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Abstract001

Recent advances in Graphical User Interface002
(GUI) and embodied navigation have driven003
significant progress, yet these domains have004
largely evolved in isolation, with disparate005
datasets and training paradigms. In this paper,006
we observe that both tasks can be formulated007
as Markov Decision Processes (MDP), suggest-008
ing a foundational principle for their unifica-009
tion. Hence, we present NaviMaster, the first010
unified agent capable of seamlessly integrat-011
ing GUI navigation and embodied navigation012
within a single framework. Specifically, Nav-013
iMaster (i) proposes a visual-target trajectory014
collection pipeline that generates trajectories015
for both GUI and embodied tasks in one for-016
mulation. (ii) employs a unified reinforcement017
learning framework on the mix data for better018
generalization. (iii) designs a novel distance-019
aware reward to ensure efficient learning from020
the trajectories. Through extensive experiments021
on out-of-domain benchmarks, NaviMaster is022
shown to outperform state-of-the-art agents in023
GUI navigation, spatial affordance prediction,024
and embodied navigation. Ablation studies fur-025
ther confirm the efficacy of our unified training026
strategy, data mixing strategy, and reward de-027
sign.028

1 Introduction029

Graphical user interface (GUI) navigation agents030

and embodied navigation agents aim to traverse031

virtual and real environments, respectively. With032

the rapid progress of multimodal large language033

models (MLLMs) (Bai et al., 2025), researchers034

have leveraged their strong perception and plan-035

ning abilities for both kinds of agents (Wu et al.,036

2025; Lin et al., 2025). These agents have demon-037

strated considerable promise in instruction-guided038

multimodal navigation.039

Despite the progress made by previous agents,040

as illustrated in Fig.1, the long-term separation be-041

tween GUI and embodied navigation, and their042
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Figure 1: Comparison of NaviMaster and existing
agents. Previous methods involve individual models
for GUI and embodied navigation. Our NaviMaster is a
unified learning framework.

training strategies have led to three persistent chal- 043

lenges. (1) They rely on two individual models for 044

navigation, which increases training and deploy- 045

ment costs and prevents mutually beneficial inter- 046

action between the two tasks (Hong et al., 2025). 047

(2) Although prior works (Rawles et al., 2023b; 048

Ramakrishnan et al., 2021) have improved perfor- 049

mance in respective tasks by scaling data within 050

specific task data, they have limitations in cross- 051

task due to the poor ability in out-of-domain (OOD) 052

data. (3) They face a training-efficiency bottleneck: 053

previous RFT-based models employ a sparse re- 054

ward signal, rendering reinforcement learning opti- 055

mization inefficient. 056

To tackle these challenges, it is essential to build 057

a unified policy that integrates GUI and embod- 058

ied navigation with an efficient training strategy. 059

Inspired by Markov Decision Processes (MDP): 060

argmax
a∈A

P (St+1 = σ′ | St = σ,At = a), (1) 061

where next state St+1 is fully determined by cur- 062

rent state–action pair (σ, a). We observe that both 063

GUI and embodied navigation naturally conform 064

to this MDP structure. In a unified formulation, 065
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the state St is the observation at step t, the action066

space A spans interactions with either a virtual in-067

terface or the physical environment. The action a068

is only operated on St. This transition dynamics069

satisfy the Markov property: St+1 is conditionally070

independent of all earlier states given (St, a). Con-071

sequently, we formalize the notion of a Navigation072

Agent that seamlessly integrates GUI and embodied073

navigation under one coherent framework.074

Therefore, to improve generalization and data075

efficiency, we propose NaviMaster, the first uni-076

fied Navigation Agent. As shown in Fig.1, Navi-077

Master exhibits three key breakthroughs. (1) We078

develop a pipeline for trajectory collection that re-079

formulates both GUI and embodied navigation into080

a visual-target paradigm, which enables effective081

training on GUI and embodied mix data, signifi-082

cantly improving data diversity and generalization.083

(2) We build a unified reinforcement learning train-084

ing framework for both GUI and embodied naviga-085

tion. Specifically, we take prior reasoning thoughts086

and actions as historical context. Given the his-087

tory and current observations as inputs, it predicts088

the next action. This setup unifies the I/O and089

the history enables more precise high-level action090

in long-horizon navigation. Furthermore, we ex-091

tend the training strategy to estimate task-specific092

advantages, enabling a single policy to adapt ef-093

fectively across multiple tasks. (3) We employ094

a distance-aware dense reward in reinforcement095

learning, which further improves training efficiency096

compared with a sparse, binary reward.097

We evaluate our NaviMaster on OOD GUI and098

embodied navigation datasets. On test sets that099

are OOD relative to the training data, NaviMas-100

ter has achieved the best performance on several101

benchmarks compared to the current state-of-the-102

art baselines, demonstrating strong generalization103

and robustness. In summary, our key contributions104

are as follows:105

1. We propose NaviMaster, the first unified Nav-106

igation Agent that integrates both GUI navi-107

gation and embodied navigation under a com-108

mon framework.109

2. We develop the visual-target trajectory collec-110

tion pipeline that integrates high-quality tra-111

jectories from both GUI and embodied navi-112

gation, enriching data diversity and enhancing113

the model’s generalization capabilities.114

3. We design a distance-aware dense reward and115

unified reinforcement learning pipeline that116

improves data efficiency and further bolsters 117

the grounding ability. 118

2 Related Work 119

2.1 Navigation Agent 120

GUI navigation agents aim to autonomously oper- 121

ate applications by perceiving UI elements and issu- 122

ing precise point-level actions (Wang et al., 2025). 123

Recent efforts tend to use the data-driven training 124

paradigm like OS-atlas, UI-Tars (Wu et al., 2025; 125

Qin et al., 2025). They employ large-scale datasets 126

in a multi-stage training pipeline to further boost 127

their UI grounding precision and planning capa- 128

bility. Despite this progress, most existing GUI 129

agents rely heavily on supervised fine-tuning (SFT) 130

with large amounts of human-annotated data, limit- 131

ing their generalization capacities. To address this, 132

models like UI-R1 and GUI-R1 (Luo et al., 2025; 133

Lu et al., 2025) incorporate reinforcement learning 134

(RL) inspired by DeepSeek-R1. But their scope 135

remains restricted to GUI-only settings and lack 136

the capacity to generalize to embodied navigation. 137

Embodied navigation agents control physical 138

or simulated agents to follow language instruc- 139

tions in 3D spaces, demanding multimodal per- 140

ception and long-horizon planning (Gao et al., 141

2024). Analogous to GUI navigation tasks, works 142

on embodied navigation typically employ a multi- 143

stage SFT strategy on large datasets to adapt open- 144

source MLLMs for navigation tasks(e.g., Robo- 145

Point (Yuan et al., 2024), SpaceLLaVa (Foutter 146

et al., 2025)). Their scope remains restricted to 147

one domain’s setting, which enforces a monolithic 148

action space, thereby diminishing the agents’ ca- 149

pacity to generalize when the action space changes. 150

Very recently, Embodied Web Agent (EWA) 151

(Hong et al., 2025) is the first work that unifies 152

physical embodiment with live web interfaces. Al- 153

though EWA unifies web and embodied tasks, it 154

lacks an emphasis on grounding capabilities and 155

fails to establish a comparable action space be- 156

tween the two navigation agent types. It also relies 157

on zero/few-shot MLLMs without a unified nav- 158

igation training paradigm, limiting its value for 159

developing general-purpose navigation agents. In 160

this paper, we unify the action space and realize 161

joint training for GUI and embodied navigation in 162

ONE agent. 163
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2.2 Reinforcement Fine-Tuning on MLLM164

Visual-RFT (Liu et al., 2025b) performs reinforce-165

ment fine-tuning on LVLMs using their own rea-166

soning traces together with rule-based, verifiable167

visual rewards—e.g., IoU for detection and CLS ac-168

curacy for classification. UI-R1 (Lu et al., 2025) in-169

troduces a unified, rule-based reward that measures170

the click-coordinate accuracy within the ground-171

truth bounding box, thereby enhancing the pre-172

cision of GUI action prediction. GUI-R1 (Luo173

et al., 2025) also adopts a similar reward design,174

but places greater emphasis on high-level GUI nav-175

igation capabilities. However, their reward design176

is strictly binary; only responses that fall within177

the ground truth bounding box receive a positive178

score. This leads to many rollouts in GRPO yield-179

ing zero reward, making the training process less180

effective (Zheng et al., 2025). Differently, we adopt181

a dense reward approach for grounding training in182

navigation agents. Unlike prior work that relies on183

binary rewards, our method assigns scores based on184

the proximity of the response to the ground truth,185

thereby improving grounding performance while186

promoting more efficient and stable training.187

3 NaviMaster188

3.1 Overview189

Our proposed NaviMaster consists of three key190

components, including (1) the visual-target trajec-191

tory collection to reformulate the GUI and embod-192

ied navigation trajectories into a unified form with193

historical information, (2) the unified reinforce-194

ment learning framework to optimize the cross-195

scenario at the same time, and (3) the distance-196

aware reward to update the model parameters by197

additionally considering the distance between out-198

put points and target points.199

3.2 Visual-Target Trajectory Collection200

As Fig.2 shows, the visual-target trajectory collec-201

tion has three parts, including unified action space202

definition, unified trajectory initialization, and rea-203

soning thought generation.204

Unified Action Space Definition. Existing GUI205

and embodied trajectory data differ significantly in206

the action space in terms of localization action. In207

GUI task, the localization action is implemented208

by the [CLICK (x, y)] action with a special target209

(x, y) in the screenshot. In contrast, embodied210

navigation task implements localization using the211

[MOVEFORWARD] action without a target. The212

interaction paradigms for the two action spaces 213

are different. GUI actions Agui rely on precise 214

target-oriented operations (e.g., clicking specific UI 215

elements) while embodied actions Aemb emphasize 216

egocentric motion control (e.g., navigating without 217

explicit target selection). 218

The localization action difference (i.e., with or 219

without a target) poses a problem for unifying the 220

GUI and embodied navigation tasks. To address 221

this, in this paper, we propose the visual-target tra- 222

jectory by introducing a localization action with a 223

target into the embodied navigation task. As shown 224

in the left part of Fig.2, we define a specific visual 225

target in the observation for each step in the trajec- 226

tory. Hence, the localization action in the embodied 227

navigation becomes [MOVETO (x, y)] with a tar- 228

get (x, y) in place of [MOVEFORWARD] action1. 229

Trajectory Collection Initialization. Consider- 230

ing the long task with n steps, it is formulated as 231

{I, (o0, a0), . . . , (on, an)}, where I is the instruc- 232

tion from the user, oi is the observation from GUI 233

screenshot or physical environment at step i, and 234

ai is the action at step i (0 ≤ i ≤ n). This formu- 235

lation is the same as the popular GUI trajectories. 236

Hence, we can straightforwardly utilize the exist- 237

ing GUI dataset to obtain the GUI trajectories (e.g., 238

GUI-Odyssey (Lu et al., 2024) in our experiments). 239

However, the existing embodied navigation 240

dataset only provides the initial position and the 241

destination position without the trajectories. Given 242

an embodied navigation dataset (e.g., Matterport 243

3D dataset with the Habitat simulator (Yadav et al., 244

2023; Savva et al., 2019)), we first get the set of tra- 245

jectory points on the shortest path (s0, s1, . . . , sm) 246

from the initial position to the destination position, 247

which can be mapped by performing the A* search 248

method (Hart et al., 1968). Each trajectory point 249

sk (0 ≤ k ≤ m) is a 3D coordinate in the global 250

coordinate system. 251

Then, based on the point set, we collect obser- 252

vation images and generate visual-target actions 253

for embodied navigation. We describe initializa- 254

tion of trajectory collection for embodied task in 255

Algorithm 1. The first step is to align the next 256

position to the current observation. Given the 257

current position sk(uk, vk, wk) (global coordinate 258

system), its camera rotation rk, and the next po- 259

sition sk+1(uk+1, vk+1, wk+1) (global coordinate 260

system), the s
′
k+1(u

′
k+1, v

′
k+1, w

′
k+1) (sk coordi- 261

nate system) can be obtained based on the follow- 262

1The full action space is in Appendix C.

3



I tapped on the Opera app to 
open the browser and search 
for information about Earth.

I:  Search for the 
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Earth and share the 
link of webpage.
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CLICK (429, 1154) TYPE [Earth] (335, 117)

…

MOVETO (963, 794)
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I: Please find the 
white locker with a 
wooden door 
located to the right 
of the mirror.

…

a0

Moving to the doorway provides 
a clear view into the next room, 
offering better visibility of the 
interior and potential targets.

Action : CLICK (1229, 1702) Action : MOVETO (963, 794)

Collecting
Algorithm

…
GUI: Existing Data

Embodied: Collect from Embodied Scene

GUI Embodied Trajectory {I, (o0, a0), . . . , (on, an)}

on

o0

o0

t0

a0

t0

o1

o1

I entered "Earth" in the search bar 
to find information about Earth, 
aiming to locate an introductory 
webpage for sharing.

t1

a1

t1

a1

MOVETO (1070, 742)

The decision to move to the next 
point at the hallway entrance aims 
to improve visibility down the 
corridor. 

on

tn

CLICK (206, 139)

tn

Stopping here was appropriate 
because the nearest chair is in 
close proximity to the current 
position. 

STOP

an

an

I clicked  "Wait" to allow the 
app more time to respond, 
aiming to continue sharing the 
link to the Earth Wikipedia page.

Unified Action Space1 Initialization2 Reasoning Thought Generation3

Visual-Target

I   +   oi   +   [oi+1]   +   ai

Visual-Target

Figure 2: Visual-Target Trajectory Collection contains three parts. We unify the GUI and the Embodied action space
by introducing a visual target at each step. Then we initialize the trajectories from existing datasets or scenes. Last,
we generate a first-person thought ti with GPT-4o. Finally, we get our visual-target trajectories τ .

ing equation:263

s
′
k+1 = r−1

k × (sk+1 − sk)× rk. (2)264

After that, we project s
′
k+1 onto the current cam-265

era observation oi:266

p(xi, yi) = (
W

2
+f ·

u′k+1

w′
k+1

,
H

2
+f ·

v′k+1

w′
k+1

), (3)267

where p(xi, yi) represents the coordinates of the268

next position in the current observation oi, (W,H)269

is the width and height of the image, and f is the270

camera focal length.271

Due to the limitations of the camera’s pitch272

angle and field of view, the projected coordi-273

nates may not appear within the observation.274

To address this, we define several custom ac-275

tions to adjust the camera angle, including the276

left-right and up-down turning actions in em-277

bodied tasks: [TURNLEFT], [TURNRIGHT],278

[TURNAROUND], [LOOKDOWN] (adjusts279

view to face downwards) and implement them as280

Algorithm 1. Note that w′
k+1 is the s′k+1’s depth in281

the current observation, and if w′
k+1 < 0, it means282

s′k+1 is behind the camera. After getting the ob-283

servation oi with a target at each position, we can284

represent each embodied navigation trajectory with285

the same action space and style of GUI navigation.286

Reasoning Thought Generation. Histori-287

cal information has been proved useful for the288

Algorithm 1 Trajectory Collection Initialization
for Embodied Task
Input: I , (s0, s1, . . . , sm)
Output: Trajectory
1: Initialize Trajectory with (I), i with 0
2: for each k ∈ [0,m] do
3: if k < n then
4: Caculate s′k+1(u

′
k+1, v

′
k+1, w

′
k+1)

5: while p(xi, yi) /∈ [0,W ]× [0, H] do
6: oi ← observation at (sk , rk)
7: Update p(xi, yi)
8: if w′

i+1 < 0 then
9: aj ← TURNAROUND
10: else if xi < 0 then
11: ai ← TURNLEFT
12: else if xi > W then
13: ai ← TURNRIGHT
14: else if yi > H then
15: ai ← LOOKDOWN
16: end if
17: Append (oi, ai) to Trajectory
18: Update rk ← execute ai

19: i← i + 1
20: end while
21: ai ←MOVETO (xi, yi)
22: Append (oi, ai) to Trajectory
23: i← i + 1
24: else
25: oi ← observation at (sk , rk), ai ← STOP
26: Append (oi, ai) to Trajectory
27: end if
28: end for
29: return Trajectory

agents (Yang et al., 2025). Most methods (Xu et al., 289

2025) take the implemented actions as the history. 290

However, history with only action will confuse 291

the system. For example, [CLICK (x, y)] can- 292

not indicate the happened trajectory. By contrast, 293

the reasoning thought “I should first open Chrome 294

to start my search” and action “[CLICK (x, y)]”, 295
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which clearly indicates that the agent opens the app296

Chrome. Some existing work (Qin et al., 2025) also297

proves that adding the reasoning thought to each298

step of the trajectory enables the model to express299

its decision-making process explicitly.300

Therefore, to enhance reasoning ability and opti-301

mize memory usage, we generate thought for each302

action of the trajectory as the bottom part of Fig.2303

shows. Given the initialized trajectory, we con-304

struct a data generation pipeline:305

⟨I, oi, ai, [oi+1]⟩
M−→ ti. (4)306

Specifically, we feed the task instruction I , ob-307

servation oi, and action ai into the large language308

model, prompting it to generate an intention ti from309

a first-person perspective that explains the reason310

for taking action ai. M is GPT-4o (OpenAI et al.,311

2024) in our experiment. Note that oi+1 is only312

used for the generation in the GUI trajectory, since313

the GUI needs the target observation as the refer-314

ence during data generation. The details generating315

prompts are in the Appendix A.316

Therefore, our visual-target trajectory for both317

GUI and embodied navigation are formatted as318

τ = {I, (o0, t0, a0), . . . , (on, tn, an)}.319

3.3 Unified Reinforcement Learning320

Framework321

Since reinforcement learning performs better in322

generalization than supervised finetuning, we fol-323

low the R1-zero training strategy, without cold-start324

pretraining and directly training on our collected325

dataset using Group Relative Policy Optimization326

(GRPO). As illustrated in Fig.3, given an n-step327

trajectory, we take step i from the trajectory as a328

piece of data. It includes user instruction I , obser-329

vation oi, reasoning thoughts and actions in history330

Hi = {(t0, a0), (t1, a1), ..., (ti−1, ai−1)}. Then331

NaviMaster learns the unified policy with GRPO.332

Specifically, with input queries {I,Hi, oi}, we op-333

erate on G samples {γj = πθold (ai|I,Hi, oi)}Gj=1334

produced by the policy model πθ. We also incorpo-335

rate the depth map hi of observation oi as a critical336

prior for grounding in spatial space. We compute337

the advantage Adv as follows:338

R(i, j) = R(γj , ai, hi), (5)339

Adv =
R(i, j)− mean({R(i, j))}Gj=1)

std({R(i, j)}Gj=1)
, (6)340

where R(i, j) denotes the reward function of the341

response. It will be detailed in the next section.342

Output1:<think>…</think>
<answer> [{"action": "click", 

"point": [819, 586]}] </answer>
Output1:<think>…</think>

<answer> [{"action": "click", 
"point": [819, 586]}] </answer>

Rollout  γj  

Distance     Score 

RG >       RG   >       RG  

Ground Truth

MLLM  Policy

Spatial Distance     Score 

Distance-Aware Reward

Reward space

Ground Truth

Optimization

Input of Step i : I , Hi , oi 
 

 

Output j :<think>…</think>
<answer> [{"action": "click", 
"point": [819, 586]}] </answer>

Format Reward

Correct 
Format

RF= 0

RF = 1

Grounding Dense Reward

Type Reward

Correct 
Action Type

RT = 0

RT = 1

R = λ1RF  + λ2RT  + λ3RG

Figure 3: Overview of unified reinforcement learning
framework. MLLM policy is optimized using GRPO
with format, type and grounding dense reward.

3.4 Distance-Aware Reward 343

The criteria for successful task execution are three- 344

fold: (1) the output must be correctly parsed into 345

an executable action, (2) the type of the executed 346

action must match the ground truth, and (3) the 347

action’s arguments must fall within reasonable 348

bounds. Accordingly, the reward is decomposed 349

into three factors: format, type, and grounding. At 350

the same time, most existing reward designs rely 351

on binary success/failure signals. We expect the 352

model to learn relative preferences even from failed 353

rollouts. For instance, among unsuccessful rollouts, 354

some may still be “better” than others. Specifically, 355

we design a distance-aware dense reward for the 356

grounding component based on the distance to the 357

ground-truth point, which consists of three compo- 358

nents, including format reward, type reward and 359

grounding dense reward. 360

Format Reward. This reward RF (i, j) en- 361

forces the formatting of the output. Each re- 362

sponse must first think and then answer, and 363

the answer content must be valid JSON. It 364

should follow the structure: “⟨think⟩· · · ⟨/think⟩ 365

⟨answer⟩ json string ⟨/answer⟩”. If a rollout 366

satisfies this format, RF (i, j) will be set to 1. Oth- 367

erwise, RF (i, j) will be set to 0. 368

Type Reward. This reward RT (i, j) supervises 369

the correctness of the model’s action selection. It 370

is a binary reward that evaluates action-type cor- 371

rectness within a small discrete selection space. It 372

supervises the model’s ability to make high-level 373

decisions aligned with task semantics. Let âj be 374

the predicted action type of the sample γj and ai 375

be the ground truth at step i. Then: 376

RT (i, j) =

{
1, if âj = ai,

0, otherwise.
(7) 377
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378

Grounding Dense Reward. This reward RG is379

designed to supervise the grounding ability. Specif-380

ically, this ability requires selecting the correct tar-381

get within a large selection space, such as a pixel-382

level coordinate in an image. It evaluates the pre-383

dicted location relative to the ground truth at step384

i. To unite and measure the grounding capability385

both in embodied tasks and GUI tasks, we define386

a distance-based dense reward instead of a sparse387

reward. We want that the agent can realize if it388

is closer to the target (UI elements in GUI and389

next position in embodied scene), the more reward390

it can get. It can avoid most of the meaningless391

exploration and function as a guide for the agent392

during training processing. The grounding reward393

function is designed as follows:394

RG(i, j) =

{
1− dj

θd
dj < θd, pj < θh,

0 otherwise,
(8)395

where θd and θh are thresholds for distance dj and396

depth disparity pj . The dj is the pixel-level dis-397

tance between prediction point (x̂j , ŷj) of γj and398

groundtruth point (xi, yi). In embodied environ-399

ments, we consider the depth value hi(x̂j , ŷj) in400

addition because two close pixel points in an im-401

age can have significantly different depths in a 3D402

scene due to occlusion in the scene. The definitions403

of dj and pj are as follows:404

dj =
√
(x̂j − xi)2 + (ŷj − yi)2, (9)405

406
pj = |hi(x̂j , ŷj)− hi(xi, yi)|, (10)407

The overall reward function is a weighted combina-408

tion of the three components described above. In409

each step t, it can be expressed as follows:410

R(i, j) = λ1RF (i, j)+ λ2RT (i, j)+ λ3RG(i, j),
(11)411

where hyperparameters λ1, λ2, λ3 ∈ R+ control-412

ling their relative importance.413

4 Experiments414

4.1 Implementation Details415

We trained our model in the EasyR1 frame-416

work (Yaowei Zheng, 2025) and used QwenVL2.5-417

7B model (Bai et al., 2025) as the base model for418

experiments. We conduct training for ten epochs419

on 8 NVIDIA A800 GPUs, with a global batch size420

of 128 and a learning rate of 1 × 10−6. The λ1,421

λ2, and λ3 are experimentally set to 0.1, 1, and 1, 422

respectively. Note that we only take 7000 pieces of 423

data, including 3500 GUI data from GUI-Odyssey 424

and 3500 embodied data from Matterport 3D and 425

RoboPoint, for training, far less than existing SFT- 426

based methods (mostly at the million level). More 427

details are in the Appendix D. 428

4.2 Benchmarks and Metrics 429

GUI task. For the evaluation of the GUI task, 430

we employ five distinct agent benchmarks: AC- 431

High/Low (Li et al., 2024), AITW (Rawles et al., 432

2023a), GUIAct-Phone (Chen et al., 2025), Llam- 433

aTouch (Zhang et al., 2024b), and AITZ (Zhang 434

et al., 2024a). We follow OS-Atlas (Wu et al., 435

2024) to take the success rate (SR) as the evalua- 436

tion metric. But we argue that the metric of Type 437

(the accuracy of the predicted action type) is not 438

reasonable due to dataset bias. As shown in Ta- 439

ble 1, a model predicting all actions as [CLICK] 440

can still achieve a high Type prediction accuracy. 441

Nevertheless, we report the performance of Type 442

for comprehensive information. 443

We compare our model with the following meth- 444

ods: the proprietary GPT-4o (OpenAI et al., 2024), 445

SFT-based models like OS-Atlas, Aguvis (Xu et al., 446

2025) and Qwen2.5VL-7B* fine-tuned on our tra- 447

jectory data, RL-based models like GUI-R1 (Luo 448

et al., 2025), infiGUI-R1 (Liu et al., 2025a) and 449

UI-Shift (Gao et al., 2025). 450

Metric AC-High/Low AITW GUIAct-Phone LlamaTouch AITZ

Type 59.7 57.2 58.0 64.4 55.9

Table 1: The bias of action types in testing datasets.

Embodied task. We assess our model’s per- 451

formance through two distinct embodied tasks. 452

First, we conduct spatial affordance prediction to 453

assess the model’s spatial grounding ability on 454

the metric of SR. Specifically, we employ Ro- 455

boReflT (Lu et al., 2023) to test object referring 456

and Where2Place (Yuan et al., 2024), RoboSpa- 457

tial (Song et al., 2025), RefSpatial (Zhou et al., 458

2025) to test free space referring. The second 459

task is embodied navigation, which evaluates the 460

model’s practical application capabilities on the 461

metric of SR and SPL (Success Rate Weighted by 462

Inverse Path Length). We evaluate our approach on 463

the unseen validation branch of ObjectNav (Batra 464

et al., 2020). We adhere to the framework estab- 465

lished in VLMNav (Goetting et al., 2024) and sub- 466

stitute the agent model in our experiments to assess 467
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Models AC-Low AC-High AITW GuiAct-Phone LlamaTouch AITZ
Type SR Type SR Type SR Type SR Type SR Type SR

GPT-4o 74.3 28.4 63.1 21.2 36.4 20.3 46.9 28.4 72.6 30.8 53.4 16.4
Qwen2.5VL-7B 83.4 62.5 68.7 47.1 56.0 38.2 55.4 38.2 72.0 51.1 56.7 28.0
Qwen2.5VL-7B* 68.0 53.9 62.5 38.8 58.1 22.4 61.9 29.6 65.1 36.9 57.4 24.8
OS-Atlas-PRO 91.6 82.0 85.7 70.4 62.5 41.4 52.2 29.4 51.8 30.1 54.0 27.6
OS-Atlas-7B 73.0 50.9 55.0 29.8 - - - - - - - -
Aguvis 72.1 57.6 67.4 50.0 71.6 53.1 63.4 42.7 84.8 60.4 59.9 36.2
infiGUI-3B 96.0 92.1 82.7 71.1 44.6 38.5 39.0 31.0 61.0 46.5 47.2 36.8
GUI-R1-7B 85.1 66.5 71.6 48.1 66.9 50.4 55.3 42.0 82.9 58.2 66.0 43.8
UI-shift 90.9 70.3 71.7 48.9 61.0 43.1 63.0 40.9 67.5 48.4 58.2 42.0

Ours (w/o Embodied) 83.7 66.3 61.7 45.6 57.3 50.0 58.1 42.3 77.1 55.2 60.1 48.9
Ours (w/o GUI) 70.1 62.1 64.6 47.8 60.1 49.1 55.1 43.8 74.4 56.5 60.9 43.8
Ours 85.6 68.9 72.9 54.0 59.4 51.2 61.7 46.4 81.7 59.8 56.4 46.3

Table 2: Results on GUI tasks. The red background represents that the data source is in the training set of the
corresponding model, while the green background represents that the test dataset is OOD for the model. Bold
highlights the best results in the OOD setting, and underlined are the second-best.

the performance of our proposed approach.468

We compare our model against the pro-469

prietary GPT-4o, open-source methods like470

Qwen2.5VL-7B (Bai et al., 2025), SpatialVLM471

like SpaceLLaVA (Foutter et al., 2025), the latest472

method RoboPoint-13B (Yuan et al., 2024).473

More details of benchmarks and metrics are in474

Appendix E and Appendix F.475

4.3 Main Results476

GUI Navigation. The results are shown in the Ta-477

ble 2. To show the generalization capability of Nav-478

iMaster, the test data are entirely out-of-domain479

(OOD) to our training data, which are marked in480

the green background. While the rest means the481

test data are in-domain, marked in the red back-482

ground. Compared with other state-of-the-art base-483

lines, our NaviMaster demonstrates superior perfor-484

mance across the various benchmarks on SR metric,485

highlighting its strong generalization capability and486

robustness in handling OOD datasets. Additionally,487

compared to models trained solely on GUI data or488

embodied navigation data, our model trained on the489

mix data achieves the best performance across all490

test datasets. This highlights the efficiency of our491

collected visual-target trajectory and unified train-492

ing framework, which enables high performance493

and strong generalization with a relatively smaller494

amount of data. Note that we argue Type is not a495

meaningful metric as discussed in Table 1, and we496

report it only for sufficient information.497

Spatial Affordance Prediction. We utilize two498

types of spatial affordance predicting datasets: one499

is object referring, which involves identifying and500

localizing specific objects within a scene based501

on natural language descriptions; the other is free502

space referring, which focuses on understanding503

and navigating to spatial regions or locations that 504

are not necessarily tied to specific objects but are 505

described in natural language. Table 3 summa- 506

rizes the average success rate of predicted points 507

falling within the ground-truth mask on the four 508

spatial affordance prediction benchmarks. Com- 509

pared with baselines, NaviMaster performance 510

best in all the spatial affordance prediction tasks. 511

These results demonstrate that NaviMaster’s fine- 512

grained visual–spatial alignment significantly im- 513

proves both object-level and free-space referring. 514

Models RoboReflt Where2Place RoboSpatial RefSpatial

GPT-4o 15.28 29.00 5.70 8.40
Qwen2.5VL-7B 3.46 3.00 10.31 3.55
SpaceLLaVA 21.30 11.84 2.50 4.02
RoboPoint-13B 49.82 46.77 19.70 8.40

Ours (w/o Embodied) 67.86 32.91 14.75 11.67
Ours (w/o GUI) 76.23 49.84 19.49 20.92
Ours 77.34 49.90 20.49 23.32

Table 3: Results on spatial affordance prediction.

Embodied Navigation. Since we are the first to 515

train an agent model that has the ability to general- 516

ize performance in VLMNav, there is no prior work 517

that trains a navigation model under the VLMNav 518

framework for comparison. We only report our 519

results in Table 4, which reports ObjectNav perfor- 520

mance on the ObjectNav benchmark. NaviMaster 521

attains the highest Success Rate (SR) of 33.10% 522

and an SPL of 12.60%, showing a clear gain over 523

the base model (27.23% SR / 9.68% SPL). Training 524

exclusively on embodied data or GUI data yields 525

slightly lower SR (31.10% and 31.00%), indicat- 526

ing that the mix training strategy best exploits the 527

complementary strengths of both data. 528

4.4 Ablation Study 529

Base model. To verify that our improvements arise 530

from the training framework rather than the intrin- 531

sic capacity of Qwen2.5VL-7B, we evaluated the 532
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Runs SR SPL
Qwen2.5VL-7B 27.23 9.68
-Embodied 31.10 11.20
-GUI 31.00 10.05
-Mix 33.20 12.60

Table 4: Results on embodied navigation.
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Figure 4: Performance of different base models.

framework on multiple base models that varied533

in parameter scale and the amount of pre-training534

knowledge. Specifically, we used Qwen2.5VL-3B535

and Qwen2VL-7B (Wang et al., 2024) for experi-536

mentation, the latter possessing comparatively lim-537

ited pre-training knowledge. As shown in Fig.4,538

our method yields consistent performance improve-539

ments across different base models. Moreover, it540

is again proved that training on mix data consis-541

tently outperforms training on a single data type,542

regardless of the underlying model.543

The Usage Strategies of Two Datasets. Re-544

garding dataset utilization, there are primarily two545

strategies. One is to mix different types of data546

or tasks into a single training phase (Mix). The547

other is to adopt a multi-stage schedule, with each548

stage focusing on one specific task or subset of data549

(GUI-Embodied or Embodied-GUI). As shown in550

the left of Fig.5, the mix training strategy generally551

outperforms the two-stage training strategy across552

various benchmarks. This suggests that training553

with mix data in a single phase enables the model554

to exploit complementary information effectively,555

leading to superior performance and generalization.556

Embodied Data Source. Our embodied data557

consists of two parts: one part is derived from558

the point-based data we construct (trajectory), and559

the other part is the spatial affordance prediction560

data from RoboPoint (affordance). We evaluate the561

model when trained on each source individually562

and on their union (affordance + trajectory). As563

shown in the right of Fig.5, combining both sources564

under an equal total data volume yields the best565

training performance.566
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Figure 5: Left: Comparison of data usage strategies.
Right: Comparison of embodied data sources.

AC-High

AC-Low

AITW

GuiAct-Phone

LlamaTouch

AITZ

45

50

55

60

65

70

sparse-reward dense-reward 0 20 40 60 80 100
Step

0.7

0.8

0.9

1.0

1.1

1.2

Re
wa

rd
 / 

Ov
er

al
l

Dense Reward
Sparse Reward

Figure 6: Left: Comparison of reward designs. Right:
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Reward Design. We assess the effectiveness of 567

the proposed grounding dense reward by replac- 568

ing it with a sparse alternative and retraining under 569

identical settings. Specifically, the threshold is set 570

to θ̂d = 20 in the sparse reward setting, whereas 571

θd = 200 is used in the dense reward setting. For 572

the sparse reward, if the distance between the pre- 573

dicted point and the ground-truth point is less than 574

θ̂d, the reward is 1; otherwise, it is 0. The results in 575

the left of Fig.6 show that the model trained with 576

the dense reward consistently outperformed the one 577

trained with the sparse reward. Moreover, the re- 578

ward curve under dense setting in Fig.6 rises more 579

rapidly, indicating more efficient training. 580

5 Conclusion 581

In this work, we introduce NaviMaster, the first 582

unified navigation agent that seamlessly integrates 583

both GUI and embodied navigation within a single 584

reinforcement learning framework. By reformulat- 585

ing both navigation types into a visual-target tra- 586

jectory format, we bridge the gap between two pre- 587

viously disparate domains, enabling joint training 588

and cross-task generalization. Our distance-aware 589

dense reward design further enhances the training 590

efficiency and grounding precision, overcoming the 591

limitations posed by traditional sparse reward sig- 592

nals. Extensive experimental results demonstrate 593

the superior OOD performance of NaviMaster. 594
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Limitations595

While our NaviMaster improves the performance596

of both GUI and embodied navigation tasks signifi-597

cantly, especially in OOD scenes, it still treats GUI598

and embodied navigation as two different tasks.599

Our trajectory dataset lacks any single trajectory600

that interleaves GUI and embodied navigation tasks601

due to the collection difficulty. Future work should602

be constructing a navigation agent that supports in-603

teracting with the GUI and embodied environments604

at the same time.605

Broader Impacts606

The GUI or embodied data may leak personal in-607

formation such as phone number or face. The data608

collection pipeline we proposed will not introduce609

any significant privacy such as personal informa-610

tion. It will not contain any real information as611

all the data source are virtual or from open-source612

datasets.613

The navigation agent will interact with the OS614

system or real-world environments. This will po-615

tentially affect the functioning of the system or take616

risky actions to damage the environment. However,617

all the settings in our experiments are in virtual618

environments or on a monitor. We do not view this619

as a concern.620
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A Prompts for reasoning thought 822

generation 823

Here are our prompts for generating reasoning 824

thoughts. 825

Embodied Thought Generation Prompt

You are a robot in an unfamiliar environment. Now I
want you to give the reason for your action.
Your action can be in the following list:

• Based on the image, predict the optimal
location to move next to finish the task. Use
the coordinates (x, y) (x is the pixel from left
to right and y is the pixel from top to bottom)
to indicate where you want to move to:
{"action_type": "move", "x":
<position in horizontal (width)>, "y":
<position in vertical (height)>}.

• Turn left: {"action_type": "turn_left"}.

• Turn right: {"action_type":
"turn_right"}.

• Turn around: {"action_type":
"turn_around"}.

• Move the camera angle downward:
{"action_type": "look_down"}.

• Based on the image, if you find the target and
the target is close enough, please stop to indi-
cate that you want to stop:
{"action_type": "stop"}.

You will be given the view before you performed
the action (which has a text label "before" on the
bottom right), the action you chose, and the task.
This is the action you performed: <action>
This is the task: <task/question> (the picture and
action is one of the steps to finish the task)
By inspecting the picture and the action performed,
give a brief reason of this step. You should carefully
inspect the environment and give your analysis for
why to do such action rather than other actions.
If moving to a position, explain why moving to that
position based on the current environment. Avoid
generic reasons like “get closer to the target.”
NOTICES:

1. Coordinates are absolute coordinates (a cen-
ter point defined by top-left and bottom-right
coordinates).

2. If the action type is "move", the point will be
labeled as "Next point" in the before image.

3. Remember that you should give the answer
from a first-person perspective and keep it
around 60 words and in a single line.

4. Don’t limit yourself to begin with “I...”. try
any other possible sentence structure(like the
position of exchangeing description and target)
if not influence the meaning."

826
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GUI Thought Generation Prompt

You are an agent who can operate an Android phone
on behalf of a user. Now I want you to give the reason
for your action.
You will be given the screenshot before you per-
formed the action (which has a text label "before"
on the bottom right), the action you chose (together
with the reason), and the screenshot after the action
was performed (which has a text label "after" on the
bottom right).
This is the action you picked: <q_text>
This is the task: <task> (The screenshots and action
are one of the steps to finish the task)
This is the instruction: <instruction> (The in-
struction to solve the task)
This is the related apps: <apps> (Apps in the reason
you output cannot go beyond the range of the app list)
By comparing the two screenshots and the action
performed, give a brief reason of this step. The reason
should include the detailed description for the action
and the target to do so, but avoid any description
related to the after screenshot.
Requirements:

• Use first-person perspective.

• Keep the response around 60 words and in a
single line.

• Do not begin every sentence with "I"; feel free
to vary the structure as long as the meaning
remains clear.

827

B Prompts for training828

Here is our prompts for training NaviMaster.829

Spatial-referring Prompt

Your answer should be formatted as a tuple, i.e.
[x, y], where the tuple contains the x and y co-
ordinates of a point satisfying the conditions above.
Output the thinking process in <think> ...
</think> tags, and the final answer in:
<answer>["action": "moveto", "point": [x,
y]]</answer>
Note: The coordinates should be between the size of
picture, indicating the absolute pixel locations of the
points in the image.
Example:
["action": "moveto", "point": [123, 300]]

830

Navigation Prompt

"You are a Navigation Robot in an unfamiliar
environment. In this photo <image>, the task is
’{text}’, with the history being ’{history}’
You need to use your prior knowledge about where
items are typically located within a home.
Please predict next action to find target item.
Your action can be in the following list:
Basic Action(move to a point on the ground in the
picture):
- Based on the image, predict the optimal location to
move next to finish the task, use the coordinates (x,

831

y)(x is the pixel from left to right and y is the pixel
from top to bottom) to indicate where you want to
move to:
[{"action": "moveto", "point": [x(position
in horizontal(width)), y(position in
vertical(height))]}].
View Adjustment Actions(adjust view as current
photo does not have suitable position):
- Executes a 90-degree rotation to the left from the
current facing direction. Ideal for navigating around
obstacles on the right, aligning with a leftward path,
or adjusting the view to inspect the left side of the
environment. Use this when the task requires a
lateral shift to the left:
[{"action": "turn_left"}].
- Rotates the perspective 90 degrees to the right. This
action is useful when the target object or destination
is positioned on the right, or when you need to
change the direction to follow a rightward route:
[{"action": "turn_right"}].
- Performs a 180-degree rotation, flipping the
orientation to face the opposite direction. This is
valuable for finding a possible way if there is no path
in front of you:
[{"action": "turn_around"}].
- Adjusts the camera view to look downwards,
without physically moving the position. This
is particularly useful for examining details on
the ground, such as identifying objects, reading
markings, or inspecting lower-level structures:
[{"action": "look_down"}].
Stop Action:
- Carefully inspect the environment and judge from
history, if you find your target in your view and has
been close enough for about 1 meter, stop at current
position:
[{"action": "stop"}].
Output the thinking process in <think></think> tags,
and the final answer in <answer></answer> tags as
follows:
<think>... </think> <answer>answer here </answer>
Note: The ’point’ should contain the coordinates
of the next destination. Coordinates are absolute
coordinates(a center point defined by top-left and
bottom-right coordinates). Ensure the predicted
Example:
{"action": "moveto", "point": [123, 300]}

832

GUI Prompt

A conversation between User and Assistant. The user
asks a question, and the Assistant solves it step by
step. The assistant first thinks about the reasoning
process in the mind and then provides the user with
the answer.
At each step, you will be given the current screenshot
and the history of the conversation (include
screenshot and action in each step). Based on these
pieces of information and the goal, you must give
the whole content of what you think and then choose
to perform one of the actions in the following list
(action description followed by the JSON format)
by outputting the action in the correct JSON format.
Click/tap on an element on the screen. We have
defined the width and height of the screenshot, use
the coordinates (x, y) (x is the pixel from left to right

833
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and y is the pixel from top to bottom) to indicate
which element you want to click, both x and y are
integers:
[{"action": "click", "point": [x(position
in horizontal(width)), y(position in
vertical(height))]}]
Long press on an element on the screen, similar with
the click action above, use the coordinates (x, y) to
indicate which element you want to long press:
[{"action": "long_press", "point":
[x(position in horizontal(width)),
y(position in vertical(height))]}]
Type text into a text field (this action contains
clicking on the target field, typing in the text and
pressing the enter), use the coordinates (x, y) to
indicate which element you want to click, both x and
y are integers:
[{"action": "input_text", "text":
<text_input>, "point": [x(position
in horizontal(width)), y(position in
vertical(height))]}]
Navigate to the home screen:
[{"action": "navigate_home"}]
Navigate back:
[{"action": "navigate_back"}]
Scroll the screen or a scrollable UI element from
start point to end point, use the coordinates (x, y) to
indicate the two points you want to scroll:
[{"action": "scroll", "start_point":
[<start position in horizontal(width)>,
<start position in vertical(height)>],
"end_point": [<end position in
horizontal(width)>, <end position in
vertical(height)>]}]
NOTICES: 1.Coordinates are absolute coordinates
(a center point defined by top-left and bottom-right
coordinates). 2.The reasoning process and answer
are enclosed within <think> . . . </think> and
<answer> . . . </answer> tags, respectively. Exam-
ple:
<think> reasoning process here </think>
<answer>["action": "click", "point": [378,
871]]</answer>

834

C Action Space835

In our trajectory, the action space Agui for GUI836

task is defined as:837

Agui =



CLICK (x, y)

SCROLL (x, y) TO (x′, y′)

LONGPRESS (x, y)

TYPE [TEXT ] (x, y)

NAVIGATEHOME
NAVIGATEBACK

(12)838

The action space Aemb for embodied task is defined 839

as: 840

Aemb =



MOVETO (x, y)

TURNLEFT
TURNRIGHT
TURNAROUND
LOOKDOWN
STOP

(13) 841

D Training Hyperparameters 842

To ensure the fairness of all comparative and abla- 843

tion experiments, we maintained consistent hyper- 844

parameter settings throughout the training process, 845

as detailed in Table 5.

Table 5: Hyperparameter settings used for all reinforce-
ment learning training.

Hyperparameter Value
learning_rate from 1e-6 to 0
temperature 1.0
num_generations 5
num_train_epochs 10
max_prompt_length 7000
max_response_length 1024
per_device_train_batch_size 4
gradient_accumulation_steps 16
KL coefficient 0.01
Reward coefficients λ1, λ2, λ3 0.1, 1, 1

846

E GUI Metrics Details 847

In GUI task, we follow the settings in OS-Atlas, 848

where a correct type prediction is considered accu- 849

rate if the predicted action type matches the ground 850

truth. For predictions involving grounding, an ac- 851

tion is deemed correct if the predicted location falls 852

within 14% of the image size relative to the ground 853

truth. 854

F Embodied Benchmark and Metrics 855

Details 856

For details of benchmark: 857

Where2Place. This benchmark contains 100 858

real-world images to evaluate free space referring. 859

RoboSpatial. There are three branch in the 860

benchmark:“Configuration”, “Context” and “Com- 861

patibility”. We take the “Context” branch to test 862

free space referring. 863

RefSpatial. We take the unseen set of RoboSpa- 864

tial. This set comprises 77 samples from the Loca- 865

tion/Placement task. 866
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Roboreflt. We take the testA set of Roboreflt.867

For metrics, we introduce the average success rate868

of predicted points with in the groundtruth mask869

to evaluate the spatial grounding accuracy in the870

spatial referring task. This metric directly assesses871

the model’s ability to accurately localize the tar-872

get based on the natural language description. For873

the navigation task, consistent with prior works,874

we utilize Success Rate (SR) and Success Rate875

Weighted by Inverse Path Length (SPL) as our met-876

rics. SR measures the percentage of episodes that877

are successfully completed. Here, we set the suc-878

cess threshold to 0.3, meaning that stopping within879

this distance from the goal will be considered a880

success. SPL is a measure of navigation path effi-881

ciency, which quantifies the agent’s performance882

by considering both task success and the path effi-883

ciency relative to the optimal path.884

G Case Study885

Fig.7 illustrates the spatial referring task, where886

the agent must local the coordinates in the image887

according to the given instruction. Our case set888

comprises three free space referring instances and889

one object referring instance.890

Fig.8 illustrates the Embodied Navigation task,891

where the agent must follow the instruction to com-892

plete an entire navigation episode in Habitat.893

Fig.9 illustrates the AC-High task, where the894

agent receives a high-level user instruction and,895

based on the history and the current smartphone896

screenshot, outputs the action for the current step.897
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In the image, there is a cup. Pinpoint point within 
the vacant space situated to the right of the cup.

Thought: To locate points in the vacant space to 
the right of the cup, I need to determine a point 
that is entirely to the right of the cup and within 
the designated area mentioned. The cup and the 
wires in front of it create a clear boundary for the 
vacant space of interest. Visually, the area to the 
right of the cup forms a rectangular space, and I 
can identify points within this space.

Action: MOVETO (1322, 1141)

Please point out the object between the white 
box and the farthest black pot.

Thought: The question asks for the object 
between the white box and the farthest black pot. 
The white box is located on the left side, and the 
farthest black pot appears to be on the right side, 
further back in the image. The object between 
these two is the blurry object in the middle, which 
appears to be a kitchen appliance or container

Action: MOVETO (123, 58)

Locate one spot within the vacant area that is 
in front of the teal bowl.

Thought: The teal bowl is located towards the right 
side of the image. There is a vacant area in front of 
the teal bowl, which is the space between the bowl 
and the edge of the countertop. I need to identify 
one point within this vacant area. 

Action: MOVETO (539, 340)

Thought: The green dinosaur model is located on 
the left side of the chair, below the teddy bear and to 
the left of the two plastic cones.

Action: MOVETO (237, 276)

Grab the green dinosaur model

Figure 7: Case studies in RefSpatial, RoboSpatial, RoboReflt and Where2Place.
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Navigate to the nearest sofa

Thought: From the image, I can see a wooden floor, a dining area with a table and chairs, a wall 
with a window and blinds, a door, and a room in the background. The dining area is likely near 
the central area of the house, and sofas are typically found in living rooms, which can be 
inferred from the hallway leading to the dining area. Since I see the dining area and a hallway 
leading further, I would guess that the living room is likely the next room, which may contain 
the sofa. The sofas are usually found in living rooms, not dining rooms or entrances. To get to 
the nearest sofa, I should proceed down the hallway, as the living room area is presumably the 
next room. I should avoid taking the actions that lead through closed doors or into areas that 
would take me away from the living room. The path to the living room is indicated by the 
hallway directly ahead, and I should move towards that direction. The labeled action that aligns 
with moving further down the hallway goes to position 2. 
Action: MOVETO ②

Thought: In your observation, you can see a hallway with a couch and other pieces of furniture 
in the room ahead. The red arrow labeled 1 points to a chair, and the red arrow labeled 2 points 
to a general area near what appears to be the edge of the room, possibly a wall or corner. Since 
the task is to navigate to the nearest sofa, I should head towards the area labeled 1, as it is closer 
to the room with the sofa. The action that achieves this goal best is to move forward in the 
direction of the labeled 1.

Action: MOVETO ①

Thought: In the image, there is a living room area visible with a sofa on the right side. The sofa 
appears to be made of fabric and is partially covered with a blanket or throw. The red arrows and 
numbers in the image are pointing to different areas, but the sofa is clearly visible and within 
proximity of the highlighted area. Based on the visual information, the sofa is to the right of the 
robot's current position. The red arrow labeled "4" points closest to the sofa, indicating the 
direction to go for the best approach. Therefore, the robot should navigate to the right to get 
closer to the sofa.

Action: MOVETO ④

Thought: Based on the image, I see an indoor scene with a sitting area in the background. There 
are several pieces of furniture visible, but the couch is not immediately in view. The red arrow 
labeled '1' points towards the living area where the couch is likely to be located. The other text 
instructs me to turn around, which I will do to face the living area where the couch is 
presumably located.To achieve the task of navigating to the nearest sofa, the best action would 
be to move in the direction pointed towards by the red arrow labeled '1'. This corresponds to 
moving forward into the living area.

Action: MOVETO ①

Thought: In the observation, the room contains a sofa on the left side near the entrance, a table 
with framed pictures, and a dining table on the right. The sofa is the closest visible piece of 
furniture to the entrance. To navigate to the nearest sofa and get as close to it as possible, I 
should move towards the left side of the image.The action labeled as 1 is the one that 
corresponds to the sofa's location. Therefore, taking action 1 will lead me towards the sofa.

Action: MOVETO ①

Thought: In the image, I see a living room with a section of a sofa on the right. The sofa is 
partially visible, and it's covered with a blanket and some pillows. The room has a window with 
blinds, a small table in the center, and some wall decor. The area is spacious and well-lit with 
natural light. The action arrows indicate possible movement paths, but since we are looking for 
the nearest sofa, let's focus on area 3 and 4.Action 4 seems to be leading towards the sofa, 
making it the best choice for approaching the nearest sofa. Therefore, my response is: {'action': 
4}.This action will take me towards the nearest sofa.

Action: MOVETO ④

Figure 8: Case study in ObjectNav.
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Thought: Since the Omio 
app is not visible on the 
home screen, I need to open 
the app drawer or search for 
the Omio app to proceed 
with the task of searching 
for a flight.

I want to search for a flight to Oxford, United Kingdom from Rotterdam for 
a vacation on the Omio app for the 13th of December.

Step1
Thought: The current 
screen shows the departure 
city as Rotterdam and the 
destination city as Oxford, 
so no changes are needed in 
these fields. The next 
logical step would be to 
initiate the search by 
clicking the 'Search Omio' 
button.

Thought: Since I need 
to search for a flight 
from Rotterdam to 
Oxford, my next step 
should be to type 
'Rotterdam' as the 
departure city in the 
search bar.

Step2 Step3 Step4

Thought: Since my 
goal is to book a flight 
from Rotterdam to 
Oxford, I need to select 
'Rotterdam Netherlands' 
as the departure location 
to ensure the search 
results are accurate for 
flights departing from 
the correct city.

Thought: Since the 
departure location is already 
set to Rotterdam, I need to 
confirm the arrival location 
as Oxford, United Kingdom 
to proceed with the search 
for flights

Step5
Thought: I need to enter 
the arrival city as 'Oxford' 
for the flight search, I 
should type 'Oxford' in 
the text box provided.

Thought: I need to select 
the correct suggestion 
that matches this 
destination. The 'Oxford 
United Kingdom', which 
seems to be the correct 
choice for my query.

Thought: Since all the 
necessary details for the 
trip are entered correctly, I 
need to initiate the search 
to view available flights.

Step6 Step7 Step8

Action: OPENAPP [Omio]

Action: CLICK (546, 1474)

Action: TYPE [Oxford]

Action: CLICK (546, 527)

Action: CLICK (587, 986)

Action: TYPE [Rotterdam]

Action: CLICK (387,526)

Action: CLICK (546, 1474)

Figure 9: Case study in AC-High.
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