
ARIES: Autonomous Reasoning with Large Language Models on
Interactive Thought Graph Environments

Anonymous ACL Submission

Abstract001

Recent research has shown that the perfor-002
mance of Large Language Models (LLMs) on003
reasoning tasks can be enhanced by scaling test-004
time compute. One promising approach, partic-005
ularly with decomposable problems, involves006
arranging intermediate solutions as a graph on007
which transformations are performed to explore008
the solution space. However, prior works rely009
on pre-determined, task-specific transformation010
schedules defined by a set of searched hyperpa-011
rameters. In this work, we view thought graph012
transformations as actions in a Markov deci-013
sion process, and investigate whether LLMs014
can act as a policy agents on this graph-based015
environment. We introduce ARIES, a multi-016
agent architecture for reasoning with LLMs in017
which LLM policy agents maintain visibility of018
the thought graph states and dynamically adapt019
the problem-solving strategy. We observe that020
using off-the-shelf LLMs as policy agents with021
ARIES can yield up to 29% higher accuracy022
on HumanEval relative to static transformation023
schedules despite bearing no search cost.024

1 Introduction025

Recent work showed that under a fixed compute026

budget for training and inference, LLM perfor-027

mance on reasoning tasks can be enhanced by allo-028

cating a higher proportion of compute to inference029

rather than training (Snell et al., 2024). This has030

been achieved using techniques such as Chain-of-031

Thoughts or Tree-of-Thought prompting (Wei et al.,032

2023; Yao et al., 2023a). Another promising ap-033

proach involves arranging intermediate solutions034

(or “thoughts") in a graph, i.e. topological reason-035

ing (Besta et al., 2024b). This proves particularly036

beneficial when problems can be decomposed into037

subproblems to be solved independently then aggre-038

gated through a sequence of graph transformations039

(Besta et al., 2024a), and intermediate solutions040

can be reliably scored using a Process Reward041

Model (Snell et al., 2024). Despite the benefits042

of topological reasoning, prior works rely on pre- 043

determined traversal strategies parametrized by a 044

discrete set of hyperparameters (Yao et al., 2023a; 045

Besta et al., 2024a). This approach lacks general- 046

ity, as these parameters must be tuned manually 047

or through extensive Bayesian search to achieve 048

high query efficiency, due to the varying character- 049

istics of each task. To overcome this limitation, we 050

propose viewing thought graphs as an interactive 051

environment where graph transformations are seen 052

as actions in a Markov Decision Process (MDP). 053

As such, we turn to investigating action policies to 054

effectively explore the solution space and yield a 055

solution while learning from external feedback. 056

Motivated by recent improvements in LLMs, we 057

aim to investigate whether their planning and rea- 058

soning abilities extend to selecting and executing a 059

sequence of transformations (such as decomposi- 060

tion, solving, evaluation, refinement and aggrega- 061

tion) within the aforementioned thought graph en- 062

vironments. We implement ARIES, a multi-agent 063

framework for solving reasoning problems formu- 064

lated as thought graphs. 065

Figure 1 provides a summary of our approach 066

- in each iteration, the policy agent monitors the 067

thought graph state and samples from the action 068

space to choose a graph transformation. The rea- 069

soning agent then performs these transformations 070

and updates the thought graph state. Through a 071

series of carefully controlled experiments against a 072

number of benchmarks, we show that LLM-guided 073

thought graph exploration can lead to up to 29% 074

higher accuracy, as well as obviating search cost. 075

2 Topological Reasoning with Large 076

Language Models 077

Given a reasoning problem defined as an ordered tu- 078

ple of tokens p = (t1, . . . , tm), we define a thought 079

τ = (t1, . . . , tj) as a sequence of tokens sampled 080

autoregressively from an LLM parametrized by θ, 081
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 def make_palindrome(string: str) -> str:
     prefix_length = len(string)
     postfix = longest_palindromic_postfix(string)
     prefix_length -= len(postfix)
     prefix = get_prefix(string, prefix_length)
     reversed_prefix = reverse_string(prefix)
     return string + reversed_prefix

 def longest_palindromic_postfix(string: str) -> str:
     # Finds the longest postfix that is a palindrome.
     ...

 def get_prefix(string: str, length: int) -> str:
     # Returns the prefix with a specified length.
     ...

 def reverse_string(string: str) -> str:
     # Reverses a given string.
     ...

Action:split
Nodes:0

Action:solve
Nodes:1,2,3

Action:refine
Nodes:1

Policy
Agent

Reasoning
Agent

...

Figure 1: ARIES workflow in answering the HumanEval prompt: "Find the shortest palindrome that begins with
a supplied string". First, the policy agent selects the split action, guiding the reasoning agent to decompose the
problem by generating a skeleton implementation with yet-to-implement subfunctions. Since one of the solutions
doesn’t pass its testcases, the reasoning agent is instructed to refine it based on execution feedback.

i.e. ti ∼ P (ti | t1, . . . , ti−1; θ). This consists082

of a language representation of an intermediate083

step towards the solution. A thought sequence084

can hence be represented as an ordered tuple of085

thoughts S = (τ1, τ2, . . . , τk) of length k, such086

that the final thought τk represents a candidate so-087

lution to the problem p. A thought graph Gτ can be088

represented as (V, E), where V is a set of thought089

nodes and E is a set of edges connecting them. Ad-090

ditionally, each thought τ ij (j-th thought at depth i)091

has a value λ(τ ij) such that nodes with higher val-092

ues yield valid solutions to the problem with higher093

probability. Thought graph exploration can be re-094

garded as a sequence of m graph transformations095

as follows, where each ϕi : G
i
τ → Gi+1

τ modifies096

the set of nodes and edges.097

G∗
τ = ϕm(. . . (ϕ1(ϕ0(G

0
τ )))) (1)098

We consider a finite set of transformations; ϕdec099

decomposes a reasoning problem into subproblems100

to be solved individually, creating new nodes in the101

thought graph. ϕsol generates a candidate solution102

to a subproblem. ϕref considers an incorrect sub-103

problem solution, utilizing further LLM queries to104

refine it. ϕred removes nodes in the graph accord-105

ing to their values. Finally, ϕagg performs node106

merging to aggregate subproblem solutions into107

a coherent solution to the original problem. For-108

mal definitions of each transformation are shown109

in Table 2 in our Appendix.110

A standard (static) divide-and-conquer111

strategy can be parametrized by the tuple112

(Red, Ref , S
m, Am, Rm

ef ), where Sm, Am, Rm
ref113

represents the multiplicity (i.e. number of attempts)114

of ϕsol, ϕagg and ϕref , respectively. First, the115

ϕdec transformation decomposes the starting116

problem into B subproblems, which are then 117

solved individually using ϕsol then aggregated 118

using ϕagg. Red, Ref ∈ {0, 1} indicate whether 119

the ϕred and ϕref transformations are applied after 120

aggregation. If Red = 1, a single aggregation 121

attempt is kept, while others are removed from 122

the graph. If Ref = 1, the remaining aggregation 123

attempts are then refined with ϕref , and the 124

highest-scoring attempt is kept as the final 125

solution. See Appendix B for further details on the 126

divide-and-conquer schedule. 127

3 Thought Graph Exploration as a 128

Markov Decision Process 129

Beyond static schedules, the transformation of a 130

thought graph can be generalized as a Markov deci- 131

sion process (S,A,Pa) where the state st ∈ S 132

represents an arrangement of nodes and edges 133

in the thought graph, the action a ∈ A indi- 134

cates a transformation and target node subset (i.e. 135

A = {(Vs, ϕ) | Vs ⊂ V, ϕ ∈ Ω}, where Ω is the 136

set of transformations) and the transition proba- 137

bility Pa(s, s′) represents the probability that an 138

action a applied at state s yields the expected new 139

state s′. The optimal transformation sequence Φ is 140

then defined as the sequence of actions that maxi- 141

mize the conditional probability of reaching a so- 142

lution state s+, i.e. Φ = (ϕ0, . . . , ϕn) that solves 143

the following optimization problem. We bound the 144

number of queries (|Φ|) by the constant ϵ, as in the 145

limit |Φ| → ∞, P (s+|s0,Φ)→ 1. 146

argmin
Φ

P (s+ | s0,Φ) s.t. |Φ| < ϵ (2) 147

In this work, we hypothesize that LLMs can 148

approximate a solution to the stated optimization 149

problem by acting as policy agents. We develop an 150
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LLM

(i) System Prompt

(ii) Action Space

(iii) Thought Graph State

Policy Prompt Template Decompose the following list into
smaller sublists: [2,6,3,9,5,2,5,1]

Sort the following list: [2, 6, 3, 9]

Policy Agent Reasoning Agent

LLM

Thought
Graph

List 1: [2,6,3,9], List 2: [5,2,5,1]

[2, 3, 6, 9]
(iv) Action History

Action: solve
Nodes: [1, 2]
Attempts: 5

Figure 2: Multi-agent framework for reasoning over thought graphs. First, (1) the policy agent samples an action
and subset of nodes given a prompt including (i-ii) general instructions and (iii-iv) an overview of the exploration
state. The sample is then (2) passed to the reasoning agent, which finally (3) updates the thought graph state.

interactive framework consisting of a policy agent151

and a reasoning agent, as shown in Figure 2. In152

each iteration, (1) the policy agent selects an action153

from the action space, (i.e. the transformations in154

Table 2). The policy agent then (2) directs the rea-155

soning agent to perform the selected action. Finally,156

(3) the reasoning agent updates the thought graph.157

The process is repeated until a solution is found or158

a maximum number of iterations is reached.159

The policy agent is invoked using the prompt160

template shown in Figure 2. (i) The system prompt161

outlines the problem setting, input format and ex-162

pected behaviour from the policy agent. (ii) A task-163

specific list of actions, describing the preconditions164

and effects of each transformation, provides a se-165

mantic understanding of the action space. (iii) The166

current state of the graph is provided in a textual167

format, enumerating all nodes and edges. Finally,168

(iv) the action history in the current trial is included,169

promoting continuity in the strategies outlined in170

previous steps.171

In-Context Action Selection: Prior work has172

shown that reasoning abilities of LLMs are en-173

hanced when prompted to output a verbose se-174

quence of steps before the solution (Wei et al.,175

2023; Wang et al., 2023). This mechanism can176

be seen as enabling in-context task learning from177

some extracted innate world knowledge. Hence,178

our policy agent is instructed to generate a detailed179

analysis on the state of the thought graph and ex-180

ploration history before sampling the action space.181

Policy Agent Ensembles: Given the stochastic182

nature of LLM next-token prediction, we observe183

high variability in the chosen action over several in-184

vocations of a policy agent from the same thought185

graph state. To enhance robustness, we democra-186

tize action selection over an ensemble of agents,187

meaning a parametrizable number of LLM queries188

are performed concurrently at every iteration. The 189

selected action is takes as the most frequent pro- 190

posal among the ensemble. See Appendix G for 191

ablation studies on the impact of policy agent en- 192

semble size on reasoning performance. 193

4 Experiments 194

In this section, we outline the benchmarks, base- 195

lines and metrics used to evaluate ARIES against 196

state-of-the-art methods for reasoning with LLMs. 197

See also Appendix F for an evaluation of failure 198

modes of our methodology. 199

Experimental Setup: We evaluate Llama-3.1- 200

70B and Llama-3.1-405B as policy and reasoning 201

agents, hosted with SGLang at a temperature of 1. 202

We set the policy agent ensemble size to 5 in all 203

experiments, as explained in Section G. Llama-3.1- 204

70B was hosted with 8× A6000 GPUs. Llama- 205

3.1-405B was hosted using 16× H100 GPUs dis- 206

tributed over 4 nodes. The total cost was approxi- 207

mately 3k GPU hours. 208

Benchmarks: We run our main evaluation on 209

HumanEval (Chen et al., 2021). Additionally, 210

we consider the set intersection problem at var- 211

ious levels of difficulty quantified by the size 212

of the sets, leading to three benchmarks: set- 213

intersection32/64/128. Despite its simplicity, this 214

has been shown to be a challenging benchmark for 215

LLMs with direct prompting (Besta et al., 2024a). 216

Baselines: We use static transformation sched- 217

ules as the baseline, following (Besta et al., 2024a). 218

For each individual task, we carefully tune the hy- 219

perparameters using Bayesian optimization. We 220

compare against baselines with several search 221

compute budgets by considering three variants: 222

GoT25%, GoT50% and GoT100%, where the per- 223

centage corresponds to the number of trials spent 224

until the hyperparameter search converges. See Ap- 225
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Figure 3: Pareto frontiers in total query cost (Cs+i) and task error (E) for set intersection tasks at various difficulty
levels. The total cost is the number of queries expended at search and inference time. Llama-3.1-405B was used for
the reasoning and policy agents. Our results (ARIES) have pushed the Pareto frontiers forward in each task.

Table 1: Task accuracy (↑), search and inference costs (Cs and Ci, ↓) on the HumanEval task. Cs and Ci are
measured in number of queries. We use LLaMA-3.1-405B and GPT-4o as the underlying reasoning and policy
agents. Direct IO means direct prompting, GoT follows Besta et al. (2024a), and ReACT follows Yao et al. (2023b).

Method LLaMA-3.1-405B GPT-4o
Acc (%) Search Cost (Cs) Inference Cost (Ci) Acc (%) Search Cost (Cs) Inference Cost (Ci)

Direct IO 77.4 0 1 84.1 0 1
GoT25% 66.3 1160 34.8 75.6 1160 19.8
GoT50% 67.5 2368 24.3 73.8 2368 18.5
GoT100% 60.1 4742 8.17 69.5 4742 6.8
ReACT 79.9 0 5.6 60.4 0 16.4
ARIES 89.0 0 31.6 95.1 0 35.4

pendix D for details on the full search methodology.226

We also consider an IO (Input-Output) base-227

line, i.e. direct LLM prompting, and smolagents228

(Roucher et al., 2025), which is an implementation229

of the ReACT algorithm (Yao et al., 2023b). In230

the latter, the reasoning agent iteratively generates231

a candidate solution then reasons over execution232

feedback to refine subsequent candidates.233

Reported metrics: For HumanEval, we report234

the task accuracy, while for list sorting and set in-235

tersection we report error function value E . Details236

on the definition for the error function for each task237

can be found in Appendix C. Additionally, we re-238

port both the search cost Cs and inference cost Ci,239

measured as the number of LLM queries.240

4.1 Results241

HumanEval: Our key findings are shown in Ta-242

ble 1. It can be seen that by formulating this code243

generation task as a Markov decision process with244

an off-the-shelf LLM policy agent, we achieve up245

to 28.9% higher accuracy than the most query-246

efficient static schedule baseline with Llama-405b.247

Across both models, the inference cost is compara-248

ble to GoT25%, although the latter is obtained after249

1160 LLM queries while ARIES avoids any search 250

time requirement. Relative to the ReACT baseline, 251

we achieve 9.1% higher accuracy with Llama-405b. 252

However, this baseline does not generalize well 253

across models, leading to a 9.1% accuracy degra- 254

dation relative to GoT100% with GPT-4o. 255

Set Intersection: In Figure 3, we plot a Pareto 256

curve showing viable trade-off points in task error 257

and query cost for the set intersection task. Our 258

approach extends the existing Pareto frontier con- 259

structed by considering static schedule baselines 260

and direct prompting. In the set-intersection32 task, 261

we achieve a 2.3× error reduction relative to GoT25 262

while also achieving 116× lower overall cost. 263

5 Conclusion 264

We introduce ARIES, a multi-agent architecture for 265

topological reasoning. By viewing thought graph 266

transformations as actions in a Markov decision 267

process, we show off-the-shelf LLMs can drive 268

efficient action policies without task-specific tun- 269

ing, leading to state-of-the-art accuracy at reduced 270

inference costs. 271
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6 Limitations272

6.1 Assumptions and Robustness273

The ARIES framework introduces a novel approach274

to reasoning with large language models (LLMs)275

through interactive thought graph environments.276

However, several strong assumptions underlie our277

methodology. Firstly, we assume that thought278

graph transformations can be effectively modeled279

as a Markov decision process (MDP) with well-280

defined state transitions. While this formulation en-281

ables structured reasoning, it may not fully capture282

the complexities of more ambiguous or highly in-283

terconnected problems. Additionally, our approach284

assumes that off-the-shelf LLMs can act as reli-285

able policy agents without additional fine-tuning.286

This assumption holds for certain problem domains287

but may degrade in tasks requiring domain-specific288

knowledge or long-horizon planning.289

Our empirical evaluation is constrained to spe-290

cific reasoning tasks, including HumanEval and291

set intersection. While these benchmarks serve as292

valuable test cases for structured reasoning, they293

do not necessarily generalize to all problem types,294

particularly those with weakly defined intermedi-295

ate states or multi-modal reasoning requirements.296

Furthermore, our evaluation primarily focuses on297

LLaMA-3.1 and GPT-4o models, and results may298

not be directly transferable to other architectures.299

6.2 Potential Risks300

The ARIES framework introduces both opportuni-301

ties and challenges in autonomous reasoning. One302

primary risk is the potential for incorrect or bi-303

ased reasoning paths due to the stochastic nature304

of LLM-generated decisions. Although our policy305

agent ensembles mitigate some of this variability,306

they do not fully eliminate erroneous transforma-307

tions, particularly in deeper decomposition settings.308

The framework’s reliance on existing LLMs also309

means that any biases present in the underlying310

models could propagate into the reasoning pro-311

cess, potentially leading to unfair or misleading312

outcomes.313

Another concern is the environmental impact as-314

sociated with inference-heavy approaches. While315

ARIES improves query efficiency relative to static316

transformation schedules, it still necessitates a sig-317

nificant number of LLM queries to achieve high318

accuracy. As LLMs scale, the energy consump-319

tion required for these inference tasks could be-320

come a sustainability concern, particularly in high-321

throughput applications. 322

6.3 Failure Modes 323

Our empirical findings regarding the failure modes 324

of our methodology (Appendix F) highlight two 325

major failure modes: (1) inadequate LLM param- 326

eter sizes and (2) increasing decomposition depth. 327

Smaller models (e.g., LLaMA-3.1-70B) struggle to 328

act as policy agents effectively, demonstrating sub- 329

par reasoning capabilities compared to larger coun- 330

terparts. This suggests that autonomous policy- 331

driven thought graph exploration may require mod- 332

els beyond a certain scale threshold to function 333

reliably. Additionally, as the depth of problem de- 334

composition increases, ARIES exhibits a decline in 335

performance, primarily due to errors in aggregating 336

intermediate solutions. This limitation indicates 337

that current LLMs may have difficulties managing 338

extended reasoning chains, which presents a barrier 339

to scalability. 340
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Table 2: Thought graph transformations. Each transformation is defined as ϕ(Gτ ,m, S) = (V ∪ V + \ V −, E ∪
E+ \ E−), where Gτ = (V,E) is a thought graph, S ⊂ V is a subset of nodes, m is the multiplicity (number of
attempts), and E ,R, A represent arbitrary functions for node expansion, refinement and aggregation, respectively.
The sets V +, V −, E+, E− are defined as follows.

Transformation Symbol V+ V− E+ E−

Decompose ϕdec {E(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Solve ϕsol {S(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Refine ϕref {R(t)|t ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Reduce ϕred ∅ S ∅ {(u, v)|u ∈ S ∨ v ∈ S}
Aggregate ϕagg A(S) ∅ {(u, v)|u ∈ S, v ∈ V +} ∅

A Thought Graph Transformations399

The full set of considered transformations is shown400

in Table 2.401

B Static Thought Graph Transformation402

Schedule403

Algorithm 1 represents a standard divide-and-404

conquer strategy. The function ∆(Ga
τ , G

b
τ ) outputs405

all nodes present in the first graph Ga
τ = (Va, Ea)406

but not in the second Gb
τ = (Vb, Eb), defined for-407

mally as follows.408

∆(Ga
τ , G

b
τ ) = {v|v ∈ Va & v /∈ Vb} (3)409

Algorithm 1 Static Thought Graph Transformation
Schedule
Require: Starting graph G0

τ , allow reduce Red,
allow refine Ref

Require: Solve multiplicity Sm, aggregate multi-
plicity Am, and refine multiplicity Rm

ef

Gdec
τ ← ϕdec(G

0
τ , 1, {0}))

Gsol
τ ← ϕsol(G

dec
τ , Sm,∆(Gdec

τ , G0
τ ))

Gagg
τ ← ϕagg(G

sol
τ , Am,∆(Gsol

τ , Gdec
τ ))

if Red then
Gred

τ ← ϕred(G
agg
τ , 1,∆(Gagg

τ , Gsol
τ ))

else
Gred

τ ← Gagg
τ

end if
if Ref then

Gref
τ ← ϕref (G

red
τ , Rm

ef ,∆(Gred
τ , Gagg

τ ))

G∗
τ ← ϕred(G

ref
τ , 1,∆(Gref

τ , Gred
τ ))

else
G∗

τ ← Gred
τ

end if
Return: G∗

τ

C Benchmarks 410

We consider two popular tasks for topological rea- 411

soning with LLMs, which are amenable to a divide- 412

and-conquer strategy (i.e. decomposition, solving 413

subproblems and merging): list sorting and set in- 414

tersection. Despite their simplicity, prior works 415

have shown that these tasks are extremely challeng- 416

ing for LLMs with direct prompting (Besta et al., 417

2024a). 418

As mentioned in Section 4, the core results are re- 419

ported using HumanEval and set-intersection. The 420

list-sorting task was used for illustration purposes 421

in estimating transition probabilities, performing 422

ablation studies and evaluating failure modes. 423

Sorting: involves sorting a list of numbers be- 424

tween 0 and 9 in ascending order. The error func- 425

tion E = X + Y has its subterms defined in Equa- 426

tion 4, where a is the input list and b is a candi- 427

date solution. X corresponds to the number of 428

incorrectly sorted pairs, while Y corresponds to 429

the frequency difference between a and b for each 430

digit. 431

X =

m−1∑
i=1

sign(max(bi − bi+1, 0))

Y =
9∑

i=0

||{bp : bp = i}| − |{aq : aq = i}||

(4) 432

Set Intersection: involves finding the intersec- 433

tion of sets A and B. The error function is defined 434

in Equation 5, where C is the candidate solution. 435

The first and second terms correspond to missing 436

and extra elements, respectively. 437

E = |(A ∩B) \ C|+ |C \ (A ∩B)| (5) 438

D Static Schedule Parameter Search 439

As described in Section 2, a static transformation 440

can be characterized using a set of discrete param- 441
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eters. We ran bayesian search using using Tree-442

structured Parzen Estimator (TPE) sampling to de-443

termine each parameter, establishing strong base-444

lines for each task.445

Table 3: Search space for each parameter characterizing
a static transformation.

Search
Parameter Space

Red Allow reduction {0, 1}
Ref Allow refinement {0, 1}
Sm Solve multiplicity {1, 5, 10, 15, 20}
Am Aggregate multiplicity {1, 5, 10, 15, 20}
Rm

ef Refine multiplicity {1, 5, 10, 15, 20}

The search space is shown in Table 3. We run446

multi-objective search to concurrently minimize447

the task-specific error function E (Section C) and448

associated cost, measured as |Φ(ω)|where Φ(ω) =449

(ϕ0, . . . , ϕm) is a tuple enumerating thought graph450

transformations, as a function of the schedule pa-451

rameters ω ∈ Ω, where Ω is the search space. Note452

that |Φ(ω)| correlates with the number of LLM453

queries, meaning this formulation aims to mini-454

mize exploration cost.455

In selecting parameter configurations, we use456

the cost function in Equation 6, such that the objec-457

tives of cost and error minimization are balanced458

through the scalar constant α ∈ (0, 1). We aim459

to assign equal importance to the cost and error460

objectives by tuning α independently for each task461

such that the mean value of the first term matches462

the second term, i.e. αE [E ] = (1−α)E [|Φ(ω)|)],463

or equivalently α = E[|Φ(ω)|]
E[E+|Φ(ω)|] where E denotes464

the expected value. The expectations are obtained465

with random sampling.466

min
ω

[αE + (1− α)|Φ(ω)|] (6)467

Search was conducted separately on Llama-3.1-468

70B and Llama-3.1-405B. For sorting and set in-469

tersection tasks, search is conducted separately470

for each difficulty level, ensuring the chosen pa-471

rameters are adapted to the task. Note that we472

present three search checkpoints GoTn for n ∈473

{25, 50, 100}, where n corresponds to the percent-474

age of trials until convergence. We define the475

convergeance point as the first iteration where a476

rolling window J of size 20 matches the condition477

Jk = Jk−1. This enables comparing our proposed478

Table 4: Results from GoT static schedule parameter
search on Llama-3.1-405B.

Task Alpha (α) GoT25 GoT50 GoT100

sorting32 0.99 0.38 0.38 0.37
sorting64 0.96 4.85 4.49 3.84
sorting128 0.84 28.76 25.76 24.36

set32 0.99 0.16 0.16 0.12
set64 0.99 0.71 0.51 0.31

set128 0.98 3.51 3.51 2.99

LLM-guided approach to optimized search sched- 479

ules at various search budgets. 480

The complete search results for Llama-3.1-405B 481

are shown in Table 4. It can be seen that tasks with 482

higher decomposition depth incur lower values of 483

α due to the higher magnitude of the error function. 484

sorting64, sorting128 and set-intersection64 show 485

a smooth decline in the cost function, while the 486

remaining tasks remain at local minima until close 487

to the end of the search. The non-convexity of 488

the search space highlights the cost associated to 489

optimize the parameter set associated with static 490

transformations. 491

E Transition Probability Profiling 492

In this section, we estimate the transition probabili- 493

ties for each thought graph transformation across 494

a number of tasks to gain insight into factors im- 495

pacting a thought graph formulation of each rea- 496

soning problem. For ϕref , we define a success- 497

ful transition when E = 0 for the resulting node, 498

considering only cases when the transformation is 499

executed on nodes previously containing errors. In 500

transformations requiring LLM calls, the transition 501

probability between two states is a random process 502

governed by the token distribution parametrized by 503

the LLM. When LLM calls are not required, i.e. 504

the transformation is implemented through simple 505

node manipulation, the transition probability is 1. 506

The results are summarized in Table 7. We ob- 507

serve the refinement transformation has notably 508

low success probability, particularly in coding and 509

sorting tasks. Additionally, sorting is the only task 510

with non-deterministic aggregation, which is a po- 511

tential error source. We note that the performance 512

of a thought graph formulation depends on the abil- 513

ity of the policy agent to capture the success profile 514

of various transformations for a task, and adapt the 515

exploration strategy accordingly. 516
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Table 5: Failure mode 1 results. Mean value of the error E (↓) for benchmarks with low decomposition depth.
Llama-3.1-70B was used for the reasoning and policy agents.

Method Direct Prompting GoT25% GoT50% GoT100% ARIES

sorting32 2.2 0.82 0.95 0.73 1.29
set-intersection32 1.05 0.41 0.0 0.37 1.22

Table 6: Failure mode 2 results. Mean value of the error E (↓) and search cost C in terms of number of queries (↓).
Both the reasoning and policy agents are LLaMA-405B.

Method Direct Prompting GoT25% GoT50% GoT100% ARIES
Metrics E C E C E C E C E C

sorting32 0.6 1 0.74 825 0.82 1650 0.28 3300 0.22 20
sorting64 5.07 1 2.22 1671 2.74 3343 3.46 6687 9.15 48

sorting128 12.75 1 13.96 2444 12.65 4888 18.65 9776 32.74 48

Table 7: Esimated transition probabilities for each
thought graph transformation, taken as the number of
successful state transitions in a static schedule.

ϕsol ϕref ϕred ϕagg

HumanEval 0.77 0.29 1 1
sorting32 0.57 0.12 1 0.60

set-intersection32 0.75 0.71 1 1

F Failure Modes517

In this section, we perform a number of empiri-518

cal studies aiming to understand the main limiting519

factors impacting the performance of LLM policy520

agents on interactive thought graphs. We find there521

are two major failure modes, described as follows.522

Failure mode 1: LLM Parameter Count523

We find that LLMs with insufficiently large parame-524

ter sizes exhibit limited performance when utilized525

as policy agents on thought graph environments.526

We deploy Llama-3.1-70B as policy and reasoning527

agents in sorting and set intersection tasks, against528

which the larger LLM (Llama-405B) was shown529

to perform well as a policy agent. As shown in Ta-530

ble 5, LLM-guided graph exploration (ARIES) did531

not outperform static schedule baselines in this sce-532

nario. These findings are consistent with (Wei et al.,533

2022), which demonstrated that zero-shot chain-534

of-thought reasoning abilities emerges in models535

beyond 175B parameters.536

Failure mode 2: Decomposition Depth537

We examine the impact of decomposition depth by538

analyzing the results in the sorting task, shown in539

Table 6. We observe LLM policy agents lead to a540

21% performance improvement relative to the most 541

optimized static baseline in sorting32, which has a 542

decomposition depth of 2. However, as discussed 543

in Appendix E, the sorting task presents a particular 544

challenge due to the lower success probability of 545

the aggregation transformation. As the complex- 546

ity and decomposition depth of a task increases, 547

the policy agent is required to apply a higher num- 548

ber of aggregation transformations. Therefore, we 549

observe up to 4.12× and 2.6× performance dete- 550

rioration in sorting64 and sorting128, respectively. 551

Through empirical analysis, we observe that in 552

the latter tasks, the ϕagg transformation constitutes 553

86% and 68% of all policy agent errors, respec- 554

tively. As such, we conclude that high decompo- 555

sition depths present a significant failure mode for 556

LLM-guided thought graph exploration, particu- 557

larly in tasks with low success transition probabili- 558

ties for the aggregation transformation. 559

G Ablation Studies 560

As discussed in Section 3, two factors that impact 561

the performance of LLMs as policy agents in in- 562

teractive thought graph environments are the size 563

of the ensemble and the use of chain of thought 564

reasoning to enhance the planning abilities of the 565

policy agent. In this section, we aim to understand 566

the impact of each factor by evaluating sorting tasks 567

over a range of ensemble sizes from 1 to 15, with 568

and without CoT prompting in the policy agent. 569

As shown in Figure 4, as the ensemble size in- 570

creases to 5, CoT prompting leads to large perfor- 571

mance improvements, though the benefits start di- 572

minishing beyond this point. Without CoT prompt- 573
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Figure 4: Mean error (y-axis) obtained in the sorting32
task over a sweep of ensemble sizes (x-axis). Llama-
3.1-70B was used as the policy agent.

ing, the trend is less consistent, and larger ensemble574

sizes sometimes yield worse performance. Addi-575

tionally, errors without CoT are higher for both576

tasks at any ensemble size. This highlights the ne-577

cessity of CoT prompting in enhancing the LLM578

policy agent’s ability to adapt from feedback and579

drive thought graph transformations.580
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