Neural Superposition Networks

Anonymous Author(s)

Affiliation Address email

Abstract

We introduce Neural Superposition Networks, a class of physics-constrained neural architectures that exactly satisfy given partial differential equations (PDEs) by construction. In contrast to traditional physics-informed neural networks (PINNs), which enforce PDE constraints via loss regularization, our approach embeds the solution manifold directly into the architecture by expressing the output as a superposition of analytical basis functions that solve the target PDE. This eliminates the need for interior residual loss terms, simplifies training to a singleobjective optimization on boundary conditions, and improves numerical stability. We show that for linear PDEs—including Laplace, heat, and incompressible flow constraints—this architectural bias leads to provably convergent approximations. Using maximum principles and classical convergence theory, we establish uniform boundary-to-interior convergence guarantees. For nonlinear PDEs such as Burgers' equation, we demonstrate that partial structural constraints can still be enforced via transformations (e.g., Cole-Hopf), yielding improved inductive bias over standard PINNs. The resulting networks combine the expressiveness of deep learning with the convergence guarantees of Galerkin and spectral methods. Our framework offers a theoretically grounded and computationally efficient alternative to residual-based training for PDE-constrained problems.

19 1 Introduction

2

3

6

8

9

10

11

12

13

14

15

16

17

- 20 Neural networks have emerged as powerful tools for modeling and solving differential equations,
- both in forward simulations and inverse design problems. This integration spans a wide spectrum
- of scientific applications, from continuous-depth networks based on neural ODEs [4] to generative
- 23 modeling via stochastic differential equations [30]. Within this landscape, physics-informed neural
- 24 networks (PINNs) [27, 20] have become a dominant paradigm by incorporating differential constraints
- 25 into the loss function as soft penalties.
- 26 While PINNs offer a mesh-free and generalizable approach to PDE solving, they suffer from well-
- 27 documented limitations: non-convex training dynamics, sensitivity to gradient pathologies [31],
- 28 reliance on manual loss balancing [19], and a lack of convergence guarantees. Recent improvements
- 29 have proposed enhanced formulations, including adaptive activation [17], domain decomposition
- 30 [23], fractional order extensions [25], and constraint relaxation via augmented Lagrangian methods
- 31 [29]. Despite these advances, residual-based enforcement remains fundamentally fragile—especially
- 32 for stiff, multiscale, or ill-conditioned PDEs.
- To address these challenges, an emerging class of hard-constrained neural architectures aims to embed
- the solution manifold directly into the network. Examples include divergence-free networks derived
- 35 from Hodge theory for incompressible flows [28], holomorphic networks that satisfy Laplace's
- equation via complex analytic constraints [7], and Hamiltonian neural networks preserving energy
- invariants in dynamical systems [9]. Similar ideas have been explored in Gaussian process priors

- 138 [10] and symmetry-based numerical methods [15]. However, these approaches often target specific operators and lack a unified construction principle.
- 40 This paper proposes a general framework—Neural Superposition Networks (NSNs)—that enforces
- 41 linear PDE constraints exactly by construction. Leveraging the linearity of differential operators,
- 42 NSNs express the network output as a trainable superposition of known solution components, thereby
- 43 embedding the governing equation into the architecture itself. This eliminates the need for residual
- loss terms and reduces training to a single-objective optimization over boundary conditions. We show
- 45 that NSNs naturally unify and generalize several existing PDE-constrained architectures, including
- divergence-free and holomorphic networks, under a common principle.
- 47 Beyond this unification, we introduce new NSN constructions for the heat equation and, through
- 48 Cole-Hopf transformation, for the nonlinear Burgers' equation. These models inherit the convergence
- 49 guarantees of spectral methods while maintaining the expressivity and adaptability of neural networks.
- 50 Compared to residual-based PINNs and their improved variants [21, 17, 23], our approach offers
- 51 provable convergence (for linear PDEs), improved training stability, and higher fidelity to physical
- 52 constraints.

1.1 Contribution of this work

- 54 We introduce NSNs as a general framework that embeds linear PDE constraints directly into neural
- 55 architectures, extending previous structure-preserving methods. Our approach, NSNs, leverages the
- 56 principle of superposition by expressing the solution as a trainable sum of known PDE-consistent
- 57 basis functions. This approach ensures all network outputs satisfy the PDE by design, allowing
- training to focus solely on satisfying boundary data.
- 59 Our framework generalizes several existing architectures—such as divergence-free networks [28]
- and holomorphic networks [7]—as special cases under a common formulation. Furthermore, we
- 61 introduce novel superposition-based architectures for the heat equation and for the nonlinear Burgers'
- 62 equation, the latter via Cole-Hopf transformation. These constructions preserve problem-specific
- 63 structure and lead to more stable training behavior across linear and transformed nonlinear systems.
- We provide theoretical convergence guarantees based on maximum principles and spectral approx-
- 65 imation theory, and show that the resulting training objective is convex when the basis is fixed.
- 66 Empirically, we demonstrate that NSNs outperform residual-based PINNs and other constrained
- 67 baselines across a variety of PDE benchmarks, including Laplace, heat, Burgers', and incompressible
- 68 flow equations.

69 2 Related Work

- 70 The use of neural networks for solving PDEs has become central in scientific machine learning. A
- 71 foundational class of methods, PINNs, introduces soft constraints by incorporating PDE residuals
- as penalty terms in the loss function [27, 20]. While widely adopted, PINNs often suffer from
- 73 optimization difficulties such as stiff loss landscapes and poor convergence, especially in multi-
- scale or inverse problems [31, 19]. These challenges have prompted numerous variants—such as
- 75 domain decomposition (XPINN, FBPINN) [16, 23], adaptive residual refinement [21], augmented
- optimization schemes [22], and trainable activation functions [17].
- 77 To address limitations of soft regularization, recent works have explored architecturally constrained
- neural networks that satisfy PDE properties by design. Examples include holomorphic networks
- 79 that exactly solve the Laplace equation via complex-valued activation functions [7], divergence-free
- 80 architectures for incompressible flows using Hodge theory or vector potentials [28], and Hamiltonian
- networks that preserve energy conservation laws [9]. These methods restrict the hypothesis space
- 82 to subsets of the solution manifold, improving physical consistency and training stability. However,
- they typically target a narrow class of PDEs and lack a unifying construction.
- 84 Our work builds on these ideas by proposing a general framework NSNs that encodes the solu-
- 85 tion space of linear PDEs directly into the architecture using basis function superposition. This
- formulation recovers holomorphic and divergence-free networks as special cases, while naturally
- 87 extending to other linear PDEs such as the heat equation. Furthermore, we leverage classical solution
- 8 transformations (e.g., Cole-Hopf) to partially constrain nonlinear PDEs like Burgers' equation. In

- contrast to residual-based PINNs, our approach avoids interior losses, yields better convergence guarantees, and aligns more closely with Galerkin and spectral methods in numerical analysis.
- 91 Related lines of research include symbolic approaches to PDE solution discovery [2], Gaussian
- 92 process priors over PDE solution spaces [10], and symmetry-based architecture design using Lie
- group theory [8]. Our method can be viewed as a bridge between such classical analytic techniques
- and modern deep learning models, offering a scalable and interpretable solution framework.

3 Problem Formulation

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with boundary $\partial\Omega$, and let $u:\Omega\cup\partial\Omega\to\mathbb{R}^m$ denote the target solution to a given PDE. We follow the classical boundary value formulation from PDE theory [6] and consider general linear PDEs of the form:

$$\mathcal{L}u(x) = 0, \quad \text{for } x \in \Omega,$$
 (1)

subject to boundary (or initial) conditions:

$$\mathcal{N}u(x) = g(x), \quad \text{for } x \in \partial\Omega.$$
 (2)

- Here, $\mathcal L$ denotes a linear differential operator acting on u, and $\mathcal N$ denotes a boundary trace operator.
- 101 This formulation encompasses a wide class of PDEs:
- Laplace: $\mathcal{L} = \nabla^2$, $\mathcal{N} = \operatorname{Id}$ (Dirichlet),
- Heat: $\mathcal{L} = \partial_t \alpha \nabla^2$.
- **Divergence-free:** $\mathcal{L} = \nabla \cdot$,
- Burgers' (via Cole–Hopf): $\mathcal{L} = \partial_t \nu \nabla^2$ on transformed ϕ .
- 106 We define a solution space:

$$\mathcal{H} := \left\{ u_{\theta}(x) = \sum_{i} W_{i} u_{i}(x) : \mathcal{L}u_{i} = 0 \text{ in } \Omega \right\},$$

which restricts the model to PDE-feasible functions. The only remaining optimization is over boundary data:

$$\mathcal{L}_{\text{boundary}}(\theta) = \mathbb{E}_{x \sim \partial \Omega} \left[\left(\mathcal{N}[u_{\theta}(x)] - g(x) \right)^{2} \right]. \tag{3}$$

Function space abstraction. To formalize, let \mathcal{A} denote a space of sufficiently smooth functions from $\Omega \cup \partial \Omega$ to \mathbb{R}^m , and let $\mathcal{L} : \mathcal{A} \to \mathcal{A}'$ be a linear differential operator satisfying

$$\mathcal{L}(af + bg) = a\mathcal{L}(f) + b\mathcal{L}(g), \quad \forall f, g \in \mathcal{A}, \ a, b \in \mathbb{R}.$$

Then, by linearity, the weighted combination

$$u_{\theta}(x) = \sum_{i=1}^{n} W_i u_i(x) \in \mathcal{H}$$

- satisfies $\mathcal{L}u_{\theta} = 0$ exactly if all $u_i \in \ker \mathcal{L}$.
- The goal is to learn weights $\theta = \{W_i\}$ such that u_θ matches the prescribed boundary values g(x) on $\partial \Omega$.

115 4 Neural Superposition Networks

- We now introduce NSNs, a class of neural architectures that satisfy linear PDE constraints by
- construction. The central idea is to build the network output as a trainable linear combination of basis
- functions, each of which individually satisfies the governing equation. This transforms the original
- PDE-constrained learning problem into a purely boundary-fitting task over a restricted solution space.

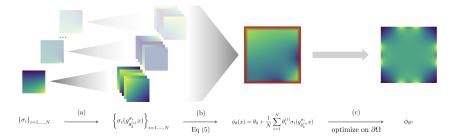


Figure 1: A schematic of superposition networks, a single-layer feedforward neural network architecture constrained to be in the solution space of a linear differential equation. Superposition networks use a library of known solutions of the differential equation (a) and apply Lie group symmetries derived from the differential equation to derive suitable linear transformations (b) which are linearly combined (c) to approximate nontrivial solutions of the differential equation by training only on initial and boundary conditions.

4.1 Architecture and Functional Form

Let \mathcal{L} be a linear differential operator, and let $\sigma_i : \mathbb{R}^d \to \mathbb{R}^m$ denote a family of known solutions such that $\mathcal{L}\sigma_i = 0$ for each $i = 1, \dots, N$. Such basis functions are typically drawn from the null space of \mathcal{L} , as motivated by classical spectral and Galerkin methods for PDEs [6].

We construct the network output $u_{\theta}(x)$ as:

$$u_{\theta}(x) = \theta_0 + \frac{1}{N} \sum_{i=1}^{N} \theta_1^{(i)} \cdot \sigma_i(g_{\theta_2^{(i)}}^{\sigma_i}(x)), \tag{4}$$

125 where:

126

127

128

129

130

- $\theta_0 \in \mathbb{R}^m$ is an output bias term,
- $\theta_1^{(i)} \in \mathbb{R}^m$ is a trainable weight vector,
 - $g_{\theta_2^{(i)}}^{\sigma_i}: \mathbb{R}^d \to \mathbb{R}^d$ is a parametric Lie group transformation (e.g., translation, rotation, scaling) that preserves the PDE solution space [15, 8],
 - σ_i are fixed (or learnable) basis functions satisfying $\mathcal{L}\sigma_i = 0$.
- The Lie group action $g_{\theta_2^{(i)}}^{\sigma_i}$ ensures that $\sigma_i \circ g_{\theta_2^{(i)}}^{\sigma_i}$ still lies within the null space of \mathcal{L} , i.e.,
- 132 $\mathcal{L}[\sigma_i(g^{\sigma_i}_{\theta_2^{(i)}}(x))] = 0$. Therefore, by linearity of $\mathring{\mathcal{L}}$, the network output $u_{\theta}(x)$ also satisfies the
- 133 PDE constraint exactly:

$$\mathcal{L}u_{\theta}(x) = 0$$
 for all $x \in \Omega$.

- A complete catalogue of symmetry-preserving transformations used for Laplace, Heat, and divergence-
- free equations is summarized in Appendix A.1.
- This architecture is illustrated in Figure 1. In panel (a), we select or construct a library of known
- solutions σ_i . In panel (b), each basis is transformed using symmetry-preserving actions $g_{\rho^{(i)}}^{\sigma_i}$. In
- panel (c), the transformed bases are linearly combined via trainable weights to yield an expressive
- 139 solution manifold.
- 140 The training objective is then reduced to enforcing the boundary conditions through the loss:

$$\mathcal{L}_{\partial\Omega}(\theta) = \mathbb{E}_{x \sim \partial\Omega} \left[\left\| \mathcal{N} u_{\theta}(x) - g(x) \right\|^{2} \right], \tag{5}$$

- where \mathcal{N} is the boundary operator and g(x) specifies the target boundary values.
- 142 This formulation defines a hypothesis space

$$\mathcal{H}_N := \{ u_{\theta}(x) \mid u_{\theta} \text{ of the form (4)}, \ \mathcal{L}u_{\theta} = 0 \},$$

- over which the only optimization objective is to satisfy Eq. (2) at the boundary.
- The resulting network—shallow in depth but rich in inductive bias—thus strictly respects the govern-
- ing PDE while preserving the flexibility of neural parameterization at the boundary.

4.2 PDE-Specific Instantiations 146

- The superposition framework can be instantiated for various PDEs by selecting appropriate basis 147
- functions σ_i and symmetry-preserving transformations $g_{\theta_2}^{\sigma_i}$. We present representative cases below. 148
- **Laplace Equation.** Let $\mathcal{L} = \nabla^2$, with \mathcal{N} specifying Dirichlet or Neumann conditions. The Laplace 149
- operator admits harmonic functions as solutions, including the real parts of holomorphic functions 150
- $f: \mathbb{C} \to \mathbb{C}$ [7]. For example, $\sigma_i(x,y) = \text{Re}(f_i(x+iy))$ with $f_i(z) \in \{\sin z, e^z, z^2, \dots\}$. 151
- Transformations g_{θ_2} are taken from the 2D Euclidean group plus dilations: 152

$$g_{\theta}(x,y) = sR_{\theta} \begin{pmatrix} x \\ y \end{pmatrix} + t,$$

- where $s \in \mathbb{R}^+$ is a scale, R_θ a rotation matrix, and $t \in \mathbb{R}^2$ a translation. These preserve harmonicity,
- i.e., $\nabla^2 [\sigma_i(g_\theta(x))] = 0$ [6].
- **Divergence-Free Fields.** Let $\mathcal{L} = \nabla$. In 2D, any vector field of the form 155

$$\sigma_i(x,y) = \left(\frac{\partial f_i}{\partial y}, -\frac{\partial f_i}{\partial x}\right)$$

- is divergence-free for smooth scalar potentials $f_i: \mathbb{R}^2 \to \mathbb{R}$ [28]. Typical choices include trigono-156
- metric polynomials, Gaussians, or Bessel functions. The same affine transformations as above can be 157
- used to shift and scale the basis while preserving the divergence-free property. 158
- **Heat Equation.** Let $\mathcal{L} = \partial_t \alpha \nabla^2$. A known class of solutions includes separable forms such as: 159

$$\sigma_i(x, y, t) = \exp(-\lambda t) \cdot \phi_i(x, y),$$

- where ϕ_i is an eigenfunction of the Laplacian (e.g., sine functions), and λ is the corresponding 160
- eigenvalue [6]. The transformation q_{θ} scales space and time to preserve the form of the heat kernel: 161

$$g_{\theta}(x, y, t) = (s_x x + t_x, \ s_y y + t_y, \ s_t t + t_t),$$

- with the constraint $s_t = \alpha(s_x^2 + s_y^2)/2$ to maintain PDE consistency [15, 8]. 162
- **Burgers' Equation.** Although nonlinear, 1D Burgers' equation 163

$$\partial_t u + u \partial_x u = \nu \partial_{xx} u$$

- can be linearized via the Cole–Hopf transformation: $u = -2\nu\partial_x\log\phi$ [13, 5]. We construct ϕ using 164
- the heat-equation NSN described above and compute u_{θ} via:

$$u_{\theta}(x,t) = -2\nu \frac{\partial}{\partial x} \log \phi_{\theta}(x,t),$$

- where ϕ_{θ} satisfies the linear heat equation analytically by construction. 166
- **Other PDEs.** The same procedure can be extended to Helmholtz, wave, or convection-diffusion 167
- equations, provided a library of solutions and symmetry-preserving transformations is available. 168
- Automated discovery of such bases remains an open direction [2, 24].

4.3 Implementation Details

- We implement all models in Python using PyTorch [26]. For each PDE benchmark, we define a custom 171
- superposition network where the basis functions σ_i are either analytical (e.g., harmonic, Gaussian, or 172
- heat kernels) or shallow MLPs constrained to satisfy the governing PDE. Each transformed basis 173
- is parameterized by an affine map $g_{\theta_i}(x) = A_i x + b_i$ that preserves the PDE structure, with initial 174
- parameters sampled uniformly to tile the domain.
- Superposition weights and transformation parameters are trained jointly via gradient descent on 176
- the boundary loss using the Adam optimizer [18]. All baselines (PINNs, AA, RAR, etc.) are 177
- implemented under the same framework for comparability. Ground truth solutions for Heat, Burgers, 178
- and Navier–Stokes equations are provided in tabulated form and referenced during evaluation. 179
- Full implementation details, including code and dataset configurations, are provided in the supple-
- mentary materials.

5 Theoretical Analysis

- We now analyze the convergence and optimization properties of NSNs. Our framework exhibits several theoretical advantages over residual-based methods, particularly for linear PDEs. These
- advantages stem from the network's architectural alignment with the PDE solution space.

186 5.1 Exact PDE Satisfaction by Construction

Let \mathcal{L} be a linear differential operator, and suppose each basis function $u_i(x)$ satisfies $\mathcal{L}u_i(x) = 0$.

Then, for any choice of weights W_i , the network output:

$$u_{\theta}(x) = \sum_{i=1}^{n} W_i u_i(x)$$

also satisfies $\mathcal{L}u_{\theta}(x)=0$ by linearity. This removes the need to include any PDE residual loss during training, as the constraint is satisfied everywhere in the domain Ω .

191 5.2 Boundary-to-Interior Convergence via Maximum Principles

- 192 We now establish uniform convergence of the network solution in the domain, assuming convergence
- on the boundary. Let $u^*(x)$ be the true solution to the boundary value problem $(\mathcal{L}, \mathcal{N}, g)$, and let
- 194 $u_{\theta}(x)$ be the superposition network output.
- Define the error $e_{\theta}(x) := u_{\theta}(x) u^*(x)$. Then:

$$\mathcal{L}e_{\theta} = 0$$
, with $e_{\theta}|_{\partial\Omega} \to 0$.

- For classical linear PDEs such as Laplace's equation and the heat equation, this yields the following:
- Theorem 1 (Boundary-to-Interior Convergence for Laplace's Equation). Let u_{θ} satisfy $\nabla^2 u_{\theta} = 0$,
- 198 and suppose $u_{\theta}|_{\partial\Omega} \to g$. Then:

$$\sup_{x \in \Omega} |u_{\theta}(x) - u^*(x)| \le \sup_{x \in \partial \Omega} |u_{\theta}(x) - u^*(x)| \to 0.$$

Theorem 2 (Parabolic Maximum Principle for the Heat Equation). Let u_{θ} satisfy $\partial_t u_{\theta} = \alpha \nabla^2 u_{\theta}$ and converge to g on the parabolic boundary. Then:

$$\sup_{(x,t)\in\Omega\times[0,T]}|u_{\theta}(x,t)-u^*(x,t)|\leq \sup_{(x,t)\in\partial_{p}\Omega_{T}}|u_{\theta}(x,t)-u^*(x,t)|\to 0.$$

Similar guarantees for Burgers' equation are obtained via the Cole–Hopf transformation; see Appendix B.1 for full derivations.

203 5.3 Convexity of the Boundary Optimization

When the basis functions $u_i(x)$ are fixed and linear in the parameters, the boundary loss becomes a convex quadratic function:

$$\mathcal{L}_B(W) = \mathbb{E}_{x \sim \partial \Omega} \left[\left(\sum_{i=1}^n W_i u_i(x) - g(x) \right)^2 \right],$$

- which admits a unique global minimizer in closed form. This contrasts with standard PINNs, where
- the loss is non-convex and often poorly conditioned due to entangled PDE and boundary objectives.
- 208 See Appendix B.2 for a formal derivation of convexity under linear basis assumptions.

5.4 Function-Space Convergence and Spectral Analogy

- Let the basis $\{u_i(x)\}$ span a subspace \mathcal{H}_n of the full PDE solution space. If \mathcal{H}_n is dense as $n \to \infty$,
- then for any admissible solution u^* , there exists $u_\theta \in \mathcal{H}_n$ such that $||u_\theta u^*|| < \epsilon$.
- 212 This mimics convergence guarantees in Galerkin and spectral methods. Our use of parameterized,
- trainable basis functions generalizes classical fixed-basis approaches, while preserving solution
- 214 structure. We include a discussion of approximation density and spectral completeness assumptions
- 215 in Appendix B.3.

216 5.5 Stability and Physics Consistency

- Because the network output $u_{\theta}(x)$ lies within the null space of \mathcal{L} by construction, it is physically
- 218 admissible throughout training. In contrast to PINNs, which may produce unphysical intermediate
- 219 solutions, our method guarantees structural feasibility and avoids instability from PDE violations dur-
- 220 ing early optimization steps. A formal analysis of stability under constraint-preserving perturbations
- is given in Appendix B.4.

222 6 Experiments

- 223 We evaluate NSNs on a suite of PDEs, including Laplace, Heat, Navier-Stokes, and Burgers'
- equations. We compare NSNs against baselines that impose PDE constraints either via regularization
- 225 (e.g., PINNs) or architecture (e.g., holomorphic and divergence-free networks).

226 6.1 Setup and Evaluation Protocol

- 227 All experiments are implemented in Python using PyTorch [26]. Each method is trained for 32,000
- epochs using the Adam optimizer [18] with a learning rate of 10^{-3} and Kaiming uniform initializa-
- tion [12]. Training is repeated with 10 random seeds, and root-mean-squared error (RMSE) against
- ground truth is reported. Ground truths are obtained using FEATools and OpenFOAM [32] for
- Navier–Stokes, and MATLAB solvers [1] for the Heat equation. Implementation details, software
- environment, and collocation sampling strategies are described in Appendix A.2.

233 6.2 PDE Benchmarks

- Laplace Equation. We solve $\nabla^2 u = 0$ over $\Omega = (0,1)^2$ with two boundary types: full Dirichlet
- (Laplace 1) and Neumann on y=1 (Laplace 2). The exact solution is the real part of a meromorphic
- function not representable by a single holomorphic term, ensuring a nontrivial approximation. We
- 237 compare NSNs, PINNs, and holomorphic networks. Holomorphic networks achieve slightly better
- 238 RMSE but are restricted to 2D Laplace problems, while NSNs generalize.
- 239 **Heat Equation.** Two setups are tested with distinct initial profiles and mixed Dirichlet–Neumann
- boundary conditions. NSNs are constructed using manufactured solutions and scaled Lie group
- transformations. Only PINNs are used as baselines since no architectural method exists for this PDE.
- NSNs outperform all PINN variants on both benchmarks.
- Navier-Stokes Equation. We test steady-state incompressible Navier-Stokes equations over a
- domain with obstacles. Since full PDE enforcement is infeasible architecturally, we benchmark
- divergence-free subcomponents. NSNs are constrained to $\nabla \cdot u = 0$, while pressure is learned via
- ²⁴⁶ auxiliary MLP. Convergence is generally difficult, but NSNs yield stable approximations with lower
- 247 RMSE than divergence-free PINNs.
- **Burgers' Equation.** For 1D Burgers' equation with Dirichlet conditions, we use the Cole–Hopf
- transformation and train NSNs on the transformed heat equation. Despite its nonlinearity, NSNs
- match or exceed the performance of all residual-based approaches.
- Detailed descriptions of the governing equations, initial and boundary conditions, and ground truth
- 252 functions for each benchmark are provided in Appendix A.2.

6.3 Quantitative Results

- Table 1 summarizes RMSE performance across all benchmarks. NSNs consistently outperform
- 255 PINNs and achieve competitive or superior accuracy compared to architectures with hand-crafted
- 256 inductive biases (e.g., holomorphic, divergence-free). All experiments were run using Python 3.10 on
- 257 two-cores of a Dual AMD Rome 7742 processor with 8GB of RAM and were allocated 12 hours of
- compute time, but finished well-within that period
- 259 **See also:** Appendix A.3 describes loss functions and implementation details for all baseline models.

Table 1: A summary of experimental results (lower is better) comparing superposition networks to alternative architectures imposing differential equation constraints for the methods outlined in section 6. Methods which architecturally constrain differential equation dynamics are placed in the first two rows. For the Navier-Stokes equations, only the divergence-free aspect of incompressible flow can be architecturally imposed. Root-mean squared errors (RMSEs) of the final trained solution are shown with standard deviations over 10 random seeds reported. For the heat equation, we report the RMSE at the end of the simulation. Note that Holomorphic neural networks are only applicable to Laplace's equation, and NCL only applies to divergence-free fields.

	Laplace 1	Laplace 2	Heat 1	Heat 2	Navier Stokes	Burgers'
Superposition	0.0067 ± 0.0023	0.010 ± 0.0047	0.0080±7.3e-5	$0.00084 {\pm} 0.00018$	0.11 ± 0.0026	0.0030 ± 0.0024
Holomorphic	0.0029 ± 0.0022	0.0033 ± 0.0009	-	-	-	-
NCL	-	-	-	-	0.097 ± 0.0015	-
PINN	0.15 ± 0.0030	0.29 ± 0.093	0.0085 ± 0.0024	0.0027 ± 0.0017	0.10 ± 0.00090	0.0039 ± 0.0022
PINNB	0.0063 ± 0.0041	0.12 ± 0.066	0.063 ± 0.016	0.015 ± 0.0025	0.085 ± 0.0090	0.0049 ± 0.0030
PINNI	0.56 ± 0.00091	0.82 ± 0.067	0.080 ± 0.024	$0.046\pm4.4e-5$	0.10 ± 0.00034	0.12 ± 0.010
RAR	0.15 ± 0.0015	0.43 ± 0.012	0.0085 ± 0.0075	0.0026 ± 0.0012	0.10 ± 0.00058	0.0036 ± 0.00065
AA	0.19 ± 0.12	0.54 ± 0.084	0.039 ± 0.015	0.016 ± 0.016	0.097 ± 0.00086	0.0067 ± 0.0039
RAR+AA	0.20 ± 0.12	$0.55{\pm}0.063$	0.0070 ± 0.0020	0.0053 ± 0.0034	0.099 ± 0.00080	0.018 ± 0.012

7 Discussion

NSNs provide a theoretically principled and numerically stable framework for solving PDE-constrained problems by embedding the governing equations directly into the architecture. This hard constraint ensures that network outputs always lie within the solution space of the target linear PDE, transforming the learning objective into a boundary (or initial) fitting problem and eliminating the need for residual loss terms. As a result, NSNs avoid several challenges common to residual-based methods such as PINNs, including instability from loss balancing, lack of convergence guarantees, and physical inconsistency during early training.

Our construction builds on classical insights from spectral and Galerkin methods, while incorporating the expressivity of modern neural networks through parameterized basis functions and symmetry-preserving transformations. Empirical evidence supports the benefits of this hybridization: when the governing PDE is linear and admits a structured solution space, NSNs converge more efficiently and stably than conventional methods, even with limited training data.

Across all benchmark tasks where the PDE could be hard-constrained (e.g., Laplace, Heat), NSNs achieved the lowest RMSE, including stiff settings such as long-horizon heat propagation. For nonlinear problems like Burgers' equation, our Cole–Hopf-based formulation leveraged the exact satisfaction of the linear surrogate (heat equation) and yielded stable gradients via logarithmic postprocessing. Even when architectural constraints could not fully enforce the PDE (e.g., Navier–Stokes), NSNs remained competitive with divergence-free variants.

While the approach currently relies on predefined analytical bases or symmetry-derived components, we emphasize that this constraint is a strength in structured regimes rather than a limitation. In practice, many physical systems are governed by equations with known symmetry groups or canonical solution families. Moreover, the framework naturally extends to partially structured problems: for example, we showed that even for nonlinear PDEs like Burgers' equation, transforming the architecture to align with a linear surrogate (e.g., via Cole–Hopf) retains most of the convergence and generalization benefits.

These insights suggest several promising directions for future work. One is the automatic discovery of trainable basis functions or symmetry transformations, potentially via symbolic regression, meta-learning, or generative modeling. Another is the integration of NSNs into hybrid architectures that combine structure-preserving components with data-driven residual correction, particularly for complex or nonlinear systems where analytical structure is only partially available. Finally, applications to inverse problems, control, and high-dimensional parametric PDEs present opportunities to leverage NSNs' stability and interpretability in scientifically demanding settings.

In summary, NSNs offer a complementary alternative to residual-based learning, one that prioritizes exact physical adherence and principled inductive bias. Rather than replacing PINNs or surrogate models, NSNs enrich the design space for physics-informed architectures, bridging the gap between classical numerical analysis and deep learning.

97 8 Conclusion

- 298 We introduced NSNs, a class of physics-constrained architectures that satisfy linear PDEs exactly by
- construction. By expressing solutions as trainable superpositions of PDE-consistent basis functions,
- NSNs eliminate residual losses and reduce training to boundary-only optimization. This results in
- 301 improved stability and convergence over conventional PINNs, particularly in structured physical
- 302 domains.
- 303 Our experiments show that NSNs outperform or match strong baselines on a variety of PDE bench-
- marks, including nonlinear problems such as Burgers' equation. These results demonstrate the power
- of architectural alignment with the solution space, both in theory and practice.
- 306 Future work includes extending NSNs to nonlinear regimes via hybrid residual correction, and
- automating the discovery of basis functions using symmetry-informed priors or meta-learning. We
- 308 believe NSNs offer a principled path forward for structure-preserving neural solvers in scientific
- machine learning.

References

- [1] Patrick R Amestoy, Iain S Duff, Jean-Yves L'Excellent, and Jacko Koster. Mumps: a general purpose distributed memory sparse solver, 2000.
- [2] Gert-Jan Both, Subham Choudhury, Pierre Sens, and Remy Kusters. Deepmod: Deep learning for model discovery in noisy data. *Journal of Computational Physics*, 428:109985, 2021.
- James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.
- [4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. 31:6571–6583, 2018.
- [5] Julian D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. *Quarterly of Applied Mathematics*, 9:225–236, 1951. URL https://api.semanticscholar.org/CorpusID:39662248.
- [6] Lawrence C Evans. *Partial differential equations*, volume 19. American Mathematical Society, 2022.
- [7] Atiyo Ghosh, Antonio Andrea Gentile, Mario Dagrada, Chul Lee, Seong-Hyok Sean Kim,
 Hyukgeun Cha, Yunjun Choi, Dongho Kim, Jeong-Il Kye, and Vincent Emanuel Elfving.
 Harmonic neural networks. pages 11340–11359, 2023.
- [8] Robert J Gray. How to calculate all point symmetries of linear and linearizable differential equations. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 471(2175):20140685, 2015.
- [9] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. 32: 15379–15389, 2019.
- [10] Marc Harkonen, Markus Lange-Hegermann, and Bogdan Raita. Gaussian process priors for
 systems of linear partial differential equations with constant coefficients. pages 12587–12615,
 2023.
- [11] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
 David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
 Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
 Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
 programming with NumPy. *Nature*, 585:357–362, 2020.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. pages 1026–1034, Dec 2015.

- Eberhard Hopf. The partial differential equation $u_t + uu_x = \mu u_{xx}$. Communications on Pure and Applied Mathematics, 3(3):201-230, 1950. doi: https://doi.org/10.1002/cpa.3160030302. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160030302.
- 348 [14] J. D. Hunter. Matplotlib: A 2d graphics environment. *Computing in Science & Engineering*, 9 (3):90–95, 2007.
- [15] Peter Ellsworth Hydon. Symmetry methods for differential equations: a beginner's guide.
 Number 22. Cambridge University Press, 2000.
- 152 [16] Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. *Communications in Computational Physics*, 28(5), 2020.
- Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
 accelerate convergence in deep and physics-informed neural networks. *Journal of Computational Physics*, 404:109136, 2020.
- [18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
 arXiv:1412.6980, 2014.
- [19] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
 Characterizing possible failure modes in physics-informed neural networks. 34:26548–26560,
 2021.
- [20] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
 ordinary and partial differential equations. *IEEE Transactions on Neural Networks*, 9(5):
 987–1000, 1998.
- [21] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
 library for solving differential equations. SIAM review, 63(1):208–228, 2021.
- Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks
 for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789,
 2020.
- Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural networks (fbpinns): a scalable domain decomposition approach for solving differential equations. *Advances in Computational Mathematics*, 49(4):62, 2023.
- [24] Saviz Mowlavi and Saleh Nabi. Optimal control of pdes using physics-informed neural networks.
 Journal of Computational Physics, 473:111731, 2023.
- 377 [25] Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks. *SIAM Journal on Scientific Computing*, 41(4):A2603–A2626, 2019.
- [26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
 high-performance deep learning library. 32:8024–8035, 2019.
- Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
 A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.
- [28] Jack Richter-Powell, Yaron Lipman, and Ricky TQ Chen. Neural conservation laws: A
 divergence-free perspective. 35:38075–38088, 2022.
- Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Enhanced physics-informed neural networks with augmented lagrangian relaxation method (al-pinns). *Neurocomputing*, 548: 126424, 2023.

- [30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
 preprint arXiv:2011.13456, 2020.
- [31] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
 pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43
 (5):A3055–A3081, 2021.
- Henry G Weller, Gavin Tabor, Hrvoje Jasak, and Christer Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. *Computers in physics*, 12(6):620–631, 1998.

401 Appendix A. Experimental Details

402 A.1 Symmetry-Preserving Lie Group Actions

- 403 Neural Superposition Networks construct their output as superpositions of PDE-feasible basis func-
- 404 tions transformed via trainable Lie group actions. This section catalogs the symmetry-preserving
- transformations q_{θ} used for the benchmark PDEs presented in this work. Each transformation is
- derived from classical Lie symmetry theory for differential equations [15].
- Laplace Equation ($\mathcal{L} = \nabla^2$). In \mathbb{R}^2 , Laplace's equation admits invariance under the extended Euclidean group E(2) combined with isotropic scaling:

$$g_{\theta}(x,y) = sR_{\phi}\begin{pmatrix} x \\ y \end{pmatrix} + t, \quad s > 0, \ R_{\phi} \in SO(2), \ t \in \mathbb{R}^2.$$
 (6)

- This includes translations, rotations, and uniform scaling. Harmonicity of functions is preserved under such transformations, i.e., $\nabla^2[\sigma(g_\theta(x))] = 0$ if $\nabla^2\sigma(x) = 0$.
- Heat Equation ($\mathcal{L} = \partial_t \alpha \nabla^2$). The heat equation admits scaling in both space and time under a specific parabolic scaling group. For a basis function $\sigma(x,t)$ satisfying the heat equation, we apply:

$$\hat{x} = ax + b,$$

$$\hat{t} = a^2 t + c.$$
(7)

with $a>0, b\in\mathbb{R}$, and $c\in\mathbb{R}$. This transformation preserves the form of the heat kernel:

$$\mathcal{L}[\sigma(g_{\theta}(x,t))] = 0$$
 whenever $\mathcal{L}[\sigma(x,t)] = 0$.

Divergence-Free Vector Fields ($\mathcal{L} = \nabla \cdot$). Let $\sigma_i(x) = \nabla^{\perp} f_i(x)$ for scalar stream functions

$$\nabla^{\perp} f := \left(\frac{\partial f}{\partial u}, -\frac{\partial f}{\partial x} \right).$$

- Any affine transformation composed of translations, rotations, and scalings applied to f_i yields another divergence-free vector field when passed through ∇^{\perp} . That is,
 - $\langle x \rangle$

$$g_{\theta}(x,y) = A \begin{pmatrix} x \\ y \end{pmatrix} + b, \quad A \in GL(2), \quad \det A \neq 0,$$

- preserves divergence-freeness under composition, i.e., $\nabla \cdot \nabla^{\perp}[f(g_{\theta}(x))] = 0$.
- 419 **Burgers' Equation (via Cole–Hopf Transformation).** The 1D viscous Burgers' equation

$$\partial_t u + u \partial_x u = \nu \partial_{xx} u$$

- is nonlinear and does not admit classical Lie group symmetries that preserve its nonlinear structure.
- However, via the Cole–Hopf transformation:

$$u(x,t) = -2\nu \frac{\partial}{\partial x} \log \phi(x,t),$$

it reduces to the linear heat equation:

$$\partial_t \phi = \nu \partial_{xx} \phi.$$

- Therefore, the symmetry-preserving transformations g_{θ} for Burgers' equation are inherited from
- those of the heat equation. Specifically, the parabolic scaling transformation:

$$\hat{x} = ax + b,
\hat{t} = a^2 t + c,$$
(8)

- with $a>0, b\in\mathbb{R}$, and $c\in\mathbb{R}$, preserves the form of $\phi(x,t)$ and hence induces valid transformed
- solutions for u(x,t). In this sense, although Burgers' equation lacks explicit linear symmetry actions,
- 427 its superposition network inherits symmetry consistency through its transformation to the heat
- 428 equation.

Summary. Each benchmark PDE considered in this work admits a specific class of symmetry-429 preserving transformations. For Laplace and divergence-free equations, affine transformations from 430 the Euclidean group combined with scaling preserve the solution space. The heat equation requires 431 parabolic scaling to maintain kernel invariance, while Burgers' equation admits no direct symmetries 432 in its nonlinear form and is instead handled via a Cole-Hopf transformation that linearizes it into 433 the heat equation. Neural Superposition Networks apply these group actions to construct expressive 434 yet PDE-constrained basis families, ensuring exact satisfaction of the governing operator across all 435 transformed modes. 436

437 A.2 Benchmark Configurations and Implementation

This section provides full experimental configurations for the PDE benchmarks introduced in Section 6, including governing equations, boundary conditions, initialization, sampling, and ground truth construction.

Software and Experimental Environment. All experiments were conducted using Python 3.10 on a dual-core AMD Rome 7742 processor with 8GB of RAM, and each run was allocated a 12-hour time budget—well beyond what was required in practice. All neural networks were implemented in PyTorch [26] and trained using the Adam optimizer [18] with a learning rate of 10⁻³ and Kaiming uniform initialization [12]. Real-valued networks use tanh activations; holomorphic networks use complex sin activations.

Supporting utilities for preprocessing and evaluation were implemented with NumPy [11] and Matplotlib [14]. Additionally, we provide an independent PINN baseline implementation for the Laplace benchmark in JAX [3], which confirms numerical consistency with the PyTorch results. For reproducibility, all source code and CSV exports of simulation outputs are included in the supplementary material.

Ground truth solutions for the heat and Navier–Stokes benchmarks were computed using MATLAB's sparse solver [1] and FEATools with OpenFOAM [32], respectively.

In the following, we provide detailed configurations for each PDE benchmark, including governing equations, boundary conditions, basis construction, and sampling.

Laplace Equation. Domain: $\Omega = (0,1)^2$ with either full Dirichlet (Laplace 1) or mixed Dirichlet–Neumann (Laplace 2) conditions. Boundary values are taken from a meromorphic function:

$$f(x,y) = \Re\left[\frac{1}{(z-1.2-0.5i)(z+0.2-0.5i)(z-0.5+0.2i)(z-0.5-1.2i)}\right], \quad z=x+iy.$$

NSN bases are real parts of holomorphic functions (e.g., $\sin z$, e^z , $\sin^2 z$) with Lie-transformed copies. PINNs and holomorphic networks are trained on 512 interior and 128 boundary points per edge.

Heat Equation. Benchmarks use manufactured initial conditions:

$$\begin{array}{ll} \text{Heat 1:} & \phi(x,y,0) = \sqrt{e^{-5((x-0.5)^2+(y-0.5)^2)}(\sin^2 5\pi x + \cos^2 3\pi y)} \\ \text{Heat 2:} & \phi(x,y,0) = e^{-5((x-0.5)^2+10(y-0.5)^2)} \\ & - e^{-20((x-0.5)^2+5(y-0.7)^2)} - e^{-20((x-0.5)^2+5(y-0.3)^2)} \end{array}$$

Mixed boundary conditions are used in both cases. Ground truth is computed with MATLAB's implicit finite-difference solver [1]. NSNs use 64 basis elements constructed via Eq. (16)–(17) in the main text.

Navier-Stokes. 2D steady-state incompressible Navier-Stokes on a rectangular domain with two circular obstacles. Inflow and outflow conditions are set along x, and no-slip conditions along y.

NSNs use divergence-free basis functions (Eq. (15)) for velocity and a separate MLP for pressure.

FEATools with OpenFOAM [32] is used to generate the reference solution.

469 **Burgers' Equation.** 1D viscous Burgers' equation:

$$\partial_t u + u \partial_x u = \nu \partial_{xx} u, \quad \nu = 0.1$$

- with initial condition $u(x,0) = e^{-50(x-0.6)^2} e^{-50(x-0.4)^2}$ and Dirichlet boundaries u(0,t) = 0,
- u(1,t) = 1. Cole-Hopf-transformed NSNs are trained on the corresponding heat equation and
- postprocessed via automatic differentiation.
- 473 **Sampling.** Collocation points are sampled uniformly in the domain (1024 points) and along each
- boundary segment (128 per side unless noted). For RAR methods, 32 high-residual interior points
- are adaptively added every 1000 epochs. All models are trained for 32,000 epochs.
- 476 Evaluation. Root-mean-squared error (RMSE) is computed over 10 runs with different seeds.
- Reported values in Table 1 include mean and standard deviation across these trials.

478 Appendix A.3 Loss Functions and Baseline Architectures

- This section provides implementation details for all baseline models reported in Table 1, including
- loss functions, architectural constraints, and optimization specifics. All models are implemented
- using PyTorch 2.1 and trained with the Adam optimizer at a learning rate of 10^{-3} for 32,000 epochs.
- PINN. The standard physics-informed neural network (PINN) minimizes a weighted sum of boundary and PDE residual losses:

$$\mathcal{L}_{PINN} = \mathbb{E}_{x \sim \partial \Omega} \left[\| \mathcal{N} f_{\theta}(x) - g(x) \|^{2} \right] + \lambda \mathbb{E}_{x \sim \Omega} \left[\| \mathcal{L} f_{\theta}(x) \|^{2} \right].$$

- We use $\lambda = 1.0$ by default unless otherwise noted. For PINNB and PINNI variants, we scale the boundary or interior loss terms respectively by $\lambda = 1000$ to emphasize constraint fidelity.
- 486 RAR and AA. Residual-based Adaptive Refinement (RAR) dynamically augments the training set
- with interior collocation points exhibiting high residual error, following the schedule in Lu et al. [21].
- Every 1000 epochs, we sample 1024 candidate interior points and add the 32 with highest residuals
- to the training set. Adaptive Activation (AA) uses trainable scaling factors on tanh activations with a
- fixed nonlinear weight factor n = 10, as proposed by Jagtap et al. [17]. The combined RAR+AA
- model uses both mechanisms.
- 492 **Holomorphic Networks.** These networks follow the architecture in Ghosh et al. [7], using complex-
- valued MLPs with holomorphic activation functions (e.g., sin or exp). Only the real part of the output
- is used. The loss minimized is the mean squared boundary discrepancy:

$$\mathcal{L}_{\text{Holomorphic}} = \mathbb{E}_{x \sim \partial \Omega} \left[\| \text{Re}(f_{\theta}(x)) - g(x) \|^2 \right],$$

- and no residual term is used, since the output is guaranteed to satisfy Laplace's equation by construc-
- NCL (Neural Conservation Law). Divergence-free neural networks follow the construction in Richter-Powell et al. [28], where an MLP $f_{\theta} : \mathbb{R}^2 \to \mathbb{R}$ is post-processed using:

$$u(x,y) = \left(\frac{\partial f_{\theta}}{\partial y}, -\frac{\partial f_{\theta}}{\partial x}\right),$$

which guarantees $\nabla \cdot u = 0$ by design. The boundary loss \mathcal{L}_{BC} is optimized:

$$\mathcal{L}_{\text{NCL}} = \mathbb{E}_{x \sim \partial \Omega} \left[\| \mathcal{N} u(x) - g(x) \|^2 \right].$$

- Architectures and Initialization. All real-valued MLPs use 3 hidden layers of width 64 and
- $_{501}$ tanh activation functions. Holomorphic models use 3 layers of width 64 with complex-valued \sin
- 502 activations. Kaiming uniform initialization is used throughout [12]. For NSNs, fixed or transformed
- basis functions are initialized using Lie-group transformed versions of analytical PDE solutions. NSN
- models do not require residual loss terms due to exact satisfaction of $\mathcal{L}u_{\theta}=0$.

505 Evaluation. Root-mean-squared error (RMSE) is computed against high-resolution reference

solutions described in Appendix B.1. All models are trained with 10 random seeds, and results

are reported with mean and standard deviation. In all experiments, test data are held fixed for

508 comparability.

509 Appendix B. Proofs and Theoretical Supplement

8.1 Proof of Boundary-to-Interior Convergence

- We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace's
- equation, the heat equation, and the transformed Burgers' equation via the Cole–Hopf substitution.
- Each case follows a similar structure: (1) the network solution u_{θ} satisfies the governing PDE exactly
- by construction, (2) the true solution u^* satisfies the same PDE with matching boundary/initial
- conditions, and (3) the error $e_{\theta} = u_{\theta} u^*$ satisfies a homogeneous PDE with vanishing boundary
- values. Classical maximum principles then yield uniform convergence.
- We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace's
- equation, the heat equation, and the transformed Burgers' equation via the Cole-Hopf substitution.
- Laplace's Equation. Let $u^*(x)$ denote the exact solution to $\nabla^2 u = 0$ on Ω with boundary condition
- 520 $u^*|_{\partial\Omega} = g$, and let $u_{\theta}(x)$ be the output of a superposition network satisfying $\nabla^2 u_{\theta}(x) = 0$ and
- 521 $u_{\theta}|_{\partial\Omega} \to g$. Define the error function $e_{\theta}(x) := u_{\theta}(x) u^*(x)$.
- 522 Then:

$$\nabla^2 e_{\theta}(x) = 0$$
, with $e_{\theta}|_{\partial\Omega} \to 0$.

By the maximum principle for harmonic functions:

$$\sup_{x \in \Omega} |e_{\theta}(x)| \le \sup_{x \in \partial \Omega} |e_{\theta}(x)| \to 0,$$

- proving uniform convergence in the interior.
- Heat Equation. Let $u^*(x,t)$ be the exact solution to $\partial_t u = \alpha \nabla^2 u$ on $\Omega_T = \Omega \times [0,T]$, and $u_\theta(x,t)$
- be a superposition network output satisfying the same PDE. Let $e_{\theta}(x,t) := u_{\theta}(x,t) u^*(x,t)$. Then:

$$\partial_t e_\theta = \alpha \nabla^2 e_\theta$$
, with $e_\theta|_{\partial_n \Omega_T} \to 0$,

- where $\partial_p \Omega_T$ denotes the parabolic boundary (initial and spatial boundary).
- 528 By the parabolic maximum principle:

$$\sup_{(x,t)\in\Omega_T} |e_{\theta}(x,t)| \le \sup_{(x,t)\in\partial_p\Omega_T} |e_{\theta}(x,t)| \to 0.$$

- Hence, uniform convergence holds in both space and time.
- Burgers' Equation via Cole–Hopf. The 1D Burgers' equation:

$$\partial_t u + u \partial_x u = \nu \partial_{xx} u,$$

can be transformed via the Cole-Hopf substitution $u = -2\nu\partial_x\log\phi$ into the linear heat equation:

$$\partial_t \phi = \nu \partial_{xx} \phi.$$

- Let ϕ_{θ} be a superposition network trained to solve the heat equation exactly by construction, and ϕ^*
- be the true solution. Then $e_{\theta} := \phi_{\theta} \phi^*$ satisfies:

$$\partial_t e_\theta = \nu \partial_{xx} e_\theta$$
, with $e_\theta|_{\partial_v \Omega_T} \to 0$.

By the parabolic maximum principle again, $\phi_{\theta} \to \phi^*$ uniformly. Since $\phi^* > 0$ (assuming positivity of the initial condition), $\log \phi_{\theta} \to \log \phi^*$ uniformly, and hence:

$$\partial_x \log \phi_\theta \to \partial_x \log \phi^*$$
, so $u_\theta = -2\nu \partial_x \log \phi_\theta \to u^*$.

- Thus, despite Burgers' being nonlinear, the NSN induces a consistent and convergent approximation
- via its Cole–Hopf-aligned architecture.

B.2 Convexity of the Boundary Optimization Problem

- We provide a formal derivation of the convexity of the boundary loss for Neural Superposition
- Networks (NSNs), as claimed in Section 5.3 of the main text.
- Let the network output be given by 541

$$u_{\theta}(x) = \sum_{i=1}^{n} W_i u_i(x),$$

- where the basis functions $\{u_i(x)\}_{i=1}^n$ satisfy the governing PDE $\mathcal{L}u_i=0$ and are fixed during optimization. Only the weights $W=(W_1,\ldots,W_n)^\top$ are trainable.
- Suppose the boundary condition is given by $\mathcal{N}u(x) = g(x)$ for $x \in \partial\Omega$. Then the empirical training 544
- 545

$$\mathcal{L}_{\partial\Omega}(W) = \mathbb{E}_{x\sim\partial\Omega}\left[\left(\sum_{i=1}^n W_i u_i(x) - g(x)\right)^2\right].$$

- Let $\Phi \in \mathbb{R}^{m \times n}$ be the matrix whose j-th row contains $u_1(x_j), \dots, u_n(x_j)$, evaluated at collocation
- point $x_j \in \partial \Omega$, and let $g \in \mathbb{R}^m$ be the vector of target boundary values at those points. Then the loss 547
- can be written compactly as:

$$\mathcal{L}_{\partial\Omega}(W) = \|\Phi W - g\|_2^2.$$

This is a standard quadratic form in W, with gradient and Hessian:

$$\nabla_W \mathcal{L}_{\partial\Omega} = 2\Phi^{\top} (\Phi W - g), \quad \nabla_W^2 \mathcal{L}_{\partial\Omega} = 2\Phi^{\top} \Phi.$$

- The matrix $\Phi^{\top}\Phi$ is symmetric and positive semi-definite, and positive definite if Φ has full column 550
- rank. Therefore, the loss is convex in W, and the optimization problem:

$$\min_{W} \mathcal{L}_{\partial\Omega}(W)$$

- is a convex optimization problem that admits a unique global minimizer when $\Phi^{\top}\Phi \succ 0$.
- This analysis confirms that, under fixed PDE-consistent basis functions, NSN training reduces to a 553
- convex boundary fitting task—unlike standard PINNs, which involve non-convex residual losses over 554
- both interior and boundary domains. 555

B.3 Function-Space Convergence and Spectral Approximation 556

- We formalize the convergence behavior of Neural Superposition Networks (NSNs) in function space 557
- by drawing parallels to Galerkin and spectral methods. 558
- Let $\mathcal{H}:=\{u\in C^2(\Omega): \mathcal{L}u=0\}$ be the infinite-dimensional solution space of a linear PDE $\mathcal{L}u=0$ 559
- on a bounded domain $\Omega \subset \mathbb{R}^d$, with appropriate boundary conditions. 560
- Suppose that the superposition network defines a finite-dimensional hypothesis class:

$$\mathcal{H}_n := \operatorname{span}\{u_1, u_2, \dots, u_n\} \subset \mathcal{H},$$

- where each basis function $u_i \in \ker \mathcal{L}$. Then, for any admissible solution $u^* \in \mathcal{H}$, the best approxi-
- mation error in \mathcal{H}_n is given by: 563

$$\inf_{u_{\theta}\in\mathcal{H}_n}\|u_{\theta}-u^*\|_{\mathcal{V}},$$

- where $\|\cdot\|_{\mathcal{V}}$ denotes an appropriate norm (e.g., $L^2(\Omega)$, $H^1(\Omega)$).
- If the basis $\{u_i\}_{i=1}^{\infty}$ forms a dense set in \mathcal{H} , then:

$$\lim_{n\to\infty} \inf_{u_{\theta}\in\mathcal{H}_n} \|u_{\theta} - u^*\|_{\mathcal{V}} = 0,$$

by the completeness of the span of the basis.

- This is the classical convergence property leveraged by Galerkin methods. In particular, for orthogonal
- bases $\{\phi_k\}$, such as Fourier or eigenfunction expansions of elliptic operators, convergence rates are
- well-known and spectral:

$$||u^* - u^{(n)}||_{L^2} \le Cn^{-r}, \text{ for } u^* \in H^r(\Omega),$$

- where $u^{(n)}$ is the best projection of u^* onto the span of $\{\phi_1, \dots, \phi_n\}$ and C depends on the regularity of u^* .
- Our construction generalizes these ideas by allowing the basis $\{u_i\}$ to be parameterized and learned,
- while preserving the key property $\mathcal{L}u_i=0$. Thus, the convergence behavior of NSNs inherits
- the theoretical guarantees of spectral methods, assuming the underlying basis library has sufficient
- 575 richness.
- Further discussion on spectral completeness for specific PDE classes (e.g., Laplace, heat) is provided
- in the supplementary code and data release.

578 B.4 Stability under Constraint-Preserving Perturbations

- We analyze the stability of Neural Superposition Networks (NSNs) with respect to perturbations
- in the trainable parameters that preserve the PDE constraint. Let $u_{\theta}(x) \in \mathcal{H}_n \subset \ker \mathcal{L}$ denote the
- network output constructed as a superposition of basis functions $\{u_i\}$, each satisfying $\mathcal{L}u_i=0$
- 582 exactly.
- Assume $\theta \mapsto u_{\theta}$ is a smooth mapping from parameters $\theta \in \mathbb{R}^p$ to functions $u_{\theta} \in \mathcal{H}_n$. Consider a
- perturbation $\delta\theta \in \mathbb{R}^p$ such that the perturbed output $u_{\theta+\delta\theta} \in \mathcal{H}_n$ also lies in ker \mathcal{L} . Then:
- Lemma 1 (Stability Under PDE-Preserving Perturbations). Let \mathcal{N} be the boundary operator and assume $g \in L^2(\partial\Omega)$ is the boundary target. Then the boundary loss

$$\mathcal{L}_{\partial\Omega}(\theta) = \mathbb{E}_{x \sim \partial\Omega} \left[\| \mathcal{N} u_{\theta}(x) - g(x) \|^2 \right]$$

- is Lipschitz-continuous in θ , provided $\mathcal{N}u_{\theta}(x)$ is Lipschitz in θ for all $x \in \partial \Omega$.
- Proof. Let $\delta\theta$ be such that $u_{\theta+\delta\theta} \in \ker \mathcal{L}$. Then the PDE constraint is satisfied exactly throughout training. We analyze the variation in the boundary loss:

$$|\mathcal{L}_{\partial\Omega}(\theta + \delta\theta) - \mathcal{L}_{\partial\Omega}(\theta)| \leq L \|\delta\theta\|,$$

- for some constant L > 0, assuming $\mathcal{N}u_{\theta}(x)$ is differentiable and locally Lipschitz in θ . This follows
- from the differentiability of the basis functions and the linearity of both \mathcal{L} and \mathcal{N} .
- Since all intermediate network states remain in the null space of \mathcal{L} , the training trajectory avoids
- 593 non-physical excursions and remains structurally valid, preventing instabilities common in PINNs
- from PDE-violation drift.
- Remark. In contrast, residual-based methods (e.g., PINNs) may enter regions of parameter space
- where $\mathcal{L}u_{\theta} \not\approx 0$, resulting in sharp gradients, oscillatory behavior, or physically invalid outputs. Such
- instability is particularly problematic in stiff systems or ill-conditioned geometries.
- 598 **Conclusion.** By construction, NSNs constrain training dynamics to a physically valid subspace.
- As a result, optimization operates within a well-behaved manifold and avoids PDE-infeasible direc-
- tions—resulting in smoother loss landscapes, more reliable convergence, and interpretable intermedi-
- ate solutions.

NeurIPS Paper Checklist

1. Claims

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618 619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

635

636

637

640

641

642

643

644

645

646

647

649

652

653

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We believe we have justified all our claims with either theoretical or numerical evidence.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We make clear the scope of our work being limited to linear differential operators in the theory section. We provide benchmarks against competitive state of the art recent approaches to highlight some circumstances where our approach does not exceed the status quo.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach.
 For example, a facial recognition algorithm may perform poorly when image resolution
 is low or images are taken in low lighting. Or a speech-to-text system might not be
 used reliably to provide closed captions for online lectures because it fails to handle
 technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We believe we have been explicit in our assumptions and derivations. We have numbered and referenced all equations.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide source code with instructions on reproducing the exact experiments run in the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide full access to the source code and provide guidance on reproducing the exact numerical results in the accompanying README.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have included these details within section 6.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results over multiple 10 reproducible random seeds per experiment and report means and standard deviations in table 1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: This is added in the experimental details in Appendix A.2.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and ensured adherence to the guidelines. In particular, given the application of our paper towards modelling scientific problems involving differential equations, the scope for negative ethical impact is diminished.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: The principal applications of our work are the application of machine learning to scientific applications with objective and well-defined answers for equations describing phenomena from the natural sciences with objective answers. As such, the scope for negative societal impact is limited.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification:

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We are the sole authors of all new assets presented in this paper. We do not distribute any other assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

864

865

866

867

868

869

870

871

872

873

874

875

876 877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We take the novel assets to be the source code that provide the experimental results of our submission, which we include in the supplementary material.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We required no crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: We required no crowdsourcing nor research with human subjects.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.