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Abstract

Recent research has shown that the perfor-
mance of Large Language Models (LLMs) on
reasoning tasks can be enhanced by scaling test-
time compute. One promising approach, partic-
ularly with decomposable problems, involves
arranging intermediate solutions as a graph on
which transformations are performed to explore
the solution space. However, prior works rely
on pre-determined, task-specific transformation
schedules defined by a set of searched hyperpa-
rameters. In this work, we view thought graph
transformations as actions in a Markov deci-
sion process, and investigate whether LLMs
can act as a policy agents on this graph-based
environment. We introduce ARIES, a multi-
agent architecture for reasoning with LLMs in
which LLM policy agents maintain visibility of
the thought graph states and dynamically adapt
the problem-solving strategy. We observe that
using off-the-shelf LLMs as policy agents with
ARIES can yield up to 29% higher accuracy
on HumanEval relative to static transformation
schedules despite bearing no search cost.

1 Introduction

Recent work showed that under a fixed compute
budget for training and inference, LLM perfor-
mance on reasoning tasks can be enhanced by allo-
cating a higher proportion of compute to inference
rather than training (Snell et al., 2024). This has
been achieved using techniques such as Chain-of-
Thoughts or Tree-of-Thought prompting (Wei et al.,
2023; Yao et al., 2023a). Another promising ap-
proach involves arranging intermediate solutions
(or “thoughts") in a graph, i.e. topological reason-
ing (Besta et al., 2024b). This proves particularly
beneficial when problems can be decomposed into
subproblems to be solved independently then aggre-
gated through a sequence of graph transformations
(Besta et al., 2024a), and intermediate solutions
can be reliably scored using a Process Reward
Model (Snell et al., 2024). Despite the benefits

of topological reasoning, prior works rely on pre-
determined traversal strategies parametrized by a
discrete set of hyperparameters (Yao et al., 2023a;
Besta et al., 2024a). This approach lacks general-
ity, as these parameters must be tuned manually
or through extensive Bayesian search to achieve
high query efficiency, due to the varying character-
istics of each task. To overcome this limitation, we
propose viewing thought graphs as an interactive
environment where graph transformations are seen
as actions in a Markov Decision Process (MDP).
As such, we turn to investigating action policies to
effectively explore the solution space and yield a
solution while learning from external feedback.

Motivated by recent improvements in LLMs, we
aim to investigate whether their planning and rea-
soning abilities extend to selecting and executing a
sequence of transformations (such as decomposi-
tion, solving, evaluation, refinement and aggrega-
tion) within the aforementioned thought graph en-
vironments. We implement ARIES, a multi-agent
framework for solving reasoning problems formu-
lated as thought graphs.

Figure 1 provides a summary of our approach
- in each iteration, the policy agent monitors the
thought graph state and samples from the action
space to choose a graph transformation. The rea-
soning agent then performs these transformations
and updates the thought graph state. Through a
series of carefully controlled experiments against a
number of benchmarks, we show that LLM-guided
thought graph exploration can lead to up to 29%
higher accuracy, as well as obviating search cost.

2 Topological Reasoning with Large
Language Models

Given a reasoning problem defined as an ordered tu-
ple of tokens p = (t1, .. ., t;, ), we define a thought
T = (t1,...,t;) as a sequence of tokens sampled
autoregressively from an LLM parametrized by 6,
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def longest_palindromic_postfix(string: str) -> str: )
# Finds the longest postfix that is a palindrome.

def get_prefix(string: str, length: int) -> str:
> # Returns the prefix with a specified length. —

def reverse_string(string: str) -> str:

—> # Reverses a given string. —

Figure 1: ARIES workflow in answering the HumanEval prompt: "Find the shortest palindrome that begins with
a supplied string". First, the policy agent selects the split action, guiding the reasoning agent to decompose the
problem by generating a skeleton implementation with yet-to-implement subfunctions. Since one of the solutions
doesn’t pass its testcases, the reasoning agent is instructed to refine it based on execution feedback.

ie. t; ~ P(t; | t1,...,ti—1;0). This consists
of a language representation of an intermediate
step towards the solution. A thought sequence
can hence be represented as an ordered tuple of
thoughts S = (7!,72,...,7%) of length k, such
that the final thought 7* represents a candidate so-
lution to the problem p. A thought graph GG can be
represented as (), £), where V is a set of thought
nodes and £ is a set of edges connecting them. Ad-
ditionally, each thought 7% (j-th thought at depth 7)
has a value \(7%/) such that nodes with higher val-
ues yield valid solutions to the problem with higher
probability. Thought graph exploration can be re-
garded as a sequence of m graph transformations
as follows, where each ¢; : G — G modifies
the set of nodes and edges.

G = om(-- - (61(00(G])))) (1)

We consider a finite set of transformations; ¢ge.
decomposes a reasoning problem into subproblems
to be solved individually, creating new nodes in the
thought graph. ¢,,; generates a candidate solution
to a subproblem. ¢,y considers an incorrect sub-
problem solution, utilizing further LLM queries to
refine it. ¢4 removes nodes in the graph accord-
ing to their values. Finally, ¢q4, performs node
merging to aggregate subproblem solutions into
a coherent solution to the original problem. For-
mal definitions of each transformation are shown
in Table 2 in our Appendix.

A standard (static) divide-and-conquer
strategy can be parametrized by the tuple
(Reds Reg, S™, A™, RZ}), where S™, A™, R,
represents the multiplicity (i.e. number of attempts)
of Gsol» Pagg and @5, respectively. First, the
Pdec transformation decomposes the starting

problem into B subproblems, which are then
solved individually using ¢, then aggregated
using ¢qagg- Red, Ref € {0,1} indicate whether
the ¢,cq and ¢,y transformations are applied after
aggregation. If R.q = 1, a single aggregation
attempt is kept, while others are removed from
the graph. If R,y = 1, the remaining aggregation
attempts are then refined with ¢,.r, and the
highest-scoring attempt is kept as the final
solution. See Appendix B for further details on the
divide-and-conquer schedule.

3 Thought Graph Exploration as a
Markov Decision Process

Beyond static schedules, the transformation of a
thought graph can be generalized as a Markov deci-
sion process (S,.A, P,) where the state s; € S
represents an arrangement of nodes and edges
in the thought graph, the action a € A indi-
cates a transformation and target node subset (i.e.
A={Vs,0) | Vs CV,¢ € Q}, where ( is the
set of transformations) and the transition proba-
bility P, (s, s") represents the probability that an
action a applied at state s yields the expected new
state s’. The optimal transformation sequence @ is
then defined as the sequence of actions that maxi-
mize the conditional probability of reaching a so-
lution state s™, i.e. ® = (¢y, ..., d,) that solves
the following optimization problem. We bound the
number of queries (|®|) by the constant ¢, as in the
limit |®| — oo, P(sT|s?, @) — 1.

argmin P(sT | s*,®) st [®]<e (2)
D
In this work, we hypothesize that LLMs can

approximate a solution to the stated optimization
problem by acting as policy agents. We develop an
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Figure 2: Multi-agent framework for reasoning over thought graphs. First, (1) the policy agent samples an action
and subset of nodes given a prompt including (i-ii) general instructions and (iii-iv) an overview of the exploration
state. The sample is then (2) passed to the reasoning agent, which finally (3) updates the thought graph state.

interactive framework consisting of a policy agent
and a reasoning agent, as shown in Figure 2. In
each iteration, (1) the policy agent selects an action
from the action space, (i.e. the transformations in
Table 2). The policy agent then (2) directs the rea-
soning agent to perform the selected action. Finally,
(3) the reasoning agent updates the thought graph.
The process is repeated until a solution is found or
a maximum number of iterations is reached.

The policy agent is invoked using the prompt
template shown in Figure 2. (i) The system prompt
outlines the problem setting, input format and ex-
pected behaviour from the policy agent. (ii) A task-
specific list of actions, describing the preconditions
and effects of each transformation, provides a se-
mantic understanding of the action space. (iii) The
current state of the graph is provided in a textual
format, enumerating all nodes and edges. Finally,
(iv) the action history in the current trial is included,
promoting continuity in the strategies outlined in
previous steps.

In-Context Action Selection: Prior work has
shown that reasoning abilities of LLMs are en-
hanced when prompted to output a verbose se-
quence of steps before the solution (Wei et al.,
2023; Wang et al., 2023). This mechanism can
be seen as enabling in-context task learning from
some extracted innate world knowledge. Hence,
our policy agent is instructed to generate a detailed
analysis on the state of the thought graph and ex-
ploration history before sampling the action space.

Policy Agent Ensembles: Given the stochastic
nature of LLM next-token prediction, we observe
high variability in the chosen action over several in-
vocations of a policy agent from the same thought
graph state. To enhance robustness, we democra-
tize action selection over an ensemble of agents,
meaning a parametrizable number of LLM queries

are performed concurrently at every iteration. The
selected action is takes as the most frequent pro-
posal among the ensemble. See Appendix G for
ablation studies on the impact of policy agent en-
semble size on reasoning performance.

4 Experiments

In this section, we outline the benchmarks, base-
lines and metrics used to evaluate ARIES against
state-of-the-art methods for reasoning with LLMs.
See also Appendix F for an evaluation of failure
modes of our methodology.

Experimental Setup: We evaluate LLlama-3.1-
70B and Llama-3.1-405B as policy and reasoning
agents, hosted with SGLang at a temperature of 1.
We set the policy agent ensemble size to 5 in all
experiments, as explained in Section G. Llama-3.1-
70B was hosted with 8x A6000 GPUs. Llama-
3.1-405B was hosted using 16 x H100 GPUs dis-
tributed over 4 nodes. The total cost was approxi-
mately 3k GPU hours.

Benchmarks: We run our main evaluation on
HumanEval (Chen et al., 2021). Additionally,
we consider the set intersection problem at var-
ious levels of difficulty quantified by the size
of the sets, leading to three benchmarks: set-
intersection32/64/128. Despite its simplicity, this
has been shown to be a challenging benchmark for
LLMs with direct prompting (Besta et al., 2024a).

Baselines: We use static transformation sched-
ules as the baseline, following (Besta et al., 2024a).
For each individual task, we carefully tune the hy-
perparameters using Bayesian optimization. We
compare against baselines with several search
compute budgets by considering three variants:
GoTy59, GoTsgy, and GoTyggy, where the per-
centage corresponds to the number of trials spent
until the hyperparameter search converges. See Ap-
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Figure 3: Pareto frontiers in total query cost (Cs ;) and task error (£) for set intersection tasks at various difficulty
levels. The total cost is the number of queries expended at search and inference time. Llama-3.1-405B was used for
the reasoning and policy agents. Our results (ARIES) have pushed the Pareto frontiers forward in each task.

Table 1: Task accuracy (1), search and inference costs (Cs and Cj, |) on the HumanEval task. C and C; are
measured in number of queries. We use LLaMA-3.1-405B and GPT-40 as the underlying reasoning and policy
agents. Direct IO means direct prompting, GoT follows Besta et al. (2024a), and ReACT follows Yao et al. (2023b).

Method LLaMA-3.1-405B GPT-4o0
Acc (%) Search Cost (Cs) Inference Cost (C;) | Acc (%) Search Cost (Cs) Inference Cost (C;)

Direct IO 77.4 0 1 84.1 0 1

GoTy59 66.3 1160 34.8 75.6 1160 19.8
GoTj5py 67.5 2368 24.3 73.8 2368 18.5
GoTygp% 60.1 4742 8.17 69.5 4742 6.8
ReACT 79.9 0 5.6 60.4 0 16.4
ARIES 89.0 0 31.6 95.1 0 35.4

pendix D for details on the full search methodology.
We also consider an 10 (Input-Output) base-
line, i.e. direct LLM prompting, and smolagents
(Roucher et al., 2025), which is an implementation
of the ReACT algorithm (Yao et al., 2023b). In
the latter, the reasoning agent iteratively generates
a candidate solution then reasons over execution
feedback to refine subsequent candidates.
Reported metrics: For HumanEval, we report
the task accuracy, while for list sorting and set in-
tersection we report error function value £. Details
on the definition for the error function for each task
can be found in Appendix C. Additionally, we re-
port both the search cost C's and inference cost C;,
measured as the number of LLM queries.

4.1 Results

HumanEval: Our key findings are shown in Ta-
ble 1. It can be seen that by formulating this code
generation task as a Markov decision process with
an off-the-shelf LLM policy agent, we achieve up
to 28.9% higher accuracy than the most query-
efficient static schedule baseline with Llama-405b.
Across both models, the inference cost is compara-
ble to GoTy5g;, although the latter is obtained after

1160 LLM queries while ARIES avoids any search
time requirement. Relative to the ReACT baseline,
we achieve 9.1% higher accuracy with Llama-405b.
However, this baseline does not generalize well
across models, leading to a 9.1% accuracy degra-
dation relative to GoT g9, with GPT-40.

Set Intersection: In Figure 3, we plot a Pareto
curve showing viable trade-off points in task error
and query cost for the set intersection task. Our
approach extends the existing Pareto frontier con-
structed by considering static schedule baselines
and direct prompting. In the set-intersection32 task,
we achieve a 2.3 x error reduction relative to GoTas
while also achieving 116 x lower overall cost.

5 Conclusion

We introduce ARIES, a multi-agent architecture for
topological reasoning. By viewing thought graph
transformations as actions in a Markov decision
process, we show off-the-shelf LLMs can drive
efficient action policies without task-specific tun-
ing, leading to state-of-the-art accuracy at reduced
inference costs.



6 Limitations

6.1 Assumptions and Robustness

The ARIES framework introduces a novel approach
to reasoning with large language models (LLMs)
through interactive thought graph environments.
However, several strong assumptions underlie our
methodology. Firstly, we assume that thought
graph transformations can be effectively modeled
as a Markov decision process (MDP) with well-
defined state transitions. While this formulation en-
ables structured reasoning, it may not fully capture
the complexities of more ambiguous or highly in-
terconnected problems. Additionally, our approach
assumes that off-the-shelf LLMs can act as reli-
able policy agents without additional fine-tuning.
This assumption holds for certain problem domains
but may degrade in tasks requiring domain-specific
knowledge or long-horizon planning.

Our empirical evaluation is constrained to spe-
cific reasoning tasks, including HumanEval and
set intersection. While these benchmarks serve as
valuable test cases for structured reasoning, they
do not necessarily generalize to all problem types,
particularly those with weakly defined intermedi-
ate states or multi-modal reasoning requirements.
Furthermore, our evaluation primarily focuses on
LLaMA-3.1 and GPT-40 models, and results may
not be directly transferable to other architectures.

6.2 Potential Risks

The ARIES framework introduces both opportuni-
ties and challenges in autonomous reasoning. One
primary risk is the potential for incorrect or bi-
ased reasoning paths due to the stochastic nature
of LLM-generated decisions. Although our policy
agent ensembles mitigate some of this variability,
they do not fully eliminate erroneous transforma-
tions, particularly in deeper decomposition settings.
The framework’s reliance on existing LLMs also
means that any biases present in the underlying
models could propagate into the reasoning pro-
cess, potentially leading to unfair or misleading
outcomes.

Another concern is the environmental impact as-
sociated with inference-heavy approaches. While
ARIES improves query efficiency relative to static
transformation schedules, it still necessitates a sig-
nificant number of LLM queries to achieve high
accuracy. As LLMs scale, the energy consump-
tion required for these inference tasks could be-
come a sustainability concern, particularly in high-

throughput applications.

6.3 Failure Modes

Our empirical findings regarding the failure modes
of our methodology (Appendix F) highlight two
major failure modes: (1) inadequate LLM param-
eter sizes and (2) increasing decomposition depth.
Smaller models (e.g., LLaMA-3.1-70B) struggle to
act as policy agents effectively, demonstrating sub-
par reasoning capabilities compared to larger coun-
terparts. This suggests that autonomous policy-
driven thought graph exploration may require mod-
els beyond a certain scale threshold to function
reliably. Additionally, as the depth of problem de-
composition increases, ARIES exhibits a decline in
performance, primarily due to errors in aggregating
intermediate solutions. This limitation indicates
that current LLMs may have difficulties managing
extended reasoning chains, which presents a barrier
to scalability.
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Table 2: Thought graph transformations. Each transformation is defined as ¢(G,,m,S) = (VUVT\V~ EU
Et\ E7), where G, = (V, E) is a thought graph, S C V is a subset of nodes, m is the multiplicity (number of
attempts), and £, R, A represent arbitrary functions for node expansion, refinement and aggregation, respectively.

The sets V1,V ~, ET, E~ are defined as follows.

Transformation Symbol \A \'% E* E-
Decompose bgee  {EW)NveSy 0 {(u,v)|lueS,veVT} 0
Solve bt {SW)|veSt 0 {(u,v)|ueSveVT} 0
Refine dref  {R@)teS 0 {(u,v)lueSveVt} 0
Reduce ODred 0 S 0 {(uw,v)lue SvveS}
Aggregate Pagg A(S) 0 {(u,v)lueSveVt} 0

A Thought Graph Transformations

The full set of considered transformations is shown
in Table 2.

B Static Thought Graph Transformation
Schedule

Algorithm 1 represents a standard divide-and-
conquer strategy. The function A(G%, G%) outputs
all nodes present in the first graph G¢ = (V,, &,)
but not in the second G = (V, &), defined for-
mally as follows.

AGLGY) ={vveV, &vg V) 3)

Algorithm 1 Static Thought Graph Transformation
Schedule

Require: Starting graph GY, allow reduce R.q,
allow refine Ry
Require: Solve multiplicity S™, aggregate multi-
plicity A™, and refine multiplicity R}
Ggec — ¢dec(G9-v 1, {O}))
G = oot (GF°, 5™, A(GE<, GY))
Gg_gg — ¢agg(Gf-Ol,Am, A(Gf_Ol, Ggec))
if R, then
G;ed «— ¢red(Gggg’ 1, A(Gggg7 GiOl))
else
G:ed — Gggg
end if
if R.; then
G:ef “ ¢ref(G:-ed, Z},A(G:ed, Gggg))
G 4 hrea(GE 1, A(GEET Gred))
else

Gt Gred
end if
Return: G

C Benchmarks

We consider two popular tasks for topological rea-
soning with LLMs, which are amenable to a divide-
and-conquer strategy (i.e. decomposition, solving
subproblems and merging): list sorting and set in-
tersection. Despite their simplicity, prior works
have shown that these tasks are extremely challeng-
ing for LLMs with direct prompting (Besta et al.,
2024a).

As mentioned in Section 4, the core results are re-
ported using HumanEval and set-intersection. The
list-sorting task was used for illustration purposes
in estimating transition probabilities, performing
ablation studies and evaluating failure modes.

Sorting: involves sorting a list of numbers be-
tween 0 and 9 in ascending order. The error func-
tion £ = X + Y has its subterms defined in Equa-
tion 4, where q is the input list and b is a candi-
date solution. X corresponds to the number of
incorrectly sorted pairs, while Y corresponds to
the frequency difference between a and b for each
digit.

m—1
X = Z sign(max(b; — b;11,0))
i=1

. @)

Y =3 by bp =i} — l{ag : ag = i} |

i=0

Set Intersection: involves finding the intersec-
tion of sets A and B. The error function is defined
in Equation 5, where C' is the candidate solution.
The first and second terms correspond to missing
and extra elements, respectively.

E=[ANB)\C|+[C\(ANB) S
D Static Schedule Parameter Search

As described in Section 2, a static transformation
can be characterized using a set of discrete param-



eters. We ran bayesian search using using Tree-
structured Parzen Estimator (TPE) sampling to de-
termine each parameter, establishing strong base-
lines for each task.

Table 3: Search space for each parameter characterizing
a static transformation.

Search

Parameter Space

Req Allow reduction {0,1}
Ry Allow refinement {0,1}

Sm Solve multiplicity {1,5,10,15,20}
A™  Aggregate multiplicity {1, 5,10, 15,20}
of Refine multiplicity {1,5,10,15,20}

The search space is shown in Table 3. We run
multi-objective search to concurrently minimize
the task-specific error function £ (Section C) and
associated cost, measured as |®(w)| where ®(w) =
(b0, - - -, Om) is a tuple enumerating thought graph
transformations, as a function of the schedule pa-
rameters w € (), where () is the search space. Note
that |®(w)| correlates with the number of LLM
queries, meaning this formulation aims to mini-
mize exploration cost.

In selecting parameter configurations, we use
the cost function in Equation 6, such that the objec-
tives of cost and error minimization are balanced
through the scalar constant o € (0,1). We aim
to assign equal importance to the cost and error
objectives by tuning « independently for each task
such that the mean value of the first term matches
the second term, i.e. aE [£] = (1 —a)E [|P(w)])],
or equivalently o = % where E denotes
the expected value. The expectations are obtained
with random sampling.

minof +(1-0)@)]  ©

Search was conducted separately on Llama-3.1-
70B and Llama-3.1-405B. For sorting and set in-
tersection tasks, search is conducted separately
for each difficulty level, ensuring the chosen pa-
rameters are adapted to the task. Note that we
present three search checkpoints GoT,, for n €
{25,50, 100}, where n corresponds to the percent-
age of trials until convergence. We define the
convergeance point as the first iteration where a
rolling window J of size 20 matches the condition
J* = J*=1_ This enables comparing our proposed

Table 4: Results from GoT static schedule parameter
search on Llama-3.1-405B.

Task Alpha (a) GOT25 GOTs() GOT100
sorting32 0.99 0.38 0.38 0.37
sorting64 0.96 4.85 4.49 3.84
sorting128 0.84 2876 25.76 24.36
set32 0.99 0.16 0.16 0.12
set64 0.99 0.71 0.51 0.31
set]128 0.98 3.51 3.51 2.99

LLM-guided approach to optimized search sched-
ules at various search budgets.

The complete search results for Llama-3.1-405B
are shown in Table 4. It can be seen that tasks with
higher decomposition depth incur lower values of
« due to the higher magnitude of the error function.
sorting64, sorting128 and set-intersection64 show
a smooth decline in the cost function, while the
remaining tasks remain at local minima until close
to the end of the search. The non-convexity of
the search space highlights the cost associated to
optimize the parameter set associated with static
transformations.

E Transition Probability Profiling

In this section, we estimate the transition probabili-
ties for each thought graph transformation across
a number of tasks to gain insight into factors im-
pacting a thought graph formulation of each rea-
soning problem. For ¢,.r, we define a success-
ful transition when £ = 0 for the resulting node,
considering only cases when the transformation is
executed on nodes previously containing errors. In
transformations requiring LLM calls, the transition
probability between two states is a random process
governed by the token distribution parametrized by
the LLM. When LLM calls are not required, i.e.
the transformation is implemented through simple
node manipulation, the transition probability is 1.

The results are summarized in Table 7. We ob-
serve the refinement transformation has notably
low success probability, particularly in coding and
sorting tasks. Additionally, sorting is the only task
with non-deterministic aggregation, which is a po-
tential error source. We note that the performance
of a thought graph formulation depends on the abil-
ity of the policy agent to capture the success profile
of various transformations for a task, and adapt the
exploration strategy accordingly.



Table 5: Failure mode 1 results. Mean value of the error £ ({) for benchmarks with low decomposition depth.
Llama-3.1-70B was used for the reasoning and policy agents.

Method ‘ Direct Prompting GoTs5, GoTsp,  GoTyggy,  ARIES
sorting32 2.2 0.82 0.95 0.73 1.29
set-intersection32 1.05 0.41 0.0 0.37 1.22

Table 6: Failure mode 2 results. Mean value of the error £ ({) and search cost C' in terms of number of queries ({).

Both the reasoning and policy agents are LLaMA-405B.

Method | Direct Prompting GoTy59 GoT50 GoTygp% ARIES
Metrics & C & C & C & C & C
sorting32 0.6 1 0.74 825 | 0.82 1650 | 0.28 3300 | 0.22 20
sorting64 | 5.07 1 222 1671 | 274 3343 | 346 6687 | 9.15 48
sorting128 | 12.75 1 13.96 2444 | 12.65 4888 | 18.65 9776 | 32.74 48

Table 7: Esimated transition probabilities for each
thought graph transformation, taken as the number of
successful state transitions in a static schedule.

d)sol ¢’ref Qbred ¢agg
HumanEval 0.77 0.29 1 1
sorting32 0.57 0.12 1 0.60
set-intersection32 0.75 0.71 1 1

F Failure Modes

In this section, we perform a number of empiri-
cal studies aiming to understand the main limiting
factors impacting the performance of LLM policy
agents on interactive thought graphs. We find there
are two major failure modes, described as follows.
% Failure mode 1: LLM Parameter Count

We find that LLMs with insufficiently large parame-
ter sizes exhibit limited performance when utilized
as policy agents on thought graph environments.
We deploy Llama-3.1-70B as policy and reasoning
agents in sorting and set intersection tasks, against
which the larger LLM (Llama-405B) was shown
to perform well as a policy agent. As shown in Ta-
ble 5, LLM-guided graph exploration (ARIES) did
not outperform static schedule baselines in this sce-
nario. These findings are consistent with (Wei et al.,
2022), which demonstrated that zero-shot chain-
of-thought reasoning abilities emerges in models
beyond 175B parameters.

% Failure mode 2: Decomposition Depth

We examine the impact of decomposition depth by
analyzing the results in the sorting task, shown in
Table 6. We observe LLM policy agents lead to a

21% performance improvement relative to the most
optimized static baseline in sorting32, which has a
decomposition depth of 2. However, as discussed
in Appendix E, the sorting task presents a particular
challenge due to the lower success probability of
the aggregation transformation. As the complex-
ity and decomposition depth of a task increases,
the policy agent is required to apply a higher num-
ber of aggregation transformations. Therefore, we
observe up to 4.12x and 2.6 x performance dete-
rioration in sorting64 and sorting128, respectively.
Through empirical analysis, we observe that in
the latter tasks, the ¢4, transformation constitutes
86% and 68% of all policy agent errors, respec-
tively. As such, we conclude that high decompo-
sition depths present a significant failure mode for
LLM-guided thought graph exploration, particu-
larly in tasks with low success transition probabili-
ties for the aggregation transformation.

G Ablation Studies

As discussed in Section 3, two factors that impact
the performance of LLMs as policy agents in in-
teractive thought graph environments are the size
of the ensemble and the use of chain of thought
reasoning to enhance the planning abilities of the
policy agent. In this section, we aim to understand
the impact of each factor by evaluating sorting tasks
over a range of ensemble sizes from 1 to 15, with
and without CoT prompting in the policy agent.
As shown in Figure 4, as the ensemble size in-
creases to 5, CoT prompting leads to large perfor-
mance improvements, though the benefits start di-
minishing beyond this point. Without CoT prompt-
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Figure 4: Mean error (y-axis) obtained in the sorting32
task over a sweep of ensemble sizes (x-axis). Llama-
3.1-70B was used as the policy agent.

ing, the trend is less consistent, and larger ensemble
sizes sometimes yield worse performance. Addi-
tionally, errors without CoT are higher for both
tasks at any ensemble size. This highlights the ne-
cessity of CoT prompting in enhancing the LLM
policy agent’s ability to adapt from feedback and
drive thought graph transformations.
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