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Abstract

Recent advances in Graphical User Interface
(GUI) and embodied navigation have driven
significant progress, yet these domains have
largely evolved in isolation, with disparate
datasets and training paradigms. In this paper,
we observe that both tasks can be formulated
as Markov Decision Processes (MDP), suggest-
ing a foundational principle for their unifica-
tion. Hence, we present NaviMaster, the first
unified agent capable of seamlessly integrat-
ing GUI navigation and embodied navigation
within a single framework. Specifically, Nav-
iMaster (i) proposes a visual-target trajectory
collection pipeline that generates trajectories
for both GUI and embodied tasks in one for-
mulation. (ii) employs a unified reinforcement
learning framework on the mix data for better
generalization. (iii) designs a novel distance-
aware reward to ensure efficient learning from
the trajectories. Through extensive experiments
on out-of-domain benchmarks, NaviMaster is
shown to outperform state-of-the-art agents in
GUI navigation, spatial affordance prediction,
and embodied navigation. Ablation studies fur-
ther confirm the efficacy of our unified training
strategy, data mixing strategy, and reward de-
sign.

1 Introduction

Graphical user interface (GUI) navigation agents
and embodied navigation agents aim to traverse
virtual and real environments, respectively. With
the rapid progress of multimodal large language
models (MLLMs) (Bai et al., 2025), researchers
have leveraged their strong perception and plan-
ning abilities for both kinds of agents (Wu et al.,
2025; Lin et al., 2025). These agents have demon-
strated considerable promise in instruction-guided
multimodal navigation.

Despite the progress made by previous agents,
as illustrated in Fig.1, the long-term separation be-
tween GUI and embodied navigation, and their
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Figure 1: Comparison of NaviMaster and existing
agents. Previous methods involve individual models
for GUI and embodied navigation. Our NaviMaster is a
unified learning framework.

training strategies have led to three persistent chal-
lenges. (1) They rely on two individual models for
navigation, which increases training and deploy-
ment costs and prevents mutually beneficial inter-
action between the two tasks (Hong et al., 2025).
(2) Although prior works (Rawles et al., 2023b;
Ramakrishnan et al., 2021) have improved perfor-
mance in respective tasks by scaling data within
specific task data, they have limitations in cross-
task due to the poor ability in out-of-domain (OOD)
data. (3) They face a training-efficiency bottleneck:
previous RFT-based models employ a sparse re-
ward signal, rendering reinforcement learning opti-
mization inefficient.

To tackle these challenges, it is essential to build
a unified policy that integrates GUI and embod-
ied navigation with an efficient training strategy.
Inspired by Markov Decision Processes (MDP):

argmax P(Sy11 =0 | St =0, A4 =a), (1)
acA

where next state Sy is fully determined by cur-
rent state—action pair (o, a). We observe that both
GUI and embodied navigation naturally conform
to this MDP structure. In a unified formulation,



the state S; is the observation at step ¢, the action
space A spans interactions with either a virtual in-
terface or the physical environment. The action a
is only operated on S;. This transition dynamics
satisfy the Markov property: Sy is conditionally
independent of all earlier states given (S, a). Con-
sequently, we formalize the notion of a Navigation
Agent that seamlessly integrates GUI and embodied
navigation under one coherent framework.

Therefore, to improve generalization and data
efficiency, we propose NaviMaster, the first uni-
fied Navigation Agent. As shown in Fig.1, Navi-
Master exhibits three key breakthroughs. (1) We
develop a pipeline for trajectory collection that re-
formulates both GUI and embodied navigation into
a visual-target paradigm, which enables effective
training on GUI and embodied mix data, signifi-
cantly improving data diversity and generalization.
(2) We build a unified reinforcement learning train-
ing framework for both GUI and embodied naviga-
tion. Specifically, we take prior reasoning thoughts
and actions as historical context. Given the his-
tory and current observations as inputs, it predicts
the next action. This setup unifies the I/O and
the history enables more precise high-level action
in long-horizon navigation. Furthermore, we ex-
tend the training strategy to estimate task-specific
advantages, enabling a single policy to adapt ef-
fectively across multiple tasks. (3) We employ
a distance-aware dense reward in reinforcement
learning, which further improves training efficiency
compared with a sparse, binary reward.

We evaluate our NaviMaster on OOD GUI and
embodied navigation datasets. On test sets that
are OOD relative to the training data, NaviMas-
ter has achieved the best performance on several
benchmarks compared to the current state-of-the-
art baselines, demonstrating strong generalization
and robustness. In summary, our key contributions
are as follows:

1. We propose NaviMaster, the first unified Nav-
igation Agent that integrates both GUI navi-
gation and embodied navigation under a com-
mon framework.

2. We develop the visual-target trajectory collec-
tion pipeline that integrates high-quality tra-
jectories from both GUI and embodied navi-
gation, enriching data diversity and enhancing
the model’s generalization capabilities.

3. We design a distance-aware dense reward and
unified reinforcement learning pipeline that

improves data efficiency and further bolsters
the grounding ability.

2 Related Work

2.1 Navigation Agent

GUI navigation agents aim to autonomously oper-
ate applications by perceiving Ul elements and issu-
ing precise point-level actions (Wang et al., 2025).
Recent efforts tend to use the data-driven training
paradigm like OS-atlas, UI-Tars (Wu et al., 2025;
Qin et al., 2025). They employ large-scale datasets
in a multi-stage training pipeline to further boost
their Ul grounding precision and planning capa-
bility. Despite this progress, most existing GUI
agents rely heavily on supervised fine-tuning (SFT)
with large amounts of human-annotated data, limit-
ing their generalization capacities. To address this,
models like UI-R1 and GUI-R1 (Luo et al., 2025;
Lu et al., 2025) incorporate reinforcement learning
(RL) inspired by DeepSeek-R1. But their scope
remains restricted to GUI-only settings and lack
the capacity to generalize to embodied navigation.

Embodied navigation agents control physical
or simulated agents to follow language instruc-
tions in 3D spaces, demanding multimodal per-
ception and long-horizon planning (Gao et al.,
2024). Analogous to GUI navigation tasks, works
on embodied navigation typically employ a multi-
stage SFT strategy on large datasets to adapt open-
source MLLMs for navigation tasks(e.g., Robo-
Point (Yuan et al., 2024), SpaceLLaVa (Foutter
et al., 2025)). Their scope remains restricted to
one domain’s setting, which enforces a monolithic
action space, thereby diminishing the agents’ ca-
pacity to generalize when the action space changes.

Very recently, Embodied Web Agent (EWA)
(Hong et al., 2025) is the first work that unifies
physical embodiment with live web interfaces. Al-
though EWA unifies web and embodied tasks, it
lacks an emphasis on grounding capabilities and
fails to establish a comparable action space be-
tween the two navigation agent types. It also relies
on zero/few-shot MLLMs without a unified nav-
igation training paradigm, limiting its value for
developing general-purpose navigation agents. In
this paper, we unify the action space and realize
joint training for GUI and embodied navigation in
ONE agent.



2.2 Reinforcement Fine-Tuning on MLLM

Visual-RFT (Liu et al., 2025b) performs reinforce-
ment fine-tuning on LVLMs using their own rea-
soning traces together with rule-based, verifiable
visual rewards—e.g., IoU for detection and CLS ac-
curacy for classification. UI-R1 (Lu et al., 2025) in-
troduces a unified, rule-based reward that measures
the click-coordinate accuracy within the ground-
truth bounding box, thereby enhancing the pre-
cision of GUI action prediction. GUI-R1 (Luo
et al., 2025) also adopts a similar reward design,
but places greater emphasis on high-level GUI nav-
igation capabilities. However, their reward design
is strictly binary; only responses that fall within
the ground truth bounding box receive a positive
score. This leads to many rollouts in GRPO yield-
ing zero reward, making the training process less
effective (Zheng et al., 2025). Differently, we adopt
a dense reward approach for grounding training in
navigation agents. Unlike prior work that relies on
binary rewards, our method assigns scores based on
the proximity of the response to the ground truth,
thereby improving grounding performance while
promoting more efficient and stable training.

3 NaviMaster

3.1 Overview

Our proposed NaviMaster consists of three key
components, including (1) the visual-target trajec-
tory collection to reformulate the GUI and embod-
ied navigation trajectories into a unified form with
historical information, (2) the unified reinforce-
ment learning framework to optimize the cross-
scenario at the same time, and (3) the distance-
aware reward to update the model parameters by
additionally considering the distance between out-
put points and target points.

3.2 Visual-Target Trajectory Collection

As Fig.2 shows, the visual-target trajectory collec-
tion has three parts, including unified action space
definition, unified trajectory initialization, and rea-
soning thought generation.

Unified Action Space Definition. Existing GUI
and embodied trajectory data differ significantly in
the action space in terms of localization action. In
GUI task, the localization action is implemented
by the [CLICK (x, y)] action with a special target
(X, y) in the screenshot. In contrast, embodied
navigation task implements localization using the
[MOVEFORWARDY] action without a target. The

interaction paradigms for the two action spaces
are different. GUI actions Ag,; rely on precise
target-oriented operations (e.g., clicking specific UI
elements) while embodied actions A.,,;, emphasize
egocentric motion control (e.g., navigating without
explicit target selection).

The localization action difference (i.e., with or
without a target) poses a problem for unifying the
GUI and embodied navigation tasks. To address
this, in this paper, we propose the visual-target tra-
jectory by introducing a localization action with a
target into the embodied navigation task. As shown
in the left part of Fig.2, we define a specific visual
target in the observation for each step in the trajec-
tory. Hence, the localization action in the embodied
navigation becomes [MOVETO (x, y)] with a tar-
get (X, y) in place of [ MOVEFORWARD)] action!.

Trajectory Collection Initialization. Consider-
ing the long task with n steps, it is formulated as
{I, (00, a0), .., (0n,an)}, where I is the instruc-
tion from the user, o; is the observation from GUI
screenshot or physical environment at step ¢, and
a; is the action at step 7 (0 < ¢ < n). This formu-
lation is the same as the popular GUI trajectories.
Hence, we can straightforwardly utilize the exist-
ing GUI dataset to obtain the GUI trajectories (e.g.,
GUI-Odyssey (Lu et al., 2024) in our experiments).

However, the existing embodied navigation
dataset only provides the initial position and the
destination position without the trajectories. Given
an embodied navigation dataset (e.g., Matterport
3D dataset with the Habitat simulator (Yadav et al.,
2023; Savva et al., 2019)), we first get the set of tra-
jectory points on the shortest path (sg, S1, ... ,Sm)
from the initial position to the destination position,
which can be mapped by performing the A* search
method (Hart et al., 1968). Each trajectory point
sk (0 < k < m)is a 3D coordinate in the global
coordinate system.

Then, based on the point set, we collect obser-
vation images and generate visual-target actions
for embodied navigation. We describe initializa-
tion of trajectory collection for embodied task in
Algorithm 1. The first step is to align the next
position to the current observation. Given the
current position sy (ug, vg, wy) (global coordinate
system), its camera rotation ry, and the next po-
sition sy 41 (Ug+1, Vg+1, Wr+1) (global coordinate
system), the sy, ; (), 1, V)1, W} ;) (sk coordi-
nate system) can be obtained based on the follow-

'The full action space is in Appendix C.
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Figure 2: Visual-Target Trajectory Collection contains three parts. We unify the GUI and the Embodied action space
by introducing a visual target at each step. Then we initialize the trajectories from existing datasets or scenes. Last,
we generate a first-person thought ¢; with GPT-4o. Finally, we get our visual-target trajectories 7.

ing equation:
! -1
Skr1 =T X (Sk+1 — Sk) X Ik. (2)

After that, we project s, 1 onto the current cam-
era observation o;:

W U H
2 Wiy 2

,U/
+f ), )
Wry1
where p(x;,y;) represents the coordinates of the
next position in the current observation o;, (W, H)
is the width and height of the image, and f is the
camera focal length.

Due to the limitations of the camera’s pitch
angle and field of view, the projected coordi-
nates may not appear within the observation.
To address this, we define several custom ac-
tions to adjust the camera angle, including the
left-right and up-down turning actions in em-
bodied tasks: [TURNLEFT], [TURNRIGHT],
[TURNAROUND], [LOOKDOWN] (adjusts
view to face downwards) and implement them as
Algorithm 1. Note that wj, , is the s}, ;s depth in
the current observation, and if wj_; < 0, it means
S}, 41 1s behind the camera. After getting the ob-
servation o; with a target at each position, we can
represent each embodied navigation trajectory with
the same action space and style of GUI navigation.

Reasoning Thought Generation. Histori-
cal information has been proved useful for the

Algorithm 1 Trajectory Collection Initialization
for Embodied Task

Input: I, (so,s1,. .-
Output: Trajectory
1: Initialize Trajectory with (I), 2 with O
2: for each k € [0, m] do
if £ < n then
Caculate sy, 3 (U 15 Vpy1> Wiyq)
while p(x;,y;) ¢ [0, W] x [0, H] do
0; <— observation at (sg, 7')
Update p(z;, yi)
ifw;Jrl < 0 then
a; < TURNAROUND
else if x; < O then
a; < TURNLEFT
else if x; > W then
a; < TURNRIGHT
else if y; > H then
a; < LOOKDOWN
end if
Append (04, a;) to Trajectory
Update rj, <— execute a;
11+ 1
end while
a; < MOVETO (z;,y;)
Append (0;, a;) to Trajectory

»Sm)

DO RO D DD k= b bt bt o ot ot o e et
PRTOLHEIRTEBRES P FADL £

: i1+ 1
24 else
25: 0; < observation at (sg, 7g), a; +— STOP
26: Append (0;, a;) to Trajectory
27: end if

28: end for
29: return Trajectory

agents (Yang et al., 2025). Most methods (Xu et al.,
2025) take the implemented actions as the history.
However, history with only action will confuse
the system. For example, [CLICK (x, y)] can-
not indicate the happened trajectory. By contrast,
the reasoning thought “I should first open Chrome
to start my search” and action “[CLICK (x, y)]”,



which clearly indicates that the agent opens the app
Chrome. Some existing work (Qin et al., 2025) also
proves that adding the reasoning thought to each
step of the trajectory enables the model to express
its decision-making process explicitly.

Therefore, to enhance reasoning ability and opti-
mize memory usage, we generate thought for each
action of the trajectory as the bottom part of Fig.2
shows. Given the initialized trajectory, we con-
struct a data generation pipeline:

(I,04,ai,[0i+1]) Mt “4)

Specifically, we feed the task instruction I, ob-
servation o;, and action a; into the large language
model, prompting it to generate an intention ¢; from
a first-person perspective that explains the reason
for taking action a;. M is GPT-40 (OpenAl et al.,
2024) in our experiment. Note that 0,41 is only
used for the generation in the GUI trajectory, since
the GUI needs the target observation as the refer-
ence during data generation. The details generating
prompts are in the Appendix A.

Therefore, our visual-target trajectory for both
GUI and embodied navigation are formatted as

T = {Ia (O(]atO; aO)a ) (Onatna an)}

3.3 Unified Reinforcement Learning
Framework

Since reinforcement learning performs better in
generalization than supervised finetuning, we fol-
low the R1-zero training strategy, without cold-start
pretraining and directly training on our collected
dataset using Group Relative Policy Optimization
(GRPO). As illustrated in Fig.3, given an n-step
trajectory, we take step ¢ from the trajectory as a
piece of data. It includes user instruction I, obser-
vation o;, reasoning thoughts and actions in history
Hi = {(to, ao), (tl, al), ey (ti—lu ai_l)}. Then
NaviMaster learns the unified policy with GRPO.
Specifically, with input queries {1, H;, 0;}, we op-
erate on G samples {v; = mq_, (a;|I, H;, oi)}JG:1
produced by the policy model my. We also incorpo-
rate the depth map h; of observation o; as a critical
prior for grounding in spatial space. We compute
the advantage Adv as follows:

R(i7j) = R(7j7aiv hi)v 5)
R(i, j) — mean({R(i, ))}5_,)
std({R(i,7)}51) ’

where R(i,j) denotes the reward function of the
response. It will be detailed in the next section.

Adv = (6)
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Figure 3: Overview of unified reinforcement learning
framework. MLLM policy is optimized using GRPO
with format, type and grounding dense reward.

3.4 Distance-Aware Reward

The criteria for successful task execution are three-
fold: (1) the output must be correctly parsed into
an executable action, (2) the type of the executed
action must match the ground truth, and (3) the
action’s arguments must fall within reasonable
bounds. Accordingly, the reward is decomposed
into three factors: format, type, and grounding. At
the same time, most existing reward designs rely
on binary success/failure signals. We expect the
model to learn relative preferences even from failed
rollouts. For instance, among unsuccessful rollouts,
some may still be “better” than others. Specifically,
we design a distance-aware dense reward for the
grounding component based on the distance to the
ground-truth point, which consists of three compo-
nents, including format reward, type reward and
grounding dense reward.

Format Reward.  This reward Rp(i,j) en-
forces the formatting of the output. Each re-
sponse must first think and then answer, and
the answer content must be valid JSON. It
should follow the structure: “(think)- - - (/think)
(answer) json string (/answer)”. If a rollout
satisfies this format, Ry (i, j) will be set to 1. Oth-
erwise, Rp(7, j) will be set to 0.

Type Reward. This reward Ry (i, j) supervises
the correctness of the model’s action selection. It
is a binary reward that evaluates action-type cor-
rectness within a small discrete selection space. It
supervises the model’s ability to make high-level
decisions aligned with task semantics. Let a; be
the predicted action type of the sample v; and a;
be the ground truth at step <. Then:

1, if&j = Qj, (7)

0, otherwise.

RT(Z¢]) = {



Grounding Dense Reward. This reward R is
designed to supervise the grounding ability. Specif-
ically, this ability requires selecting the correct tar-
get within a large selection space, such as a pixel-
level coordinate in an image. It evaluates the pre-
dicted location relative to the ground truth at step
t. To unite and measure the grounding capability
both in embodied tasks and GUI tasks, we define
a distance-based dense reward instead of a sparse
reward. We want that the agent can realize if it
is closer to the target (UI elements in GUI and
next position in embodied scene), the more reward
it can get. It can avoid most of the meaningless
exploration and function as a guide for the agent
during training processing. The grounding reward
function is designed as follows:

ds
.. 1-22 d'<9d>p‘<0ha
- {1 -% 42

0 otherwise, ®)
where 64 and ¢y, are thresholds for distance d; and
depth disparity p;. The d; is the pixel-level dis-
tance between prediction point (Z;, g;) of ; and
groundtruth point (z;,y;). In embodied environ-
ments, we consider the depth value h;(Z;,9;) in
addition because two close pixel points in an im-
age can have significantly different depths in a 3D
scene due to occlusion in the scene. The definitions
of d; and p; are as follows:

dj = \/(50]' —x:)? + (95 — vi)?, ©)

pj = |hi(Z5,95) — hi(zi, yi)ls (10)
The overall reward function is a weighted combina-
tion of the three components described above. In
each step ¢, it can be expressed as follows:

R(i,j) = MRp(i,7) + Ao Rr(i, j) + A3Ra(i, 5),

a1
where hyperparameters A1, A2, A3 € R control-
ling their relative importance.

4 Experiments

4.1 Implementation Details

We trained our model in the EasyR1 frame-
work (Yaowei Zheng, 2025) and used QwenVL2.5-
7B model (Bai et al., 2025) as the base model for
experiments. We conduct training for ten epochs
on 8§ NVIDIA A800 GPUs, with a global batch size
of 128 and a learning rate of 1 x 1075, The Ay,

A2, and A3 are experimentally set to 0.1, 1, and 1,
respectively. Note that we only take 7000 pieces of
data, including 3500 GUI data from GUI-Odyssey
and 3500 embodied data from Matterport 3D and
RoboPoint, for training, far less than existing SFT-
based methods (mostly at the million level). More
details are in the Appendix D.

4.2 Benchmarks and Metrics

GUI task. For the evaluation of the GUI task,
we employ five distinct agent benchmarks: AC-
High/Low (Li et al., 2024), AITW (Rawles et al.,
2023a), GUIAct-Phone (Chen et al., 2025), Llam-
aTouch (Zhang et al., 2024b), and AITZ (Zhang
et al., 2024a). We follow OS-Atlas (Wu et al.,
2024) to take the success rate (SR) as the evalua-
tion metric. But we argue that the metric of Type
(the accuracy of the predicted action type) is not
reasonable due to dataset bias. As shown in Ta-
ble 1, a model predicting all actions as [CLICK]
can still achieve a high Type prediction accuracy.
Nevertheless, we report the performance of Type
for comprehensive information.

We compare our model with the following meth-
ods: the proprietary GPT-40 (OpenAl et al., 2024),
SFT-based models like OS-Atlas, Aguvis (Xu et al.,
2025) and Qwen2.5VL-7B* fine-tuned on our tra-
jectory data, RL-based models like GUI-R1 (Luo
et al., 2025), infiGUI-R1 (Liu et al., 2025a) and
UI-Shift (Gao et al., 2025).

Metric AC-High/Low AITW GUIAct-Phone LlamaTouch AITZ
Type 59.7 572 58.0 64.4 55.9

Table 1: The bias of action types in testing datasets.

Embodied task. We assess our model’s per-
formance through two distinct embodied tasks.
First, we conduct spatial affordance prediction to
assess the model’s spatial grounding ability on
the metric of SR. Specifically, we employ Ro-
boRefiT (Lu et al., 2023) to test object referring
and Where2Place (Yuan et al., 2024), RoboSpa-
tial (Song et al., 2025), RefSpatial (Zhou et al.,
2025) to test free space referring. The second
task is embodied navigation, which evaluates the
model’s practical application capabilities on the
metric of SR and SPL (Success Rate Weighted by
Inverse Path Length). We evaluate our approach on
the unseen validation branch of ObjectNav (Batra
et al., 2020). We adhere to the framework estab-
lished in VLMNav (Goetting et al., 2024) and sub-
stitute the agent model in our experiments to assess



Models AC-Low AC-High AITW GuiAct-Phone LlamaTouch AITZ
Type SR Type SR Type SR Type SR Type SR Type SR
GPT-40 743 284 63.1 212 364 203 469 28.4 726 30.8 534 164
Qwen2.5VL-7B 834 625 687 471 560 382 554 38.2 720 51.1  56.7 28.0
Qwen2.5VL-7B* 68.0 539 625 388 581 224 619 29.6 65.1 369 574 248
0OS-Atlas-PRO 916 820 857 704 625 414 522 29.4 51.8 30.1 540 276
0OS-Atlas-7B 73.0 509 550 298 - - - - - - - -
Aguvis 72.1 576 674 500 71.6 531 634 42.7 848 604 599 362
infiGUI-3B 96.0 92.1 827 71.1 446 385 39.0 31.0 61.0 465 472 368
GUI-R1-7B 851 665 716 48.1 669 504 553 42.0 829 582 66.0 438
Ul-shift 909 703 717 489 61.0 431 63.0 40.9 67.5 484 582 420
Ours (w/o Embodied) 83.7 663 61.7 456 573 500 58.1 423 77.1 552 60.1 489
Ours (w/o GUI) 70.1 62.1 646 478 60.1 49.1 55.1 43.8 744 565 609 438
Ours 856 689 729 54.0 594 512 617 46.4 817 59.8 564 463

Table 2: Results on GUI tasks. The red background represents that the data source is in the training set of the
corresponding model, while the green background represents that the test dataset is OOD for the model. Bold
highlights the best results in the OOD setting, and underlined are the second-best.

the performance of our proposed approach.

We compare our model against the pro-
prietary GPT-40, open-source methods like
Qwen2.5VL-7B (Bai et al., 2025), Spatial VLM
like SpacelLLaVA (Foutter et al., 2025), the latest
method RoboPoint-13B (Yuan et al., 2024).

More details of benchmarks and metrics are in
Appendix E and Appendix F.

4.3 Main Results

GUI Navigation. The results are shown in the Ta-
ble 2. To show the generalization capability of Nav-
iMaster, the test data are entirely out-of-domain
(OOD) to our training data, which are marked in
the green background. While the rest means the
test data are in-domain, marked in the red back-
ground. Compared with other state-of-the-art base-
lines, our NaviMaster demonstrates superior perfor-
mance across the various benchmarks on SR metric,
highlighting its strong generalization capability and
robustness in handling OOD datasets. Additionally,
compared to models trained solely on GUI data or
embodied navigation data, our model trained on the
mix data achieves the best performance across all
test datasets. This highlights the efficiency of our
collected visual-target trajectory and unified train-
ing framework, which enables high performance
and strong generalization with a relatively smaller
amount of data. Note that we argue Type is not a
meaningful metric as discussed in Table 1, and we
report it only for sufficient information.

Spatial Affordance Prediction. We utilize two
types of spatial affordance predicting datasets: one
is object referring, which involves identifying and
localizing specific objects within a scene based
on natural language descriptions; the other is free
space referring, which focuses on understanding

and navigating to spatial regions or locations that
are not necessarily tied to specific objects but are
described in natural language. Table 3 summa-
rizes the average success rate of predicted points
falling within the ground-truth mask on the four
spatial affordance prediction benchmarks. Com-
pared with baselines, NaviMaster performance
best in all the spatial affordance prediction tasks.
These results demonstrate that NaviMaster’s fine-
grained visual—spatial alignment significantly im-
proves both object-level and free-space referring.

Models RoboReflt Where2Place RoboSpatial RefSpatial

GPT-40 15.28 29.00 5.70 8.40
Qwen2.5VL-7B 3.46 3.00 10.31 3.55
SpaceL.LaVA 21.30 11.84 2.50 4.02
RoboPoint-13B 49.82 46.77 19.70 8.40
Ours (w/o Embodied)  67.86 3291 14.75 11.67
Ours (w/o GUI) 76.23 49.84 19.49 20.92
Ours 77.34 49.90 20.49 23.32

Table 3: Results on spatial affordance prediction.

Embodied Navigation. Since we are the first to
train an agent model that has the ability to general-
ize performance in VLMNav, there is no prior work
that trains a navigation model under the VLMNav
framework for comparison. We only report our
results in Table 4, which reports ObjectNav perfor-
mance on the ObjectNav benchmark. NaviMaster
attains the highest Success Rate (SR) of 33.10%
and an SPL of 12.60%, showing a clear gain over
the base model (27.23% SR / 9.68% SPL). Training
exclusively on embodied data or GUI data yields
slightly lower SR (31.10% and 31.00%), indicat-
ing that the mix training strategy best exploits the
complementary strengths of both data.

4.4 Ablation Study

Base model. To verify that our improvements arise
from the training framework rather than the intrin-
sic capacity of Qwen2.5VL-7B, we evaluated the



Runs SR SPL
Qwen2.5VL-7B 2723  9.68
-Embodied 31.10 11.20
-GUI 31.00 10.05
-Mix 33.20 12.60

Table 4: Results on embodied navigation.

Source
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GUI

404 Mix

304

AVG SR (%)

204
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Model
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Figure 4: Performance of different base models.

framework on multiple base models that varied
in parameter scale and the amount of pre-training
knowledge. Specifically, we used Qwen2.5VL-3B
and Qwen2VL-7B (Wang et al., 2024) for experi-
mentation, the latter possessing comparatively lim-
ited pre-training knowledge. As shown in Fig.4,
our method yields consistent performance improve-
ments across different base models. Moreover, it
is again proved that training on mix data consis-
tently outperforms training on a single data type,
regardless of the underlying model.

The Usage Strategies of Two Datasets. Re-
garding dataset utilization, there are primarily two
strategies. One is to mix different types of data
or tasks into a single training phase (Mix). The
other is to adopt a multi-stage schedule, with each
stage focusing on one specific task or subset of data
(GUI-Embodied or Embodied-GUI). As shown in
the left of Fig.5, the mix training strategy generally
outperforms the two-stage training strategy across
various benchmarks. This suggests that training
with mix data in a single phase enables the model
to exploit complementary information effectively,
leading to superior performance and generalization.

Embodied Data Source. Our embodied data
consists of two parts: one part is derived from
the point-based data we construct (trajectory), and
the other part is the spatial affordance prediction
data from RoboPoint (affordance). We evaluate the
model when trained on each source individually
and on their union (affordance + trajectory). As
shown in the right of Fig.5, combining both sources
under an equal total data volume yields the best
training performance.

AC-High

AlT]

—Gui-Embodied ~Embodied-Gui ~Mix

—trajectory —affordance —affordance+trajectory

Figure 5: Left: Comparison of data usage strategies.
Right: Comparison of embodied data sources.
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Figure 6: Left: Comparison of reward designs. Right:
Reward curves.

Reward Design. We assess the effectiveness of
the proposed grounding dense reward by replac-
ing it with a sparse alternative and retraining under
identical settings. Specifically, the threshold is set
to éd = 20 in the sparse reward setting, whereas
04 = 200 is used in the dense reward setting. For
the sparse reward, if the distance between the pre-
dicted point and the ground-truth point is less than
éd, the reward is 1; otherwise, it is 0. The results in
the left of Fig.6 show that the model trained with
the dense reward consistently outperformed the one
trained with the sparse reward. Moreover, the re-
ward curve under dense setting in Fig.6 rises more
rapidly, indicating more efficient training.

5 Conclusion

In this work, we introduce NaviMaster, the first
unified navigation agent that seamlessly integrates
both GUI and embodied navigation within a single
reinforcement learning framework. By reformulat-
ing both navigation types into a visual-target tra-
jectory format, we bridge the gap between two pre-
viously disparate domains, enabling joint training
and cross-task generalization. Our distance-aware
dense reward design further enhances the training
efficiency and grounding precision, overcoming the
limitations posed by traditional sparse reward sig-
nals. Extensive experimental results demonstrate
the superior OOD performance of NaviMaster.



Limitations

While our NaviMaster improves the performance
of both GUI and embodied navigation tasks signifi-
cantly, especially in OOD scenes, it still treats GUI
and embodied navigation as two different tasks.
Our trajectory dataset lacks any single trajectory
that interleaves GUI and embodied navigation tasks
due to the collection difficulty. Future work should
be constructing a navigation agent that supports in-
teracting with the GUI and embodied environments
at the same time.

Broader Impacts

The GUI or embodied data may leak personal in-
formation such as phone number or face. The data
collection pipeline we proposed will not introduce
any significant privacy such as personal informa-
tion. It will not contain any real information as
all the data source are virtual or from open-source
datasets.

The navigation agent will interact with the OS
system or real-world environments. This will po-
tentially affect the functioning of the system or take
risky actions to damage the environment. However,
all the settings in our experiments are in virtual
environments or on a monitor. We do not view this
as a concern.
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Enshen Zhou, Jingkun An, Cheng Chi, Yi Han, Shanyu A Prompts for reasoning thought
Rong, Chi Zhang, Pengwei Wang, Zhongyuan Wang, generation
Tiejun Huang, Lu Sheng, and Shanghang Zhang.
2025. Roborefer: Towards spatial referring with H f . .
reasoning in vision-language models for robotics. ere are our prompts for generating reasoning

Preprint, arXiv:2506.04308. thoughts.

Embodied Thought Generation Prompt

You are a robot in an unfamiliar environment. Now I
want you to give the reason for your action.
Your action can be in the following list:

* Based on the image, predict the optimal
location to move next to finish the task. Use
the coordinates (x, y) (x is the pixel from left
to right and y is the pixel from top to bottom)
to indicate where you want to move to:
{"action_type": "move", "x":
<position in horizontal (width)>, "y":
<position in vertical (height)>}.

Turn left: {"action_type”: "turn_left"}.

e Turn right: {"action_type":
"turn_right"3}.

e Turn around: {"action_type":
"turn_around”}.

e Move the camera angle downward:
{"action_type": "look_down"}.

* Based on the image, if you find the target and
the target is close enough, please stop to indi-
cate that you want to stop:

{"action_type": "stop"}.

You will be given the view before you performed
the action (which has a text label "before” on the
bottom right), the action you chose, and the task.
This is the action you performed: <action>

This is the task: <task/question> (the picture and
action is one of the steps to finish the task)

By inspecting the picture and the action performed,
give a brief reason of this step. You should carefully
inspect the environment and give your analysis for
why to do such action rather than other actions.

If moving to a position, explain why moving to that
position based on the current environment. Avoid
generic reasons like “get closer to the target.”
NOTICES:

1. Coordinates are absolute coordinates (a cen-
ter point defined by top-left and bottom-right
coordinates).

2. If the action type is "move", the point will be
labeled as "Next point” in the before image.

3. Remember that you should give the answer
from a first-person perspective and keep it
around 60 words and in a single line.

4. Don’t limit yourself to begin with “I..”. try
any other possible sentence structure(like the
position of exchangeing description and target)
if not influence the meaning."
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GUI Thought Generation Prompt

You are an agent who can operate an Android phone
on behalf of a user. Now I want you to give the reason
for your action.

You will be given the screenshot before you per-
formed the action (which has a text label "before"
on the bottom right), the action you chose (together
with the reason), and the screenshot after the action
was performed (which has a text label "after" on the
bottom right).

This is the action you picked: <g_text>

This is the task: <task> (The screenshots and action
are one of the steps to finish the task)

This is the instruction: <instruction> (The in-
struction to solve the task)

This is the related apps: <apps> (Apps in the reason
you output cannot go beyond the range of the app list)
By comparing the two screenshots and the action
performed, give a brief reason of this step. The reason
should include the detailed description for the action
and the target to do so, but avoid any description
related to the after screenshot.

Requirements:

 Use first-person perspective.

* Keep the response around 60 words and in a
single line.

* Do not begin every sentence with "I"; feel free
to vary the structure as long as the meaning
remains clear.

B Prompts for training

Here is our prompts for training NaviMaster.

Spatial-referring Prompt

Your answer should be formatted as a tuple, i.e.
[x, yl, where the tuple contains the x and y co-
ordinates of a point satisfying the conditions above.
Output the thinking process in <think>
</think> tags, and the final answer in:
<answer>["action”: "moveto”, "point": [x,
y11</answer>

Note: The coordinates should be between the size of
picture, indicating the absolute pixel locations of the
points in the image.

Example:

["action”: "moveto”, "point”: [123, 300]1]

Navigation Prompt

"You are a Navigation Robot in an unfamiliar
environment. In this photo <image>, the task is
*{text}’, with the history being ’{history}’

You need to use your prior knowledge about where
items are typically located within a home.

Please predict next action to find target item.

Your action can be in the following list:

Basic Action(move to a point on the ground in the
picture):

- Based on the image, predict the optimal location to
move next to finish the task, use the coordinates (x,

y)(x is the pixel from left to right and y is the pixel
from top to bottom) to indicate where you want to

move to:

[{"action”: "moveto”, "point": [x(position
in  horizontal(width)), y(position in
vertical(height))13}].

View Adjustment Actions(adjust view as current
photo does not have suitable position):

- Executes a 90-degree rotation to the left from the
current facing direction. Ideal for navigating around
obstacles on the right, aligning with a leftward path,
or adjusting the view to inspect the left side of the
environment. Use this when the task requires a
lateral shift to the left:

[{"action": "turn_left"}].

- Rotates the perspective 90 degrees to the right. This
action is useful when the target object or destination
is positioned on the right, or when you need to
change the direction to follow a rightward route:
[{"action”: "turn_right"}].

- Performs a 180-degree rotation, flipping the
orientation to face the opposite direction. This is
valuable for finding a possible way if there is no path
in front of you:

[{"action"”: "turn_around”}].

- Adjusts the camera view to look downwards,
without physically moving the position. This
is particularly useful for examining details on
the ground, such as identifying objects, reading
markings, or inspecting lower-level structures:
[{"action": "look_down"}].

Stop Action:

- Carefully inspect the environment and judge from
history, if you find your target in your view and has
been close enough for about 1 meter, stop at current
position:

[{"action”: "stop”}].

Output the thinking process in <think></think> tags,
and the final answer in <answer></answer> tags as
follows:

<think>... </think> <answer>answer here </answer>
Note: The ’point’ should contain the coordinates
of the next destination. Coordinates are absolute
coordinates(a center point defined by top-left and
bottom-right coordinates). Ensure the predicted
Example:

{"action"”: "moveto”, "point": [123, 3001}

GUI Prompt

A conversation between User and Assistant. The user
asks a question, and the Assistant solves it step by
step. The assistant first thinks about the reasoning
process in the mind and then provides the user with
the answer.

At each step, you will be given the current screenshot
and the history of the conversation (include
screenshot and action in each step). Based on these
pieces of information and the goal, you must give
the whole content of what you think and then choose
to perform one of the actions in the following list
(action description followed by the JSON format)
by outputting the action in the correct JSON format.
Click/tap on an element on the screen. We have
defined the width and height of the screenshot, use
the coordinates (X, y) (x is the pixel from left to right
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and y is the pixel from top to bottom) to indicate
which element you want to click, both x and y are

integers:

[{"action”: "click”, "point"”: [x(position
in  horizontal(width)), y(position in
vertical (height))1}]

Long press on an element on the screen, similar with
the click action above, use the coordinates (X, y) to
indicate which element you want to long press:
[{"action”: "long_press"”, "point”:
[x(position in horizontal (width)),
y(position in vertical(height))1}]

Type text into a text field (this action contains
clicking on the target field, typing in the text and
pressing the enter), use the coordinates (X, y) to
indicate which element you want to click, both x and
y are integers:

[{"action": "input_text”,
<text_input>, "point”:
in  horizontal(width)),
vertical(height))1}]
Navigate to the home screen:
[{"action”: "navigate_home"}]

Navigate back:

[{"action”: "navigate_back"}]

Scroll the screen or a scrollable Ul element from
start point to end point, use the coordinates (X, y) to
indicate the two points you want to scroll:
[{"action": "scroll”, "start_point":
[<start position in horizontal(width)>,
<start position in vertical(height)>],
"end_point": [<end position in
horizontal (width)>, <end position in
vertical (height)>]13}]

NOTICES: 1.Coordinates are absolute coordinates
(a center point defined by top-left and bottom-right
coordinates). 2.The reasoning process and answer
are enclosed within <think> ...</think> and
<answer> ...</answer> tags, respectively. Exam-
ple:

<think> reasoning process here </think>
<answer>["action": "click"”, "point": [378,
87111</answer>

"text":
[x(position
y(position in

C Action Space

In our trajectory, the action space A,,; for GUI
task is defined as:

(CLICK (z,y)

SCROLL (z,y) TO («/,y')
LONGPRESS (z, 1)
TYPE [TEXT] (2, y)
NAVIGATEHOME
NAVIGATEBACK

13

The action space A, for embodied task is defined
as:
MOVETO (z,y)

TURNLEFT
TURNRIGHT
TURNAROUND
LOOKDOWN
STOP

Aemb = (13)

D Training Hyperparameters

To ensure the fairness of all comparative and abla-
tion experiments, we maintained consistent hyper-
parameter settings throughout the training process,
as detailed in Table 5.

Table 5: Hyperparameter settings used for all reinforce-
ment learning training.

Hyperparameter Value
learning_rate from le-6 to 0
temperature 1.0
num_generations 5
num_train_epochs 10
max_prompt_length 7000
max_response_length 1024
per_device_train_batch_size 4
gradient_accumulation_steps 16

KL coefficient 0.01
Reward coefficients A1, Ao, A3 0.1, 1,1

E GUI Metrics Details

In GUI task, we follow the settings in OS-Atlas,
where a correct type prediction is considered accu-
rate if the predicted action type matches the ground
truth. For predictions involving grounding, an ac-
tion is deemed correct if the predicted location falls
within 14% of the image size relative to the ground
truth.

F Embodied Benchmark and Metrics
Details

For details of benchmark:

Where2Place. This benchmark contains 100
real-world images to evaluate free space referring.

RoboSpatial. There are three branch in the
benchmark:“Configuration”, “Context” and “Com-
patibility”. We take the “Context” branch to test
free space referring.

RefSpatial. We take the unseen set of RoboSpa-
tial. This set comprises 77 samples from the Loca-
tion/Placement task.



Roboreflt. We take the testA set of Roborefit.
For metrics, we introduce the average success rate
of predicted points with in the groundtruth mask
to evaluate the spatial grounding accuracy in the
spatial referring task. This metric directly assesses
the model’s ability to accurately localize the tar-
get based on the natural language description. For
the navigation task, consistent with prior works,
we utilize Success Rate (SR) and Success Rate
Weighted by Inverse Path Length (SPL) as our met-
rics. SR measures the percentage of episodes that
are successfully completed. Here, we set the suc-
cess threshold to 0.3, meaning that stopping within
this distance from the goal will be considered a
success. SPL is a measure of navigation path effi-
ciency, which quantifies the agent’s performance
by considering both task success and the path effi-
ciency relative to the optimal path.

G Case Study

Fig.7 illustrates the spatial referring task, where
the agent must local the coordinates in the image
according to the given instruction. Our case set
comprises three free space referring instances and
one object referring instance.

Fig.8 illustrates the Embodied Navigation task,
where the agent must follow the instruction to com-
plete an entire navigation episode in Habitat.

Fig.9 illustrates the AC-High task, where the
agent receives a high-level user instruction and,
based on the history and the current smartphone
screenshot, outputs the action for the current step.
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In the image, there is a cup. Pinpoint point within Please point out the object between the white
the vacant space situated to the right of the cup. box and the farthest black pot.

Thought: To locate points in the vacant space to Thought: The question asks for the object
the right of the cup, I need to determine a point between the white box and the farthest black pot.

that is entirely to the right of the cup and within The white box is located on the left side, and the

the designated area mentioned. The cup and the farthest black pot appears to be on the right side,
wires in front of it create a clear boundary for the further back in the image. The object between
vacant space of interest. Visually, the area to the these two is the blurry object in the middle, which
right of the cup forms a rectangular space, and I appears to be a kitchen appliance or container

can identify points within this space.
Action: MOVETO (123, 58)
Action: MOVETO (1322, 1141)

. Locate one spot within the vacant area that is
Grab the green dinosaur model i) et T e il Bl

Thought: The green dinosaur model is located on Thought: The teal bowl is located towards the right
the left side of the chair, below the teddy bear and to side of the image. There is a vacant area in front of

the left of the two plastic cones. the teal bowl, which is the space between the bowl
and the edge of the countertop. I need to identify
Action: MOVETO (237, 276) one point within this vacant area.

Action: MOVETO (539, 340)

Figure 7: Case studies in RefSpatial, RoboSpatial, RoboReflt and Where2Place.
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Navigate to the nearest sofa

Thought: From the image, I can see a wooden floor, a dining area with a table and chairs, a wall
with a window and blinds, a door, and a room in the background. The dining area is likely near
the central area of the house, and sofas are typically found in living rooms, which can be
inferred from the hallway leading to the dining area. Since I see the dining area and a hallway
leading further, I would guess that the living room is likely the next room, which may contain
the sofa. The sofas are usually found in living rooms, not dining rooms or entrances. To get to
the nearest sofa, I should proceed down the hallway, as the living room area is presumably the
next room. I should avoid taking the actions that lead through closed doors or into areas that
would take me away from the living room. The path to the living room is indicated by the
hallway directly ahead, and I should move towards that direction. The labeled action that aligns
with moving further down the hallway goes to position 2.
Action: MOVETO @

Thought: In your observation, you can see a hallway with a couch and other pieces of furniture
in the room ahead. The red arrow labeled 1 points to a chair, and the red arrow labeled 2 points
to a general area near what appears to be the edge of the room, possibly a wall or corner. Since
the task is to navigate to the nearest sofa, I should head towards the area labeled 1, as it is closer
to the room with the sofa. The action that achieves this goal best is to move forward in the
direction of the labeled 1.

Action: MOVETO @D

- Y

Thought: In the image, there is a living room area visible with a sofa on the right side. The sof
appears to be made of fabric and is partially covered with a blanket or throw. The red arrows and
numbers in the image are pointing to different areas, but the sofa is clearly visible and within
proximity of the highlighted area. Based on the visual information, the sofa is to the right of the
robot's current position. The red arrow labeled "4" points closest to the sofa, indicating the
direction to go for the best approach. Therefore, the robot should navigate to the right to get
closer to the sofa.

Action: MOVETO @

- Y

Thought: Based on the image, I see an indoor scene with a sitting area in the background. There
are several pieces of furniture visible, but the couch is not immediately in view. The red arrow
labeled '1' points towards the living area where the couch is likely to be located. The other text
instructs me to turn around, which I will do to face the living area where the couch is
presumably located.To achieve the task of navigating to the nearest sofa, the best action would
be to move in the direction pointed towards by the red arrow labeled '1'. This corresponds to
moving forward into the living area.

-

Action: MOVETO @D

Thought: In the observation, the room contains a sofa on the left side near the entrance, a table
with framed pictures, and a dining table on the right. The sofa is the closest visible piece of
furniture to the entrance. To navigate to the nearest sofa and get as close to it as possible, I
should move towards the left side of the image.The action labeled as 1 is the one that
corresponds to the sofa's location. Therefore, taking action 1 will lead me towards the sofa.

Action: MOVETO D

-/

Thought: In the image, I see a living room with a section of a sofa on the right. The sofa is
partially visible, and it's covered with a blanket and some pillows. The room has a window with
blinds, a small table in the center, and some wall decor. The area is spacious and well-lit with
natural light. The action arrows indicate possible movement paths, but since we are looking for
the nearest sofa, let's focus on area 3 and 4.Action 4 seems to be leading towards the sofa,
making it the best choice for approaching the nearest sofa. Therefore, my response is: {'action':
4}.This action will take me towards the nearest sofa.

Action: MOVETO @)

-

Figure 8: Case study in ObjectNav.
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I want to search for a flight to Oxford, United Kingdom from Rotterdam for

a vacation on the Omio app for the 13th of December.

Stepl

Thought: Since the Omio
app is not visible on the
home screen, I need to open
the app drawer or search for
the Omio app to proceed
with the task of searching
for a flight.

Action: OPENAPP [Omio]

. Thought: The current
screen shows the departure
city as Rotterdam and the
destination city as Oxford,
so no changes are needed in
these fields. The next
logical step would be to
initiate the search by
clicking the 'Search Omio'
button.

Action: CLICK (546, 1474)

wsQen owa aen v

% Arrival

1Al No |
Nead a place to stay? gwertydiop
e asdfghijk.l

¢ zxcvbnmg@

Step5S

Thought: Since the
departure location is already
set to Rotterdam, I need to
confirm the arrival location
as Oxford, United Kingdom
to proceed with the search
for flights

Action: CLICK (587, 986)

Step6

Thought: I need to enter
the arrival city as 'Oxford'
for the flight search, I
should type 'Oxford' in
the text box provided.

Action: TYPE [Oxford]

aemn v

X Departure

@ or & W e ¢

qwer tyuiop

asdfghijk.|

O xcvbnma@

Step3

Thought: Since I need
to search for a flight
from Rotterdam to
Oxford, my next step
should be to type
'Rotterdam' as the
departure city in the
search bar.

Action: TYPE [Rotterdam]

wcsQen vo
X Arrival

Ontord

o o ©» o 0o ®» o

qwertyu

alsdflghikl

¢ zxcvbnmla@

Step7

Thought: I need to select
the correct suggestion
that matches this
destination. The 'Oxford
United Kingdom', which
seems to be the correct
choice for my query.

Action: CLICK (387,526)

Figure 9: Case study in AC-High.
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Step4

Thought: Since my
goal is to book a flight
from Rotterdam to
Oxford, I need to select
'Rotterdam Netherlands'
as the departure location
to ensure the search
results are accurate for
flights departing from
the correct city.

Action: CLICK (546, 527)

Step8

- Thought: Since all the

necessary details for the
trip are entered correctly, I
need to initiate the search
to view available flights.

Action: CLICK (546, 1474)
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