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Abstract

We introduce Neural Superposition Networks, a class of physics-constrained neural
architectures that exactly satisfy given partial differential equations (PDEs) by
construction. In contrast to traditional physics-informed neural networks (PINNs),
which enforce PDE constraints via loss regularization, our approach embeds the
solution manifold directly into the architecture by expressing the output as a
superposition of analytical basis functions that solve the target PDE. This elim-
inates the need for interior residual loss terms, simplifies training to a single-
objective optimization on boundary conditions, and improves numerical stability.
We show that for linear PDEs—including Laplace, heat, and incompressible flow
constraints—this architectural bias leads to provably convergent approximations.
Using maximum principles and classical convergence theory, we establish uni-
form boundary-to-interior convergence guarantees. For nonlinear PDEs such as
Burgers’ equation, we demonstrate that partial structural constraints can still be
enforced via transformations (e.g., Cole—Hopf), yielding improved inductive bias
over standard PINNs. The resulting networks combine the expressiveness of deep
learning with the convergence guarantees of Galerkin and spectral methods. Our
framework offers a theoretically grounded and computationally efficient alternative
to residual-based training for PDE-constrained problems.

1 Introduction

Neural networks have emerged as powerful tools for modeling and solving differential equations,
both in forward simulations and inverse design problems. This integration spans a wide spectrum
of scientific applications, from continuous-depth networks based on neural ODEs [4]] to generative
modeling via stochastic differential equations [30]]. Within this landscape, physics-informed neural
networks (PINNGs) [27,120] have become a dominant paradigm by incorporating differential constraints
into the loss function as soft penalties.

While PINNSs offer a mesh-free and generalizable approach to PDE solving, they suffer from well-
documented limitations: non-convex training dynamics, sensitivity to gradient pathologies [31]],
reliance on manual loss balancing [19]], and a lack of convergence guarantees. Recent improvements
have proposed enhanced formulations, including adaptive activation [17]], domain decomposition
[23]], fractional order extensions [25]], and constraint relaxation via augmented Lagrangian methods
[29]. Despite these advances, residual-based enforcement remains fundamentally fragile—especially
for stiff, multiscale, or ill-conditioned PDEs.

To address these challenges, an emerging class of hard-constrained neural architectures aims to embed
the solution manifold directly into the network. Examples include divergence-free networks derived
from Hodge theory for incompressible flows [28]], holomorphic networks that satisfy Laplace’s
equation via complex analytic constraints [7]], and Hamiltonian neural networks preserving energy
invariants in dynamical systems [9]]. Similar ideas have been explored in Gaussian process priors
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[10] and symmetry-based numerical methods [15]. However, these approaches often target specific
operators and lack a unified construction principle.

This paper proposes a general framework—~Neural Superposition Networks (NSNs)—that enforces
linear PDE constraints exactly by construction. Leveraging the linearity of differential operators,
NSNs express the network output as a trainable superposition of known solution components, thereby
embedding the governing equation into the architecture itself. This eliminates the need for residual
loss terms and reduces training to a single-objective optimization over boundary conditions. We show
that NSNss naturally unify and generalize several existing PDE-constrained architectures, including
divergence-free and holomorphic networks, under a common principle.

Beyond this unification, we introduce new NSN constructions for the heat equation and, through
Cole—Hopf transformation, for the nonlinear Burgers’ equation. These models inherit the convergence
guarantees of spectral methods while maintaining the expressivity and adaptability of neural networks.
Compared to residual-based PINNs and their improved variants [21} {17} [23]], our approach offers
provable convergence (for linear PDEs), improved training stability, and higher fidelity to physical
constraints.

1.1 Contribution of this work

We introduce NSNs as a general framework that embeds linear PDE constraints directly into neural
architectures, extending previous structure-preserving methods. Our approach, NSNs, leverages the
principle of superposition by expressing the solution as a trainable sum of known PDE-consistent
basis functions. This approach ensures all network outputs satisfy the PDE by design, allowing
training to focus solely on satisfying boundary data.

Our framework generalizes several existing architectures—such as divergence-free networks [28]]
and holomorphic networks [[7]—as special cases under a common formulation. Furthermore, we
introduce novel superposition-based architectures for the heat equation and for the nonlinear Burgers’
equation, the latter via Cole—Hopf transformation. These constructions preserve problem-specific
structure and lead to more stable training behavior across linear and transformed nonlinear systems.

We provide theoretical convergence guarantees based on maximum principles and spectral approx-
imation theory, and show that the resulting training objective is convex when the basis is fixed.
Empirically, we demonstrate that NSNs outperform residual-based PINNs and other constrained
baselines across a variety of PDE benchmarks, including Laplace, heat, Burgers’, and incompressible
flow equations.

2 Related Work

The use of neural networks for solving PDEs has become central in scientific machine learning. A
foundational class of methods, PINNSs, introduces soft constraints by incorporating PDE residuals
as penalty terms in the loss function [27, 20]. While widely adopted, PINNs often suffer from
optimization difficulties such as stiff loss landscapes and poor convergence, especially in multi-
scale or inverse problems [31,[19]. These challenges have prompted numerous variants—such as
domain decomposition (XPINN, FBPINN) [16| 23], adaptive residual refinement [21]], augmented
optimization schemes [22], and trainable activation functions [[17].

To address limitations of soft regularization, recent works have explored architecturally constrained
neural networks that satisfy PDE properties by design. Examples include holomorphic networks
that exactly solve the Laplace equation via complex-valued activation functions [7]], divergence-free
architectures for incompressible flows using Hodge theory or vector potentials [28], and Hamiltonian
networks that preserve energy conservation laws [9]]. These methods restrict the hypothesis space
to subsets of the solution manifold, improving physical consistency and training stability. However,
they typically target a narrow class of PDEs and lack a unifying construction.

Our work builds on these ideas by proposing a general framework NSNs that encodes the solu-
tion space of linear PDEs directly into the architecture using basis function superposition. This
formulation recovers holomorphic and divergence-free networks as special cases, while naturally
extending to other linear PDEs such as the heat equation. Furthermore, we leverage classical solution
transformations (e.g., Cole-Hopf) to partially constrain nonlinear PDEs like Burgers’ equation. In
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contrast to residual-based PINNs, our approach avoids interior losses, yields better convergence
guarantees, and aligns more closely with Galerkin and spectral methods in numerical analysis.

Related lines of research include symbolic approaches to PDE solution discovery [2l], Gaussian
process priors over PDE solution spaces [[10], and symmetry-based architecture design using Lie
group theory [8]]. Our method can be viewed as a bridge between such classical analytic techniques
and modern deep learning models, offering a scalable and interpretable solution framework.

3 Problem Formulation

Let  C R? be a bounded domain with boundary €2, and let u : Q U 992 — R™ denote the target
solution to a given PDE. We follow the classical boundary value formulation from PDE theory [6]]
and consider general linear PDEs of the form:

Lu(z) =0, forxz e, (1)
subject to boundary (or initial) conditions:
Nu(x) = g(z), forxz € 0. (2)
Here, £ denotes a linear differential operator acting on u, and A denotes a boundary trace operator.
This formulation encompasses a wide class of PDEs:
* Laplace: £ = V2, N = Id (Dirichlet),
e Heat: £ =0, — aV?,
* Divergence-free: £L = V-,

* Burgers’ (via Cole-Hopf): £ = 0; — vV? on transformed ¢.

We define a solution space:

H = {uo(z) = ZWlm(x) : Lu; =0in Q} ,

which restricts the model to PDE-feasible functions. The only remaining optimization is over
boundary data:

Lioundary (0) = Ezro0 {(N[ue(x)] — g(x))z} : 3)

Function space abstraction. To formalize, let A denote a space of sufficiently smooth functions
from Q U 9Q to R™, and let £ : A — A’ be a linear differential operator satisfying
Llaf +bg) =aLl(f)+bL(g), Vf,g€ A abeR

Then, by linearity, the weighted combination
ug(x) = Z Wiui(x) € H
i=1

satisfies Lug = 0 exactly if all u; € ker L.

The goal is to learn weights § = {W;} such that ug matches the prescribed boundary values g(z) on
o0N.

4 Neural Superposition Networks

We now introduce NSNs, a class of neural architectures that satisfy linear PDE constraints by
construction. The central idea is to build the network output as a trainable linear combination of basis
functions, each of which individually satisfies the governing equation. This transforms the original
PDE-constrained learning problem into a purely boundary-fitting task over a restricted solution space.



120

121
122
123

124

125

126

127

128

129

130

131

132

134
135

137

138
139

140

141

142

143

144
145

L ©
)=+ 5 D 00ailgr)  ————————— o
l 2q (. N d optimize on 99

- F
- 1‘
{oitici v —_— {fr // )T }

Figure 1: A schematic of superposition networks, a single-layer feedforward neural network architec-
ture constrained to be in the solution space of a linear differential equation. Superposition networks
use a library of known solutions of the differential equation (a) and apply Lie group symmetries
derived from the differential equation to derive suitable linear transformations (b) which are linearly
combined (c) to approximate nontrivial solutions of the differential equation by training only on
initial and boundary conditions.

4.1 Architecture and Functional Form

Let £ be a linear differential operator, and let o; : R? — R™ denote a family of known solutions
such that Lo; = 0 foreach i = 1,..., N. Such basis functions are typically drawn from the null
space of £, as motivated by classical spectral and Galerkin methods for PDEs [6].

We construct the network output ug(z) as:

up(x) —00+f29‘” (95 (1)), )
where:

* 0y € R™ is an output bias term,

H(i) € R™ is a trainable weight vector,
o g% (1) : R4 — R%is a parametric Lie group transformation (e.g., translation, rotation, scaling)

that preserves the PDE solution space [[13} 8],
* ¢; are fixed (or learnable) basis functions satisfying Lo; = 0.

The Lie group action g7} m ensures that o; o g% (1) still lies within the null space of L, i.e.,
Llo; (g G (x))] = 0. Therefore, by linearity of E the network output wug(x) also satisfies the

PDE constramt exactly:

Lug(xz) =0 forallz € Q.
A complete catalogue of symmetry-preserving transformations used for Laplace, Heat, and divergence-
free equations is summarized in Appendix A.1.

This architecture is illustrated in Figure[I] In panel (a), we select or construct a library of known
solutions ;. In panel (b), each basis is transformed using symmetry-preserving actions ggg'i). In
panel (c), the transformed bases are linearly combined via trainable weights to yield an expressive
solution manifold.

The training objective is then reduced to enforcing the boundary conditions through the loss:
Lo0(0) = Eunon [Wus(@) - g(@)II] )
where A is the boundary operator and g(z) specifies the target boundary values.

This formulation defines a hypothesis space
Hn = {ug(x) | ug of the form @), Lug =0},
over which the only optimization objective is to satisfy Eq. (Z) at the boundary.

The resulting network—shallow in depth but rich in inductive bias—thus strictly respects the govern-
ing PDE while preserving the flexibility of neural parameterization at the boundary.
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4.2 PDE-Specific Instantiations

The superposition framework can be instantiated for various PDEs by selecting appropriate basis
functions ¢; and symmetry-preserving transformations gg;'. We present representative cases below.

Laplace Equation. Let £ = V2, with A specifying Dirichlet or Neumann conditions. The Laplace
operator admits harmonic functions as solutions, including the real parts of holomorphic functions
f: C — C[7l]. For example, o;(z,y) = Re(f;(z + iy)) with f;(2) € {sinz,e?, 22,...}.

Transformations gy, are taken from the 2D Euclidean group plus dilations:

go(x,y) = sRy <z) +t,

where s € RT is a scale, Ry a rotation matrix, and ¢t € R? a translation. These preserve harmonicity,
i.e., VZ[o;(ge(z))] = 0 [6].

Divergence-Free Fields. Let £ = V.. In 2D, any vector field of the form
ofi  0fi
O-i(‘ray) = <8y7 - 61’)
is divergence-free for smooth scalar potentials f; : R? — R [28]]. Typical choices include trigono-

metric polynomials, Gaussians, or Bessel functions. The same affine transformations as above can be
used to shift and scale the basis while preserving the divergence-free property.

Heat Equation. Let £ = 9; — aV2. A known class of solutions includes separable forms such as:

Ji(x7 Y, t) = exp(_)‘t) : QSZ(CU? y)7
where ¢; is an eigenfunction of the Laplacian (e.g., sine functions), and X is the corresponding
eigenvalue [6]. The transformation gy scales space and time to preserve the form of the heat kernel:

gg(z,y,t) = (Sxx+tm7 Syy+ty7 Stt+tt)a

with the constraint s, = «(s2 4 s7)/2 to maintain PDE consistency [15 [8].

Burgers’ Equation. Although nonlinear, 1D Burgers’ equation
Oy + U0 u = VOzu

can be linearized via the Cole—Hopf transformation: u = —2v0, log ¢ [[13}[5]. We construct ¢ using
the heat-equation NSN described above and compute ug via:

0
UF)(CCat) = _QV% 10g¢9($,t)7

where ¢y satisfies the linear heat equation analytically by construction.

Other PDEs. The same procedure can be extended to Helmholtz, wave, or convection-diffusion
equations, provided a library of solutions and symmetry-preserving transformations is available.
Automated discovery of such bases remains an open direction [2, 24].

4.3 Implementation Details

We implement all models in Python using PyTorch [26]]. For each PDE benchmark, we define a custom
superposition network where the basis functions o; are either analytical (e.g., harmonic, Gaussian, or
heat kernels) or shallow MLPs constrained to satisfy the governing PDE. Each transformed basis
is parameterized by an affine map gy, (x) = A;x + b; that preserves the PDE structure, with initial
parameters sampled uniformly to tile the domain.

Superposition weights and transformation parameters are trained jointly via gradient descent on
the boundary loss using the Adam optimizer [18]. All baselines (PINNs, AA, RAR, etc.) are
implemented under the same framework for comparability. Ground truth solutions for Heat, Burgers,
and Navier—Stokes equations are provided in tabulated form and referenced during evaluation.

Full implementation details, including code and dataset configurations, are provided in the supple-
mentary materials.
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5 Theoretical Analysis

We now analyze the convergence and optimization properties of NSNs. Our framework exhibits
several theoretical advantages over residual-based methods, particularly for linear PDEs. These
advantages stem from the network’s architectural alignment with the PDE solution space.

5.1 Exact PDE Satisfaction by Construction

Let £ be a linear differential operator, and suppose each basis function u;(x) satisfies Lu;(x) = 0.
Then, for any choice of weights W;, the network output:

ug(x) = Z Wiu;(z)

also satisfies Lug(x) = 0 by linearity. This removes the need to include any PDE residual loss during
training, as the constraint is satisfied everywhere in the domain 2.

5.2 Boundary-to-Interior Convergence via Maximum Principles

We now establish uniform convergence of the network solution in the domain, assuming convergence
on the boundary. Let u*(z) be the true solution to the boundary value problem (£, N, g), and let
ug(z) be the superposition network output.
Define the error eg(z) := ug(x) — u*(x). Then:

Leg =0, with €9|aQ — 0.

For classical linear PDEs such as Laplace’s equation and the heat equation, this yields the following:

Theorem 1 (Boundary-to-Interior Convergence for Laplace’s Equation). Let ug satisfy V2ug = 0,
and suppose ugloq — g. Then:

sup |ug(z) — u*(z)| < sup |ug(x) —u*(z)| — 0.
e €052

Theorem 2 (Parabolic Maximum Principle for the Heat Equation). Ler ug satisfy Oyug = aV2ug
and converge to g on the parabolic boundary. Then:
sup lug(x,t) —u*(x,t)] < sup  |ug(x,t) —u™(x,t)] = 0.
(z,t)€Qx[0,T] (z,t)€0p Q1

Similar guarantees for Burgers’ equation are obtained via the Cole—Hopf transformation; see Ap-
pendix B.1 for full derivations.

5.3 Convexity of the Boundary Optimization

When the basis functions u;(x) are fixed and linear in the parameters, the boundary loss becomes a
convex quadratic function:

Lp(W) =Egz 00 <Z Wiui(z) — g(x)) )
i=1

which admits a unique global minimizer in closed form. This contrasts with standard PINNs, where
the loss is non-convex and often poorly conditioned due to entangled PDE and boundary objectives.
See Appendix B.2 for a formal derivation of convexity under linear basis assumptions.

5.4 Function-Space Convergence and Spectral Analogy

Let the basis {u;(x)} span a subspace ,, of the full PDE solution space. If #,, is dense as n — oo,
then for any admissible solution u*, there exists ug € H,, such that ||ug — u*|| < e.

This mimics convergence guarantees in Galerkin and spectral methods. Our use of parameterized,
trainable basis functions generalizes classical fixed-basis approaches, while preserving solution
structure. We include a discussion of approximation density and spectral completeness assumptions
in Appendix B.3.
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5.5 Stability and Physics Consistency

Because the network output ug(x) lies within the null space of £ by construction, it is physically
admissible throughout training. In contrast to PINNs, which may produce unphysical intermediate
solutions, our method guarantees structural feasibility and avoids instability from PDE violations dur-
ing early optimization steps. A formal analysis of stability under constraint-preserving perturbations
is given in Appendix B.4.

6 Experiments

We evaluate NSNs on a suite of PDEs, including Laplace, Heat, Navier—Stokes, and Burgers’
equations. We compare NSNs against baselines that impose PDE constraints either via regularization
(e.g., PINNs) or architecture (e.g., holomorphic and divergence-free networks).

6.1 Setup and Evaluation Protocol

All experiments are implemented in Python using PyTorch [26]]. Each method is trained for 32,000
epochs using the Adam optimizer [[18] with a learning rate of 10~3 and Kaiming uniform initializa-
tion [[12]. Training is repeated with 10 random seeds, and root-mean-squared error (RMSE) against
ground truth is reported. Ground truths are obtained using FEATools and OpenFOAM [32] for
Navier—Stokes, and MATLAB solvers [1] for the Heat equation. Implementation details, software
environment, and collocation sampling strategies are described in Appendix A.2.

6.2 PDE Benchmarks

Laplace Equation. We solve V2u = 0 over 2 = (0, 1)? with two boundary types: full Dirichlet
(Laplace 1) and Neumann on y = 1 (Laplace 2). The exact solution is the real part of a meromorphic
function not representable by a single holomorphic term, ensuring a nontrivial approximation. We
compare NSNs, PINNs, and holomorphic networks. Holomorphic networks achieve slightly better
RMSE but are restricted to 2D Laplace problems, while NSNs generalize.

Heat Equation. Two setups are tested with distinct initial profiles and mixed Dirichlet-Neumann
boundary conditions. NSNs are constructed using manufactured solutions and scaled Lie group
transformations. Only PINNSs are used as baselines since no architectural method exists for this PDE.
NSNs outperform all PINN variants on both benchmarks.

Navier-Stokes Equation. We test steady-state incompressible Navier—Stokes equations over a
domain with obstacles. Since full PDE enforcement is infeasible architecturally, we benchmark
divergence-free subcomponents. NSNs are constrained to V - v = 0, while pressure is learned via
auxiliary MLP. Convergence is generally difficult, but NSNs yield stable approximations with lower
RMSE than divergence-free PINNS.

Burgers’ Equation. For 1D Burgers’ equation with Dirichlet conditions, we use the Cole—Hopf
transformation and train NSNs on the transformed heat equation. Despite its nonlinearity, NSNs
match or exceed the performance of all residual-based approaches.

Detailed descriptions of the governing equations, initial and boundary conditions, and ground truth
functions for each benchmark are provided in Appendix A.2.

6.3 Quantitative Results

Table [T] summarizes RMSE performance across all benchmarks. NSNs consistently outperform
PINNs and achieve competitive or superior accuracy compared to architectures with hand-crafted
inductive biases (e.g., holomorphic, divergence-free). All experiments were run using Python 3.10 on
two-cores of a Dual AMD Rome 7742 processor with 8GB of RAM and were allocated 12 hours of
compute time, but finished well-within that period

See also:  Appendix A.3 describes loss functions and implementation details for all baseline models.
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Table 1: A summary of experimental results (lower is better) comparing superposition networks
to alternative architectures imposing differential equation constraints for the methods outlined in
section[6] Methods which architecturally constrain differential equation dynamics are placed in the
first two rows. For the Navier-Stokes equations, only the divergence-free aspect of incompressible
flow can be architecturally imposed. Root-mean squared errors (RMSEs) of the final trained solution
are shown with standard deviations over 10 random seeds reported. For the heat equation, we report
the RMSE at the end of the simulation. Note that Holomorphic neural networks are only applicable
to Laplace’s equation, and NCL only applies to divergence-free fields.
Laplace 1 Laplace 2 Heat 1 Heat 2 Navier Stokes Burgers’

Superposition  0.0067+0.0023  0.0104+0.0047  0.0080+7.3e-5  0.00084-0.00018  0.1140.0026 0.0030+0.0024
Holomorphic ~ 0.002940.0022  0.0033+0.0009 - - - -
- - - - 0.097+0.0015

NCL

PINN 0.15+0.0030 0.29+0.093 0.0085+0.0024  0.002740.0017 0.10£0.00090  0.003940.0022
PINNB 0.0063+0.0041 0.12+0.066 0.063+0.016 0.015+0.0025 0.085£0.0090  0.004940.0030
PINNI 0.56+0.00091 0.82+0.067 0.080+0.024 0.046+4.4e-5 0.10+£0.00034 0.12+0.010
RAR 0.15£0.0015 0.43+0.012 0.0085+0.0075  0.002610.0012 0.10£0.00058  0.0036+0.00065
AA 0.19+0.12 0.54+0.084 0.039+0.015 0.016+0.016 0.097+0.00086  0.0067+0.0039
RAR+AA 0.20+£0.12 0.55+0.063 0.0070£0.0020  0.00531+0.0034  0.099-+0.00080 0.018+0.012

7 Discussion

NSNs provide a theoretically principled and numerically stable framework for solving PDE-
constrained problems by embedding the governing equations directly into the architecture. This hard
constraint ensures that network outputs always lie within the solution space of the target linear PDE,
transforming the learning objective into a boundary (or initial) fitting problem and eliminating the
need for residual loss terms. As a result, NSNs avoid several challenges common to residual-based
methods such as PINNs, including instability from loss balancing, lack of convergence guarantees,
and physical inconsistency during early training.

Our construction builds on classical insights from spectral and Galerkin methods, while incorporating
the expressivity of modern neural networks through parameterized basis functions and symmetry-
preserving transformations. Empirical evidence supports the benefits of this hybridization: when the
governing PDE is linear and admits a structured solution space, NSNs converge more efficiently and
stably than conventional methods, even with limited training data.

Across all benchmark tasks where the PDE could be hard-constrained (e.g., Laplace, Heat), NSNs
achieved the lowest RMSE, including stiff settings such as long-horizon heat propagation. For
nonlinear problems like Burgers’ equation, our Cole—Hopf-based formulation leveraged the exact
satisfaction of the linear surrogate (heat equation) and yielded stable gradients via logarithmic postpro-
cessing. Even when architectural constraints could not fully enforce the PDE (e.g., Navier—Stokes),
NSNs remained competitive with divergence-free variants.

While the approach currently relies on predefined analytical bases or symmetry-derived components,
we emphasize that this constraint is a strength in structured regimes rather than a limitation. In practice,
many physical systems are governed by equations with known symmetry groups or canonical solution
families. Moreover, the framework naturally extends to partially structured problems: for example,
we showed that even for nonlinear PDEs like Burgers’ equation, transforming the architecture to
align with a linear surrogate (e.g., via Cole—Hopf) retains most of the convergence and generalization
benefits.

These insights suggest several promising directions for future work. One is the automatic discov-
ery of trainable basis functions or symmetry transformations, potentially via symbolic regression,
meta-learning, or generative modeling. Another is the integration of NSNs into hybrid architectures
that combine structure-preserving components with data-driven residual correction, particularly for
complex or nonlinear systems where analytical structure is only partially available. Finally, applica-
tions to inverse problems, control, and high-dimensional parametric PDEs present opportunities to
leverage NSN5s’ stability and interpretability in scientifically demanding settings.

In summary, NSNs offer a complementary alternative to residual-based learning, one that prioritizes
exact physical adherence and principled inductive bias. Rather than replacing PINNs or surrogate
models, NSNs enrich the design space for physics-informed architectures, bridging the gap between
classical numerical analysis and deep learning.
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8 Conclusion

We introduced NSNS, a class of physics-constrained architectures that satisfy linear PDEs exactly by
construction. By expressing solutions as trainable superpositions of PDE-consistent basis functions,
NSNs eliminate residual losses and reduce training to boundary-only optimization. This results in
improved stability and convergence over conventional PINNSs, particularly in structured physical
domains.

Our experiments show that NSNs outperform or match strong baselines on a variety of PDE bench-
marks, including nonlinear problems such as Burgers’ equation. These results demonstrate the power
of architectural alignment with the solution space, both in theory and practice.

Future work includes extending NSNs to nonlinear regimes via hybrid residual correction, and
automating the discovery of basis functions using symmetry-informed priors or meta-learning. We
believe NSNss offer a principled path forward for structure-preserving neural solvers in scientific
machine learning.
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Appendix A. Experimental Details

A.1 Symmetry-Preserving Lie Group Actions

Neural Superposition Networks construct their output as superpositions of PDE-feasible basis func-
tions transformed via trainable Lie group actions. This section catalogs the symmetry-preserving
transformations gg used for the benchmark PDEs presented in this work. Each transformation is
derived from classical Lie symmetry theory for differential equations [15].

Laplace Equation (£ = V?). In R?, Laplace’s equation admits invariance under the extended
Euclidean group F/(2) combined with isotropic scaling:

go(x,y) = sRy (§> +t, >0, Ry €S0(2), te 1 6)

This includes translations, rotations, and uniform scaling. Harmonicity of functions is preserved
under such transformations, i.e., V[0 (gs(2))] = 0 if V2o (z) = 0.

Heat Equation (£ = 0; — aV?). The heat equation admits scaling in both space and time under a
specific parabolic scaling group. For a basis function o (x, t) satisfying the heat equation, we apply:

N

witha > 0, b € R, and ¢ € R. This transformation preserves the form of the heat kernel:
Lo (go(x,t))] =0 whenever Lo (z,t)] = 0.
Divergence-Free Vector Fields (£ = V-). Let o;(x) = V= f;(x) for scalar stream functions
fi : R? = R, where
of of
vip= (22—,
1= (5-a)

Any affine transformation composed of translations, rotations, and scalings applied to f; yields
another divergence-free vector field when passed through V. That is,

go(z,y) = A (“’5) +b, Ae€GL(2), detA£0,
preserves divergence-freeness under composition, i.e., V - VL [f(go(x))] = 0.

Burgers’ Equation (via Cole-Hopf Transformation). The 1D viscous Burgers’ equation
Ot + U0, u = VO u

is nonlinear and does not admit classical Lie group symmetries that preserve its nonlinear structure.
However, via the Cole—Hopf transformation:
u(zx,t) = 721/£ log ¢(x,t),
ox

it reduces to the linear heat equation:

at¢ = V0 ¢
Therefore, the symmetry-preserving transformations gy for Burgers’ equation are inherited from
those of the heat equation. Specifically, the parabolic scaling transformation:

T =ax+b, ®
t=a’t+ c,

with a > 0, b € R, and ¢ € R, preserves the form of ¢(x, t) and hence induces valid transformed
solutions for u(x, t). In this sense, although Burgers’ equation lacks explicit linear symmetry actions,
its superposition network inherits symmetry consistency through its transformation to the heat
equation.
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Summary. Each benchmark PDE considered in this work admits a specific class of symmetry-
preserving transformations. For Laplace and divergence-free equations, affine transformations from
the Euclidean group combined with scaling preserve the solution space. The heat equation requires
parabolic scaling to maintain kernel invariance, while Burgers’ equation admits no direct symmetries
in its nonlinear form and is instead handled via a Cole—Hopf transformation that linearizes it into
the heat equation. Neural Superposition Networks apply these group actions to construct expressive
yet PDE-constrained basis families, ensuring exact satisfaction of the governing operator across all
transformed modes.

A.2 Benchmark Configurations and Implementation

This section provides full experimental configurations for the PDE benchmarks introduced in Sec-
tion[] including governing equations, boundary conditions, initialization, sampling, and ground truth
construction.

Software and Experimental Environment. All experiments were conducted using Python 3.10 on
a dual-core AMD Rome 7742 processor with 8GB of RAM, and each run was allocated a 12-hour
time budget—well beyond what was required in practice. All neural networks were implemented in
PyTorch [26] and trained using the Adam optimizer [18] with a learning rate of 10~2 and Kaiming
uniform initialization [12]. Real-valued networks use tanh activations; holomorphic networks use
complex sin activations.

Supporting utilities for preprocessing and evaluation were implemented with NumPy [11] and
Matplotlib [14]]. Additionally, we provide an independent PINN baseline implementation for the
Laplace benchmark in JAX [3]], which confirms numerical consistency with the PyTorch results.
For reproducibility, all source code and CSV exports of simulation outputs are included in the
supplementary material.

Ground truth solutions for the heat and Navier—Stokes benchmarks were computed using MATLAB’s
sparse solver [1] and FEATools with OpenFOAM [32], respectively.

In the following, we provide detailed configurations for each PDE benchmark, including governing
equations, boundary conditions, basis construction, and sampling.

Laplace Equation. Domain: Q = (0, 1)? with either full Dirichlet (Laplace 1) or mixed Dirichlet—
Neumann (Laplace 2) conditions. Boundary values are taken from a meromorphic function:

1
(z—1.2—0.5i)(z + 0.2 — 0.50)(z — 0.5 + 0.2i)(z — 0.5 — 1.24) | ’

flz,y) =R z=x+1y.

NSN bases are real parts of holomorphic functions (e.g., sin z, e?, sin? z) with Lie-transformed
copies. PINNs and holomorphic networks are trained on 512 interior and 128 boundary points per
edge.

Heat Equation. Benchmarks use manufactured initial conditions:

Heat 1: ¢(x,y,0) = \/6*5((””*0-5)2*(9*0-5)2)(sin2 5mx + cos? 3my)

Heat2: ¢(z,y,0) = 675((0670.5)24»10(7;70.5)2)
. e—20((x—0.5)2+5(y—0.7)2) - e—20((r—0.5)2+5(y—0.3)2)

Mixed boundary conditions are used in both cases. Ground truth is computed with MATLAB’s
implicit finite-difference solver [1]]. NSNs use 64 basis elements constructed via Eq. (16)—(17) in the
main text.

Navier-Stokes. 2D steady-state incompressible Navier—Stokes on a rectangular domain with two
circular obstacles. Inflow and outflow conditions are set along x, and no-slip conditions along y.
NSNs use divergence-free basis functions (Eq. (15)) for velocity and a separate MLP for pressure.
FEATools with OpenFOAM [32] is used to generate the reference solution.

13



469

470
471
472

473
474
475

476
477

478

479

481

482

484
485

486
487
488
489
490
491

492
493
494

499

500
501

503
504

Burgers’ Equation. 1D viscous Burgers’ equation:
O + u0pu = VOypu, v =0.1

with initial condition u(z, 0) = =50 =0-6)* _ ¢=50(x—0.9)* anq Dirichlet boundaries u(0, ) = 0,
u(1,t) = 1. Cole-Hopf-transformed NSNs are trained on the corresponding heat equation and
postprocessed via automatic differentiation.

Sampling. Collocation points are sampled uniformly in the domain (1024 points) and along each
boundary segment (128 per side unless noted). For RAR methods, 32 high-residual interior points
are adaptively added every 1000 epochs. All models are trained for 32,000 epochs.

Evaluation. Root-mean-squared error (RMSE) is computed over 10 runs with different seeds.
Reported values in Table [T]include mean and standard deviation across these trials.

Appendix A.3 Loss Functions and Baseline Architectures

This section provides implementation details for all baseline models reported in Table[I] including
loss functions, architectural constraints, and optimization specifics. All models are implemented
using PyTorch 2.1 and trained with the Adam optimizer at a learning rate of 10~3 for 32,000 epochs.

PINN. The standard physics-informed neural network (PINN) minimizes a weighted sum of
boundary and PDE residual losses:

Leiny = Egnon [N fo(z) — 9(@)|?] + XEane [[I£fo(2)]1%] -

We use A = 1.0 by default unless otherwise noted. For PINNB and PINNI variants, we scale the
boundary or interior loss terms respectively by A = 1000 to emphasize constraint fidelity.

RAR and AA. Residual-based Adaptive Refinement (RAR) dynamically augments the training set
with interior collocation points exhibiting high residual error, following the schedule in Lu et al. [21].
Every 1000 epochs, we sample 1024 candidate interior points and add the 32 with highest residuals
to the training set. Adaptive Activation (AA) uses trainable scaling factors on tanh activations with a
fixed nonlinear weight factor n = 10, as proposed by Jagtap et al. [17]. The combined RAR+AA
model uses both mechanisms.

Holomorphic Networks. These networks follow the architecture in Ghosh et al. [7], using complex-
valued MLPs with holomorphic activation functions (e.g., sin or exp). Only the real part of the output
is used. The loss minimized is the mean squared boundary discrepancy:

£H010morphic = E;~o00 [HRe(fg(iL‘)) - g(m)”Q] ’
and no residual term is used, since the output is guaranteed to satisfy Laplace’s equation by construc-

tion.

NCL (Neural Conservation Law). Divergence-free neural networks follow the construction in
Richter-Powell et al. [28], where an MLP fq : R2 — R is post-processed using:

_(9fs  Ofs
U(l‘,y)— Tyv _% )

which guarantees V - u = 0 by design. The boundary loss Lpc is optimized:

LxcL = Eanoq [[Nu(z) — g(2)]1%] .

Architectures and Initialization. All real-valued MLPs use 3 hidden layers of width 64 and
tanh activation functions. Holomorphic models use 3 layers of width 64 with complex-valued sin
activations. Kaiming uniform initialization is used throughout [[12f]. For NSNs, fixed or transformed
basis functions are initialized using Lie-group transformed versions of analytical PDE solutions. NSN
models do not require residual loss terms due to exact satisfaction of Luy = 0.
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Evaluation. Root-mean-squared error (RMSE) is computed against high-resolution reference
solutions described in Appendix B.1. All models are trained with 10 random seeds, and results
are reported with mean and standard deviation. In all experiments, test data are held fixed for
comparability.

Appendix B. Proofs and Theoretical Supplement

B.1 Proof of Boundary-to-Interior Convergence

We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace’s
equation, the heat equation, and the transformed Burgers’ equation via the Cole—Hopf substitution.
Each case follows a similar structure: (1) the network solution ug satisfies the governing PDE exactly
by construction, (2) the true solution u* satisfies the same PDE with matching boundary/initial
conditions, and (3) the error ey = uy — u* satisfies a homogeneous PDE with vanishing boundary
values. Classical maximum principles then yield uniform convergence.

We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace’s
equation, the heat equation, and the transformed Burgers’ equation via the Cole—Hopf substitution.

Laplace’s Equation. Let u* () denote the exact solution to V2u = 0 on 2 with boundary condition
u*|pa = g, and let ug(x) be the output of a superposition network satisfying V?uy(z) = 0 and
ugloa — g. Define the error function eg(z) := ug(x) — u*(x).

Then:
V2eg(z) =0, with eglon — 0.
By the maximum principle for harmonic functions:

sup |eg(z)| < sup |eg(x)] — 0,
TeEQ eI

proving uniform convergence in the interior.

Heat Equation. Let u*(z,t) be the exact solution to d;u = aV2u on Q7 = Qx [0, 7], and ug(x, t)
be a superposition network output satisfying the same PDE. Let eg(x, t) := ug(z,t) —u*(x, t). Then:
Oreg = aV3ey, with eg lo,00 — 0,
where 0,{}r denotes the parabolic boundary (initial and spatial boundary).

By the parabolic maximum principle:

sup leg(z,t)| < sup  |ep(x,t)| — 0.
(z,t)eQr (z,t)€E8pQr

Hence, uniform convergence holds in both space and time.

Burgers’ Equation via Cole-Hopf. The 1D Burgers’ equation:
Ot + uOy U = VOyppll,
can be transformed via the Cole—Hopf substitution v = —2v0,, log ¢ into the linear heat equation:
O = V0.
Let ¢ be a superposition network trained to solve the heat equation exactly by construction, and ¢*
be the true solution. Then ey := @9 — @* satisfies:
Oreg = vOyeeg, With eglo o — 0.

By the parabolic maximum principle again, ¢y — ¢* uniformly. Since ¢* > 0 (assuming positivity
of the initial condition), log ¢y — log ¢* uniformly, and hence:

O; log pg — O log dp*, so wug = —2v0, logpg — u™.

Thus, despite Burgers’ being nonlinear, the NSN induces a consistent and convergent approximation
via its Cole-Hopf-aligned architecture.
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B.2 Convexity of the Boundary Optimization Problem

We provide a formal derivation of the convexity of the boundary loss for Neural Superposition
Networks (NSNs), as claimed in Section 5.3 of the main text.

Let the network output be given by
n
ug(z) = Z Wiu;(z),
i=1

where the basis functions {u;(x)}?_; satisfy the governing PDE Lu; = 0 and are fixed during
optimization. Only the weights W = (Wy,... , W,,)T are trainable.

Suppose the boundary condition is given by Nu(z) = g(z) for x € 9. Then the empirical training
loss is:

Loa(W) = Ezno0 <Z Wiui(z) — 9(@)
i—1

Let & € R™*™ be the matrix whose j-th row contains u; (), . .., u,(z;), evaluated at collocation
point z; € 012, and let g € R™ be the vector of target boundary values at those points. Then the loss
can be written compactly as:

Loo(W) = [[2W —g]3.

This is a standard quadratic form in W, with gradient and Hessian:

Vw Lo = Q(I)T(CDW - 9), V%,Vﬁag =207 ®.

The matrix ® " ® is symmetric and positive semi-definite, and positive definite if ® has full column
rank. Therefore, the loss is convex in W, and the optimization problem:

min [,ag (W)
w

is a convex optimization problem that admits a unique global minimizer when ® " ® > 0.

This analysis confirms that, under fixed PDE-consistent basis functions, NSN training reduces to a
convex boundary fitting task—unlike standard PINNs, which involve non-convex residual losses over
both interior and boundary domains.

B.3 Function-Space Convergence and Spectral Approximation

We formalize the convergence behavior of Neural Superposition Networks (NSNs) in function space
by drawing parallels to Galerkin and spectral methods.

Let H := {u € C?(2) : Lu = 0} be the infinite-dimensional solution space of a linear PDE Lu = 0
on a bounded domain 2 C RY, with appropriate boundary conditions.

Suppose that the superposition network defines a finite-dimensional hypothesis class:
H,, = spanf{ui,us,...,u,} C H,

where each basis function u,; € ker £. Then, for any admissible solution u* € H, the best approxi-
mation error in H,, is given by:
Lt g =,
where || - ||y denotes an appropriate norm (e.g., L(£2), H(Q)).
If the basis {u; }$2, forms a dense set in , then:

. . T
nlggou;gqf-[n lug — u*|ly =0,

by the completeness of the span of the basis.
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This is the classical convergence property leveraged by Galerkin methods. In particular, for orthogonal
bases { ¢y}, such as Fourier or eigenfunction expansions of elliptic operators, convergence rates are
well-known and spectral:

u* —u™ |2 <Cn™", foru* € H(Q),

where u(™ is the best projection of u* onto the span of {¢1,...,¢n} and C depends on the regularity
of u*.

Our construction generalizes these ideas by allowing the basis {u;} to be parameterized and learned,
while preserving the key property Lu; = 0. Thus, the convergence behavior of NSNs inherits
the theoretical guarantees of spectral methods, assuming the underlying basis library has sufficient
richness.

Further discussion on spectral completeness for specific PDE classes (e.g., Laplace, heat) is provided
in the supplementary code and data release.

B.4 Stability under Constraint-Preserving Perturbations

We analyze the stability of Neural Superposition Networks (NSNs) with respect to perturbations
in the trainable parameters that preserve the PDE constraint. Let ug(z) € H,, C ker £ denote the
network output constructed as a superposition of basis functions {u;}, each satisfying Lu; = 0
exactly.

Assume 0 — ug is a smooth mapping from parameters § € R? to functions uy € H,,. Consider a
perturbation 60 € R? such that the perturbed output ug;s9 € H,, also lies in ker £. Then:

Lemma 1 (Stability Under PDE-Preserving Perturbations). Let N be the boundary operator and
assume g € L*(0N) is the boundary target. Then the boundary loss

Loa(0) = Esnon [[INuo(z) — g(@)|?]
is Lipschitz-continuous in 0, provided Nug(z) is Lipschitz in 6 for all x € 0.

Proof. Let 60 be such that ugsp € ker L. Then the PDE constraint is satisfied exactly throughout
training. We analyze the variation in the boundary loss:

[Loa(0 + 60) — Loa(0)] < L[|60]],

for some constant L > 0, assuming N ug(z) is differentiable and locally Lipschitz in 6. This follows
from the differentiability of the basis functions and the linearity of both £ and A

Since all intermediate network states remain in the null space of £, the training trajectory avoids
non-physical excursions and remains structurally valid, preventing instabilities common in PINNs
from PDE-violation drift. O

Remark. In contrast, residual-based methods (e.g., PINNs) may enter regions of parameter space
where Lug % 0, resulting in sharp gradients, oscillatory behavior, or physically invalid outputs. Such
instability is particularly problematic in stiff systems or ill-conditioned geometries.

Conclusion. By construction, NSNs constrain training dynamics to a physically valid subspace.
As a result, optimization operates within a well-behaved manifold and avoids PDE-infeasible direc-
tions—resulting in smoother loss landscapes, more reliable convergence, and interpretable intermedi-
ate solutions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe we have justified all our claims with either theoretical or numerical
evidence.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We make clear the scope of our work being limited to linear differential
operators in the theory section. We provide benchmarks against competitive state of the art
recent approaches to highlight some circumstances where our approach does not exceed the
status quo.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We believe we have been explicit in our assumptions and derivations. We have
numbered and referenced all equations.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide source code with instructions on reproducing the exact experiments
run in the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide full access to the source code and provide guidance on reproducing
the exact numerical results in the accompanying README.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have included these details within section[6.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results over multiple 10 reproducible random seeds per experiment
and report means and standard deviations in table[I]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This is added in the experimental details in Appendix A.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed and ensured adherence to the guidelines. In particular, given
the application of our paper towards modelling scientific problems involving differential
equations, the scope for negative ethical impact is diminished.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The principal applications of our work are the application of machine learning
to scientific applications with objective and well-defined answers for equations describing
phenomena from the natural sciences with objective answers. As such, the scope for negative
societal impact is limited.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are the sole authors of all new assets presented in this paper. We do not
distribute any other assets.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We take the novel assets to be the source code that provide the experimental
results of our submission, which we include in the supplementary material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We required no crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We required no crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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915 * Depending on the country in which research is conducted, IRB approval (or equivalent)

916 may be required for any human subjects research. If you obtained IRB approval, you
917 should clearly state this in the paper.

918 * We recognize that the procedures for this may vary significantly between institutions
919 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
920 guidelines for their institution.

921 * For initial submissions, do not include any information that would break anonymity (if
922 applicable), such as the institution conducting the review.

923 16. Declaration of LLLM usage

924 Question: Does the paper describe the usage of LLMs if it is an important, original, or
925 non-standard component of the core methods in this research? Note that if the LLM is used
926 only for writing, editing, or formatting purposes and does not impact the core methodology,
927 scientific rigorousness, or originality of the research, declaration is not required.

928 Answer: [NA]

929 Justification:

930 Guidelines:

931 * The answer NA means that the core method development in this research does not
932 involve LLMs as any important, original, or non-standard components.

933 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
934 for what should or should not be described.

24


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Contribution of this work

	Related Work
	Problem Formulation
	Neural Superposition Networks
	Architecture and Functional Form
	PDE-Specific Instantiations
	Implementation Details

	Theoretical Analysis
	Exact PDE Satisfaction by Construction
	Boundary-to-Interior Convergence via Maximum Principles
	Convexity of the Boundary Optimization
	Function-Space Convergence and Spectral Analogy
	Stability and Physics Consistency

	Experiments
	Setup and Evaluation Protocol
	PDE Benchmarks
	Quantitative Results

	Discussion
	Conclusion

