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Abstract

Goal-conditioned policy learning for robotic manipulation presents significant chal-
lenges in maintaining performance across diverse objectives and environments. We
introduce Hyper-GoalNet, a framework that generates task-specific policy network
parameters from goal specifications using hypernetworks. Unlike conventional
methods that simply condition fixed networks on goal-state pairs, our approach
separates goal interpretation from state processing — the former determines network
parameters while the latter applies these parameters to current observations. To
enhance representation quality for effective policy generation, we implement two
complementary constraints on the latent space: (1) a forward dynamics model that
promotes state transition predictability, and (2) a distance-based constraint ensuring
monotonic progression toward goal states. We evaluate our method on a comprehen-
sive suite of manipulation tasks with varying environmental randomization. Results
demonstrate significant performance improvements over state-of-the-art methods,
particularly in high-variability conditions. Real-world robotic experiments further
validate our method’s robustness to sensor noise and physical uncertainties. Code
is available at: https://github.com/wantingyao/hyper-goalnet.

1 Introduction

Goal-conditioned policy learning enables embodied agents to adjust their actions based on current
state observations and specified goals [8l 27, 46]. By integrating goal information into decision
making, agents leverage knowledge across various tasks, enhancing adaptability [7, [12} [35] in
hierarchical reinforcement learning and complex imitation learning [4} 17, |49].

Conventional approaches typically concatenate goal observations with current states as input to a
fixed-parameter network [9,156}53]]. This design creates a fundamental limitation: the network must
process all possible goal-current state combinations using the same fixed weights, conflating “what”
to process (current state) with “how” to process it (goal-dependent strategy). Consequently, these
architectures often struggle with generalization to novel goals and complex manipulation tasks that
require different processing strategies depending on the goal specification.

We aim to rethink this relationship by treating goals not as additional input features but as specifica-
tions that determine how current observations should be processed. Hypernetworks — neural networks
that generate weights for another network — offer a natural implementation of this perspective. By
explicitly modeling goals as determinants of policy parameters rather than as inputs, hypernetworks
effectively disentangle task-dependent processing (defined by goals) from state-dependent processing
(applied to current observations) [19} 145]]. This approach better aligns with biological goal-directed
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Figure 1: The proposed Goal-Conditioned Policy Generation framework (Hyper-GoalNet) and
conventional goal-conditioned policies. Existing methods typically employ a fixed-parameter
policy network that processes concatenated current observations and goal states, treating goals mostly
as additional inputs. In contrast, our approach formulates policy learning as an adaptive generation
task, where the goal image determines the parameters of the policy network itself — transforming
goals from inputs into specifications that define how current observations should be processed. This
allows for more effective handling of diverse goals and complex manipulation tasks.

behavior, where prefrontal regions interpret task goals and dynamically modulate processing in
sensorimotor circuits accordingly [32,51]].

To address these challenges, we present Hyper-GoalNet, a hypernetwork-based framework for
robotic manipulation illustrated in Fig.[I] Our approach employs a hypernetwork to dynamically
generate target policy parameters conditioned on specified goals. When loaded into the policy
network, these parameters enable the processing of current observations without requiring further
access to goal information. This architecture creates a clear separation of concerns: the hypernetwork
interprets what the goal means for processing strategy, while the generated policy focuses exclusively
on transforming current observations into appropriate actions. A key advantage of this goal-aware
design is that it enables the system to autonomously detect task completion during execution. By
training the hypernetwork to model the conditional distribution of effective policy weights given goal
specifications, we obtain a system that can adapt its processing strategy to diverse manipulation tasks.

Our technical contributions center on effectively applying hypernetworks for parameter-adaptive
goal-conditioned policies learning. First, we adapt optimization-inspired hypernetwork architectures
for generating policy parameters conditioned on goal specifications, creating a framework that
dynamically determines how current observations should be processed. Second, we introduce an
effective latent space shaping technique that imposes two critical properties: (1) predictability of
future states through a learned dynamics model, and (2) preservation of physical relationships through
distance constraints that ensure monotonic progression toward goals. These properties create an
ideal representation space for our hypernetwork, providing clear signals about how policy parameters
should change as states approach goals.

Our extensive experiments across multiple manipulation tasks show that Hyper-GoalNet signifi-
cantly outperforms state-of-the-art methods, achieving higher success rates on complex contact-rich
manipulations. Notably, while conventional approaches fail almost completely in high-variability
environments, our method maintains robust performance. Ablation studies confirm the critical
importance of our proposed components in the parameter-adaptive goal-conditioned policy lean-
ing framework. Finally, real-robot experiments demonstrate that our parameter-adaptive approach
succeeds in physical environments where conventional methods struggle with sensor noise and
environmental variations. These results confirm that explicitly modeling goals as determinants of
processing strategy rather than as additional inputs creates a more effective and robust framework for
goal-conditioned manipulation.

2 Related Work

Goal-conditioned policy. Goal-conditioned policy learning has attracted significant attention for
developing versatile and generalizable agents [24} 52| |50L |57, [25]. Traditional methods augment



state spaces with goal information and train policies that condition on these augmented states [[13}
44,30, 154]. Hindsight Experience Replay (HER) [1] exemplifies this approach by allowing agents
to learn from failures by reinterpreting unsuccessful outcomes as alternative goals. However, these
methods typically suffer from increased complexity and require extensive tuning to manage the
parameters associated with goal conditioning [39] 33] 48]. Our approach distinguishes itself by
utilizing hypernetworks to dynamically generate policy weights, thereby reducing parameters in the
policy network while enhancing scalability without extensive retraining [20} 43]].

In the realm of imitation learning for goal-conditioned policies, several frameworks have demonstrated
promising results by learning from pre-collected demonstrations [29} 9, 153]]. Recent goal-conditioned
behavior cloning approaches such as C-BeT [9] and MimicPlay [53] have advanced long-horizon
manipulation tasks. However, these methods typically require sequences of achievable goal images,
which are challenging to obtain in practice. Moreover, while performing well in basic pick-and-place
scenarios, they often struggle with contact-rich tasks that demand precise environmental aware-
ness [31]. Our method overcomes these limitations through effective latent space shaping, requiring
only a single goal image while maintaining robustness across diverse manipulation scenarios.

Hypernetworks and Cognitive science insights for goal-directed behavior. Our work draws
inspiration from cognitive science research on human goal-directed behavior, where meta-cognitive
strategies and higher-level planning mechanisms enable adaptive actions [6} 36} 137]. Studies show
that humans efficiently manage cognitive resources and flexibly adapt to different goals through
higher-level representations [[18}[11}[10]]. Current policy learning methods incorporating cognitive
principles often focus on imitation learning to mimic human strategies [2 [16} [14], but can be limited
by demonstration quality and diversity [38} 42} [22]]. Hypernetworks have been explored in robotic
control [21,155,13]], though primarily within reward-driven reinforcement learning (RL) settings [23L15]].
This fundamental difference in training paradigms, RL versus our reward-free behavior cloning (BC),
means their end-to-end algorithms are not directly adaptable. We clarify, however, that their core
hypernetwork architectures can be decoupled from the RL framework. By embedding cognitive
insights into our hypernetwork architecture, we emulate human-like flexible adaptation [6} 136, [37].
Hyper-GoalNet’s capacity to generate goal-specific policy parameters without extensive retraining
addresses practical challenges of goal-conditioned learning [20] while mirroring key cognitive
mechanisms, offering a biologically plausible framework for adaptable policy generation.

3 Method

Let D = {r;}, be a dataset consisting of M robotic manipulation demonstrations, where each

trajectory comprises a sequence of observation-action pairs, i.e., 7; = {(oé, a;)}jv;l with a; denoting
a continuous-valued action and o; representing a tuple containing high-dimensional state observations.
Specifically, o; includes an RGB image I; captured by a single front-view camera, as well as the
proprioceptive information s; of the embodied agent. Given this formulation, our objective is to
develop a generalizable goal-conditioned policy learning framework that enables efficient adaptation

to diverse manipulation tasks.

We propose a shift from conventional goal-conditioned policies, which typically use fixed parameters
while processing both current and goal images. Our key insight is that the goal image inherently
specifies how the current image should be processed to generate appropriate actions. Therefore, we
argue that the policy parameters themselves — which determine the processing mechanism — should
adapt based on different goal specifications. To realize this insight, we leverage hypernetworks to
dynamically generate task-specific policy parameters conditioned on goal images, rather than directly
conditioning a fixed policy network on both current and goal observations. This approach creates a
more flexible and efficient framework where the processing of current states is explicitly tailored to
the specified goals.

The full pipeline is illustrated in Fig.[2] Next, we elaborate on the key components of our approach.
In Sec.[3.1] we describe how we adapt hypernetwork architectures to effectively generate varying
goal-reaching policies. In Sec. we introduce an effective latent space shaping techniques that
significantly enhance the performance of goal-conditioned policy generation by enforcing meaningful
geometric structure in the representation space. Finally, in Sec. we present the test-time inference
pipeline that integrates our trained model (Hyper-GoalNet) to accomplish diverse manipulation tasks,
highlighting the practical advantages of our parameter-adaptive approach.
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Figure 2: An overview of the proposed Hyper-GoalNet framework. (a) Adaptive Policy Genera-
tion: Unlike conventional approaches with fixed parameters, our hypernetwork dynamically generates
task-specific policy parameters conditioned on goal images. This creates a parameter-adaptive target
policy that processes current observations (RGB images and proprioception) through a multimodal
encoder to produce actions tailored to specific goals. (b) Latent Shaping: Our approach enhances
performance by explicitly structuring the latent space in two ways: a predictive network models state
transitions to improve temporal dynamics, while geometric constraints ensure distances to goal states
monotonically decrease during successful trajectories (detailed in Sec. @
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3.1 Goal-Conditioned Hypernetworks

We formulate goal-conditioned policy learning as a parameter generation task rather than a direct
conditioning problem. This formulation reframes the challenge from “what action to take given
current and goal observations” to “what processing parameters to use given the goal.”

More formally, given a current observation o, and a desired goal observation oy, we model the condi-
tional distribution over target policy weights that will transform the scene into the goal configuration.
With the set of robotic manipulation demonstrations D, we learn the distribution H (6 | o, 04):

H(O | 0c,04) =Pp (0| 0c = I, 0y = I), where I, Iy € 7, € Dand t’ > t. (D)

For practical implementation, we focus on a single goal state rather than a sequence of goals, and use
RGB image observations to condition the hypernetwork. Since our primary objective is to investigate
the efficacy of goal-conditioned policy generation for manipulation tasks rather than developing a
full probabilistic model, we approximate this as a deterministic mapping:

H:Ox O — 06, 2)

where O denotes the observation space and © represents the space of target policy parameters. With a
current-goal observation pair (o, 04 ), the hypernetwork  produces a policy that guides the transition
from current state o, to goal state o, through action execution.

Hypernetwork architecture. To implement our parameter-adaptive approach, we adopt a hyper-
network architecture that efficiently generates policy parameters for achieving specified goals. The
architecture must be capable of capturing the complex relationships between current states, goal
states, and the required actions to bridge them.

We leverage an optimization-inspired architecture following [40], which provides beneficial inductive
bias for our parameter generation task. This approach mimics iterative optimization by refining policy
parameters through multiple feed-forward steps:

0% = H(oc,04), 3)

where 6% represents the final policy parameters after K refinement iterations, with each update
computed as:

08 = 051+ N0 ) M (0* T @), a = oc, o). @)

Here, neural modules \* and ¢/* serve as learned analogs to step sizes and gradients in optimization,
operating on embeddings ¢(o., 0o4) of the current and goal observations. This mechanism enhances
the hypernetwork’s ability to generate effective task-specific policy parameters and improves general-
ization to new goal specifications. Once we obtain the goal-conditioned policy weights 6, we can
process the current observation through the generated policy to predict appropriate actions.



Hypernetwork Training. We train our hypernetwork H : O x O — © to generate parameters
for the target visuomotor policy 7 (-; 8) using behavior cloning (BC) on demonstration data. The
generated policy takes the current observation o, (comprising image [, and proprioception s;) and
outputs actions for execution.

To enhance robustness, we utilize a sequence of L consecutive observations as input to the policy, cap-
turing temporal dependencies under a non-Markovian assumption. The training objective minimizes
the BC loss between demonstrated actions a; and predicted actions aj:

M
Lpolicy = Z Z Z(ai, di), &i = W(Oi—L;ﬁ H(Oia Oi'))- Q)

=1 1<t<t'<N;

Here, ¢ represents the Mean Squared Error (MSE) loss. The end-to-end training procedure works
as follows: for a given current observation o} and a goal image o/, the hypernetwork H generates
the weights for the policy network 7. This goal-conditioned policy then processes the observation
sequence o!_ , to predict the action a. The resulting loss is backpropagated through both the policy
network and the hypernetwork. We restrict goal representations to image inputs since proprioceptive
goal states may not always be available in practical applications. This formulation allows the
hypernetwork to learn how to generate goal-specific processing mechanisms (target policy parameters)
from visual goals, embodying our key insight that goal images determine how current observations
should be processed.

3.2 Latent Space Shaping

A critical insight in our approach is that the effectiveness of parameter-adaptive policies depends
significantly on the quality of the representation space in which observations are embedded. While
our hypernetwork can directly generate policy parameters from raw observations, we find that
explicitly shaping the latent representation space substantially enhances performance. Given the high
dimensionality and redundant information in RGB images, we employ an image encoder £ to extract
task-relevant features and compress them into low-dimensional latents z = E(I).

We identify two fundamental properties that, when enforced in the latent space, particularly benefit our
parameter-adaptive approach: predictability and physical structure preservation. The first property
ensures the latent space facilitates modeling of state transitions, making the hypernetwork’s task
of generating appropriate policy parameters more tractable. The second property ensures that the
geometric relationships in the latent space meaningfully reflect physical relationships between states,
enabling the generated policies to exploit these structured representations.

Enhancing predictability through dynamic modeling. To improve the predictability of latent
representations, we introduce a dynamics model that forecasts future states in the latent space. By
training this model to predict state transitions while simultaneously shaping the encoder £ through
backpropagation, we create a latent space where sequential relationships are explicitly captured. This
significantly benefits our hypernetwork, as it needs to generate policy parameters that leverage these
sequential relationships to guide transitions from current to goal states.

Formally, consider a discrete-time dynamical system with state representation z; € Z and control
input a; € A. The forward dynamic model is:

2t+1 ~ p<1>(2t+1 | Zt;at)7 (6)

where z; = £(I;) represents the latent encoding at time ¢, a; is the executed action, and pg is the
transition dynamics parameterized by ®. For practical implementation, we approximate this with a
deterministic model @ : Z x A — Z. The corresponding learning objective minimizes the prediction
loss:

Epred =E;vp [é(@(zh at)7 Zt+1)] s @)
where / is a distance metric in the latent space. When @ is well-trained, we further finetune £ through
® to shape representations that capture both current state and potential transition information.

Preserving physical structure through distance constraints. For our parameter-adaptive approach
to be effective, the latent space must preserve the physical structure of the task, particularly the
progression towards goals. We formalize this as a requirement that the distance between the current
state and goal state should monotonically decrease along goal-reaching trajectories. This property is



especially valuable for our hypernetwork, as it provides a clear signal about how policy parameters
should change as states approach goals.

Specifically, for any goal-reaching trajectory 7; € D, where 7; = {(0;3-, a;)}j\]: 1> we enforce:

dg (0}, 05:) > de(0541,05), Vi <j, (®)
where dg denotes a distance metric in the latent space. To explicitly model this behavior, we propose
the following loss function:

Laist = Ernp Y max(0, B+ d(zj41,2%) — d(2), 29)), ©)
J
where d(z1, z2) = ||z1 — 22]|2 represents the Euclidean distance between latent features, z; = £(I;)
and z, = £(I,;) denote the image and goal image latents, respectively. The margin parameter 8 > 0
enforces a minimum decrease in distance between consecutive states and the goal. Empirically,
setting 8 = 0 suffices to induce the desired monotonic progression.

This shaped latent space creates an ideal foundation for our parameter-adaptive approach, as it encodes
both the predictive dynamics and geometric structure needed for the hypernetwork to effectively
generate goal-tailored policy parameters. Figure [3]illustrates how our latent space shaping approach
compares to alternative methods, showing the enhanced structure that benefits our goal-conditioned
policy generation.

3.3 Hyper-GoalNet for Manipulation

Having established our parameter-adaptive architecture and latent space shaping techniques, we now
present our complete framework, Hyper-GoalNet, which synthesizes these components for effective
goal-conditioned manipulation. The overall training objective combines our policy generation loss
with the latent space shaping terms:

EHyper—GoalNel = Epolicy + )\prcd »Cprcd + )\dist »Cdista (10)
where Apreq and Agis are weight coefficients balancing the contributions of predictability and structural

constraints. The framework is trained end-to-end using gradient descent, allowing all components to
co-adapt for optimal performance.

During inference for task completion, Hyper-GoalNet generates goal-specific policy parameters
by feeding the concatenated latent features [z4, 2;] into the hypernetwork H, where z, = £(I,)
and z; = £(I;) are the latent representations of the goal and current observations. The generated
goal-specific parameters § = H(z;, z4) are then loaded into the target policy 7(-; #), which processes
the current observation sequence to produce actions that guide the agent toward the goal.

Hyper-GoalNet offers two principal advantages over conventional goal-conditioned policies:

1) Parameter-adaptive policy generation: By dynamically synthesizing policy parameters based on
goal specifications, our approach effectively changes how goal-conditioned policies operate. Rather
than relying on a fixed network with static parameters to handle all possible goals, Hyper-GoalNet
generates compact and efficient processing pathways that are tailored to specific goals.

2) Natural goal completion detection: Our shaped latent space provides an elegant solution to the
challenging problem of goal completion detection. The distance metric dg (o, 04) in the latent space
serves as a natural criterion for determining when a goal has been achieved, enabling autonomous
goal transitions without external supervision.

The test-time task evaluation procedure for Hyper-GoalNet is formalized in Algorithm[I} Given an
initial observation I and goal observation I, the algorithm iteratively generates policy parameters,
samples actions, and applies them until either the goal is reached (as determined by the latent distance
falling below a threshold €) or a maximum number of steps 7" is achieved. This simple yet effective
procedure demonstrates how our parameter-adaptive approach seamlessly integrates into practical
robotic control scenarios.

4 Experiments

In this section, we present a comprehensive experimental evaluation across a suite of simulated and
real-robot manipulation tasks designed to address the following questions: 1) How effectively does



Algorithm 1 Hyper-GoalNet: Test-Time Task Evaluation
Input: Initial observation Iy, Goal observation I,
Modules: Encoder &, Policy generation hypernetwork #
Parameters: Max steps 7', Goal completion threshold e
1: I; < Iy, t < 0, done < false
2: while ¢ < T and not done do

3: 0« H(E(L),E(Ly)) > Generate policy weights
4: Gt + m(0t—r1.4;0) > Sample action
5: I;41,done < Env(ay) > Apply action and Env. interaction
6: if d(E(I441),E(Iy)) < € or done then

7: return SUCCESS

8: end if

9: It(—.[t+1,t<—t+1
10: end while
11: return TIMEOUT

Hyper-GoalNet’s parameter-adaptive approach generate successful policies for diverse manipulation
tasks? 2) To what extent does our latent space shaping enhance the performance of the hypernetwork
for goal-conditioned policy generation? 3) How does Hyper-GoalNet compare with conventional
goal-conditioned methods and alternative representation learning approaches? Through extensive
empirical analysis, we validate the effectiveness of our parameter-adaptive framework.

4.1 Experiment Setup

Simulation Environment. We evaluate our approach using Robosuite, a comprehensive robotics
benchmark designed for both short and long-horizon manipulation tasks [31}158]]. This framework
provides a standardized suite of environments, from which we select multiple contact-rich tabletop
manipulation tasks: coffee manipulation, threading, mug cleanup, nut assembly, three-piece assembly,
and several long-horizon tasks including coffee preparation and kitchen manipulation. To assess
robustness across varying initial conditions, we use three difficulty levels (dg, d;, d2), where higher
indices correspond to increased environmental variability, particularly in object pose initialization
(position and orientation). Each experimental environment features a robotic manipulator positioned
adjacent to a workspace containing task-specific manipulable objects.

Training Protocol. Our approach follows the behavior cloning paradigm, utilizing a dataset based
on MimicGen [31]. For each task, we employ a training dataset of 950 demonstrations, where
each timestep comprises front-view RGB images (128 x 128 resolution), robot proprioceptive states
s¢ € S, and corresponding ground-truth actions a; € A. The training procedure employs the Adam
optimizer [26] with a cosine learning rate schedule [28]]. We initialize the learning rate at 5 x 10~*
and maintain uniform loss balancing coefficients (A; = 1 for all components). Our model is trained
for 500 epochs with a batch size of 256, by default. Detailed implementation and training protocols
are provided in the Sec.

4.2 Main Results

Baselines. We compare our parameter-adaptive approach against state-of-the-art goal-conditioned
methods that use fixed network parameters. All methods are trained on pre-collected demonstrations
from MimicGen [31]] and modified to operate with a single future image as the goal specification for
fair comparison:

* GCBC [29]15]]: Goal-Conditioned Behavioral Cloning concatenates current and goal observations
as input to a fixed policy network, learning a direct mapping from this concatenated representation
to actions through supervised learning on demonstration data.

* Play-LMP [29]: Play-supervised Latent Motor Plans learns a latent plan space from demonstration
data, then trains a fixed-parameter policy conditioned on both the current state and the inferred
latent plan for the specified goal.



Table 1: Comparison with state-of-the-art goal-conditioned methods. Success rates (higher is
better) are computed over 50 rollouts across various manipulation tasks with increasing difficulty
levels (d0-d2). The experimental setup uses only two historical observations and a single goal image,
representing a practical deployment scenario. Our method consistently outperforms conventional
fixed-parameter approaches, demonstrating the effectiveness of dynamically generating policy param-
eters based on goal specifications.

Method Coffee 1 Mug-cleanup 1 | Three piece Assemb. T Threading 1 Nut Assemb. 1 Av
d0 dl  d2 Avg.| d0 dl Avg.| d0 dl d2 Avg.| d0 dl d2 Avg do &
GCBC 0.00 0.00 0.00 0.00 |0.00 0.00 0.00|0.00 0.00 0.00 0.00|0.00 0.00 0.00 0.00 0.00 0.00
Play-LMP | 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 |0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00 0.00 0.00
MimicPlay | 0.28 0.28 0.16 0.24|0.26 0.06 0.16|0.06 0.06 0.00 0.04|0.18 0.02 0.00 0.07 0.03 0.12
C-BeT 0.92 0.00 0.74 0.55|0.30 0.50 0.40|0.00 0.02 0.00 0.01{0.62 0.22 0.12 0.32 0.34 0.32
Ours [0.94 0.76 0.62 0.77 |0.78 0.46 0.62|0.52 0.20 0.04 0.25|0.82 0.32 0.24 0.46 | 0.55 | 0.52

Table 2: Long-horizon task performance. Our  Table 3: Component ablation analysis. La-
parameter-adaptive approach excels in complex  tent space shaping significantly enhances perfor-
sequential tasks, outperforming fixed-parameter =~ mance, while proper distance metrics and train-

methods across difficulty levels. ing are crucial for robustness.
Coffee Preparation? Kitchent Method Coffee T

Method | 740 g1 Ave. | d0  dl  Ave | V& . do di 2 | A
Ours(uf. at epoch 0) 092 000 062 0.51

GCBC 0.00 0.00 ~ 0.00 |0.00 0.00 0.00 | 0.00 Ours(wio shiping) 092 000 000 i

Play—LMP 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 Ours(dist(—)smrtimg.) 0.50 0.52 0.32 0.45

MimicPlay | 0.34 0.00 0.17 |0.86 0.18 0.52 | 0.35 Ours(cos dist) 094 036 048 059

C-BeT 0.82 0.04 043 |0.78 070 0.74 | 0.59 C-BeT(w/ shaping) 080 064  0.64 069

Ours |0.80 0.50 0.65 |1.00 0.80 0.90 | 0.78 Ours | 094 076 062 W07

* C-BeT [9]: Conditional Behavior Transformer uses self-attention to compress observation history
into a latent representation, which is combined with the goal state to condition a fixed-parameter
transformer that predicts actions.

* MimicPlay [53]]: MimicPlay is a self-supervised approach that learns general robotic skills from
unstructured teleoperation data, which consists of continuous sequences of observations and actions
from a human video. For our experiments, this method is adapted into a goal-image-conditioned
policy, with implementation details provided in the Appendix.

Evaluation Metrics. We evaluate performance using task completion success rates over 50 inde-
pendent rollouts with randomly initialized, previously unseen environmental configurations. We
impose maximum trajectory lengths of 7' = 600 or 800 steps for contact-rich tasks and 7" = 1600
for long-horizon tasks. While our parameter-adaptive approach enables autonomous task completion
detection through latent space metrics (Algorithm[I]), we use environment-provided terminal signals
for standardized evaluation across all methods. Success is indicated as S; = 1 if rollout ¢ completes
within 7T steps, and S; = 0 otherwise.

Quantitative Results. Tables T]and [2] present success rates across multi-step and long-horizon tasks,
respectively. For each task, success is determined by task-specific criteria provided by the environment
—such as correct object placement, successful insertion, proper assembly configuration, or completion
of a sequence of subtasks for long-horizon scenarios. Our parameter-adaptive approach outperforms
fixed-parameter methods across these diverse evaluation criteria and difficulty levels. This superior
performance stems from our hypernetwork’s ability to dynamically generate task-specific policy
parameters tailored to each goal, resulting in more effective goal-directed behavior. Particularly in
high-variability environments (difficulty levels d1-d2), our method demonstrates greater robustness
and adaptability compared to conventional approaches — highlighting the advantage of having policy
parameters explicitly conditioned on goals rather than using fixed parameters for all scenarios.

Analysis of Likelihood-Based Baselines. We diagnose the poor performance of GCBC and Play-
LMP as a fundamental issue of their learning objective, not implementation. These methods, adapted
from reputable third-party code, aim to maximize the log-likelihood of expert actions. We found this
leads to severe overfitting on the training data, evidenced by a large gap between low training loss
and high validation loss. Such memorization-based learning fails to generalize to the subtle variations



present in our high-precision test scenarios. This limitation of likelihood-based models in complex
settings is corroborated by prior work [9]]. In contrast, our hypernetwork’s design imposes a beneficial
structural bias: by emulating an optimization process to generate parameters, it is incentivized to learn
a functional mapping from goal to policy, ensuring better generalization and avoiding the overfitting
issues that plague the baselines.

4.3 Ablation Study

Hypernetwork Architecture Analysis. We Table 4: Ablating hypernetwork architectures.
evaluate our optimization-inspired hypernet- Qur method with standard initialization is com-

work design against HyperZero [41], a promi- pared against HyperZero variants stabilized with
nent alternative architecture. Architecturally, enhanced initializations.

HyperZero encodes conditioning information
into a meta-embedding that is then transformed M ‘ Coffee Task (%)

. ethod
to produce the parameters for the target policy do dl d2 @ Avg
network. Because this direct mapping can pro-  HyperZero + ScalarInit | 16 18 14 16
duce parameters with a numerical range mis-  HyperZero + Bias-Init 30 18 0 16
aligned with that of an optimally trained net- -
Wofik, it often requires spgcial ingltialization to Ours (Standard Init.) [ 94 76 62
stabilize training. To ensure a stable and robust
comparison, we therefore implemented two enhanced initialization schemes for HyperZero. The first,
ScalarInit, introduces a learnable scalar to control the initial scale of the hypernetwork’s output.
The second, Bias-Init [3]], is designed for high-dimensional conditioning inputs and constrains
the parameter range by incorporating learnable biases alongside weights that are initialized to zero.
As shown in TableEi], even with these stabilization techniques, our architecture, which requires no
special initialization, vastly outperforms HyperZero. This demonstrates that the iterative refinement
mechanism in our design is inherently more effective at capturing the relationship between goals
and appropriate policy parameters. These results highlight the critical role of architectural choice in
developing robust parameter-adaptive policies. More details can be found in Sec.[C]

Latent Space Shaping Analysis. Table [3| shows that proper latent space shaping is critical for
our parameter-adaptive framework. Removing shaping (“Ours w/o shaping”) severely degrades
performance on harder difficulty levels, while our specific choices of using goal-relative distances
and Euclidean metrics prove superior to alternatives. Figure [3| visually confirms how our approach
creates more consistent monotonic progression toward goals compared to unshaped representations.
Notably, applying our shaping techniques to the baseline C-BeT improves its performance, yet its
performance lags compared to ours, which in turn signifies the importance of the parameter-adaptive
framework as well as the synergy between policy generation and latent shaping. Our training strategy
also matters — unfreezing the R3M visual encoder [34] only after 20 epochs ensures stable parameter
generation. These results validate our insight that latent spaces should reflect physical progression
toward goals to effectively support parameter-adaptive policy learning.

Visualization. Figures [3] and [6] illustrate how bemos oumes  bemes s bemes  oums
our latent space shaping creates representations Highly noisy trend Monotonic trend

that directly benefit our parameter-adaptive ap-
proach. The plot shows the latent distance to the
goal (y-axis) over the execution timesteps of a
robotic task rollout (x-axis), where later steps
are progressively closer to the goal. Unlike R3M
embeddings which show significant fluctuations,
our method produces consistently monotonic
distance reductions toward goal states. This
structured latent space offers two key advantages
for our hypernetwork: (1) it provides clearer sig-
nals for generating appropriate policy parame-
ters as the agent progresses toward goals, and
(2) it enables reliable autonomous detection of
task completion based on latent distances. The
visualization confirms that our combined predictive modeling and distance constraints create opti-

Distance to the goal

o 50 200 o s0 150 200

100 150 100
Time Steps. Time Steps.

(a) R3M Embedding (b) Hyper-GoalNet Embedding

Figure 3: Comparison of (a) unshaped R3M em-
beddings versus (b) our shaped latent space, show-
ing Lo distances to goal states along multiple tra-
jectories. Our shaping creates consistent mono-
tonic decreases in distance-to-goal, facilitating
more effective parameter generation.



mal representations for goal-conditioned parameter generation, enhancing both performance and
interpretability.

Goal Completion Detection. To substan- Typ]e 5: Quantitative validation of autonomous goal
tiate our claim that the shaped latent space  ¢ompletion detection. Our method’s latent distance-
enables autonomous goal completion de- paged success rate (Auto SR) is compared against the
tection, we supplement the qualitative evi-  ¢pyironment’s ground truth (Env SR) on the Coffee

dence from Figures Pl and We eval-  55ks. High Accuracy and Recall validate its reliability.
uate this capability by comparing our au-

tonomous detection, where success is deter- Task  Auto SR EnvSR  Accuracy Recall
mined by a latent distance threshold (Auto DO 0.96 0.94 94% 98%
SR), against the environment’s ground-truth D1 0.78 0.76 90% 95%
signal (Env SR). Table[5|presents the results D2 0.74 0.62 76% 90%

using two key metrics: Accuracy, which
measures the agreement between the two
signals, and Recall, which measures our
method’s ability to identify true successes reported by the environment. The strong alignment,
evidenced by an average accuracy of 86.6% and recall of 94.3%, provides strong empirical evidence
that our latent-distance-based approach is a reliable autonomous completion detector.

Mean - - 86.6% 94.3%

4.4 Real Robot Experiments

We validate our parameter-adaptive approach on .
physical hardware using the Realman Robotics Table 6: Real-robot experiment results. (suc-
Platform, featuring a 7-DoF manipulator with ~cesses/total trials).

a 1-DoF parallel gripper (Figure [7). We eval- Method
uate four diverse manipulation tasks — sweep,
pick&place, pull, and stack — with 15 trials per GCBC 0715 0715 0115 2/15
task. Due to hardware constraints limiting con- ~ Play-LMP 0715 0715 0715 S/15
trol to joint angles without end-effector pose C-BeT 215 615 5/15 8/15
information, we exclude MimicPlay, which re- Ours 14/15 15/15  14/15  15/15
quires precise 3D end-effector trajectories.

Pickplace  Pull  Stack Sweep

As shown in Table[6] conventional fixed-parameter approaches struggle significantly in real-world
conditions where environmental noise, perception uncertainties, and imperfect demonstrations create
substantial challenges. In contrast, our method maintains high success rates across all tasks, including
those requiring precise contact-rich interactions. This real-world performance gap highlights a
key advantage of our parameter-adaptive approach: by dynamically generating task-specific policy
parameters based on goal images, our method better adapts to real-world variations and demonstration
imperfections that weren’t encountered during training. Detailed experimental protocols are provided
in the Sec.[H

5 Discussion

Conclusion. Our parameter-adaptive approach represents an effective move in goal-conditioned
policy learning by dynamically generating policy parameters based on goal information rather
than using fixed parameters with conditioning. The consistent performance improvements across
tasks demonstrate that “how” observations should be processed is inherently dependent on the goal
specification. Our latent space shaping techniques prove critical for this architecture — imposing
physical structure and predictive capacity provides clearer signals for the hypernetwork to generate
effective policy parameters. Overall, our results suggest that explicitly modeling the relationship
between goals and processing mechanisms offers a promising direction for more flexible and robust
robotic control.

Limitations. Our method’s primary limitation is its reliance on a well-structured latent space, which
is challenging to form for highly complex tasks and requires demonstration data with clear goal
progression. This data dependency creates a key failure mode: out-of-distribution goals can cause the
hypernetwork to generate erratic policies. Furthermore, as an offline-trained method, its dynamic
generation of parameters for novel goals lacks explicit safety guarantees against unforeseen states,
making the integration of robust safety constraints a critical direction for future research.
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Appendix

In this section, we present supplementary materials detailing the methodological framework and
experimental procedures used in this study.

A Manipulation Task Details

Task Details. Our experimental evaluation was conducted within the Robosuite [58]] simulation
environment, utilizing the benchmark dataset from Mimicgen [31]. We primarily investigated complex
tabletop manipulation tasks that encompass diverse robotic skills. The selected tasks are characterized
as follows:

* Coffee: A multi-step manipulation task requiring precise object handling, where the robot
must grasp a coffee capsule, insert it into the designated slot of the coffee machine, and
securely close the machine’s lid.

* Mug cleanup: A sequential task involving both articulated object interaction and object
placement. The robot must coordinate drawer manipulation and object transportation,
culminating in storage of a mug.

* Three piece assembly: A multi-step assembly task demanding spatial reasoning and precise
manipulation. The robot must stack three components in a specific sequence to achieve
compact assembly configuration.

* Threading: A high-precision manipulation task requiring fine motor control. The robot
must accurately orient and manipulate a needle for successful insertion through a minimal
aperture.

* Nut Assembly: A manipulation task involving precise grip control and spatial alignment for
successful mechanical assembly. In this task, the success rates for the two nuts are measured
separately, and the overall success rate is then calculated.

* Coffee Preparation: An extended sequential task combining multiple sub-goals, includ-
ing cup positioning, drawer manipulation, capsule retrieval, and coffee maker operation,
culminating in a fully prepared coffee setup.

* Kitchen: A complex sequence involving appliance interaction, object manipulation, and
spatial reasoning. The task includes stove operation, cookware handling, and precise object
placement.

These tasks are specifically selected for their comprehensive representation of challenging robotic
manipulation scenarios, featuring contact-rich interactions, precise object manipulation, and complex
multi-step sequences. Each task requires a combination of skills including spatial reasoning, and
sequential decision-making. The visual representation of these manipulation tasks and their key
phases are illustrated in Figure 4]

Data Processing and Observation Space. The demonstration data from Mimicgen is initially
preprocessed by segmenting complete demonstrations into trajectory subsequences to facilitate
learning. Our framework implements a constrained observation context with a length of 2, including
front-view RGB images and the agent’s proprioceptive state information. This design choice means
that the agent’s decision-making process is based solely on the current frame and one historical frame,
deliberately limiting the temporal horizon to enhance real-world applicability. Given our focus on
goal-conditioned policy learning, the observation space of the hypernetwork is augmented with a
single RGB goal image representing a feasible target state. The input modalities are structured as
follows:

* Visual observations: RGB images with dimensions 128x128 pixels for both contextual and
goal representations.

* Proprioceptive state: A compact 9-dimensional vector encoding essential agent state infor-
mation.

This deliberately constrained observation space creates a partially observable environment that closely
aligns with real-world robotics scenarios, where complete state information is rarely available. While
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Figure 4: Key phases of diverse manipulation tasks in experimental evaluation.

this design choice enhances the practical applicability of our approach, it also introduces significant
challenges:

* Single-goal scenarios necessitate hypernetwork architectures to efficiently handle the de-
manding requirements of goal-conditioned policy generation.

 Limited temporal context requiring efficient use of historical information.
* Partial observability demanding robust state estimation and feature extraction.

» Complex vision-based reasoning with constrained visual information.

Such challenging conditions serve to validate our method’s effectiveness under realistic constraints,
demonstrating its potential for real-world deployment.

Goal Specification Strategy. Our approach implements a systematic strategy for goal specification
across both training and evaluation phases. During training, we employ a dynamic goal sampling
mechanism where the goal image is stochastically selected from future frames within the same
demonstration, subsequent to the current timestep. This design offers two key advantages:

* Goal Feasibility: By sampling from actual demonstration frames, we inherently guarantee
the physical feasibility and reachability of the specified goals.

* Goal Diversity: The random sampling mechanism ensures sufficient variation in goal states,
promoting the learning of a robust and generalizable policy.

During the evaluation phase, the goal specification mechanism leverages the Mimicgen framework to
generate feasible goal states, facilitating potential transfer from simulation to physical systems.

B Comparison with Baselines

Given the challenging nature of our experimental setting as shown in Table [I] existing baseline
methods demonstrate limited success in task completion. To ensure comprehensive evaluation, we
introduce modified versions of existing approaches and additional baseline methods adapted for
our scenario. The following section details these enhanced baseline implementations and their
comparative performance.
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Table 7: Additional quantitative experiments with more baseline methods across different tasks.
1 indicates methods using a sequence of visual frames as goals rather than a single goal image,
with an extended observation length of 10 frames versus the standard 2. I indicates methods with
access to extra wrist-mounted camera images. The wrist views, extended observation sequence, and
extended goal sequences provide richer observational and task-guidance information for augmented
baselines. Hyper-GoalNet leverages only one goal image and two front-view observations, indicating
a more easy-to-be-applied setup while being more effective.

Method Coffee 1 Mug-cleanup 1 | Three piece Assemb. 1 Threading 1 Nut Assemb. T Av
do dl d2 Avg.| d0 dl Avg.| d0O dl d2 Avg. | d0 dlI d2 Avg. do &
MimicPlay-Ot* 0.80 0.84 0.88 0.84|0.68 0.58 0.63|0.50 0.38 0.02 0.30|0.32 0.06 0.06 0.15 0.10 0.44
MimicPlay-M' 0.28 0.28 0.16 0.24|0.26 0.06 0.16|0.06 0.06 0.00 0.04|0.18 0.02 0.00 0.07 0.03 0.12
C-BeT [0.92 0.00 0.74 0.55]0.30 0.50 0.40|0.00 0.02 0.00 0.01|0.62 0.22 0.12 0.32] 0.34 0.32
Hyper-GoalNet(G) | 0.94 0.60 0.62 0.72 |0.72 0.54 0.63|0.46 0.22 0.02 0.23 |0.78 0.20 0.18 0.39 0.67 0.50
Hyper-GoalNet 0.94 0.76 0.62 0.77 | 0.78 0.46 0.62|0.52 0.20 0.04 0.25 |0.82 0.32 0.24 0.46 0.55 0.52

We also conducted additional comparative experiments with BeT [47], C-BeT [9], and MimicPlay [53]
(implemented in both its original setting and a modified setting). And a variant of our method, Hyper-
GoalNet(G) is also introduced. Experiments were performed across all 16 MimicGen tasks, with
results for contact-rich tasks and long-horizon tasks presented in Tables [7]and [§] respectively. Please
note that the success rates reported in Table [§] reflect a modified evaluation criterion in the simulation
environment, resulting in slight variations from the kitchen task results presented in Table[I] The
implementation details are explained below.

Details about the Baselines. We selected four task-specific baselines and reimplemented them
under settings generally consistent with Hyper-GoalNet. The reimplementation details are as follows.

* GCBC [29] [15]]: Goal-Conditioned Behavioral Cloning (GCBC) is the most general
framework for learning goal-conditioned policies. It consists of a perception module,
a visual encoder, and a RNN-based goal-conditioned policy module. GCBC takes
in a 9-dimensional proprioceptive state, a current front-view RGB image, and a goal
RGB image as input and predicts the action distribution to transfer the current state
to the goal state. The model is trained end-to-end with the objective of maximizing
the log-likelihood of the ground-truth action in the predicted distribution. The obser-
vation sequence length and the predicted action sequence length are both restricted to 5 steps.

* Play-LMP [29]: Play-Supervised Latent Motor Plans (Play-LMP) builds upon the
foundation of GCBC, aiming to learn reusable plan representations and task-agnostic
control from play data. Play-LMP consists of three main components: 1) Plan recognition
module: maps the input sequence to a distribution in the latent plan space. 2) Plan proposal
module: generates multiple conditional prior solutions based on the current and goal states.
3) Plan and goal-conditioned policy: predicts actions conditioned on the current state,
goal state, and a latent plan sampled from the plan proposals. Similar to GCBC, both the
observation sequence length and the predicted action sequence length are restricted to 5
steps. The model is trained end-to-end.

* MimicPlay [53]: MimicPlay employs a hierarchical learning framework consisting of two
training stages. In the high-level training stage, the model takes the robot’s end-effector
pose, along with the current visual observation and goal observation, as input to predict
the future pose trajectory of the robot’s end-effector. This component is referred to as the
high-level planner. In the low-level training stage, the high-level planner with the best
validation performance from the previous stage is loaded and its parameters are frozen. The
model then continues training using a 9-dimensional robot proprioceptive state and visual
observations (both current and goal) as input to predict the robot’s actions.

Please note that in the original MimicPlay low-level training setup, in addition to the current
front-view RGB image, a wrist-mounted RGB image is also used as input, which may
contribute to its higher success rate. To ensure a fair comparison with our method, we
modify this setup by replacing the wrist-mounted image with a duplicate front-view image
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Table 8: Additional evaluation on long-horizon tasks. 7 indicates methods using a sequence of
visual frames as goals rather than a single goal image, with an extended observation length of
10 frames versus the standard 2. I indicates methods with access to extra wrist-mounted camera
images. The wrist views, extended observation sequence, and extended goal sequences provide
richer observational and task-guidance information for augmented baselines. Ours achieves similar
performance compared to the baseline with access to wrist view images, extended observation
sequences and a sequence of goal images, which demonstrates the effectiveness of our method in
achieving long-horizon tasks with much less guidance information (effort).

Coffee Prep.t Kitchent
do dlI Avg.| d0O dl Avg.

MimicPlay-O'* 0.86 0.68 0.77 | 1.00 0.70 0.85 | 0.81
MimicPlay-Mf 0.34 0.00 0.17 | 0.86 0.18 0.52 | 0.35

C-BeT | 0.82 0.04 0.43|0.78 0.70 0.74 | 0.59

Hyper-GoalNet(G) | 0.80 0.50 0.65 | 1.00 0.88 0.94 | 0.80
Hyper-GoalNet 0.80 0.50 0.65 | 1.00 0.80 0.90 | 0.78

Method Avg.

Table 9: Comparison with augmented BeT. } represents extended context length and additional
wrist-view images. Although BeT is not originally designed as a goal-conditioned policy method, its
augmented version serves as a strong baseline. Our method still outperforms the augmented BeT.

Method | Cof.d0t | Cof.d21 | Mug. dlt | Avg

BeTt 0.66 0.42 0.26 0.45
Ours 0.94 0.62 0.46 0.67

during the low-level training process. Additionally, we adopt the same goal-specified strategy
as described above, rather than providing the entire prompt video as used in MimicPlay’s
original test-time evaluation setting.

Hyper-GoalNet(G) We introduce another variant of our method, Hyper-GoalNet(G), where the
hypernetwork backbone takes only a single goal image as input, without requiring the current image
during both training and testing phases. All other settings remain unchanged. During inference,
Hyper-GoalNet(G) generates the weights for the lightweight target policy only once and maintains
them fixed during rollouts, resulting in improved computational efficiency. As shown in Table|/|and
Table [8] Hyper-GoalNet(G) still outperforms the baselines while utilizing a much smaller lightweight
policy network, demonstrating both the effectiveness and efficiency of our approach.

Comparison with BeT [47]. We conducted comparative experiments with Behavior Transformer
(BeT), a state-of-the-art approach for multi-modal behavioral learning. BeT employs k-means
clustering to discretize continuous actions and utilizes transformers to model categorical distributions
across action bins, incorporating an action correction head to refine discretized actions into continuous
ones. Despite not being explicitly designed as a goal-conditioned policy, BeT has emerged as a robust
baseline in current robot learning literature. Given that the original BeT implementation for the
Franka Kitchen task was limited to state space observations and lacked compatibility with Robosuite
tasks, we enhanced its architecture by incorporating a pretrained image encoder [34]. To strengthen
the baseline comparison, we augmented BeT with additional wrist camera observations—a feature
absent in our method—and extended the context length from 2 (used in our approach) to 4, which
typically facilitates more effective policy learning for BeT. Consequently, BeT acquires more image
observations per timestep than our method, while maintaining the same image resolution of 128x128
pixels.

Table [0 presents experimental results for some randomly selected tasks, where Cof. d0 and Cof. d2
represent Coffee dO and Coffee d2 tasks, respectively, and Mug. d1 denotes the Mug cleanup d1
task. Notably, despite utilizing reduced contextual information, our method demonstrates superior
performance across all tasks in terms of success rates. These results substantiate our method’s robust
capability in behavior learning, even under more constrained observational conditions.
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Comparison with C-BeT [9]. Conditional Behavior Transformer (C-BeT) is a goal-conditioned
version of BeT, a behavior prediction model that compresses an agent’s observation history and the
goal state into a compact latent representation using self-attention, which is then transformed along
with discrete action representations to efficiently predict the agent’s future behaviors. To ensure fair
comparison, we configured C-BeT with identical observation settings to our method, maintaining a
context length of 2 and utilizing a single goal image. The comparative results are presented in Table (7]
and Table[8]

Comparison with Original MimicPlay (MimicPlay-O). In the original MimicPlay experiment
setting, we retained the wrist image as an input during the low-level training stage. For the test-time
evaluation process, we provided the pretrained model with prompt videos in HDF5 format generated
by MimicGen. In contrast to our approach, MimicPlay-O has access to wrist-mounted camera images,
uses an extended observation length of 10 frames instead of 2, and utilizes a sequence of visual
frames as goals, rather than a single goal image configuration.

Comparison with another Modified MimicPlay (MimicPlay-M). In this experimental setting,
we removed the wrist image as an input during the low-level training stage, since the wrist image
is not easy to obtain for goal specification. For the test-time evaluation process, we provided the
pretrained model with prompt videos in HDF5 format generated by MimicGen. Please note that this
experimental setup slightly differs from the one in our baseline setting. In contrast to our approach,
MimicPlay-M uses an extended observation length of 10 frames instead of 2, and utilizes a sequence
of visual frames as goals, rather than a single goal image configuration.

Efficiency Analysis. We evaluate the computational efficiency by measuring the average inference
time per action step during deployment. Table [I0] presents the average inference latency per step
across different methods, measured over 40,000 steps on a single NVIDIA RTX 3090 GPU. Our
proposed Hyper-GoalNet(G) demonstrates superior computational efficiency while maintaining state-
of-the-art performance. This efficiency stems from our novel approach of dynamically generating
weights for a lightweight target policy. Specifically, Hyper-GoalNet(G) generates a suitable set of
policy weights at the beginning of each rollout based on the goal image. These weights remain fixed
throughout the execution, eliminating the need for repeated weight generation and thus significantly
reducing the computational overhead during deployment.

Table 10: Average Inference Time Per Step
Method | GCBC Play-LMP C-BeT | Hyper-GoalNet Hyper-GoalNet(G)
Time (ms) ‘ 15.47 22.78 13.61 ‘ 6.33 1.46

C Comparison with Other Hypernetworks

This section provides additional details on the comparison between our proposed hypernetwork
architecture and HyperZero, particularly regarding computational requirements.

C.1 Training Time & Memory Requirements

To ensure a fair and direct comparison, all experiments were conducted on a single NVIDIA RTX
4090 GPU. The training hyperparameters, including batch size, learning rate, and optimizer settings,
were kept identical for both our method and the HyperZero baseline. The only modification was
the hypernetwork architecture itself. This controlled setup ensures that any observed differences in
resource consumption are directly attributable to the design of the hypernetwork module.

As detailed in Table[TT] our method requires slightly more resources than HyperZero in terms of
per-epoch training time and memory usage. However, this modest computational overhead is coupled
with the substantial performance gains documented in the main paper, highlighting the efficiency and
effectiveness of our architectural design.

19



Table 11: Computational resource comparison. The table shows per-epoch training time and
memory footprint for our method versus HyperZero under identical hyperparameter settings. “Frozen”
and “Unfrozen” refer to the state of the visual encoder.

Metric | HyperZero Ours
Training Time / Epoch ~90s ~104s
Memory (Frozen Encoder) 3,038 MB 4,916 MB

Memory (Unfrozen Encoder) 13,452 MB 14,844 MB

D Policy Learning Details

Overview. A conventional sequential decision-making problem can be formalized as a discrete-time
finite Markov decision process (MDP) defined by a 7-tuple M = (O, A, P, r, po,~, H), where:

¢ (O denotes the observation space,

» A represents the action space,

* P:0O x Ax O — R, defines the transition probability distribution,
* v € [0, 1] is the discount factor,

» H specifies the temporal horizon of the process.

In the context of imitation learning, we define a complete state-action trajectory as 7 =
(00, ag, ---, 0¢, at), where the initial state is sampled as oy ~ pg(0g), actions are generated by the
policy a; ~ my(+|ot), and state transitions follow 0;11 ~ P(-|o¢, az).

Traditionally, the objective in goal-conditioned decision-making problems is to identify an optimal
goal-conditioned policy 7y that maximizes the expected discounted reward:

T

n(mo) = B[y ~'r(0r, a1, 0141]0g)] (11
t=0

However, our approach diverges from this conventional framework in several key aspects: Reward-
Free Learning: Operating within a behavior cloning paradigm, we lack access to explicit reward
signals. Instead, we aim to learn a goal-specific policy 7y that maps states to optimal actions
purely from demonstrations. Goal-Specific Policy Generation: Rather than learning a universal goal-
conditioned policy, our hypernetwork architecture generates specialized policies for specific goals,
conditioned on the current RGB observation and a target goal image. Non-Markovian Extension:
We relax the Markovian assumption to incorporate temporal dependencies. The resulting policy
formulation becomes:

779(@t|0t—170t) (12)

This extended formulation enables the policy to leverage information from a context window of
length 2, enhancing its capacity to handle complex, temporally-dependent manipulation sequences.

Model Architecture. Our architectural design addresses the challenges of visuomotor manipulation
tasks, which require processing of high-dimensional visual inputs rather than simple state-based
representations. The architecture comprises several key components integrated to handle visual
and proprioceptive information effectively. Visual Processing Pipeline: To bridge the gap between
high-dimensional visual inputs and hypernetwork processing capabilities, we employ a pre-trained
visual encoder [34] to compress RGB images into compact latent representations. This encoder’s
training follows a two-phase strategy: Initial phase (first 20 epochs): Parameters remain frozen to
establish stable feature representations; Fine-tuning phase: Parameters become trainable to optimize
task-specific visual features.

Hypernetwork Configuration. Our hypernetwork uses the HyPoGen architecture [40]] with 8
optimization blocks. It processes encoded current and goal images to generate the parameters for
a 3-layer MLP target policy, an architecture that can be flexibly extended in depth and width. This
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Figure 6: Distance to the goal in the latent space along policy rollouts across different manipu-
lation tasks. The consistent decreasing trend across diverse tasks demonstrates that our learned latent
representations effectively capture the physical progress toward task goals, establishing meaningful
correspondence between latent-space distances and real-world task completion.

meta-learning approach enables dynamic policy adaptation based on specified goals while main-
taining computational efficiency. Beside the image encoder mentioned above, the action generation
incorporates several specialized components: Predictive Model: Implemented as an MLP operating in
the compressed latent space, leveraging the reduced dimensionality for efficient dynamics modeling,
Proprioceptive Encoder: A compact MLP processes low-dimensional proprioceptive states, providing
essential agent state information, Feature Integration: Temporal image features are concatenated
with proprioceptive information at each timestep, Target Policy: A lightweight MLP processes the
integrated features to generate appropriate control actions. This architecture efficiently handles the
complexity of visuomotor tasks while maintaining computational tractability through dimensionality
reduction and feature integration.

Training Details. Our framework implements an end-to-end training paradigm with controlled
experimental conditions for reproducibility. Using a fixed random seed, we partition the dataset into
950 training and 50 validation demonstrations across all tasks. Training employs a batch size of 256
and the Adam optimizer with an initial learning rate of 5 x 10~%, coupled with cosine annealing for
learning rate decay. The model trains for 500 epochs without weight decay or dropout regularization
in the hypernetwork component. The training and evaluation procedures were performed on a single
NVIDIA GeForce RTX 3090 or RTX 4090 GPU. To ensure a fair comparison, all methods evaluated
in our experiments were trained using this identical configuration.
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Figure 7: The real robot workspace.

E Ablation Studies

We conducted ablation experiments to evaluate the impact of various methodological choices, with
quantitative results presented in Table [3] Figure[6]and Figure [3]illustrates the normalized distance
between current and goal states under different experimental configurations. Our analysis includes
several key variations:

* uf. at epoch 0. Full parameter unfreezing from epoch 0, where all model components are
trainable from initialization.

* w/o shapping. Removal of latent shaping technique detailed in Section[3.2]

* dist¢>start img. Alternative distance computation between current and start images, rather
than current and goal images.

* cos. dist. Implementation of cosine distance metric in place of Euclidean distance.

* C-Bet(w/ shaping). We implement C-Bet and incorporate our proposed additional shaping
method while maintaining the same experimental setup.

These systematic variations enable us to quantify the contribution of each design choice to the overall
system performance.

F Real Robot Experiment Setting

Real Robot Platform. All real-world experiments were conducted on a RealMan RMC-DA dual-
arm manipulator, which comprises two 7-degree-of-freedom robotic arms, each rated for a 5 kg
payload and fitted with a parallel-jaw gripper. While the platform supports bimanual manipulation,
this work focuses specifically on evaluating Hyper-GoalNet’s capabilities in single-arm tabletop
manipulation tasks. The extension to bimanual manipulation remains as future work. The robot is
mounted in front of a 1.25 m x 0.75 m tabletop, which serves as the exclusive workspace for all
manipulation tasks. A standardized set of test objects—ranging from simple geometric primitives
(e.g., cubes) to more complex shapes—is placed on the table according to predefined configurations.
And on the tabletop there might be some distractor object. To support perception, we employ an
overhead RGB-D sensor (Intel RealSense D435i). The entire workspace is shown in Figure[7]

Task Details. To validate the versatility and robustness of our method across a broad spectrum of
manipulation skills, we selected four representative tabletop tasks. Each task emphasizes a different
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Figure 8: Key phases of diverse manipulation tasks in real robot experimental evaluation.

core competency—object localization, precision grasping, and surface contact manipulation—and is
defined as follows:

* Pick-and-Place. The robot must perceive and localize a specified cubic object within the
workspace, plan a collision-free trajectory, execute a stable grasp, and transport the object to
a predefined target location (e.g., a plate). Success is measured by the accuracy of the final
placement and the repeatability across trials.

* Stacking. Extending the pick-and-place paradigm, this task requires the robot to grasp a
source cube, position it directly above a target cube resting on the tabletop, lower it until
gentle contact is detected via proximity or vision-based cues, and then release to complete
the stack. Success is defined by the source cube being neatly aligned atop the target cube.

* Drawer Pulling. The robot must detect drawer handle, plan an approach to engage the
handle with its gripper, and execute a controlled pulling maneuver to extend the drawer
along its linear guide. Performance is evaluated by the final extension distance achieved
without stalling.

* Sweeping. The end-effector is equipped with a broom attachment. The robot must locate
and gather a target object scattered on the tabletop, then sweep it into a designated collection
zone (e.g., a dustpan). Success is defined by the target object being fully contained within
the collection zone at the end of each trial.

Data Processing and Observation Space. Our real-robot evaluation follows the same protocol
as in simulation: at each timestep, the policy receives the two most recent observations and a single
goal image. We collect approximately 70—100 human teleoperation trajectories per task for training.
Vision is acquired with an Intel RealSense D435i depth camera; we concatenate its depth channel
with the RGB channels to form 4-channel images of resolution 128 x 128, which are normalized to
[0, 1] before input to the encoder. Since explicit end-effector poses are unavailable, we represent the
current proprioceptive state by the previous action—comprising seven joint angles and one gripper
command—resulting in an 8-dimensional vector. All modalities are synchronized identically to the
simulation setting, ensuring a seamless transfer between simulated and real-world experiments.

G Additional Visualization

We provide additional visualization of the shaping. Figure [9] and Figure [I0] demonstrate the ap-
proximate monotonic trend of the distance between the current state and the goal state is consistent
across different task scenarios. This consistent pattern substantiates the robustness of our shaping
mechanism and validates its task-agnostic applicability.
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Figure 9: Additional visualization: Distance to the goal in the latent space along policy
rollouts across different manipulation tasks. The consistent decreasing trend across diverse tasks
demonstrates that our learned latent representations effectively capture the physical progress toward

task goals, establishing meaningful correspondence between latent-space distances and real-world
task completion.

H Future Work

Building upon our current findings, we identify three primary directions for future research: First,
we aim to incorporate multi-goal reasoning to handle complex sequential tasks. Second, we plan
to extend our framework by integrating foundation models to develop a more generalized policy
generation framework, potentially enabling broader task generalization and enhanced adaptability
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Figure 10: Additional visualization: Distance to the goal in the latent space along policy
rollouts across different manipulation tasks. The consistent decreasing trend across diverse tasks
demonstrates that our learned latent representations effectively capture the physical progress toward

task goals, establishing meaningful correspondence between latent-space distances and real-world
task completion.

across diverse manipulation scenarios. Third, we plan to combine our parameter-adaptive approach
with reinforcement learning to reduce dependence on demonstration data.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim our contribution in the introduction and method section.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations including challenges in long-term planning, further
work on scaling up, and multi-goal reasoning design.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not does not involve the theoretical part and the proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include implementation details in the experiment section and training
details in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We don’t provide open access to the code now, but the data is publicly available.
We will open the source code upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show the training and testing details, as well as model architecture in the
appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not show error bars in paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention the compute resources in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: In our manipulation tasks, we have not encountered any safeguard issues.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the methods, datasets and models originated from other works are cited in
reference.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will release relative assets upon acceptance. We welcome new creation
based on our system.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The development of our core methods does not incorporate LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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