Section 4 a new instantiation which we expect to be better suited to regression, using
the rectified linear unit3 (ReLU) as the base predictor. Furthermore, we show in Section 4 how to
generally build RKHS Weightings that are also STAR models. We also show specifically how some existing
instantiations, which satisfy some conditions, can easily be converted into STAR models. This includes
RWSign and RWRelu, the instantiation that we introduce in Section 4. (RWStumps is in fact already a
GAM, and so does not require any modification.) These models are all interpretable, as their Shapley values
can be calculated using Algorithm 1, which we introduce in the next section.

3 Shapley values of STAR models

The following theorem encapsulates the main contribution of this paper, an efficient formula for calculating
the Shapley values of Structured Additive Regression (STAR) models.
Theorem 3.1 (Shapley values of a STAR model). Consider a STAR model:

h(x) =
∑

I⊆[n]

fI(xI). (20)

Consider the replacement function rP defined in Equation (11), and the sets:

A+(i, I) := {A ⊂ I|i ∈ A, 1 ≤ |A| < |I|} (21)
A−(i, I) := {A ⊆ I|i ∈ A, 1 < |A| ≤ |I|}. (22)

Then the Shapley values of the model are:

ϕSHAP
i (h, x) = E

z∼U(S)

 ∑
I:fI ̸=0,i∈I

(
fI(xI)− fI(zI)

|I|
+

∑
A∈A+(i,I)

fI(rA(z, x)I)
|A|
( |I|

|A|
) −

∑
A∈A−(i,I)

fI(rA\{i}(z, x)I)
|A|
( |I|

|A|
)

 . (23)

Proof. The proof is a series of combinatorial arguments, and can be found in the appendix.
2erf(x) := 2√

π

∫ x

0 e−t2 dt
3ReLU(z) := max(0, z)
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Assuming that the feature subsets I are limited in size, then Equation (23) is vastly more efficient to calculate
than the definition of the Shapley values in Equation (14). Instead of going through all the permutations of
[n], Equation (23) requires only enumerating the subsets of each feature subset I present in Equation (16).
However, we should note that using Equation (23) as it is to calculate all the Shapley values for a given
instance leads to many redundant computations. Indeed, observe that:

1. For any j ∈ A ∈ A+(i, I), we also have A ∈ A+(j, I). This means that the computation fI(rA(z, x)I)
appears in the calculation of the Shapley value of each variable in A.

2. Consider any A ∈ A+(i, I), and a variable j ∈ I\A. Then A∪{j} ∈ A−(j, I), and so the computation
fI(r(A∪{j})\{j}(z, x)I) is equal to fI(rA(z, x)I).

In short, when calculating the Shapley values of all variables (rather than a single one), the same computation
fI(rA(z, x)I) is done exactly |I| times; |A| times from the first observation, and |I| − |A| times from the
second observation. We can save a factor |I| by doing this computation only once. The term fI (xI )−fI (zI )

|I|
can also be calculated once, as the value is the same for all variables. These optimizations in mind, we
present Algorithm 1, which simultaneously calculates all the Shapley values of a STAR model for a given
instance.

Algorithm 1 STAR-SHAP: Shapley Values of a Structured Additive Regression Model
input Input space X ⊆ Rn, instance x ∈ X , STAR model h(x) =

∑
I⊆[n] fI(xI), sample S ∈ Xm

Initialize Φ = (ϕ1, . . . , ϕn) = 0 ∈ Rn

for z ∈ S, I ⊆ [n] such that fI ̸= 0 do
baseline← fI (xI )−fI (zI )

|I|
for i ∈ I do

ϕi ← ϕi + baseline
end for
for A ⊆ I, A ̸= ∅ do

term← fI(rA(z, x)I)
for i ∈ I do

if i ∈ A and A ∈ A+(i, I) then
ϕi ← ϕi + term

|A|( |I|
|A|)

else if i ∈ I \A and (A ∪ {i}) ∈ A−(i, I) then
ϕi ← ϕi − term

(|A|+1)( |I|
|A|+1)

end if
end for

end for
end for

output 1
m Φ

A highly interesting characteristic of Algorithm 1 is the lack of an explicit dependency on the dimensionality
of the data in its algorithmic complexity. Indeed, the dominant operation is the computation of the partial
model outputs fI(rA(z, x)I). Note that, at this point, we make no assumption on the partial models fI other
than that they utilize |I| variables. Let us therefore suppose that some nondecreasing function F : N→ [0,∞)
characterizes the computational complexity of the partial models, so that the cost of calculating fI(xI) is in
O(F (|I|)) for all I (and all x). Denote k the maximal size of the feature subsets associated with a nonzero
partial model (fI ̸= 0), and N the number of such feature subsets. Algorithm 1 is a loop over these N
feature subsets and over the m examples in the background S. For each feature subset I, the algorithm then
iterates over all its subsets A ⊆ I, calculating the partial output fI(rA(z, x)I) each time. Since there are
2k subsets to a set of size k, this dominant operation is done a total of mN2k times, each with a cost of
O(F (|I|)). Since |I| ≤ k, this leads to a favorable algorithmic complexity of O(mN2kF (k)), independently
of the dimensionality n of the data. One could argue that N , the number of feature subsets I defining the
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Algorithm Target models Exact? Complexity
TreeSHAP Trees, ensembles of trees Yes O(mTLD2)
STAR-SHAP STAR models Yes O(mN2kF (k))
SHAP Any Yes O(m2nF (n))
KernelSHAP Any No O(Kn2 + n3 + KmF (n))
Unbiased KernelSHAP Any No O(Kn2 + KmF (n))
SHAP-IQ Any No O(Kn2 + KmF (n))

Table 2: Computational complexity of various Shapley value algorithms for calculating all n Shapley values
of a single n-dimensional instance. All algorithms: m is the size of the background sample. TreeSHAP: T
is the number of trees, L is the number of leaves in a tree, and D is the depth of a tree. STAR-SHAP: N
is the number of nonzero terms in the model, k is the maximal number of interactions per term, F (k) is
the cost of computing a term with k interactions. SHAP: n is the number of variables, F (n) is the cost of
computing the model. All others: K is the sampling size for the approximation. The reported complexities
of KernelSHAP, Unbiased KernelSHAP and SHAP-IQ are those of their implementation in Muschalik et al.
(2024), version 1.1.0, the software package used for our experiments in Section 5. Note that their implemen-
tations of Unbiased KernelSHAP and SHAP-IQ coincide for calculating 1-Shapley values, the use case for
this paper. This is faster than the original Unbiased KernelSHAP implementation, while yielding the same
values (Fumagalli et al., 2023).

model in Equation 16, can grow exponentially in the dimension n of X . However, N is in reality chosen by
whoever builds the model. Rather than using all possible subsets, a better strategy is to use prior knowledge
about the problem at hand to identify meaningful interactions. Examples include using adjacent or nearby
pixels in images, or small sequences of observations in time series. In this way, the computational cost of
Algorithm 1 can easily be controlled, and even be held constant as the dimensionality of the data increases.
The experiments of Section 5.2 illustrate this.

3.1 Comparison to other Shapley value algorithms

Table 2 presents the computational complexity of the various Shapley value algorithms mentioned in this
paper. As we see, SHAP has an exponential complexity in the dimensionality of the data (the number of
variables), and all other algorithms must make concessions to escape this prohibitive computational cost.
One way is to assume a specific form for the model (TreeSHAP, STAR-SHAP). The other is to give up the
exactness of the values returned by the algorithm. The most salient difference between STAR-SHAP and the
model-agnostic algorithms is that STAR-SHAP only needs to calculate the output of the partial models (fI

in Equation (16)), entirely forgoing an explicit dependency in the dimensionality of the data. When this cost
F (k) is much smaller than the cost F (n) of calculating the output of the entire model, for instance in large,
high-dimensional ones, we should expect to see a notably faster runtime for STAR-SHAP. Combined with
the exactness of the values returned by STAR-SHAP, we believe it to be the algorithm to use in the context
of STAR models. We run experiments in Section 5.2 to demonstrate these advantages of STAR-SHAP over
other algorithms.

3.2 Applications of STAR-SHAP

STAR-SHAP can calculate the Shapley values, as defined in Equation (23), for any STAR model. This
includes Generalized Additive Models (GAMs) (Hastie, 2017), Generalized Additive Models with Pairwise
Interactions (GA2Ms) (Lou et al., 2013), Sparse Polynomial Regression (Huang et al., 2010), Sparse Decision
Trees (Lin et al., 2020), and others. GAMs and Trees already have dedicated algorithms for computing their
Shapley values (see Section 2.2), but for the others, Algorithm 1 can do so as well, as long as the number
of variable interactions is moderate. Finally, another family of STAR models consists of STAR RKHS
Weightings, which we introduce in the next section.
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RWSign RWRelu RWStumps
W Rn Rn {1, . . . , n}× R
ϕ(w, x) sign(⟨w, x⟩) max(0, ⟨w, x⟩) sign(xw1 − w2)
K(u, w) exp

(
−∥u−w∥2

2
2γ2

)
exp

(
−∥u−w∥2

2
2γ2

)
1[u1 = w1] exp

(
− (u2−w2)2

2γ2

)
p N (0, σ2In) N (0, σ2In) U({1, . . . , n}) ×N (0, σ2)

Table 3: Three RKHS Weightings instantiations.

4 Structured Additive RKHS Weightings of Functions

In this section, we introduce a new RKHS Weighting instantiation better suited to regression than those
found in Dubé & Marchand (2024), and show how to transform any generic instantiation of a certain form
into a Structured Additive Regression (STAR) model.

4.1 ReLU instantiation

An RKHS Weighting instantiation is a tuple (W, ϕ,K, p) of a parameter spaceW, base predictor ϕ, kernel K
(implying an RKHS H) and distribution p. For example, instantiation I1 of Dubé & Marchand (2024) (which
we call RWSign) uses W = X = Rn, ϕ(w, x) = sign(⟨w, x⟩), the gaussian kernel K(u, w) = exp

(
−∥u−w∥2

2
2γ2

)
,

and a normal distribution p = N (0, σ2In).

The instantiation that we propose, which we name RWRelu, consists simply in replacing the base predictor
of RWSign by the rectified linear unit (ReLU), i.e. ϕ(w, x) = ReLU(⟨w, x⟩) = max(0, ⟨w, x⟩). (See Table 3
for a quick overview of each instantiation.) In order to calculate the output of the model, which takes the
form:

Λα(x) =
T∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)], (24)

for some α =
∑T

t=1 atK(wt, ·) ∈ H, we need an analytical form for the expectation in Equation (24). We
encapsulate that formula in the following theorem.
Theorem 4.1. Consider the RKHS Weighting instantiation (W, ϕ,K, p) where W = X = Rn, ϕ(w, x) =
max(0, ⟨w, x⟩), K(u, w) = exp

(
−∥u−w∥2

2
2γ2

)
, p = N (0, σ2In). Then we have:

E
w∼p

[K(u, w)ϕ(w, x)] =

(
1 + σ2

γ2

)−n/2
e

−∥u∥2
2

2σ2+2γ2 ∥x∥
2
√

π

(
√

2ζe
− ⟨u′,x⟩2

2ζ2∥x∥2 +
√

π
⟨u′, x⟩
∥x∥

[
1 + erf

(
⟨u′, x⟩√
2ζ∥x∥

)])
, (25)

where ζ is defined by the relationship 1
2ζ2 = 1

2γ2 + 1
2σ2 and u′ :=

(
1 + γ2

σ2

)−1
u.

Proof. The calculus can be found in the appendix.

Dubé & Marchand (2024) also define some instantiation-dependent theoretical constants (see Theorem 4
of Dubé & Marchand (2024)) which are then used in the theoretical guarantees. We provide those values for
RWRelu and the relevant calculus in the appendix. Importantly, this means that all theoretical guarantees
proved in Dubé & Marchand (2024) also apply to RWRelu.

4.2 RKHS Weightings as STAR models

Instantiating an RKHS Weighting model consists in choosing its four components (W, ϕ,K, p). We will show
how to instantiate an RKHS Weighting which is also a STAR model, first in full generality, and then by
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transforming an already existing instantiation into a STAR model. By having a STAR model which is also
an RKHS Weighting, we keep all of the benefits of the RKHS Weightings, i.e. its theoretical guarantees,
learning algorithms, pruning methods (Dubé & Marchand, 2024), but also gain interpretability through the
computation of the Shapley values, using Algorithm 1.

The defining characteristic of STAR models is that they are built with functions that use only a subset of
the variables at a time. The key to defining an RKHS Weighting which is also a STAR model is therefore
the base predictor ϕ. By choosing a base predictor which can flexibly change the features that it considers,
we can obtain a STAR model. We now go through each ingredient and see how they must be defined.

1. The parameter space W is accompanied by the space of feature subsets P([n]) (the family of all
subsets of [n]).

2. The base predictor takes as input both a parameter w and a feature subset I, as well as an instance
x; ϕ((w, I), x) := ϕI(w, xI) could be any predictor defined on the feature subset I.

3. The kernel must take into account the feature subsets, meaning it is now a function of the form
K : (W ×P([n]))× (W ×P([n]))→ R.

4. The distribution p on W ×P([n]) generates both parameters and feature subsets.

All in all, the instantiation takes the form (W × P([n]), ϕ,K, p). Now, to show that this is indeed a STAR
model. Given a weight function α =

∑T
t=1 atK((wt, It), ·), the output of the predictor on an arbitrary

instance x is given by:

Λα(x) = E
(w,I)∼p

[α(w, I)ϕ((w, I), x)]

=
T∑

t=1
at E

(w,I)∼p
[K((wt, It), (w, I))ϕI(w, xI)]

=
∑

J⊆[n]

∑
t:It=J

at E
(w,I)∼p

[K((wt, It), (w, I))ϕI(w, xI)]. (26)

We have thus expressed the predictor as a sum of functions defined on feature subsets. This is therefore a
STAR model, with the output on an arbitrary x given by Λα(x) =

∑
J⊆[n] fJ(xJ), with:

fJ(xJ) :=
∑

t:It=J

at E
(w,I)∼p

[K((wt, It), (w, I))ϕI(w, xI)]. (27)

This framework for expressing an RKHS Weighting as a STAR model is in full generality. Of course,
prior knowledge specific to a given problem can be inserted into the choices for a base predictor, kernel or
distribution. For instance, we might be interested only in sequences of features when presented with text,
time series, or other sequential data, in which case the distribution p can simply put a weight of 0 to any
non-sequential feature subset. This family of STAR models is therefore highly flexible.

4.3 Transforming an existing instantiation into a STAR model

Perhaps the simplest way to instantiate an RKHS Weighting as a STAR model using the framework described
in the previous section is to take an existing instantiation (W, ϕ,KW , pW) which satisfies a few simple
conditions:

1. X =W = Rn.

2. The base predictor ϕ(w, x) is a function of ⟨w, x⟩, i.e. ϕ(w, x) = ϕ(⟨w, x⟩).

3. The distribution pW on W generates each component independently.

11
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Existing instantiation STAR version
Parameter space W W ×P([n])
Base predictor ϕ(w, x) = ϕ(⟨w, x⟩) ϕ((w, I), x) = ϕ(⟨wI , xI⟩)
Kernel KW K((w1, I1), (w2, I2)) = KW(w1, w2)1[I1 = I2]
Distribution pW p(w, I) = pW|I(w)p[n](I)

Table 4: Cheat sheet for transforming an existing RKHS Weighting instantiation into a Structured Additive
Regression model.

In that situation, modifying the base predictor to work on feature subsets is trivially easy:

ϕ((w, I), x) := ϕ(⟨wI , xI⟩). (28)

In other words, simply ignore all the variables not in the feature subset. As for the distribution p, the
independence allows us to marginalize away the unwanted variables. The distribution p(w, I) is the product
pW|I(w)p[n](I), where p[n] is a chosen distribution over the feature subsets, and pW|I(w) is the original distri-
bution pW marginalized to the features in I. Finally, we elect to use the indicator kernel K[n](I1, I2) := 1[I1 =
I2] over the feature subsets, and use the kernel product K((w1, I1), (w2, I2)) := KW(w1, w2)K[n](I1, I2).4 We
end up with the new instantiation (W×P([n]), ϕ,KW ×K[n], p). (Table 4 summarizes all of this.) Assuming
a weight function α =

∑T
t=1 atK((wt, It), ·), the model is:

Λα(x) =
∑

J⊆[n]

∑
t:It=J

atp[n](It) E
w∼pW|It

[KW(wt, w)ϕ(⟨w, xIt
⟩)]. (29)

The only element that still needs to be further specified is the distribution p[n] on the feature subsets. We
list below the two most obvious candidates, but note that there is complete flexibility here for the user of
the model to specify any distribution that they deem adequate for the dataset at hand.

1. The simplest option is to set p[n] as the uniform distribution on feature subsets of size equal to k,
where k becomes a hyperparameter of the algorithm. A slight variation of this is to use feature
subsets of size up to k, allowing a larger variety of variable interactions.

2. Some datasets, like time series or genomic data, have structure, where adjacent features are corre-
lated in some meaningful way. When presented with such sequential data, it is natural to consider
sequences of features. We can then set p[n] as the uniform distribution over sequences of length k
(or length up to k).

Because of the presence of the factor p[n](It) in Equation (29), using the first option (arbitrary subsets of
size k) with large k is not recommended. Indeed, since p[n](It) = 1/

(
n
k

)
≈ 1

nk , the model output tends to zero
exponentially as k increases. Large coefficients at are then required to offset the small density. This leads to
a large norm ∥α∥H of the weight function, and therefore poorer guarantees (Dubé & Marchand, 2024). More
intuitively, it is important that a significant portion of the feature subsets It in Equation (29) are meaningful
interactions. Otherwise, the partial predictors built on these uninformative interactions will themselves be
poor. Reducing the size of the space of feature subsets by limiting the distribution p[n] to mostly meaningful
interactions is crucial to get a well-performing STAR RKHS Weighting model. Sequential feature subsets
achieve this. Since there are only n − k + 1 sequences of features of length k in an n-dimensional dataset,
p[n] will always be of the order of 1

n . When considering sequences of length up to k, then p[n] will be about
1

kn , which is undeniably preferable over 1
nk .

4We use the indicator kernel for two related but distinct reasons. The first is the assumption that, in general, the comparison
between parameters, i.e. the kernel evaluation KW (w1, w2), only makes sense if w1 and w2 are parameters over the same features.
Second, it ensures that w1 and w2 are the same dimensionality, so that the kernel evaluation KW (w1, w2) is well-defined. There
is some abuse of notation here, as we use the same symbol KW to denote a function over potentially different spaces (e.g. w1
could be from R3, and w2 from R4), but deem it benign enough, as it does simplify the expressions.
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We can use this transformation to immediately obtain STAR models based on instantiations RWSign and
RWRelu, which can be learned using any algorithm from Dubé & Marchand (2024). (Note that instantiation
RWStumps is already a GAM, so no transformation is required). This makes up a new family of STAR
models, which are easy to train, as they do not require explicitly specifying feature interactions when using
one of the learning algorithms from Dubé & Marchand (2024).

(For completeness, we describe in the appendix how to obtain the theoretical constants from Dubé & Marc-
hand (2024) for a STAR RKHS model. Once again, this means that the theoretical results of Dubé &
Marchand (2024) apply to the STAR RKHS Weightings constructed in this way.)

5 Experiments

We introduced three new tools in this paper: STAR-SHAP, an algorithm for calculating the Shapley values of
a STAR model; RWRelu, a new RKHS Weighting instantiation; and a new family of STAR models, obtained
by transforming existing RKHS Weighting instantiations into STAR models. We present in the next few
sections three experiments to test these new tools. First, we compare the computation time of STAR-
SHAP to other Shapley value algorithms in Section 5.2. Then, Section 5.3 presents a simple regression
performance experiment, designed to compare various regression algorithms to the new RWRelu and STAR
RKHS Weighting models. Next, the experiment of Section 5.4 investigates a scenario (time series regression)
in which we expect the STAR RKHS Weightings to be better suited than the simple regression problems
of the Section 5.3 experiment. Finally, Section 5.5 compares the explicit Shapley values of a STAR RKHS
model to those of a conventional model, both trained on the same dataset.

5.1 Generating synthetic datasets

To generate our synthetic datasets, we took inspiration from the sum of unanimity models used by Fumagalli
et al. (2023). For given values of k (the size of the feature subsets), n (the total number of variables), and
T (the desired number terms), we generate a k-STAR synthetic model over boolean instances (X = {±1}n)
as f(x) =

∑T
i=1 ai1[∀j ∈ Ii, xj = 1], where I1, . . . , IT are uniformly and independently generated feature

subsets of size k, and a1, . . . , aT are coefficients uniformly generated in [0, 1]. To go along with every random
model, we also generate a random dataset of boolean-valued instances S ∈ Xm, where each component of
an instance x is independently and uniformly sampled from {±1}.

5.2 Computation time of the Shapley values

Figure 1 shows the computation time of the Shapley values of 5-STAR models (that is, with five-way
interactions between variables) using various algorithms. We notice, of course, the exponential growth of
the computation time for SHAP, while STAR-SHAP cares little for the dimensionality when the size of the
feature subsets is fixed. For completeness, we also show the computation time growth of using STAR-SHAP
to calculate the Shapley values of a model which uses the full n-way interactions. We observe the expected
exponential behavior, mirroring SHAP. Meanwhile, Figure 1b clearly illustrates the fact that STAR-SHAP
lacks an explicit dependency on the dimensionality of the data, making it much more efficient than other
algorithms at higher dimensionalities.

However, Figure 1 does not account for the quality of the approximations, and only looks at 5-STAR
models. Unbiased KernelSHAP and SHAP-IQ are not so much slower than STAR-SHAP, but how good
are their approximations of the exact Shapley values? Since Unbiased KernelSHAP and SHAP-IQ coincide
when calculating 1-Shapley values (Fumagalli et al., 2023), possess theoretical guarantees, and have better
empirical performance than KernelSHAP (according to Fumagalli et al. (2023)), we assess the quality of
SHAP-IQ in Figure 2. The figure shows how the advantage of STAR-SHAP increases with dimensionality.
Indeed, not only does the computation time of SHAP-IQ increase, but also the quality of its approximations
degrades, requiring additional computation time to return good approximations. Meanwhile, the values
returned by STAR-SHAP are always exact, and are calculated efficiently.
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Figure 1: Computation time of the Shapley values of a Structured Additive Regression model with respect
to the dimensionality of the dataset. For every value of n, a 5-STAR random synthetic model with T = 50
terms was generated as described in Section 5.1, along with a dataset of 10 examples. Then, all algorithms
were used to calculate the Shapley values of the model for all variables and examples. Similarly, n-STAR
models, using all n possible interactions, were generated, and STAR-SHAP applied to this model. SHAP
and the approximation algorithms were also applied to this model for values n < 5, for which a 5-STAR
model cannot exist. Figure 1b is the rescaled continuation of Figure 1a without the exponentially increasing
algorithms. Every point is the average of 20 runs to smooth out any possible variability due to hardware or
CPU conflicts. We used the SHAP-IQ implementation (Muschalik et al., 2024) of KernelSHAP, Unbiased
KernelSHAP and SHAP-IQ itself, with a budget of 256. Note that the complexity of KernelSHAP appears
linear at this scale, but it is in fact cubic in n (see Table 2).
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Figure 2: One minus the coefficient of determination (R2) of the Shapley values of synthetic models ap-
proximated by SHAP-IQ with regard to the computation time (specified indirectly through the budget
hyperparameter). The models were generated as described in Section 5.1, with a fixed number of terms in
the models (T = 100), and varying dimensionality n. For each value of k, the size of the feature subsets in the
STAR model, the Shapley values of a synthetic model on a dataset of size 10 were calculated approximately
by SHAP-IQ (k-SHAP-IQ), and exactly by STAR-SHAP (k-STAR-SHAP). The R2 was then calculated
between the vectorized 10 × n matrices of approximated and exact Shapley values. A vertical dotted line
labeled k-STAR-SHAP indicates the time STAR-SHAP took to calculate the exact Shapley values for that
value of k. Every point is the average of 10 independently seeded runs. Figure 2a: on low-dimensionality
datasets (n = 10 variables, T = 100 terms in the model), SHAP-IQ starts generating Shapley values with
an R2 coefficient larger than 0 faster than STAR-SHAP at k = 3. This means that STAR-SHAP is the
better algorithm choice for k ≤ 3, and then gradually losses its merits as k increases and SHAP-IQ is allowed
more computation time. In Figure 2b, more total variables were used in the models (n = 100, T = 100).
Now, STAR-SHAP is unambiguously preferable up to about k = 5, after which SHAP-IQ starts becoming
competitive if perfectly exact Shapley values are not required. Finally, Figure 2c used n = 500 total vari-
ables (with T = 100 terms) to build the models. Even for k = 10, which is an unusually high number of
variable interactions for a model, SHAP-IQ generates barely acceptable Shapley values when given the same
amount of time as STAR-SHAP. For any smaller value of k and the same computation time as STAR-SHAP,
SHAP-IQ yielded extremely poor quality approximations of the Shapley values.
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Training size Test size Dimensionality Source (clickable)
abalone 3132 1045 10 UCI
diabetes 331 111 10 Scikit-learn
housing 15480 5160 8 Scikit-learn
concrete 772 258 8 UCI
conductivity 15947 5316 81 UCI
wine 133 45 13 UCI

Table 5: Datasets of the regression experiment.

Of course, these computation times and accuracies are highly dependent on the models and datasets that
were generated, but they strongly hint at a general trend. If the size of the feature subsets is limited,
then the computation time of STAR-SHAP will be fast. Since it always returns exact values, it will be
the preferable algorithm in that scenario. This is true regardless of model size. However, the more total
variables in the model, the more feature interactions can be present before needing to consider using an
approximation algorithm, due to their slower convergence rate at higher dimensionalities. This makes STAR-
SHAP especially valuable in the presence of high-dimensional datasets.

5.3 Regression performance

Three new models arise from Section 4: the RWRelu, and the STAR versions of RWSign and RWRelu.
This calls for a simple regression experiment comparing the performance of these models to more bread and
butter regression techniques, especially interpretable ones. Using 5-fold cross-validation to select hyperpa-
rameters, we trained a variety of models on several regression datasets taken from the UCI Machine Learning
Repository (Dua & Graff, 2017) and Scikit-learn (Pedregosa et al., 2011). See Table 5 for information on
the datasets, and the appendix for the detailed experimental setup.

We can look to the results in Table 6 to answer a few important questions.

Q1. How does RWRelu, the ReLU version of an RKHS Weighting, compare to RWSign and RWStumps,
the two original instantiations, for regression tasks?

R1. We can see that RWRelu performs equally or better than RWSign on all but one dataset (Wine). On
the other hand, RWStumps outperforms RWRelu on 4 of the 6 datasets. The STAR versions of RWRelu and
RWSign outperform the other (for equal k) on some datasets, and not others, neither systematically standing
out. These observations give some weight, but not much, to the conjecture that RWRelu is better suited to
regression than the other two RKHS Weighting instantiations. Rather, they might all be complementary,
each with better and worse use cases.

Q2. How do the STAR versions of RKHS Weighting models perform in comparison to their original coun-
terparts?

R2. There is a moderate loss of performance going from RWRelu to its 1-STAR version, a cost that might
be acceptable to pay for the immense gain in interpretability. However, increasing k does improve the
performance significantly on all but one dataset, Conductivity, and 3-STAR RWRelu is the best performing
STAR version of the model, which shows that adding interactions can improve the quality of the model.
The extremely poor performance of 3, 4 and 5-STAR models on Conductivity is caused by the higher
dimensionality of the dataset. (See this footnote5 for the in-depth explanation.) Indeed, larger feature
subsets should not blindly be used except on low-dimensional datasets, or failure of learning might occur.
As for the STAR versions of RWSign, they are less convincing than RWRelu, with the 1-STAR version in
particular exhibiting extremely poor performance overall.

5We recall the presence of a factor p[n](It) in Equation (29), the expression for a STAR RKHS Weighting. When using the
uniform distribution over all possible feature subsets of size k, we have p[n](It) = 1/

(
n
k

)
≈ 1

nk , which is an extremely small value
for high-dimensionality datasets, leading to vanishing outputs of the model. And indeed, the offending dataset, Conductivity,
is far higher-dimensional than the other ones, proving the point.
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Table 6: Comparison of the regression performance of STAR RKHS Weightings and the ReLU instantiation,
learned using Algorithm 3 of Dubé & Marchand (2024) (the Least Squares fit) with T = 5000, to a variety
of other regression algorithms. k-STAR signifies the STAR version of the model using feature subsets of size
k. The table values are the test R2 (coefficient of determination). The highest (best) values for each dataset
have been bolded.

Dataset abalone diabetes housing concrete conductivity wine
Algorithm
DecisionTreeRegressor 0.499 0.105 0.677 0.796 0.882 0.867
EBM 0.552 0.331 0.822 0.931 0.903 0.897
KernelRidge 0.587 0.282 0.771 0.831 0.872 0.951
LinearRegression 0.543 0.359 0.591 0.623 0.736 0.804
RWRelu 0.577 0.349 0.734 0.835 0.842 0.832
RWRelu 1-STAR 0.555 0.314 0.662 0.780 0.777 0.808
RWRelu 2-STAR 0.577 0.305 0.731 0.847 0.805 0.843
RWRelu 3-STAR 0.580 0.332 0.744 0.847 0.568 0.845
RWRelu 4-STAR 0.579 0.350 0.737 0.846 0.032 0.835
RWRelu 5-STAR 0.578 0.334 0.729 0.844 0.001 0.837
RWRelu [1, 2, 3, 4, 5]-STAR 0.577 0.298 0.732 0.808 0.779 0.826
RWSign 0.578 0.348 0.711 0.828 0.728 0.893
RWSign 1-STAR 0.350 0.302 0.354 0.471 0.685 0.750
RWSign 2-STAR 0.579 0.369 0.696 0.835 0.816 0.868
RWSign 3-STAR 0.586 0.339 0.720 0.840 0.468 0.912
RWSign 4-STAR 0.585 0.349 0.708 0.794 0.003 0.896
RWSign 5-STAR 0.580 0.333 0.705 0.770 -0.000 0.899
RWSign [1, 2, 3, 4, 5]-STAR 0.580 0.399 0.698 0.826 0.694 0.840
RWStumps 0.567 0.339 0.768 0.911 0.859 0.864
SVR 0.564 0.293 0.770 0.799 0.862 0.950
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Training size Test size Dimensionality
ChlorineConcentration 6990 57585 10
Computers 16434 16434 10
ECG5000 6487 58487 10
FacesUCR 2388 24588 10
LargeKitchenAppliances 24684 24684 10
MelbournePedestrian 3579 7314 10

Table 7: Datasets of the time series prediction experiment.

Q3. How does the new RWRelu instantiation perform compared to other regression algorithms?

R3. The two longstanding, bread and butter regression algorithms that are Kernel Ridge Regression and
Support Vector Regression outperform RWRelu respectively on 4 of the 6, and 3 of the 6 datasets. This is
far from an indictment of RWRelu.

Q4. Can interpretable RKHS Weightings perform similarly or better than other interpretable methods?

R4. The Explainable Boosting Machine (EBM) of (Lou et al., 2013) (software package described in Nori
et al. (2019)) appears overall to be the best at both accuracy and interpretability, at least in this experiment.
Kernel Ridge Regression is best on two datasets, and SVR, 3-STAR RWSign, and 1-to-5 STAR RWSign are
each best on one dataset. Therefore, we can say that interpretable RKHS Weightings are at least sometimes
competitive.

To conclude this experiment, we see that transforming an RKHS Weighting into a STAR model is a valid
way of learning an interpretable model, at a relatively small cost of performance. However, other methods,
especially Explainable Boosting Machines, often outperform these RKHS Weightings in both accuracy and
interpretability.

5.4 Time series prediction performance

Perhaps the biggest takeaway from Table 6 is the excellence of the Explainable Boosting Machine on both
the accuracy and interpretability fronts. The RKHS Weightings did not shine particularly brightly. However,
the most important characteristic of RKHS Weightings is their high flexibility in instantiating the model. We
can improve performance by utilizing an instantiation better adapted to the problem at hand. In the specific
case of STAR RKHS Weightings, a tool we can play with is the distribution on the feature subsets. For
instance, instead of using the uniform distribution over all subsets of a certain length, we can use a uniform
distribution over sequences of adjacent features (e.g. features (2, 3, 4), or (n− 2, n− 1, n)). This makes the
STAR RKHS instantiation much better suited to solve regression problems for which adjacent data features
are correlated, such as time series. Therefore, a better comparison between STAR RKHS Weightings and
the Explainable Boosting Machine is on such datasets, using a distribution over sequences of features. This
is what we do here.

Specifically, we run both the Explainable Boosting Machine (EBM) and STAR RKHS Weightings on time
series datasets taken from the UCR Archive (Dau et al., 2018). Each dataset was cut into segments of
length 11, so that each instance x has length 10, and the value to predict y is the 11-th value. See Table 7.
Hyperparameters were selected by 5-fold cross-validation. See the appendix for the detailed experimental
setup.

The results of this experiment can be found in Table 8. The RKHS Weightings fare much better in this
experiment than the previous. Here, they (slightly) outperform the EBM on 5 of the 6 datasets. On the
other hand, the EBM does systematically reach the highest training R2, suggesting that some overfitting has
taken place, even though the parameters were chosen by cross-validation. Perhaps a different set of candidate
parameters would have led to a smaller generalization gap. Finally, we notice the expected trend that larger
feature subsets on the STAR RKHS Weightings lead to better results, with the full RWRelu instantiation

18



Published in Transactions on Machine Learning Research (01/2025)

Table 8: Comparison of the time series prediction performance of STAR RKHS Weightings and the ReLU
instantiation, learned using Algorithm 3 of Dubé & Marchand (2024) (the Least Squares fit) with T = 5000,
to the Explainable Boosting Machine (EBM). k-STAR signifies the STAR version of the model using feature
subsets of size k. The highest (best) values for each dataset have been bolded.

Training R2 Test R2 Training time (s)
Dataset Algorithm
ChlorineConcentration EBM 0.955 0.916 63.853

RWRelu 0.934 0.928 3.307
RWRelu 1-STAR 0.638 0.642 36.375
RWRelu 2-STAR 0.813 0.805 40.390
RWRelu 3-STAR 0.907 0.899 44.500
RWRelu 4-STAR 0.928 0.920 48.720
RWRelu 5-STAR 0.939 0.927 54.159
RWRelu [1, 2, 3, 4, 5]-STAR 0.924 0.906 19.823

Computers EBM 0.882 0.842 16.291
RWRelu 0.821 0.851 6.085
RWRelu 1-STAR 0.786 0.838 44.742
RWRelu 2-STAR 0.802 0.840 50.501
RWRelu 3-STAR 0.811 0.848 55.049
RWRelu 4-STAR 0.814 0.847 58.744
RWRelu 5-STAR 0.818 0.848 64.858
RWRelu [1, 2, 3, 4, 5]-STAR 0.817 0.849 29.086

ECG5000 EBM 0.943 0.886 23.525
RWRelu 0.900 0.882 3.144
RWRelu 1-STAR 0.843 0.841 36.361
RWRelu 2-STAR 0.877 0.871 40.024
RWRelu 3-STAR 0.883 0.875 43.769
RWRelu 4-STAR 0.893 0.879 48.122
RWRelu 5-STAR 0.899 0.882 53.384
RWRelu [1, 2, 3, 4, 5]-STAR 0.894 0.882 19.157

FacesUCR EBM 0.868 0.661 7.674
RWRelu 0.715 0.704 1.929
RWRelu 1-STAR 0.679 0.698 33.011
RWRelu 2-STAR 0.690 0.702 35.613
RWRelu 3-STAR 0.699 0.705 38.827
RWRelu 4-STAR 0.700 0.705 42.990
RWRelu 5-STAR 0.709 0.706 49.571
RWRelu [1, 2, 3, 4, 5]-STAR 0.704 0.706 15.570

LargeKitchenAppliances EBM 0.840 0.743 19.103
RWRelu 0.813 0.743 8.775
RWRelu 1-STAR 0.764 0.724 52.104
RWRelu 2-STAR 0.786 0.748 56.938
RWRelu 3-STAR 0.777 0.736 60.735
RWRelu 4-STAR 0.803 0.746 68.894
RWRelu 5-STAR 0.810 0.745 75.208
RWRelu [1, 2, 3, 4, 5]-STAR 0.812 0.749 37.741

MelbournePedestrian EBM 0.979 0.924 9.731
RWRelu 0.946 0.925 2.335
RWRelu 1-STAR 0.888 0.888 35.930
RWRelu 2-STAR 0.921 0.902 36.519
RWRelu 3-STAR 0.943 0.923 40.523
RWRelu 4-STAR 0.943 0.925 44.806
RWRelu 5-STAR 0.943 0.924 50.667
RWRelu [1, 2, 3, 4, 5]-STAR 0.941 0.919 16.232
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often being the best (although by a very small margin). Indeed, more complex interactions allow for greater
expressivity of the model, so that it can better fit the data.

It is important to note that RWRelu is just one RKHS Weighting instantiation of a theoretically limitless
number. It is certain that other, yet to be defined, instantiations would perform much better than RWRelu in
this experiment. Indeed, it is still an open question how to craft instantiations that can perform particularly
well on a given problem type (such as time series regression), or even for a specific dataset. More research
is certainly required.

5.5 Shapley values comparison

Our final experiment shows how a STAR RKHS Weighting model could be used in practice, in comparison
to a more traditional model, and how its predictions could be interpreted using Algorithm 1 (STAR-SHAP).
Figure 3 compares the Shapley values of the Explainable Boosting Machine (EBM) model and the 3-STAR
RWRelu model that were trained on the California Housing dataset in Section 5.3. We see that both models
agree almost exactly on the order of importance of the variables, and that the bee swarms for each variable are
similarly shaped between both models. This is despite the models being fundamentally different predictors:
the EBM is a sum of Trees built on single variables, while the 3-STAR RKHS Weighting is a sum of partial
predictors of the form given by Equation 25, using three variables each.
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Figure 3: Beeswarm plots of the Shapley values on California Housing of the Explainable Boosting Machine
(Figure 3a) and 3-STAR RWRelu (Figure 3b). Models are taken from the experiment of Section 5.3. The
Shapley values of 1000 test examples were calculated using SHAP (Figure 3a) and STAR-SHAP (Figure 3b),
using a background of 1000 training examples. The bee swarms, top to bottom, are in decreasing order of
variable importance. This order is almost the same for both models, with only HouseAge and AveRooms
being interchanged.

Figure 4 compares the Shapley values of both models on a single instance. While the predicted values
are noticeably different, both models agree on the variables to consider: Longitude has a strong negative
contribution to the prediction, Latitude an almost equally strong positive contribution, and AveOccup a
small negative contribution. Other variables are mostly negligible. One could therefore reach the same
interpretative conclusions from seeing the RKHS Weighting plot as the EBM one. This gives further credence
to RKHS Weightings as a promising model family, especially an interpretable one when cast as STAR models.
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Figure 4: Waterfall plots of the Shapley values of a single instance x from Figure 3. Figure 4a: Explainable
Boosting Machine. Figure 4b: 3-STAR RWRelu. The true f(x) value for that instance is −0.6106.

5.6 Discussion

A number of conclusions can be reached from our experiments.

Figure 1 demonstrates that STAR-SHAP is the preferred algorithm for calculating the Shapley values of a
model with moderate variable interactions, especially so the more total variables are present in the data.
Figure 2 more clearly shows how the advantages of STAR-SHAP increase with the total number of variables
in the model, as the quality of the approximations returned by approximation algorithms degrades with
dimensionality.

Table 6 shows that RKHS Weightings and STAR RKHS Weightings can reach moderately good performance
on arbitrary datasets. They have a better showing in Table 8, where prior knowledge about time series led
to improved performance, though it remains questionable whether RKHS Weightings should be used over
conventional models.

Figures 3 and 4 show that STAR-SHAP and STAR RKHS Weightings can yield interpretable models.

All in all, while these experiments do not show that RKHS Weightings should be used over other, more
conventional, tried and tested models, they are a step forward in understanding how to use RKHS Weightings,
and a proof that they be high accuracy, theoretically grounded (as per Dubé & Marchand (2024)), and even
interpretable models. Further research to expand the usability of RKHS Weightings, as well as find their
unique strengths and applications, is warranted.

6 Limitations and future work

Our work presents a number of limitations, some of which can be addressed with future research.

Algorithm 1 complexity. In theory, Algorithm 1 can calculate the Shapley values of any STAR model,
but the computational cost is exponential in the size of the feature subsets. This limits the size of the feature
subsets that can be used in the model, but Figures 1 and 2 show that, for moderate interaction sizes, it is
the preferred algorithm to use to calculate the Shapley values of STAR models, especially so the more total
variables are in the data.

Instantiating RKHS Weightings. The main weakness of RKHS Weightings remains the requirement
of solving a complex integral for any new instantiation. We have introduced one new instantiation, but it
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is still an open problem to figure out how to access the potential of this family of models. Indeed, it is
almost certain that better results than those found in Tables 6 and 8 can be obtained by using different
instantiations. As Dubé & Marchand (2024) suggested, Monte Carlo approximation of the expectations
might provide a good enough solution, and warrants an in-depth look.

Prior knowledge. As seen in Table 6, the most generic version of STAR RKHS Weightings, i.e. using the
uniform distribution on all possible feature subsets of size k, have somewhat limited use, since their output
scales as 1/

(
n
k

)
(n being the dimensionality of the dataset). As we have already addressed, the best option is

to insert prior knowledge into the model, as we have done with time series datasets by considering sequences
of variables. Extending this principle to other types of structured data would increase the applicability of
STAR RKHS Weighting models.

7 Conclusion

In this paper, we derived an efficient algorithm, named STAR-SHAP, for calculating the Shapley values of any
Structured Additive Regression (STAR) model. We demonstrated its efficiency compared to other Shapley
value algorithms when the number of variable interactions is limited. This advantage is further increased on
high-dimensional datasets. We introduced a new RKHS Weightings instantiation, and showed how to obtain
RKHS Weightings that are STAR models, giving rise to a new family of STAR models, all of which are now
interpretable thanks to STAR-SHAP. We tested the prediction performance of the introduced models. While
the STAR RKHS Weightings did not rise to the level of state of the art interpretable algorithms on generic
regression datasets, they proved quite capable in the context of time series prediction when infused with
adequate prior knowledge. Further work to increase the breadth of usable RKHS Weightings instantiations
is warranted, as well as work to expand the types of datasets where RKHS Weightings can perform well.
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A Proofs

First, we quickly prove Equation (15).

Proof of Equation (15). We have:

ϕSHAP
i (h, x) := E

z∼U(S)
E

π∼U(Ω)

[
h(rπ:i∪{i}(z, x))− h(rπ:i(z, x))

]
= E

z∼U(S)
E

π∼U(Ω)

 ∑
j∈π:i∪{i}

fj(xj) +
∑

j /∈π:i∪{i}

fj(zj)

−
∑

j∈π:i

fj(xj)−
∑

j /∈π:i

fj(zj)


= E

z∼U(S)
E

π∼U(Ω)

 ∑
j∈π:i∪{i}

fj(xj)−
∑

j∈π:i

fj(xj)

+

 ∑
j /∈π:i∪{i}

fj(zj)−
∑

j /∈π:i

fj(zj)


= E

z∼U(S)
E

π∼U(Ω)

(fi(xi)
)
−

 ∑
j∈π:i∪{i}

fj(zj)−
∑

j∈π:i∪{i}

fj(zj) + fi(zi)


=fi(xi)− E

z∼U(S)
E

π∼U(Ω)
[fi(zi)]

=fi(xi)− E
z∼U(S)

[fi(zi)].

The main result to prove is Theorem 3.1, which follows from two lemmas further below.

Proof of Theorem 3.1. We are calculating the Shapley values of a STAR model h(x) =
∑

I⊆[n] fI(xI), which
can be written as:

ϕSHAP
i (h, x) := E

z∼U(S)
E

π∼U(Ω)

[
h(rπ:i∪{i}(z, x))− h(rπ:i(z, x))

]
= E

z∼U(S)
E

π∼U(Ω)

∑
I⊆[n]

fI(rπ:i∪{i}(z, x)I)−
∑

I⊆[n]

fI(rπ:i(z, x)I)


= E

z∼U(S)

∑
I⊆[n]

E
π∼U(Ω)

[
fI(rπ:i∪{i}(z, x)I)− fI(rπ:i(z, x)I)

].

We can immediately cut out most of the computations by noticing two facts:

1. Most functions fI are 0.

2. If i /∈ I, then rπ:i∪{i}(z, x)I = rπ:i(z, x)I . Hence, the entire expectation:

Eπ∼U(Ω)
[
fI(rπ:i∪{i}(z, x)I)− fI(rπ:i(z, x)I)

]
(30)

is 0.

The Shapley values therefore boil down to the following formula:

ϕSHAP
i (h, x) = E

z∼U(S)

 ∑
I⊆[n]:fi ̸=0,i∈I

E
π∼U(Ω)

[
fI(rπ:i∪{i}(z, x)I)

]
− E

π∼U(Ω)
[fI(rπ:i(z, x)I)]

. (31)

Lemma A.1 gives the value of Eπ∼U(Ω)
[
fI(rπ:i∪{i}(z, x)I)

]
, and Lemma A.2 gives the value of

Eπ∼U(Ω) [fI(rπ:i(z, x)I)].
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Lemma A.1. Consider the definitions of Section 2, assuming that i ∈ I, and the following:

A+(i, I) := {A ⊂ I|i ∈ A, 1 ≤ |A| < |I|}. (32)

In other words, A+(i, I) is the family of strict subsets of I which contain i. Then we have:

E
π∼U(Ω)

[
fI(rπ:i∪{i}(z, x)I)

]
= fI(xI)

|I|
+

∑
A∈A+(i,I)

fI(rA(z, x)I)
|A|
( |I|

|A|
) . (33)

Lemma A.2. Consider the definitions of Section 2, assuming that i ∈ I, as well as:

A−(i, I) := {A ⊆ I|i ∈ A, 1 < |A| ≤ |I|}. (34)

In other words, A−(i, I) is the family of subsets of I which contain i and at least one other element. Then
we have:

E
π∼U(Ω)

[fI(rπ:i(z, x)I)] = fI(zI)
|I|

+
∑

A∈A−(i,I)

fI(rA\{i}(z, x)I)
|A|
( |I|

|A|
) . (35)

Proof of Lemma A.1. We can separate the expectation into two parts:

E
π∼U(Ω)

[
fI(rπ:i∪{i}(z, x)I)

]
= 1

n!
∑
π∈Ω

I⊆π:i∪{i}

fI(rπ:i∪{i}(z, x)I)

︸ ︷︷ ︸
Term 1

+ 1
n!

∑
π∈Ω

I\(π:i∪{i}) ̸=∅

fI(rπ:i∪{i}(z, x)I).

︸ ︷︷ ︸
Term 2

(36)

Calculating Term 1. The key to calculating the first half of the right-hand side of the previous equation,
which we refer to as Term 1, is to notice that rπ:i∪{i}(z, x)I = xI for all the permutations π that satisfy
I ⊆ π:i ∪ {i}, and so the value fI(rπ:i∪{i}(z, x)I) is constant over all those permutations. It is simply
fI(rπ:i∪{i}(z, x)I) = fI(xI). All that we need to do is calculate the number of such permutations. There is
an elegant combinatorics argument that gives us the solution immediately.

Consider any permutation π of [n]. This permutation satisfies the condition I ⊆ π:i ∪ {i} if and only if i is
to the right of every other variable of I. This rightmost position is one possibility of out of |I|. This means
that exactly 1 out of every |I| permutations satisfies the condition. The number of permutations we seek is
n!
|I| . We therefore have:

Term 1 = 1
n!

n!
|I|

fI(xI) = fI(xI)
|I|

. (37)

Calculating Term 2. Here, we consider all the permutations π such that I \ (π:i ∪ {i}) ̸= ∅, i.e. the feature
subset I contains variables not in π:i ∪ {i}. These variables will be replaced when calculating the function.
Defining A := I ∩ (π:i ∪ {i}), the set of shared variables (note that we always have i ∈ A), we have:

rπ:i∪{i}(z, x)I = rA(z, x)I .

The function fI(rπ:i∪{i}(z, x)I) therefore takes a different value for each possible A, of which there are:

∣∣A+(i, I)
∣∣ =

|I|−2∑
k=0

(
|I| − 1

k

)

=
|I|−1∑
k=0

(
|I| − 1

k

)
−
(
|I| − 1
|I| − 1

)
= 2|I|−1 − 1. (38)

26



Published in Transactions on Machine Learning Research (01/2025)

(We can choose 0 up to |I| − 2 variables to accompany i in making up A ∈ A+(i, I).) For a given set
A ∈ A+(i, I) of shared variables, we must calculate the number of permutations π that are such that
A = I ∩ (π:i ∪ {i}). Call that number N(n, |I|, |A|). We have:

Term 2 =
∑

A∈A+(i,I)

N(n, |I|, |A|)
n! fI(rA(z, x)I). (39)

Let us now calculate N(n, |I|, |A|).

1. First, choose the |I| positions for the variables in I. There are
(

n
|I|
)

possibilities.

2. Of these |I| positions, there is only one choice for i itself, since the variables in A \ {i} must be to
the left of it, and the variables in I \A to the right.

3. We can permute the |A| − 1 variables of A \ {i}, the |I| − |A| variables of I \ A, and the n − |I|
variables in [n] \ I, for a total of (|A| − 1)!(|I| − |A|)!(n− |I|)! permutations.

Assembling these facts gives us the formula:

N(n, |I|, |A|) := (|A| − 1)!(|I| − |A|)!(n− |I|)!
(

n

|I|

)
(40)

We can simplify this further by expanding the binomial coefficient:

N(n, |I|, |A|) = (|A| − 1)!(|I| − |A|)!(n− |I|)!
(

n

|I|

)
= n!(|A| − 1)!(|I| − |A|)!(n− |I|)!

|I|!(n− |I|)!

= n!
|A|
( |I|

|A|
) . (41)

This gives us the result.

Proof of Lemma A.2. The proof is quite similar to that of Lemma A.1. We can separate the expectation
into two parts:

E
π∼U(Ω)

[fI(rπ:i(z, x)I)] = 1
n!

∑
π∈Ω

I∩π:i=∅

fI(rπ:i(z, x)I)

︸ ︷︷ ︸
Term 1

+ 1
n!

∑
π∈Ω

I∩π:i ̸=∅

fI(rπ:i(z, x)I).

︸ ︷︷ ︸
Term 2

(42)

Calculating Term 1. Notice that rπ:i(z, x)I = zI for all the permutations π that satisfy I ∩ π:i = ∅, and
so the value fI(rπ:i(z, x)I) is constant over all those permutations. It is simply fI(rπ:i(z, x)I) = fI(zI). All
that we need to do to calculate the number of such permutations. However, a simple symmetry argument
gives us the answer. In the proof of Lemma A.1, we showed that the number of permutations π such that
I ⊆ π:i∪{i} is n!

|I| . In fact, we can notice that this number should be the same as the number of permutations
that satisfy I ∩ π:i = ∅. Indeed, in the first case, all variables of I \ {i} must be to the left of i in π:i. In the
second, they must be to the right. There are exactly as many permutations that satisfy each condition.

Calculating Term 2. Here, we consider all the permutations π such that I ∩π:i ̸= ∅, i.e. the feature subset
I shares at least one variable with π:i. In this situation, some or all variables are replaced when calculating
the function. Using the same definition A := I ∩ (π:i ∪ {i}) as in the proof of Lemma A.1, we have:

rπ:i(z, x)I = rA\{i}(z, x)I .
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The function fI(rπ:i(z, x)I) therefore takes a different value for each possible A. Since each A must contain
at least two elements (i, and one more variable so that I ∩ π:i ̸= ∅), and also A = I is now acceptable, the
intersection A is taken from the set A−(i, I), which has the same cardinality as the set A+(i, I), namely
2|I|−1− 1. We also know from the previous proof that there are N(n, |I|, |A|) = n!

|A|( |I|
|A|)

permutations π such

that A = I ∩ (π:i ∪ {i}). We therefore have:

Term 2 =
∑

A∈A−(i,I)

fI(rA\{i}(z, x)I)
|A|
( |I|

|A|
) , (43)

which concludes the proof.

B Calculus for RWRelu expectation

Here we calculate the expectation Ew∼p [K(u, w)ϕ(w, x)] for RWRelu (required to calculate the output of
the model) through a series of lemmas. First, we recall a pair of lemmas from Dubé & Marchand (2024).
Lemma B.1 (Lemma 15 of Dubé & Marchand (2024)). Consider a Hilbert space W. Let u, w ∈ W and
a, b > 0. Then:

∥w − u∥2

a
+ ∥w∥

2

b
=
(

1
a

+ 1
b

)∥∥∥∥w − 1
1 + a

b

u

∥∥∥∥2
+ 1

a + b
∥u∥2

.

Lemma B.2 (Lemma 16 of Dubé & Marchand (2024)). We have:∫
Rn

e−a∥w−u∥2
dw =

(π

a

)n
2

.

Lemma B.3. We have:∫ ∞

−∞
e−(w−u)2/2γ2

max(0, wx)dw = γ|x|√
2

(√
2γe−u2/2γ2

+
√

πu

(
sign(x) + erf

(
u√
2γ

)))
.

Proof. We have:∫ ∞

−∞
e−(w−u)2/2γ2

max(0, wx)dw =
∫ ∞

−∞
e−t2

max
(

0,
(√

2γt + u
)

x
)√

2γdw (t := w−u√
2γ

, dt = dw√
2γ

)

=
√

2γ

∫ ∞

−∞
e−t2

max
(

0,
(√

2γt + u
)

x
)

dt.

Case 1. If x ≥ 0, we have:

√
2γ

∫ ∞

−∞
e−t2

max
(

0,
(√

2γt + u
)

x
)

dt

=
√

2γ

∫ ∞

−u/
√

2γ

e−t2
(√

2γt + u
)

xdt

=
√

2γx

(
√

2γ

∫ ∞

−u/
√

2γ

te−t2
dt + u

∫ ∞

−u/
√

2γ

e−t2
dt

)

=
√

2γx

√2γ

(
−e−t2

2

∣∣∣∣∣
t=∞

t=−u/
√

2γ

+ u

[∫ 0

−u/
√

2γ

e−t2
dt +

∫ ∞

0
e−t2

dt

]
=
√

2γx

(
γ√
2

e−u2/2γ2
+ u

[√
π

2 erf
(

u√
2γ

)
+
√

π

2 erf(∞)
])

= γx√
2

(√
2γe−u2/2γ2

+
√

πu

[
1 + erf

(
u√
2γ

)])
.
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Case 2. If x < 0, we have instead:

√
2γ

∫ ∞

−∞
e−t2

max
(

0,
(√

2γt + u
)

x
)

dt

=
√

2γ

∫ −u/
√

2γ

−∞
e−t2

(√
2γt + u

)
xdt

=
√

2γx

(
√

2γ

∫ −u/
√

2γ

−∞
te−t2

dt + u

∫ −u/
√

2γ

−∞
e−t2

dt

)

=
√

2γx

√2γ

(
−e−t2

2

∣∣∣∣∣
t=−u/

√
2γ

t=−∞

+ u

[∫ 0

−∞
e−t2

dt−
∫ 0

−u/
√

2γ

e−t2
dt

]
=
√

2γx

(
−γ√

2
e−u2/2γ2

+ u

[√
π

2 erf(∞)−
√

π

2 erf
(

u√
2γ

)])
= γx√

2

(
−
√

2γe−u2/2γ2
+
√

πu

[
1− erf

(
u√
2γ

)])
.

Both cases can be combined using the sign of x, leading to the desired result.

Lemma B.4. We have∫
Rn

e−∥w−u∥2/2γ2
max(0, ⟨w, x⟩)dw

=
(√

2πγ2
)n−1

[
γ∥x∥√

2

(√
2γe

− ⟨u,x⟩2

2γ2∥x∥2 +
√

π
⟨u, x⟩
∥x∥

[
1 + erf

(
⟨u, x⟩√
2γ∥x∥

)])]
.

Proof. Calculate the integral using an orthonormal basis {v1, . . . , vn} of Rn such that vn := x
∥x∥ . Write

w = (w1, . . . , wn) in this new basis (i.e. wi := ⟨w, vi⟩ for all i), and similarly (u1, . . . , un) for u. Under this
change of coordinates, the integral becomes:∫

Rn

e−∥w−u∥2/2γ2
max(0, ⟨w, x⟩)dw

=
∫
R

∫
Rn−1

e
−
[∑n−1

i=1
(wi−ui)2+(wn−un)2

]
/2γ2

max(0, un∥x∥)dw1 . . . dwn.

We are left with a product of n independent integrals:∫
Rn

e−∥w−u∥2/2γ2
max(0, ⟨w, x⟩)dw

=
∫
Rn−1

e−
∑n−1

i=1
(wi−ui)2/2γ2

dw1 . . . dwn−1

∫
R

e−(wn−un)2/2γ2
max(0, wn∥x∥)dwn

=
∫
Rn−1

n−1∏
i=1

e−(wi−ui)2/2γ2
dw1 . . . dwn−1

∫
R

e−(wn−un)2/2γ2
max(0, wn∥x∥)dwn

=
n−1∏
i=1

∫ ∞

−∞
e−(wi−ui)2/2γ2

dwi

∫
R

e−(wn−un)2/2γ2
max(0, wn∥x∥)dwn.

For each i, Lemma B.2 gives us: ∫
R

e−(wi−ui)2/2γ2
dwi =

√
2πγ2.
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Also, Lemma B.3 gives us:

∫
R

e−(wn−un)2/2γ2
max(0, wn∥x∥)dwn

= γ∥x∥√
2

(√
2γe−u2

n/2γ2
+
√

πun

(
sign(∥x∥) + erf

(
un√
2γ

)))
.

Finally, since un = ⟨u,x⟩
∥x∥ and sign(∥x∥), we have the result.

Proof of Theorem 4.1. We have:

E
w∼p

[K(u, w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e−∥w−u∥2/2γ2
e−∥w∥2/2σ2

max (0, ⟨w, x⟩)dw

=
(

1√
2πσ2

)n

e
−∥u∥2

2
2σ2+2γ2

∫
Rn

e
−
(

1
2γ2 + 1

2σ2

)∥∥∥∥w− u

1+ γ2
σ2

∥∥∥∥2

max(0, ⟨w, x⟩)dw (Lemma B.1)

=
(

1√
2πσ2

)n

e
−∥u∥2

2
2σ2+2γ2

∫
Rn

e−∥w−u′∥2
/2ζ2

max(0, ⟨w, x⟩)dw.

Applying Lemma B.4, we obtain:

E
w∼p

[K(u, w)ϕ(w, x)]

=
(

1√
2πσ2

)n

e
−∥u∥2

2
2σ2+2γ2

(√
2πζ2

)n−1
[

ζ∥x∥√
2

(
√

2ζe
− ⟨u′,x⟩2

2ζ2∥x∥2 +
√

π
⟨u′, x⟩
∥x∥

[
1 + erf

(
⟨u′, x⟩√
2ζ∥x∥

)])]

=
(

1 + σ2

γ2

)−n/2
e

−∥u∥2
2

2σ2+2γ2 ∥x∥
2
√

π

(
√

2ζe
− ⟨u′,x⟩2

2ζ2∥x∥2 +
√

π
⟨u′, x⟩
∥x∥

[
1 + erf

(
⟨u′, x⟩√
2ζ∥x∥

)])
.

C Theoretical constants of RWRelu

For each of the two instantiations Dubé & Marchand (2024) introduce, they provide the value of two theo-
retical constants, κ and θ, relevant for their theoretical guarantees. For a given instantiation (W, ϕ,K, p),
we have:

κ := sup
x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2

H

]
= sup

x∈X

√
E

w∼p
[K(w, w)ϕ(w, x)2] (44)

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

= sup
x∈X

√
E

w∼p
E

u∼p
[K(u, w)ϕ(u, x)ϕ(w, x)]. (45)

For completeness, we give here the exact value of κ and an upper bound for θ, and the relevant calculus, in
the case of instantiation RWRelu. We begin by a couple of lemmas to help with the calculus.

Lemma C.1. Consider σ > 0 and γ > 0. Then:

∫
Rn

∫
Rn

e−∥u−w∥2/2γ2
e−⟨u,w⟩/σ2

dudw = (2π)n

(
γ2σ4

2σ2 − γ2

)n/2

. (46)
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Proof.

∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ⟨u,w⟩
σ2 dudw =

∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e− ⟨t+w,w⟩
σ2 dtdw (t := u− w, dt = du)

=
∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e− ∥w∥2

σ2 e− ⟨t,w⟩
σ2 dtdw

=
∫
Rn

e− ∥w∥2

σ2

[∫
Rn

e
− ∥t∥2

2γ2 e− ⟨t,w⟩
σ2 dt

]
dw

=
∫
Rn

e− ∥w∥2

σ2

∫
Rn

e
−

∥∥∥t+ γ2w

σ2

∥∥∥2

2γ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2 dt

dw

=
∫
Rn

e− ∥w∥2

σ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2

∫
Rn

e
−

∥∥∥t+ γ2w

σ2

∥∥∥2

2γ2 dt

dw

=
(√

2πγ2
)n
∫
Rn

e− ∥w∥2

σ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2 dw.

Then, simplifying the exponent:

−∥w∥
2

σ2 +

∥∥∥γ2w
σ2

∥∥∥2

2γ2 = −∥w∥
2

2σ2

(
2− γ2

σ2

)
= −∥w∥

2

2σ2

(
2σ2 − γ2

σ2

)
= −∥w∥

2

2σ4

(
2σ2 − γ2),

we get:

∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ⟨u,w⟩
σ2 dudw =

(√
2πγ2

)n
∫
Rn

e− ∥w∥2

2σ4 (2σ2−γ2)dw

=
(√

2πγ2
)n
(√

2π
σ4

2σ2 − γ2

)n

= (2π)n

(
γ2σ4

2σ2 − γ2

)n/2

.

Lemma C.2. Consider σ > 0 and γ > 0. Denote In the identity matrix in Rn. Then:

E
w∼N (0,σ2In)

E
u∼N (0,σ2In)

[
e−∥u−w∥2/2γ2

]
=
(

1 + 2σ2

γ2

)−n/2

. (47)
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Proof. The expectation is a straightforward integral:

E
w∼p

E
u∼p

[K(u, w)] =
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u∥2

2σ2 e− ∥w∥2

2σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u∥2

2σ2 e
⟨u,w⟩

σ2 e− ∥w∥2

2σ2 e− ⟨u,w⟩
σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u−w∥2

2σ2 e− ⟨u,w⟩
σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2ζ2 e− ⟨u,w⟩
σ2 dudw ( 1

2ζ2 = 1
2γ2 + 1

2σ2 = σ2+γ2

2σ2γ2 )

=
(

1√
2πσ2

)2n

(2π)n

(
ζ2σ4

2σ2 − ζ2

)n/2

(Lemma C.1)

=
(

ζ2

2σ2 − ζ2

)n/2

=
(

2σ2

ζ2 − 1
)−n/2

=
(

2σ2

σ2 + 2σ2

γ2 − 1
)−n/2

=
(

1 + 2σ2

γ2

)−n/2

.

Lemma C.3. Considering RWRelu, we have:

κ = σ√
2

sup
x∈X
∥x∥.

Proof. We have:

κ2 := sup
x∈X

E
w∼p

[
K(w, w)ϕ(w, x)2]

= sup
x∈X

E
w∼p

[
max (0, ⟨w, x⟩)2

]
= sup

x∈X

(
1√

2πσ2

)n ∫
Rn

e−∥w∥2/2σ2
max (0, ⟨w, x⟩)2dw

= sup
x∈X

1√
2πσ2

∫
R

e−w2
n/2σ2

max(0, wn∥x∥)2dwn (wn := ⟨w,x⟩
∥x∥ , see proof of Lemma B.4)

= sup
x∈X

1√
2πσ2

∫ ∞

0
e−w2

n/2σ2
w2

n∥x∥
2dwn

= sup
x∈X
∥x∥2 1√

2πσ2

∫ ∞

0
e−w2

n/2σ2
w2

ndwn

=1
2 sup

x∈X
∥x∥2

E
wn∼N (0,σ2)

[
w2

n

]
=σ2

2 sup
x∈X
∥x∥2

.

We have the result by taking the square root.
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Lemma C.4. Considering RWRelu, we have:

θ2 ≤ sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2(
σ2

2π

)
. (48)

Proof. We have:

θ2 : = sup
x∈X

E
u∼p

E
w∼p

[K(u, w)ϕ(u, x)ϕ(w, x)]

= sup
x∈X

(
1

2πσ2

)n ∫
Rn

∫
Rn

e−∥u−w∥2/2γ2
e−∥u∥2/2σ2

e−∥w∥2/2σ2
max(0, ⟨u, x⟩) max(0, ⟨w, x⟩)dudw.

We are free to solve these integrals using any orthonormal basis of Rn. We choose a basis {v1, . . . , vn} such
that:

vn := x

∥x∥
. (49)

In particular, we have:

un : =
〈

u,
x

∥x∥

〉
,

wn : =
〈

w,
x

∥x∥

〉
,

⟨u, x⟩ = un∥x∥,
⟨w, x⟩ = wn∥x∥.

Denoting u1:n−1 := (u1, . . . , un−1) and w1:n−1 := (w1, . . . , wn−1), we can rewrite the expression:

e−∥u−w∥2/2γ2
e−∥u∥2/2σ2

e−∥w∥2/2σ2
(50)

as:
e−∥u1:n−1−w1:n−1∥2/2γ2

e−∥u1:n−1∥2/2σ2
e−∥w1:n−1∥2/2σ2

e−(un−wn)2/2γ2
e−u2

n/2σ2
e−w2

n/2σ2
. (51)

This allows us to separate the integral into two parts. The first one is the integral over (u1, . . . , un−1) and
(w1, . . . , wn−1):(

1
2πσ2

)n−1 ∫
Rn−1

∫
Rn−1

e−∥u1:n−1−w1:n−1∥2/2γ2
e−∥u1:n−1∥2/2σ2

e−∥w1:n−1∥2/2σ2
du1:n−1dw1:n−1. (52)

Lemma C.2 tells us that the previous expression is equal to:(
1 + 2σ2

γ2

)−(n−1)/2

. (53)

The second integral is the one over un and wn:(
1

2πσ2

)∫
R

∫
R

e−(un−wn)2/2γ2
e−u2

n/2σ2
e−w2

n/2σ2
max(0, un∥x∥) max(0, wn∥x∥)dundwn. (54)

We can simplify the integral by noticing that max(0, un) = un if un ≥ 0, and 0 otherwise:(
1

2πσ2

)
∥x∥2

∫ ∞

0

∫ ∞

0
e−(un−wn)2/2γ2

e−u2
n/2σ2

e−w2
n/2σ2

unwndundwn. (55)

The expression for θ2 has now become:

θ2 = sup
x∈X

(
1

2πσ2

)n ∫
Rn

∫
Rn

e−∥u−w∥2/2γ2
e−∥u∥2/2σ2

e−∥w∥2/2σ2
max(0, ⟨u, x⟩) max(0, ⟨w, x⟩)dudw

= sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)∫ ∞

0

∫ ∞

0
e−(un−wn)2/2γ2

e−u2
n/2σ2

e−w2
n/2σ2

unwndundwn. (56)
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The remaining integral is difficult. We can simplify by using the fact that e−(un−wn)2/2γ2 ≤ 1, and obtain
an upper bound on θ2:

θ2 = sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)∫ ∞

0

∫ ∞

0
e−(un−wn)2/2γ2

e−u2
n/2σ2

e−w2
n/2σ2

unwndundwn

≤ sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)∫ ∞

0

∫ ∞

0
e−u2

n/2σ2
e−w2

n/2σ2
unwndundwn

= sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)(∫ ∞

0
e−w2

n/2σ2
wndwn

)2

= sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)((
−σ2e−w2

n/2σ2
∣∣∣∞
wn=0

)2

= sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2( 1
2πσ2

)
σ4

= sup
x∈X
∥x∥2

(
1 + 2σ2

γ2

)−(n−1)/2(
σ2

2π

)
.

D Theoretical constants of STAR RKHS Weightings

We showed in Section 4 how to transform an RKHS Weighting instantiation into a STAR model, while
maintaining the form of the model as an RKHS Weighting (Table 4 contains the details). In particular, all
algorithms and theoretical guarantees from Dubé & Marchand (2024) still apply. The guarantees involve the
theoretical constants:

κ := sup
x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2

H

]
= sup

x∈X

√
E

w∼p
[K(w, w)ϕ(w, x)2] (57)

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

= sup
x∈X

√
E

w∼p
E

u∼p
[K(u, w)ϕ(u, x)ϕ(w, x)], (58)

defined for any instantiation (W, ϕ,K, p).

Here, we explain how to obtain those constants, if desired, for a STAR RKHS Weighting instantiation. For
κ, we have:

κ2 = sup
x∈X

E
(w,I)∼pW|I ×p[n]

[
K((w, I), (w, I))ϕI(w, xI)2]

= sup
x∈X

E
I∼p[n]

E
w∼pW|I

[
KW (w, w)1[I = I]ϕI(w, xI)2]

= sup
x∈X

E
I∼p[n]

E
w∼pW|I

[
KW (w, w)ϕI(w, xI)2]

≤ E
I∼p[n]

sup
x∈X

E
w∼pW|I

[
KW (w, w)ϕI(w, xI)2]

The expression supx∈X Ew∼pW|I

[
KW (w, w)ϕI(w, xI)2] is in fact the constant κ2 for the partial instantiation

defined only on the feature subset I. Let us denote it κ2
I . Then we have:

κ2 ≤ E
I∼p[n]

κ2
I . (59)

This quantity depends on the distribution of the feature subsets p[n]. In the simplest cases, where for example
p[n] is the uniform distribution over all feature subsets of size k, then the constant κI might simply be the
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same for all I. In the worst cases, we can take the supremum of κI over all possible subsets I instead of the
expectation. As for θ:

θ2 = sup
x∈X

E
(w,I)∼pW|I ×p[n]

E
(u,J)∼pW|J ×p[n]

[K((u, J), (w, I))ϕJ(u, xJ)ϕI(w, xI)]

= sup
x∈X

E
(w,I)∼pW|I ×p[n]

E
(u,J)∼pW|J ×p[n]

[KW(u, w)1[I = J ]ϕJ(u, xJ)ϕI(w, xI)]

= sup
x∈X

E
(w,I)∼pW|I ×p[n]

E
u∼pW|I

[
p[n](I)KW(u, w)ϕI(u, xI)ϕI(w, xI)

]
= sup

x∈X
E

I∼p[n]
p[n](I) E

w∼pW|I

E
u∼pW|I

[KW(u, w)ϕI(u, xI)ϕI(w, xI)]

≤ E
I∼p[n]

p[n](I) sup
x∈X

E
w∼pW|I

E
u∼pW|I

[KW(u, w)ϕI(u, xI)ϕI(w, xI)].

Exactly as before, the expression supx∈X Ew∼pW|I
Eu∼pW|I

[
p[n](I)KW(u, w)ϕI(u, xI)ϕI(w, xI)

]
is the con-

stant θ2 for the partial model defined on the subset I. We can write it as θ2
I and:

θ2 ≤ E
I∼p[n]

p[n](I)θ2
I . (60)

In the event that θI ≤ θ̂ for all I for some θ̂, and that p[n](I) is constant, then we have:

θ2 ≤ p[n](I)θ̂2, (61)

or:

θ ≤
√

p[n](I)θ̂. (62)

E Details of experimentation

Preprocessing of the datasets

All datasets have been scaled to have mean 0 and standard deviation 1 on all variables, including the target
labels. Means and standard variations were calculated on the training data, then the transformation applied
to both training and test datasets.

Numerical stability of the learning algorithm

To learn RKHS Weightings, we used Algorithm 3 of Dubé & Marchand (2024), the least squares fit of the
coefficients. However, we have run into some rare numerical instability problems which led to failure of
learning and even negative training R2 scores, which is impossible in theory (at worst, the algorithm could
output 0 ∈ H, which has an R2 of 0 exactly). To solve this issue, we added a very small ℓ2 regularizer to the
optimization objective (Equation 53 of Dubé & Marchand (2024)), which is now:

Lreg
S (Λα(x)) = 1

2m
∥Φa− y∥2

2 + λ

2 a⊤Ga + ϵ

2a⊤Ia, (63)

where I is the identity matrix, and ϵ is the ℓ2 regularization parameter, which we have set to 10−10. The
minimizer a of the previous expression is the solution to the linear problem:(

Φ⊤Φ + mλG + mϵI
)
a = Φ⊤y. (64)

Hyperparameter selection

As pointed out in Dubé & Marchand (2024), instantiation RWSign, and now also RWRelu, exhibits ex-
ponential behavior in the dimensionality n of the instance space. This can immediately be seen in the
c :=

(
1 + σ2

γ2

)−n/2
coefficient in Equation (25), shared by both RWSign and RWRelu. Instead of using σ
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Cross-validation parameters Source code (clickable)
DecisionTreeRegressor max depth ∈ {2, 5, 10, 20} Scikit-learn

EBM

max bins ∈ {512, 1024, 2048}
learning rate ∈ {512, 1024, 2048}
max rounds ∈ {15000, 25000, 35000}
min samples leaf ∈ {1, 2, 3}

InterpretML

KernelRidge kernel = rbf
alpha ∈ {0.01, 0.05, 0.1, 0.5, 1, 5} Scikit-learn

LinearRegression Scikit-learn
SVR C ∈ {0.5, 1, 5, 10, 50} Scikit-learn

RWSign max theta ∈ {0.1, 0.5, 0.9}
λ ∈ {10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2} Dubé & Marchand (2024)

RWRelu max theta ∈ {0.1, 0.5, 0.9}
λ ∈ {10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2} This paper

RWStumps
σ ∈ {0.01, 0.1, 1}
γ ∈ {0.01, 0.1, 1}
λ ∈ {10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2}

Dubé & Marchand (2024)

Table 9: Algorithms and models used in this paper and their hyperparameters.

and γ as hyperparameters of the model, they use σ and c, and calculate γ from σ and c. This way, the effect
of dimensionality is held constant regardless of n.

We modify this methodology slightly. We instead use c2 :=
(

1 + 2σ2

γ2

)−n/2
. This is the upper bound for θ2

calculated by Dubé & Marchand (2024) for RWSign. It can also be found in Lemma C.2, and almost as is
in the upper bound for θ for RWRelu (Lemma C.4). Given σ and c ∈ (0, 1), we get:

γ2 = 2
σ2(c−4/n − 1)

. (65)

The advantage of this method is that the model output Λα(x) being upper bounded by θ∥α∥H ≤ c∥α∥H, this
gives meaning to the parameter c. For RWSign, this allows setting the maximum value of the model. For
RWRelu, the relationship is functionally the same, though the upper bound for θ is slightly more complex.

Finally, Table 9 contains the hyperparameters of all the algorithms and models used in this paper.

Reproducing the results

The code for this paper can be found at https://github.com/gadub44/star-rkhs-weightings. The
repository contains a requirements.txt file containing the particular Python packages that were used
in our experiments. They can be installed from the command line with the command pip install -r
requirements.txt. Table 10 lists the commands to run the experiments of Section 5, and the files they
generate.
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Command Files generated

Fig. 1 python -m major_experiments.shapley_time
results/shapley_time.csv
figures/shapley_time_left.pdf
figures/shapley_time_right.pdf

Fig. 2 python -m major_experiments.shapley_accuracy

results/shapley_accuracy-n10-T100.csv
results/shapley_accuracy-n100-T100.csv
results/shapley_accuracy-n500-T100.csv
figures/shapley_accuracy-n10-T100.pdf
figures/shapley_accuracy-n100-T100.pdf
figures/shapley_accuracy-n500-T100.pdf

Table 6 python -m major_experiments.regression --final
results/regression-final.csv
tables/regression-final.tex
tables/regression-final-dense.tex

Table 8 python -m major_experiments.time_series --final
results/regression-final.csv
tables/time-series-final.tex
tables/time-series-final-dense.tex

Fig. 3, 4 python -m major_experiments.shapley_comparison

results/ebm_explanation.pkl
results/rkhs_explanation.pkl
figures/beeswarm_plot_ebm.pdf
figures/beeswarm_plot_rkhs.pdf
figures/waterfall_plot_ebm.pdf
figures/waterfall_plot_rkhs.pdf

Table 10: Commands to run the various experiments in this paper.
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