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Abstract

We introduce Neural Superposition Networks, a class of physics-constrained neural1

architectures that exactly satisfy given partial differential equations (PDEs) by2

construction. In contrast to traditional physics-informed neural networks (PINNs),3

which enforce PDE constraints via loss regularization, our approach embeds the4

solution manifold directly into the architecture by expressing the output as a5

superposition of analytical basis functions that solve the target PDE. This elim-6

inates the need for interior residual loss terms, simplifies training to a single-7

objective optimization on boundary conditions, and improves numerical stability.8

We show that for linear PDEs—including Laplace, heat, and incompressible flow9

constraints—this architectural bias leads to provably convergent approximations.10

Using maximum principles and classical convergence theory, we establish uni-11

form boundary-to-interior convergence guarantees. For nonlinear PDEs such as12

Burgers’ equation, we demonstrate that partial structural constraints can still be13

enforced via transformations (e.g., Cole–Hopf), yielding improved inductive bias14

over standard PINNs. The resulting networks combine the expressiveness of deep15

learning with the convergence guarantees of Galerkin and spectral methods. Our16

framework offers a theoretically grounded and computationally efficient alternative17

to residual-based training for PDE-constrained problems.18

1 Introduction19

Neural networks have emerged as powerful tools for modeling and solving differential equations,20

both in forward simulations and inverse design problems. This integration spans a wide spectrum21

of scientific applications, from continuous-depth networks based on neural ODEs [4] to generative22

modeling via stochastic differential equations [30]. Within this landscape, physics-informed neural23

networks (PINNs) [27, 20] have become a dominant paradigm by incorporating differential constraints24

into the loss function as soft penalties.25

While PINNs offer a mesh-free and generalizable approach to PDE solving, they suffer from well-26

documented limitations: non-convex training dynamics, sensitivity to gradient pathologies [31],27

reliance on manual loss balancing [19], and a lack of convergence guarantees. Recent improvements28

have proposed enhanced formulations, including adaptive activation [17], domain decomposition29

[23], fractional order extensions [25], and constraint relaxation via augmented Lagrangian methods30

[29]. Despite these advances, residual-based enforcement remains fundamentally fragile—especially31

for stiff, multiscale, or ill-conditioned PDEs.32

To address these challenges, an emerging class of hard-constrained neural architectures aims to embed33

the solution manifold directly into the network. Examples include divergence-free networks derived34

from Hodge theory for incompressible flows [28], holomorphic networks that satisfy Laplace’s35

equation via complex analytic constraints [7], and Hamiltonian neural networks preserving energy36

invariants in dynamical systems [9]. Similar ideas have been explored in Gaussian process priors37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



[10] and symmetry-based numerical methods [15]. However, these approaches often target specific38

operators and lack a unified construction principle.39

This paper proposes a general framework—Neural Superposition Networks (NSNs)—that enforces40

linear PDE constraints exactly by construction. Leveraging the linearity of differential operators,41

NSNs express the network output as a trainable superposition of known solution components, thereby42

embedding the governing equation into the architecture itself. This eliminates the need for residual43

loss terms and reduces training to a single-objective optimization over boundary conditions. We show44

that NSNs naturally unify and generalize several existing PDE-constrained architectures, including45

divergence-free and holomorphic networks, under a common principle.46

Beyond this unification, we introduce new NSN constructions for the heat equation and, through47

Cole–Hopf transformation, for the nonlinear Burgers’ equation. These models inherit the convergence48

guarantees of spectral methods while maintaining the expressivity and adaptability of neural networks.49

Compared to residual-based PINNs and their improved variants [21, 17, 23], our approach offers50

provable convergence (for linear PDEs), improved training stability, and higher fidelity to physical51

constraints.52

1.1 Contribution of this work53

We introduce NSNs as a general framework that embeds linear PDE constraints directly into neural54

architectures, extending previous structure-preserving methods. Our approach, NSNs, leverages the55

principle of superposition by expressing the solution as a trainable sum of known PDE-consistent56

basis functions. This approach ensures all network outputs satisfy the PDE by design, allowing57

training to focus solely on satisfying boundary data.58

Our framework generalizes several existing architectures—such as divergence-free networks [28]59

and holomorphic networks [7]—as special cases under a common formulation. Furthermore, we60

introduce novel superposition-based architectures for the heat equation and for the nonlinear Burgers’61

equation, the latter via Cole–Hopf transformation. These constructions preserve problem-specific62

structure and lead to more stable training behavior across linear and transformed nonlinear systems.63

We provide theoretical convergence guarantees based on maximum principles and spectral approx-64

imation theory, and show that the resulting training objective is convex when the basis is fixed.65

Empirically, we demonstrate that NSNs outperform residual-based PINNs and other constrained66

baselines across a variety of PDE benchmarks, including Laplace, heat, Burgers’, and incompressible67

flow equations.68

2 Related Work69

The use of neural networks for solving PDEs has become central in scientific machine learning. A70

foundational class of methods, PINNs, introduces soft constraints by incorporating PDE residuals71

as penalty terms in the loss function [27, 20]. While widely adopted, PINNs often suffer from72

optimization difficulties such as stiff loss landscapes and poor convergence, especially in multi-73

scale or inverse problems [31, 19]. These challenges have prompted numerous variants—such as74

domain decomposition (XPINN, FBPINN) [16, 23], adaptive residual refinement [21], augmented75

optimization schemes [22], and trainable activation functions [17].76

To address limitations of soft regularization, recent works have explored architecturally constrained77

neural networks that satisfy PDE properties by design. Examples include holomorphic networks78

that exactly solve the Laplace equation via complex-valued activation functions [7], divergence-free79

architectures for incompressible flows using Hodge theory or vector potentials [28], and Hamiltonian80

networks that preserve energy conservation laws [9]. These methods restrict the hypothesis space81

to subsets of the solution manifold, improving physical consistency and training stability. However,82

they typically target a narrow class of PDEs and lack a unifying construction.83

Our work builds on these ideas by proposing a general framework NSNs that encodes the solu-84

tion space of linear PDEs directly into the architecture using basis function superposition. This85

formulation recovers holomorphic and divergence-free networks as special cases, while naturally86

extending to other linear PDEs such as the heat equation. Furthermore, we leverage classical solution87

transformations (e.g., Cole–Hopf) to partially constrain nonlinear PDEs like Burgers’ equation. In88
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contrast to residual-based PINNs, our approach avoids interior losses, yields better convergence89

guarantees, and aligns more closely with Galerkin and spectral methods in numerical analysis.90

Related lines of research include symbolic approaches to PDE solution discovery [2], Gaussian91

process priors over PDE solution spaces [10], and symmetry-based architecture design using Lie92

group theory [8]. Our method can be viewed as a bridge between such classical analytic techniques93

and modern deep learning models, offering a scalable and interpretable solution framework.94

3 Problem Formulation95

Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω, and let u : Ω ∪ ∂Ω → Rm denote the target96

solution to a given PDE. We follow the classical boundary value formulation from PDE theory [6]97

and consider general linear PDEs of the form:98

Lu(x) = 0, for x ∈ Ω, (1)

subject to boundary (or initial) conditions:99

Nu(x) = g(x), for x ∈ ∂Ω. (2)

Here, L denotes a linear differential operator acting on u, and N denotes a boundary trace operator.100

This formulation encompasses a wide class of PDEs:101

• Laplace: L = ∇2, N = Id (Dirichlet),102

• Heat: L = ∂t − α∇2,103

• Divergence-free: L = ∇·,104

• Burgers’ (via Cole–Hopf): L = ∂t − ν∇2 on transformed ϕ.105

We define a solution space:106

H :=

{
uθ(x) =

∑
i

Wiui(x) : Lui = 0 in Ω

}
,

which restricts the model to PDE-feasible functions. The only remaining optimization is over107

boundary data:108

Lboundary(θ) = Ex∼∂Ω

[
(N [uθ(x)]− g(x))

2
]
. (3)

Function space abstraction. To formalize, let A denote a space of sufficiently smooth functions109

from Ω ∪ ∂Ω to Rm, and let L : A → A′ be a linear differential operator satisfying110

L(af + bg) = aL(f) + bL(g), ∀f, g ∈ A, a, b ∈ R.

Then, by linearity, the weighted combination111

uθ(x) =

n∑
i=1

Wiui(x) ∈ H

satisfies Luθ = 0 exactly if all ui ∈ kerL.112

The goal is to learn weights θ = {Wi} such that uθ matches the prescribed boundary values g(x) on113

∂Ω.114

4 Neural Superposition Networks115

We now introduce NSNs, a class of neural architectures that satisfy linear PDE constraints by116

construction. The central idea is to build the network output as a trainable linear combination of basis117

functions, each of which individually satisfies the governing equation. This transforms the original118

PDE-constrained learning problem into a purely boundary-fitting task over a restricted solution space.119

3



Figure 1: A schematic of superposition networks, a single-layer feedforward neural network architec-
ture constrained to be in the solution space of a linear differential equation. Superposition networks
use a library of known solutions of the differential equation (a) and apply Lie group symmetries
derived from the differential equation to derive suitable linear transformations (b) which are linearly
combined (c) to approximate nontrivial solutions of the differential equation by training only on
initial and boundary conditions.

4.1 Architecture and Functional Form120

Let L be a linear differential operator, and let σi : Rd → Rm denote a family of known solutions121

such that Lσi = 0 for each i = 1, . . . , N . Such basis functions are typically drawn from the null122

space of L, as motivated by classical spectral and Galerkin methods for PDEs [6].123

We construct the network output uθ(x) as:124

uθ(x) = θ0 +
1

N

N∑
i=1

θ
(i)
1 · σi(g

σi

θ
(i)
2

(x)), (4)

where:125

• θ0 ∈ Rm is an output bias term,126

• θ
(i)
1 ∈ Rm is a trainable weight vector,127

• gσi

θ
(i)
2

: Rd → Rd is a parametric Lie group transformation (e.g., translation, rotation, scaling)128

that preserves the PDE solution space [15, 8],129

• σi are fixed (or learnable) basis functions satisfying Lσi = 0.130

The Lie group action gσi

θ
(i)
2

ensures that σi ◦ gσi

θ
(i)
2

still lies within the null space of L, i.e.,131

L[σi(g
σi

θ
(i)
2

(x))] = 0. Therefore, by linearity of L, the network output uθ(x) also satisfies the132

PDE constraint exactly:133

Luθ(x) = 0 for all x ∈ Ω.
A complete catalogue of symmetry-preserving transformations used for Laplace, Heat, and divergence-134

free equations is summarized in Appendix A.1.135

This architecture is illustrated in Figure 1. In panel (a), we select or construct a library of known136

solutions σi. In panel (b), each basis is transformed using symmetry-preserving actions gσi

θ
(i)
2

. In137

panel (c), the transformed bases are linearly combined via trainable weights to yield an expressive138

solution manifold.139

The training objective is then reduced to enforcing the boundary conditions through the loss:140

L∂Ω(θ) = Ex∼∂Ω

[
∥Nuθ(x)− g(x)∥2

]
, (5)

where N is the boundary operator and g(x) specifies the target boundary values.141

This formulation defines a hypothesis space142

HN := {uθ(x) | uθ of the form (4), Luθ = 0} ,
over which the only optimization objective is to satisfy Eq. (2) at the boundary.143

The resulting network—shallow in depth but rich in inductive bias—thus strictly respects the govern-144

ing PDE while preserving the flexibility of neural parameterization at the boundary.145
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4.2 PDE-Specific Instantiations146

The superposition framework can be instantiated for various PDEs by selecting appropriate basis147

functions σi and symmetry-preserving transformations gσi

θ2
. We present representative cases below.148

Laplace Equation. Let L = ∇2, with N specifying Dirichlet or Neumann conditions. The Laplace149

operator admits harmonic functions as solutions, including the real parts of holomorphic functions150

f : C → C [7]. For example, σi(x, y) = Re(fi(x+ iy)) with fi(z) ∈ {sin z, ez, z2, . . . }.151

Transformations gθ2 are taken from the 2D Euclidean group plus dilations:152

gθ(x, y) = sRθ

(
x
y

)
+ t,

where s ∈ R+ is a scale, Rθ a rotation matrix, and t ∈ R2 a translation. These preserve harmonicity,153

i.e., ∇2[σi(gθ(x))] = 0 [6].154

Divergence-Free Fields. Let L = ∇·. In 2D, any vector field of the form155

σi(x, y) =

(
∂fi
∂y

, −∂fi
∂x

)
is divergence-free for smooth scalar potentials fi : R2 → R [28]. Typical choices include trigono-156

metric polynomials, Gaussians, or Bessel functions. The same affine transformations as above can be157

used to shift and scale the basis while preserving the divergence-free property.158

Heat Equation. Let L = ∂t − α∇2. A known class of solutions includes separable forms such as:159

σi(x, y, t) = exp(−λt) · ϕi(x, y),

where ϕi is an eigenfunction of the Laplacian (e.g., sine functions), and λ is the corresponding160

eigenvalue [6]. The transformation gθ scales space and time to preserve the form of the heat kernel:161

gθ(x, y, t) = (sxx+ tx, syy + ty, stt+ tt),

with the constraint st = α(s2x + s2y)/2 to maintain PDE consistency [15, 8].162

Burgers’ Equation. Although nonlinear, 1D Burgers’ equation163

∂tu+ u∂xu = ν∂xxu

can be linearized via the Cole–Hopf transformation: u = −2ν∂x log ϕ [13, 5]. We construct ϕ using164

the heat-equation NSN described above and compute uθ via:165

uθ(x, t) = −2ν
∂

∂x
log ϕθ(x, t),

where ϕθ satisfies the linear heat equation analytically by construction.166

Other PDEs. The same procedure can be extended to Helmholtz, wave, or convection-diffusion167

equations, provided a library of solutions and symmetry-preserving transformations is available.168

Automated discovery of such bases remains an open direction [2, 24].169

4.3 Implementation Details170

We implement all models in Python using PyTorch [26]. For each PDE benchmark, we define a custom171

superposition network where the basis functions σi are either analytical (e.g., harmonic, Gaussian, or172

heat kernels) or shallow MLPs constrained to satisfy the governing PDE. Each transformed basis173

is parameterized by an affine map gθi(x) = Aix+ bi that preserves the PDE structure, with initial174

parameters sampled uniformly to tile the domain.175

Superposition weights and transformation parameters are trained jointly via gradient descent on176

the boundary loss using the Adam optimizer [18]. All baselines (PINNs, AA, RAR, etc.) are177

implemented under the same framework for comparability. Ground truth solutions for Heat, Burgers,178

and Navier–Stokes equations are provided in tabulated form and referenced during evaluation.179

Full implementation details, including code and dataset configurations, are provided in the supple-180

mentary materials.181
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5 Theoretical Analysis182

We now analyze the convergence and optimization properties of NSNs. Our framework exhibits183

several theoretical advantages over residual-based methods, particularly for linear PDEs. These184

advantages stem from the network’s architectural alignment with the PDE solution space.185

5.1 Exact PDE Satisfaction by Construction186

Let L be a linear differential operator, and suppose each basis function ui(x) satisfies Lui(x) = 0.187

Then, for any choice of weights Wi, the network output:188

uθ(x) =

n∑
i=1

Wiui(x)

also satisfies Luθ(x) = 0 by linearity. This removes the need to include any PDE residual loss during189

training, as the constraint is satisfied everywhere in the domain Ω.190

5.2 Boundary-to-Interior Convergence via Maximum Principles191

We now establish uniform convergence of the network solution in the domain, assuming convergence192

on the boundary. Let u∗(x) be the true solution to the boundary value problem (L,N , g), and let193

uθ(x) be the superposition network output.194

Define the error eθ(x) := uθ(x)− u∗(x). Then:195

Leθ = 0, with eθ|∂Ω → 0.

For classical linear PDEs such as Laplace’s equation and the heat equation, this yields the following:196

Theorem 1 (Boundary-to-Interior Convergence for Laplace’s Equation). Let uθ satisfy ∇2uθ = 0,197

and suppose uθ|∂Ω → g. Then:198

sup
x∈Ω

|uθ(x)− u∗(x)| ≤ sup
x∈∂Ω

|uθ(x)− u∗(x)| → 0.

Theorem 2 (Parabolic Maximum Principle for the Heat Equation). Let uθ satisfy ∂tuθ = α∇2uθ199

and converge to g on the parabolic boundary. Then:200

sup
(x,t)∈Ω×[0,T ]

|uθ(x, t)− u∗(x, t)| ≤ sup
(x,t)∈∂pΩT

|uθ(x, t)− u∗(x, t)| → 0.

Similar guarantees for Burgers’ equation are obtained via the Cole–Hopf transformation; see Ap-201

pendix B.1 for full derivations.202

5.3 Convexity of the Boundary Optimization203

When the basis functions ui(x) are fixed and linear in the parameters, the boundary loss becomes a204

convex quadratic function:205

LB(W ) = Ex∼∂Ω

( n∑
i=1

Wiui(x)− g(x)

)2
 ,

which admits a unique global minimizer in closed form. This contrasts with standard PINNs, where206

the loss is non-convex and often poorly conditioned due to entangled PDE and boundary objectives.207

See Appendix B.2 for a formal derivation of convexity under linear basis assumptions.208

5.4 Function-Space Convergence and Spectral Analogy209

Let the basis {ui(x)} span a subspace Hn of the full PDE solution space. If Hn is dense as n → ∞,210

then for any admissible solution u∗, there exists uθ ∈ Hn such that ∥uθ − u∗∥ < ϵ.211

This mimics convergence guarantees in Galerkin and spectral methods. Our use of parameterized,212

trainable basis functions generalizes classical fixed-basis approaches, while preserving solution213

structure. We include a discussion of approximation density and spectral completeness assumptions214

in Appendix B.3.215
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5.5 Stability and Physics Consistency216

Because the network output uθ(x) lies within the null space of L by construction, it is physically217

admissible throughout training. In contrast to PINNs, which may produce unphysical intermediate218

solutions, our method guarantees structural feasibility and avoids instability from PDE violations dur-219

ing early optimization steps. A formal analysis of stability under constraint-preserving perturbations220

is given in Appendix B.4.221

6 Experiments222

We evaluate NSNs on a suite of PDEs, including Laplace, Heat, Navier–Stokes, and Burgers’223

equations. We compare NSNs against baselines that impose PDE constraints either via regularization224

(e.g., PINNs) or architecture (e.g., holomorphic and divergence-free networks).225

6.1 Setup and Evaluation Protocol226

All experiments are implemented in Python using PyTorch [26]. Each method is trained for 32,000227

epochs using the Adam optimizer [18] with a learning rate of 10−3 and Kaiming uniform initializa-228

tion [12]. Training is repeated with 10 random seeds, and root-mean-squared error (RMSE) against229

ground truth is reported. Ground truths are obtained using FEATools and OpenFOAM [32] for230

Navier–Stokes, and MATLAB solvers [1] for the Heat equation. Implementation details, software231

environment, and collocation sampling strategies are described in Appendix A.2.232

6.2 PDE Benchmarks233

Laplace Equation. We solve ∇2u = 0 over Ω = (0, 1)2 with two boundary types: full Dirichlet234

(Laplace 1) and Neumann on y = 1 (Laplace 2). The exact solution is the real part of a meromorphic235

function not representable by a single holomorphic term, ensuring a nontrivial approximation. We236

compare NSNs, PINNs, and holomorphic networks. Holomorphic networks achieve slightly better237

RMSE but are restricted to 2D Laplace problems, while NSNs generalize.238

Heat Equation. Two setups are tested with distinct initial profiles and mixed Dirichlet–Neumann239

boundary conditions. NSNs are constructed using manufactured solutions and scaled Lie group240

transformations. Only PINNs are used as baselines since no architectural method exists for this PDE.241

NSNs outperform all PINN variants on both benchmarks.242

Navier–Stokes Equation. We test steady-state incompressible Navier–Stokes equations over a243

domain with obstacles. Since full PDE enforcement is infeasible architecturally, we benchmark244

divergence-free subcomponents. NSNs are constrained to ∇ · u = 0, while pressure is learned via245

auxiliary MLP. Convergence is generally difficult, but NSNs yield stable approximations with lower246

RMSE than divergence-free PINNs.247

Burgers’ Equation. For 1D Burgers’ equation with Dirichlet conditions, we use the Cole–Hopf248

transformation and train NSNs on the transformed heat equation. Despite its nonlinearity, NSNs249

match or exceed the performance of all residual-based approaches.250

Detailed descriptions of the governing equations, initial and boundary conditions, and ground truth251

functions for each benchmark are provided in Appendix A.2.252

6.3 Quantitative Results253

Table 1 summarizes RMSE performance across all benchmarks. NSNs consistently outperform254

PINNs and achieve competitive or superior accuracy compared to architectures with hand-crafted255

inductive biases (e.g., holomorphic, divergence-free). All experiments were run using Python 3.10 on256

two-cores of a Dual AMD Rome 7742 processor with 8GB of RAM and were allocated 12 hours of257

compute time, but finished well-within that period258

See also: Appendix A.3 describes loss functions and implementation details for all baseline models.259
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Table 1: A summary of experimental results (lower is better) comparing superposition networks
to alternative architectures imposing differential equation constraints for the methods outlined in
section 6. Methods which architecturally constrain differential equation dynamics are placed in the
first two rows. For the Navier-Stokes equations, only the divergence-free aspect of incompressible
flow can be architecturally imposed. Root-mean squared errors (RMSEs) of the final trained solution
are shown with standard deviations over 10 random seeds reported. For the heat equation, we report
the RMSE at the end of the simulation. Note that Holomorphic neural networks are only applicable
to Laplace’s equation, and NCL only applies to divergence-free fields.

Laplace 1 Laplace 2 Heat 1 Heat 2 Navier Stokes Burgers’

Superposition 0.0067±0.0023 0.010±0.0047 0.0080±7.3e-5 0.00084±0.00018 0.11±0.0026 0.0030±0.0024
Holomorphic 0.0029±0.0022 0.0033±0.0009 - - - -
NCL - - - - 0.097±0.0015 -

PINN 0.15±0.0030 0.29±0.093 0.0085±0.0024 0.0027±0.0017 0.10±0.00090 0.0039±0.0022
PINNB 0.0063±0.0041 0.12±0.066 0.063±0.016 0.015±0.0025 0.085±0.0090 0.0049±0.0030
PINNI 0.56±0.00091 0.82±0.067 0.080±0.024 0.046±4.4e-5 0.10±0.00034 0.12±0.010
RAR 0.15±0.0015 0.43±0.012 0.0085±0.0075 0.0026±0.0012 0.10±0.00058 0.0036±0.00065
AA 0.19±0.12 0.54±0.084 0.039±0.015 0.016±0.016 0.097±0.00086 0.0067±0.0039
RAR+AA 0.20±0.12 0.55±0.063 0.0070±0.0020 0.0053±0.0034 0.099±0.00080 0.018±0.012

7 Discussion260

NSNs provide a theoretically principled and numerically stable framework for solving PDE-261

constrained problems by embedding the governing equations directly into the architecture. This hard262

constraint ensures that network outputs always lie within the solution space of the target linear PDE,263

transforming the learning objective into a boundary (or initial) fitting problem and eliminating the264

need for residual loss terms. As a result, NSNs avoid several challenges common to residual-based265

methods such as PINNs, including instability from loss balancing, lack of convergence guarantees,266

and physical inconsistency during early training.267

Our construction builds on classical insights from spectral and Galerkin methods, while incorporating268

the expressivity of modern neural networks through parameterized basis functions and symmetry-269

preserving transformations. Empirical evidence supports the benefits of this hybridization: when the270

governing PDE is linear and admits a structured solution space, NSNs converge more efficiently and271

stably than conventional methods, even with limited training data.272

Across all benchmark tasks where the PDE could be hard-constrained (e.g., Laplace, Heat), NSNs273

achieved the lowest RMSE, including stiff settings such as long-horizon heat propagation. For274

nonlinear problems like Burgers’ equation, our Cole–Hopf-based formulation leveraged the exact275

satisfaction of the linear surrogate (heat equation) and yielded stable gradients via logarithmic postpro-276

cessing. Even when architectural constraints could not fully enforce the PDE (e.g., Navier–Stokes),277

NSNs remained competitive with divergence-free variants.278

While the approach currently relies on predefined analytical bases or symmetry-derived components,279

we emphasize that this constraint is a strength in structured regimes rather than a limitation. In practice,280

many physical systems are governed by equations with known symmetry groups or canonical solution281

families. Moreover, the framework naturally extends to partially structured problems: for example,282

we showed that even for nonlinear PDEs like Burgers’ equation, transforming the architecture to283

align with a linear surrogate (e.g., via Cole–Hopf) retains most of the convergence and generalization284

benefits.285

These insights suggest several promising directions for future work. One is the automatic discov-286

ery of trainable basis functions or symmetry transformations, potentially via symbolic regression,287

meta-learning, or generative modeling. Another is the integration of NSNs into hybrid architectures288

that combine structure-preserving components with data-driven residual correction, particularly for289

complex or nonlinear systems where analytical structure is only partially available. Finally, applica-290

tions to inverse problems, control, and high-dimensional parametric PDEs present opportunities to291

leverage NSNs’ stability and interpretability in scientifically demanding settings.292

In summary, NSNs offer a complementary alternative to residual-based learning, one that prioritizes293

exact physical adherence and principled inductive bias. Rather than replacing PINNs or surrogate294

models, NSNs enrich the design space for physics-informed architectures, bridging the gap between295

classical numerical analysis and deep learning.296
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8 Conclusion297

We introduced NSNs, a class of physics-constrained architectures that satisfy linear PDEs exactly by298

construction. By expressing solutions as trainable superpositions of PDE-consistent basis functions,299

NSNs eliminate residual losses and reduce training to boundary-only optimization. This results in300

improved stability and convergence over conventional PINNs, particularly in structured physical301

domains.302

Our experiments show that NSNs outperform or match strong baselines on a variety of PDE bench-303

marks, including nonlinear problems such as Burgers’ equation. These results demonstrate the power304

of architectural alignment with the solution space, both in theory and practice.305

Future work includes extending NSNs to nonlinear regimes via hybrid residual correction, and306

automating the discovery of basis functions using symmetry-informed priors or meta-learning. We307

believe NSNs offer a principled path forward for structure-preserving neural solvers in scientific308

machine learning.309
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Appendix A. Experimental Details401

A.1 Symmetry-Preserving Lie Group Actions402

Neural Superposition Networks construct their output as superpositions of PDE-feasible basis func-403

tions transformed via trainable Lie group actions. This section catalogs the symmetry-preserving404

transformations gθ used for the benchmark PDEs presented in this work. Each transformation is405

derived from classical Lie symmetry theory for differential equations [15].406

Laplace Equation (L = ∇2). In R2, Laplace’s equation admits invariance under the extended407

Euclidean group E(2) combined with isotropic scaling:408

gθ(x, y) = sRϕ

(
x
y

)
+ t, s > 0, Rϕ ∈ SO(2), t ∈ R2. (6)

This includes translations, rotations, and uniform scaling. Harmonicity of functions is preserved409

under such transformations, i.e., ∇2[σ(gθ(x))] = 0 if ∇2σ(x) = 0.410

Heat Equation (L = ∂t − α∇2). The heat equation admits scaling in both space and time under a411

specific parabolic scaling group. For a basis function σ(x, t) satisfying the heat equation, we apply:412

x̂ = ax+ b,

t̂ = a2t+ c,
(7)

with a > 0, b ∈ R, and c ∈ R. This transformation preserves the form of the heat kernel:413

L[σ(gθ(x, t))] = 0 whenever L[σ(x, t)] = 0.

Divergence-Free Vector Fields (L = ∇·). Let σi(x) = ∇⊥fi(x) for scalar stream functions414

fi : R2 → R, where415

∇⊥f :=

(
∂f

∂y
,−∂f

∂x

)
.

Any affine transformation composed of translations, rotations, and scalings applied to fi yields416

another divergence-free vector field when passed through ∇⊥. That is,417

gθ(x, y) = A

(
x
y

)
+ b, A ∈ GL(2), detA ̸= 0,

preserves divergence-freeness under composition, i.e., ∇ · ∇⊥[f(gθ(x))] = 0.418

Burgers’ Equation (via Cole–Hopf Transformation). The 1D viscous Burgers’ equation419

∂tu+ u∂xu = ν∂xxu

is nonlinear and does not admit classical Lie group symmetries that preserve its nonlinear structure.420

However, via the Cole–Hopf transformation:421

u(x, t) = −2ν
∂

∂x
log ϕ(x, t),

it reduces to the linear heat equation:422

∂tϕ = ν∂xxϕ.

Therefore, the symmetry-preserving transformations gθ for Burgers’ equation are inherited from423

those of the heat equation. Specifically, the parabolic scaling transformation:424

x̂ = ax+ b,

t̂ = a2t+ c,
(8)

with a > 0, b ∈ R, and c ∈ R, preserves the form of ϕ(x, t) and hence induces valid transformed425

solutions for u(x, t). In this sense, although Burgers’ equation lacks explicit linear symmetry actions,426

its superposition network inherits symmetry consistency through its transformation to the heat427

equation.428
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Summary. Each benchmark PDE considered in this work admits a specific class of symmetry-429

preserving transformations. For Laplace and divergence-free equations, affine transformations from430

the Euclidean group combined with scaling preserve the solution space. The heat equation requires431

parabolic scaling to maintain kernel invariance, while Burgers’ equation admits no direct symmetries432

in its nonlinear form and is instead handled via a Cole–Hopf transformation that linearizes it into433

the heat equation. Neural Superposition Networks apply these group actions to construct expressive434

yet PDE-constrained basis families, ensuring exact satisfaction of the governing operator across all435

transformed modes.436

A.2 Benchmark Configurations and Implementation437

This section provides full experimental configurations for the PDE benchmarks introduced in Sec-438

tion 6, including governing equations, boundary conditions, initialization, sampling, and ground truth439

construction.440

Software and Experimental Environment. All experiments were conducted using Python 3.10 on441

a dual-core AMD Rome 7742 processor with 8GB of RAM, and each run was allocated a 12-hour442

time budget—well beyond what was required in practice. All neural networks were implemented in443

PyTorch [26] and trained using the Adam optimizer [18] with a learning rate of 10−3 and Kaiming444

uniform initialization [12]. Real-valued networks use tanh activations; holomorphic networks use445

complex sin activations.446

Supporting utilities for preprocessing and evaluation were implemented with NumPy [11] and447

Matplotlib [14]. Additionally, we provide an independent PINN baseline implementation for the448

Laplace benchmark in JAX [3], which confirms numerical consistency with the PyTorch results.449

For reproducibility, all source code and CSV exports of simulation outputs are included in the450

supplementary material.451

Ground truth solutions for the heat and Navier–Stokes benchmarks were computed using MATLAB’s452

sparse solver [1] and FEATools with OpenFOAM [32], respectively.453

In the following, we provide detailed configurations for each PDE benchmark, including governing454

equations, boundary conditions, basis construction, and sampling.455

Laplace Equation. Domain: Ω = (0, 1)2 with either full Dirichlet (Laplace 1) or mixed Dirichlet–456

Neumann (Laplace 2) conditions. Boundary values are taken from a meromorphic function:457

f(x, y) = ℜ
[

1

(z − 1.2− 0.5i)(z + 0.2− 0.5i)(z − 0.5 + 0.2i)(z − 0.5− 1.2i)

]
, z = x+ iy.

NSN bases are real parts of holomorphic functions (e.g., sin z, ez , sin2 z) with Lie-transformed458

copies. PINNs and holomorphic networks are trained on 512 interior and 128 boundary points per459

edge.460

Heat Equation. Benchmarks use manufactured initial conditions:461

Heat 1: ϕ(x, y, 0) =

√
e−5((x−0.5)2+(y−0.5)2)(sin2 5πx+ cos2 3πy)

Heat 2: ϕ(x, y, 0) = e−5((x−0.5)2+10(y−0.5)2)

− e−20((x−0.5)2+5(y−0.7)2) − e−20((x−0.5)2+5(y−0.3)2)

Mixed boundary conditions are used in both cases. Ground truth is computed with MATLAB’s462

implicit finite-difference solver [1]. NSNs use 64 basis elements constructed via Eq. (16)–(17) in the463

main text.464

Navier–Stokes. 2D steady-state incompressible Navier–Stokes on a rectangular domain with two465

circular obstacles. Inflow and outflow conditions are set along x, and no-slip conditions along y.466

NSNs use divergence-free basis functions (Eq. (15)) for velocity and a separate MLP for pressure.467

FEATools with OpenFOAM [32] is used to generate the reference solution.468
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Burgers’ Equation. 1D viscous Burgers’ equation:469

∂tu+ u∂xu = ν∂xxu, ν = 0.1

with initial condition u(x, 0) = e−50(x−0.6)2 − e−50(x−0.4)2 and Dirichlet boundaries u(0, t) = 0,470

u(1, t) = 1. Cole–Hopf-transformed NSNs are trained on the corresponding heat equation and471

postprocessed via automatic differentiation.472

Sampling. Collocation points are sampled uniformly in the domain (1024 points) and along each473

boundary segment (128 per side unless noted). For RAR methods, 32 high-residual interior points474

are adaptively added every 1000 epochs. All models are trained for 32,000 epochs.475

Evaluation. Root-mean-squared error (RMSE) is computed over 10 runs with different seeds.476

Reported values in Table 1 include mean and standard deviation across these trials.477

Appendix A.3 Loss Functions and Baseline Architectures478

This section provides implementation details for all baseline models reported in Table 1, including479

loss functions, architectural constraints, and optimization specifics. All models are implemented480

using PyTorch 2.1 and trained with the Adam optimizer at a learning rate of 10−3 for 32,000 epochs.481

PINN. The standard physics-informed neural network (PINN) minimizes a weighted sum of482

boundary and PDE residual losses:483

LPINN = Ex∼∂Ω

[
∥N fθ(x)− g(x)∥2

]
+ λEx∼Ω

[
∥Lfθ(x)∥2

]
.

We use λ = 1.0 by default unless otherwise noted. For PINNB and PINNI variants, we scale the484

boundary or interior loss terms respectively by λ = 1000 to emphasize constraint fidelity.485

RAR and AA. Residual-based Adaptive Refinement (RAR) dynamically augments the training set486

with interior collocation points exhibiting high residual error, following the schedule in Lu et al. [21].487

Every 1000 epochs, we sample 1024 candidate interior points and add the 32 with highest residuals488

to the training set. Adaptive Activation (AA) uses trainable scaling factors on tanh activations with a489

fixed nonlinear weight factor n = 10, as proposed by Jagtap et al. [17]. The combined RAR+AA490

model uses both mechanisms.491

Holomorphic Networks. These networks follow the architecture in Ghosh et al. [7], using complex-492

valued MLPs with holomorphic activation functions (e.g., sin or exp). Only the real part of the output493

is used. The loss minimized is the mean squared boundary discrepancy:494

LHolomorphic = Ex∼∂Ω

[
∥Re(fθ(x))− g(x)∥2

]
,

and no residual term is used, since the output is guaranteed to satisfy Laplace’s equation by construc-495

tion.496

NCL (Neural Conservation Law). Divergence-free neural networks follow the construction in497

Richter-Powell et al. [28], where an MLP fθ : R2 → R is post-processed using:498

u(x, y) =

(
∂fθ
∂y

, −∂fθ
∂x

)
,

which guarantees ∇ · u = 0 by design. The boundary loss LBC is optimized:499

LNCL = Ex∼∂Ω

[
∥Nu(x)− g(x)∥2

]
.

Architectures and Initialization. All real-valued MLPs use 3 hidden layers of width 64 and500

tanh activation functions. Holomorphic models use 3 layers of width 64 with complex-valued sin501

activations. Kaiming uniform initialization is used throughout [12]. For NSNs, fixed or transformed502

basis functions are initialized using Lie-group transformed versions of analytical PDE solutions. NSN503

models do not require residual loss terms due to exact satisfaction of Luθ = 0.504
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Evaluation. Root-mean-squared error (RMSE) is computed against high-resolution reference505

solutions described in Appendix B.1. All models are trained with 10 random seeds, and results506

are reported with mean and standard deviation. In all experiments, test data are held fixed for507

comparability.508

Appendix B. Proofs and Theoretical Supplement509

B.1 Proof of Boundary-to-Interior Convergence510

We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace’s511

equation, the heat equation, and the transformed Burgers’ equation via the Cole–Hopf substitution.512

Each case follows a similar structure: (1) the network solution uθ satisfies the governing PDE exactly513

by construction, (2) the true solution u∗ satisfies the same PDE with matching boundary/initial514

conditions, and (3) the error eθ = uθ − u∗ satisfies a homogeneous PDE with vanishing boundary515

values. Classical maximum principles then yield uniform convergence.516

We provide full derivations for the convergence guarantees stated in Section 5.2, including Laplace’s517

equation, the heat equation, and the transformed Burgers’ equation via the Cole–Hopf substitution.518

Laplace’s Equation. Let u∗(x) denote the exact solution to ∇2u = 0 on Ω with boundary condition519

u∗|∂Ω = g, and let uθ(x) be the output of a superposition network satisfying ∇2uθ(x) = 0 and520

uθ|∂Ω → g. Define the error function eθ(x) := uθ(x)− u∗(x).521

Then:522

∇2eθ(x) = 0, with eθ|∂Ω → 0.

By the maximum principle for harmonic functions:523

sup
x∈Ω

|eθ(x)| ≤ sup
x∈∂Ω

|eθ(x)| → 0,

proving uniform convergence in the interior.524

Heat Equation. Let u∗(x, t) be the exact solution to ∂tu = α∇2u on ΩT = Ω×[0, T ], and uθ(x, t)525

be a superposition network output satisfying the same PDE. Let eθ(x, t) := uθ(x, t)−u∗(x, t). Then:526

∂teθ = α∇2eθ, with eθ|∂pΩT
→ 0,

where ∂pΩT denotes the parabolic boundary (initial and spatial boundary).527

By the parabolic maximum principle:528

sup
(x,t)∈ΩT

|eθ(x, t)| ≤ sup
(x,t)∈∂pΩT

|eθ(x, t)| → 0.

Hence, uniform convergence holds in both space and time.529

Burgers’ Equation via Cole–Hopf. The 1D Burgers’ equation:530

∂tu+ u∂xu = ν∂xxu,

can be transformed via the Cole–Hopf substitution u = −2ν∂x log ϕ into the linear heat equation:531

∂tϕ = ν∂xxϕ.

Let ϕθ be a superposition network trained to solve the heat equation exactly by construction, and ϕ∗532

be the true solution. Then eθ := ϕθ − ϕ∗ satisfies:533

∂teθ = ν∂xxeθ, with eθ|∂pΩT
→ 0.

By the parabolic maximum principle again, ϕθ → ϕ∗ uniformly. Since ϕ∗ > 0 (assuming positivity534

of the initial condition), log ϕθ → log ϕ∗ uniformly, and hence:535

∂x log ϕθ → ∂x log ϕ
∗, so uθ = −2ν∂x log ϕθ → u∗.

Thus, despite Burgers’ being nonlinear, the NSN induces a consistent and convergent approximation536

via its Cole–Hopf-aligned architecture.537
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B.2 Convexity of the Boundary Optimization Problem538

We provide a formal derivation of the convexity of the boundary loss for Neural Superposition539

Networks (NSNs), as claimed in Section 5.3 of the main text.540

Let the network output be given by541

uθ(x) =

n∑
i=1

Wiui(x),

where the basis functions {ui(x)}ni=1 satisfy the governing PDE Lui = 0 and are fixed during542

optimization. Only the weights W = (W1, . . . ,Wn)
⊤ are trainable.543

Suppose the boundary condition is given by Nu(x) = g(x) for x ∈ ∂Ω. Then the empirical training544

loss is:545

L∂Ω(W ) = Ex∼∂Ω

( n∑
i=1

Wiui(x)− g(x)

)2
 .

Let Φ ∈ Rm×n be the matrix whose j-th row contains u1(xj), . . . , un(xj), evaluated at collocation546

point xj ∈ ∂Ω, and let g ∈ Rm be the vector of target boundary values at those points. Then the loss547

can be written compactly as:548

L∂Ω(W ) = ∥ΦW − g∥22.

This is a standard quadratic form in W , with gradient and Hessian:549

∇WL∂Ω = 2Φ⊤(ΦW − g), ∇2
WL∂Ω = 2Φ⊤Φ.

The matrix Φ⊤Φ is symmetric and positive semi-definite, and positive definite if Φ has full column550

rank. Therefore, the loss is convex in W , and the optimization problem:551

min
W

L∂Ω(W )

is a convex optimization problem that admits a unique global minimizer when Φ⊤Φ ≻ 0.552

This analysis confirms that, under fixed PDE-consistent basis functions, NSN training reduces to a553

convex boundary fitting task—unlike standard PINNs, which involve non-convex residual losses over554

both interior and boundary domains.555

B.3 Function-Space Convergence and Spectral Approximation556

We formalize the convergence behavior of Neural Superposition Networks (NSNs) in function space557

by drawing parallels to Galerkin and spectral methods.558

Let H := {u ∈ C2(Ω) : Lu = 0} be the infinite-dimensional solution space of a linear PDE Lu = 0559

on a bounded domain Ω ⊂ Rd, with appropriate boundary conditions.560

Suppose that the superposition network defines a finite-dimensional hypothesis class:561

Hn := span{u1, u2, . . . , un} ⊂ H,

where each basis function ui ∈ kerL. Then, for any admissible solution u∗ ∈ H, the best approxi-562

mation error in Hn is given by:563

inf
uθ∈Hn

∥uθ − u∗∥V ,

where ∥ · ∥V denotes an appropriate norm (e.g., L2(Ω), H1(Ω)).564

If the basis {ui}∞i=1 forms a dense set in H, then:565

lim
n→∞

inf
uθ∈Hn

∥uθ − u∗∥V = 0,

by the completeness of the span of the basis.566
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This is the classical convergence property leveraged by Galerkin methods. In particular, for orthogonal567

bases {ϕk}, such as Fourier or eigenfunction expansions of elliptic operators, convergence rates are568

well-known and spectral:569

∥u∗ − u(n)∥L2 ≤ Cn−r, for u∗ ∈ Hr(Ω),

where u(n) is the best projection of u∗ onto the span of {ϕ1, . . . , ϕn} and C depends on the regularity570

of u∗.571

Our construction generalizes these ideas by allowing the basis {ui} to be parameterized and learned,572

while preserving the key property Lui = 0. Thus, the convergence behavior of NSNs inherits573

the theoretical guarantees of spectral methods, assuming the underlying basis library has sufficient574

richness.575

Further discussion on spectral completeness for specific PDE classes (e.g., Laplace, heat) is provided576

in the supplementary code and data release.577

B.4 Stability under Constraint-Preserving Perturbations578

We analyze the stability of Neural Superposition Networks (NSNs) with respect to perturbations579

in the trainable parameters that preserve the PDE constraint. Let uθ(x) ∈ Hn ⊂ kerL denote the580

network output constructed as a superposition of basis functions {ui}, each satisfying Lui = 0581

exactly.582

Assume θ 7→ uθ is a smooth mapping from parameters θ ∈ Rp to functions uθ ∈ Hn. Consider a583

perturbation δθ ∈ Rp such that the perturbed output uθ+δθ ∈ Hn also lies in kerL. Then:584

Lemma 1 (Stability Under PDE-Preserving Perturbations). Let N be the boundary operator and585

assume g ∈ L2(∂Ω) is the boundary target. Then the boundary loss586

L∂Ω(θ) = Ex∼∂Ω

[
∥Nuθ(x)− g(x)∥2

]
is Lipschitz-continuous in θ, provided Nuθ(x) is Lipschitz in θ for all x ∈ ∂Ω.587

Proof. Let δθ be such that uθ+δθ ∈ kerL. Then the PDE constraint is satisfied exactly throughout588

training. We analyze the variation in the boundary loss:589

|L∂Ω(θ + δθ)− L∂Ω(θ)| ≤ L∥δθ∥,

for some constant L > 0, assuming Nuθ(x) is differentiable and locally Lipschitz in θ. This follows590

from the differentiability of the basis functions and the linearity of both L and N .591

Since all intermediate network states remain in the null space of L, the training trajectory avoids592

non-physical excursions and remains structurally valid, preventing instabilities common in PINNs593

from PDE-violation drift.594

Remark. In contrast, residual-based methods (e.g., PINNs) may enter regions of parameter space595

where Luθ ̸≈ 0, resulting in sharp gradients, oscillatory behavior, or physically invalid outputs. Such596

instability is particularly problematic in stiff systems or ill-conditioned geometries.597

Conclusion. By construction, NSNs constrain training dynamics to a physically valid subspace.598

As a result, optimization operates within a well-behaved manifold and avoids PDE-infeasible direc-599

tions—resulting in smoother loss landscapes, more reliable convergence, and interpretable intermedi-600

ate solutions.601
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1. Claims603
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Answer: [Yes]606

Justification: We believe we have justified all our claims with either theoretical or numerical607
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Guidelines:609

• The answer NA means that the abstract and introduction do not include the claims610

made in the paper.611
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NA answer to this question will not be perceived well by the reviewers.614
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much the results can be expected to generalize to other settings.616

• It is fine to include aspirational goals as motivation as long as it is clear that these goals617

are not attained by the paper.618

2. Limitations619

Question: Does the paper discuss the limitations of the work performed by the authors?620
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recent approaches to highlight some circumstances where our approach does not exceed the624
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violations of these assumptions (e.g., independence assumptions, noiseless settings,631

model well-specification, asymptotic approximations only holding locally). The authors632

should reflect on how these assumptions might be violated in practice and what the633

implications would be.634

• The authors should reflect on the scope of the claims made, e.g., if the approach was635

only tested on a few datasets or with a few runs. In general, empirical results often636

depend on implicit assumptions, which should be articulated.637

• The authors should reflect on the factors that influence the performance of the approach.638

For example, a facial recognition algorithm may perform poorly when image resolution639

is low or images are taken in low lighting. Or a speech-to-text system might not be640

used reliably to provide closed captions for online lectures because it fails to handle641

technical jargon.642

• The authors should discuss the computational efficiency of the proposed algorithms643

and how they scale with dataset size.644

• If applicable, the authors should discuss possible limitations of their approach to645

address problems of privacy and fairness.646

• While the authors might fear that complete honesty about limitations might be used by647

reviewers as grounds for rejection, a worse outcome might be that reviewers discover648

limitations that aren’t acknowledged in the paper. The authors should use their best649

judgment and recognize that individual actions in favor of transparency play an impor-650

tant role in developing norms that preserve the integrity of the community. Reviewers651

will be specifically instructed to not penalize honesty concerning limitations.652

3. Theory assumptions and proofs653
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Question: For each theoretical result, does the paper provide the full set of assumptions and654

a complete (and correct) proof?655

Answer: [Yes]656

Justification: We believe we have been explicit in our assumptions and derivations. We have657

numbered and referenced all equations.658

Guidelines:659

• The answer NA means that the paper does not include theoretical results.660

• All the theorems, formulas, and proofs in the paper should be numbered and cross-661

referenced.662

• All assumptions should be clearly stated or referenced in the statement of any theorems.663

• The proofs can either appear in the main paper or the supplemental material, but if664

they appear in the supplemental material, the authors are encouraged to provide a short665

proof sketch to provide intuition.666

• Inversely, any informal proof provided in the core of the paper should be complemented667

by formal proofs provided in appendix or supplemental material.668

• Theorems and Lemmas that the proof relies upon should be properly referenced.669

4. Experimental result reproducibility670

Question: Does the paper fully disclose all the information needed to reproduce the main ex-671

perimental results of the paper to the extent that it affects the main claims and/or conclusions672

of the paper (regardless of whether the code and data are provided or not)?673

Answer: [Yes]674

Justification: We provide source code with instructions on reproducing the exact experiments675

run in the paper.676

Guidelines:677

• The answer NA means that the paper does not include experiments.678

• If the paper includes experiments, a No answer to this question will not be perceived679

well by the reviewers: Making the paper reproducible is important, regardless of680

whether the code and data are provided or not.681

• If the contribution is a dataset and/or model, the authors should describe the steps taken682

to make their results reproducible or verifiable.683

• Depending on the contribution, reproducibility can be accomplished in various ways.684

For example, if the contribution is a novel architecture, describing the architecture fully685

might suffice, or if the contribution is a specific model and empirical evaluation, it may686

be necessary to either make it possible for others to replicate the model with the same687

dataset, or provide access to the model. In general. releasing code and data is often688

one good way to accomplish this, but reproducibility can also be provided via detailed689

instructions for how to replicate the results, access to a hosted model (e.g., in the case690

of a large language model), releasing of a model checkpoint, or other means that are691

appropriate to the research performed.692

• While NeurIPS does not require releasing code, the conference does require all submis-693

sions to provide some reasonable avenue for reproducibility, which may depend on the694

nature of the contribution. For example695

(a) If the contribution is primarily a new algorithm, the paper should make it clear how696

to reproduce that algorithm.697

(b) If the contribution is primarily a new model architecture, the paper should describe698

the architecture clearly and fully.699

(c) If the contribution is a new model (e.g., a large language model), then there should700

either be a way to access this model for reproducing the results or a way to reproduce701

the model (e.g., with an open-source dataset or instructions for how to construct702

the dataset).703

(d) We recognize that reproducibility may be tricky in some cases, in which case704

authors are welcome to describe the particular way they provide for reproducibility.705

In the case of closed-source models, it may be that access to the model is limited in706

some way (e.g., to registered users), but it should be possible for other researchers707

to have some path to reproducing or verifying the results.708
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5. Open access to data and code709

Question: Does the paper provide open access to the data and code, with sufficient instruc-710

tions to faithfully reproduce the main experimental results, as described in supplemental711

material?712

Answer: [Yes]713

Justification: We provide full access to the source code and provide guidance on reproducing714

the exact numerical results in the accompanying README.715

Guidelines:716

• The answer NA means that paper does not include experiments requiring code.717

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/718

public/guides/CodeSubmissionPolicy) for more details.719

• While we encourage the release of code and data, we understand that this might not be720

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not721

including code, unless this is central to the contribution (e.g., for a new open-source722

benchmark).723

• The instructions should contain the exact command and environment needed to run to724

reproduce the results. See the NeurIPS code and data submission guidelines (https:725

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.726

• The authors should provide instructions on data access and preparation, including how727

to access the raw data, preprocessed data, intermediate data, and generated data, etc.728

• The authors should provide scripts to reproduce all experimental results for the new729

proposed method and baselines. If only a subset of experiments are reproducible, they730

should state which ones are omitted from the script and why.731

• At submission time, to preserve anonymity, the authors should release anonymized732

versions (if applicable).733

• Providing as much information as possible in supplemental material (appended to the734

paper) is recommended, but including URLs to data and code is permitted.735

6. Experimental setting/details736

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-737

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the738

results?739

Answer: [Yes]740

Justification: We have included these details within section 6.1.741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• The experimental setting should be presented in the core of the paper to a level of detail744

that is necessary to appreciate the results and make sense of them.745

• The full details can be provided either with the code, in appendix, or as supplemental746

material.747

7. Experiment statistical significance748

Question: Does the paper report error bars suitably and correctly defined or other appropriate749

information about the statistical significance of the experiments?750

Answer: [Yes]751

Justification: We report results over multiple 10 reproducible random seeds per experiment752

and report means and standard deviations in table 1.753

Guidelines:754

• The answer NA means that the paper does not include experiments.755

• The authors should answer "Yes" if the results are accompanied by error bars, confi-756

dence intervals, or statistical significance tests, at least for the experiments that support757

the main claims of the paper.758
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• The factors of variability that the error bars are capturing should be clearly stated (for759

example, train/test split, initialization, random drawing of some parameter, or overall760

run with given experimental conditions).761

• The method for calculating the error bars should be explained (closed form formula,762

call to a library function, bootstrap, etc.)763

• The assumptions made should be given (e.g., Normally distributed errors).764

• It should be clear whether the error bar is the standard deviation or the standard error765

of the mean.766

• It is OK to report 1-sigma error bars, but one should state it. The authors should767

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis768

of Normality of errors is not verified.769

• For asymmetric distributions, the authors should be careful not to show in tables or770

figures symmetric error bars that would yield results that are out of range (e.g. negative771

error rates).772

• If error bars are reported in tables or plots, The authors should explain in the text how773

they were calculated and reference the corresponding figures or tables in the text.774

8. Experiments compute resources775

Question: For each experiment, does the paper provide sufficient information on the com-776

puter resources (type of compute workers, memory, time of execution) needed to reproduce777

the experiments?778

Answer: [Yes]779

Justification: This is added in the experimental details in Appendix A.2.780

Guidelines:781

• The answer NA means that the paper does not include experiments.782

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,783

or cloud provider, including relevant memory and storage.784

• The paper should provide the amount of compute required for each of the individual785

experimental runs as well as estimate the total compute.786

• The paper should disclose whether the full research project required more compute787

than the experiments reported in the paper (e.g., preliminary or failed experiments that788

didn’t make it into the paper).789

9. Code of ethics790

Question: Does the research conducted in the paper conform, in every respect, with the791

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?792

Answer: [Yes]793

Justification: We have reviewed and ensured adherence to the guidelines. In particular, given794

the application of our paper towards modelling scientific problems involving differential795

equations, the scope for negative ethical impact is diminished.796

Guidelines:797

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.798

• If the authors answer No, they should explain the special circumstances that require a799

deviation from the Code of Ethics.800

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-801

eration due to laws or regulations in their jurisdiction).802

10. Broader impacts803

Question: Does the paper discuss both potential positive societal impacts and negative804

societal impacts of the work performed?805

Answer: [No]806

Justification: The principal applications of our work are the application of machine learning807

to scientific applications with objective and well-defined answers for equations describing808

phenomena from the natural sciences with objective answers. As such, the scope for negative809

societal impact is limited.810
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Guidelines:811

• The answer NA means that there is no societal impact of the work performed.812

• If the authors answer NA or No, they should explain why their work has no societal813

impact or why the paper does not address societal impact.814

• Examples of negative societal impacts include potential malicious or unintended uses815

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations816

(e.g., deployment of technologies that could make decisions that unfairly impact specific817

groups), privacy considerations, and security considerations.818

• The conference expects that many papers will be foundational research and not tied819

to particular applications, let alone deployments. However, if there is a direct path to820

any negative applications, the authors should point it out. For example, it is legitimate821

to point out that an improvement in the quality of generative models could be used to822

generate deepfakes for disinformation. On the other hand, it is not needed to point out823

that a generic algorithm for optimizing neural networks could enable people to train824

models that generate Deepfakes faster.825

• The authors should consider possible harms that could arise when the technology is826

being used as intended and functioning correctly, harms that could arise when the827

technology is being used as intended but gives incorrect results, and harms following828

from (intentional or unintentional) misuse of the technology.829

• If there are negative societal impacts, the authors could also discuss possible mitigation830

strategies (e.g., gated release of models, providing defenses in addition to attacks,831

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from832

feedback over time, improving the efficiency and accessibility of ML).833

11. Safeguards834

Question: Does the paper describe safeguards that have been put in place for responsible835

release of data or models that have a high risk for misuse (e.g., pretrained language models,836

image generators, or scraped datasets)?837

Answer: [NA]838

Justification:839

Guidelines:840

• The answer NA means that the paper poses no such risks.841

• Released models that have a high risk for misuse or dual-use should be released with842

necessary safeguards to allow for controlled use of the model, for example by requiring843

that users adhere to usage guidelines or restrictions to access the model or implementing844

safety filters.845

• Datasets that have been scraped from the Internet could pose safety risks. The authors846

should describe how they avoided releasing unsafe images.847

• We recognize that providing effective safeguards is challenging, and many papers do848

not require this, but we encourage authors to take this into account and make a best849

faith effort.850

12. Licenses for existing assets851

Question: Are the creators or original owners of assets (e.g., code, data, models), used in852

the paper, properly credited and are the license and terms of use explicitly mentioned and853

properly respected?854

Answer: [Yes]855

Justification: We are the sole authors of all new assets presented in this paper. We do not856

distribute any other assets.857

Guidelines:858

• The answer NA means that the paper does not use existing assets.859

• The authors should cite the original paper that produced the code package or dataset.860

• The authors should state which version of the asset is used and, if possible, include a861

URL.862

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.863
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• For scraped data from a particular source (e.g., website), the copyright and terms of864

service of that source should be provided.865

• If assets are released, the license, copyright information, and terms of use in the866

package should be provided. For popular datasets, paperswithcode.com/datasets867

has curated licenses for some datasets. Their licensing guide can help determine the868

license of a dataset.869

• For existing datasets that are re-packaged, both the original license and the license of870

the derived asset (if it has changed) should be provided.871

• If this information is not available online, the authors are encouraged to reach out to872

the asset’s creators.873

13. New assets874

Question: Are new assets introduced in the paper well documented and is the documentation875

provided alongside the assets?876

Answer: [Yes]877

Justification: We take the novel assets to be the source code that provide the experimental878

results of our submission, which we include in the supplementary material.879

Guidelines:880

• The answer NA means that the paper does not release new assets.881

• Researchers should communicate the details of the dataset/code/model as part of their882

submissions via structured templates. This includes details about training, license,883

limitations, etc.884

• The paper should discuss whether and how consent was obtained from people whose885

asset is used.886

• At submission time, remember to anonymize your assets (if applicable). You can either887

create an anonymized URL or include an anonymized zip file.888

14. Crowdsourcing and research with human subjects889

Question: For crowdsourcing experiments and research with human subjects, does the paper890

include the full text of instructions given to participants and screenshots, if applicable, as891

well as details about compensation (if any)?892

Answer: [NA]893

Justification: We required no crowdsourcing nor research with human subjects.894

Guidelines:895

• The answer NA means that the paper does not involve crowdsourcing nor research with896

human subjects.897

• Including this information in the supplemental material is fine, but if the main contribu-898

tion of the paper involves human subjects, then as much detail as possible should be899

included in the main paper.900

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,901

or other labor should be paid at least the minimum wage in the country of the data902

collector.903

15. Institutional review board (IRB) approvals or equivalent for research with human904

subjects905

Question: Does the paper describe potential risks incurred by study participants, whether906

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)907

approvals (or an equivalent approval/review based on the requirements of your country or908

institution) were obtained?909

Answer: [NA]910

Justification: We required no crowdsourcing nor research with human subjects.911

Guidelines:912

• The answer NA means that the paper does not involve crowdsourcing nor research with913

human subjects.914
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• Depending on the country in which research is conducted, IRB approval (or equivalent)915

may be required for any human subjects research. If you obtained IRB approval, you916

should clearly state this in the paper.917

• We recognize that the procedures for this may vary significantly between institutions918

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the919

guidelines for their institution.920

• For initial submissions, do not include any information that would break anonymity (if921

applicable), such as the institution conducting the review.922

16. Declaration of LLM usage923

Question: Does the paper describe the usage of LLMs if it is an important, original, or924

non-standard component of the core methods in this research? Note that if the LLM is used925

only for writing, editing, or formatting purposes and does not impact the core methodology,926

scientific rigorousness, or originality of the research, declaration is not required.927

Answer: [NA]928

Justification:929

Guidelines:930

• The answer NA means that the core method development in this research does not931

involve LLMs as any important, original, or non-standard components.932

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)933

for what should or should not be described.934
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