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Abstract

Chemical named entity recognition (NER)
models influence numerous downstream tasks,
from adverse drug reaction identification to
pharmacoepidemiology. However, it is un-
known whether these models work the same for
everyone. Performance disparities can poten-
tially cause harm rather than the intended good.
This paper assesses gender-related performance
disparities in chemical NER systems. We de-
velop a framework for measuring gender bias
in chemical NER models using synthetic data
and a newly annotated corpus of over 92,405
words with self-identified gender information
from Reddit. Our evaluation of state-of-the-
art biomedical NER models reveals evident
biases. For instance, synthetic data suggests
female-related names are frequently misclas-
sified as chemicals, especially with datasets
rich in brand names. Additionally, we ob-
serve significant performance disparities be-
tween female- and male-associated data in both
datasets. Many systems fail to detect contra-
ceptives such as birth control. Our findings
emphasize the biases in chemical NER models,
urging practitioners to be aware of and address
these biases in application.

1 INTRODUCTION

Chemical named entity recognition (NER) is
the extraction of chemical mentions (e.g., drug
names) from the text. Chemical NER is es-
sential in many downstream tasks, from phar-
macovigilance (O’Connor et al., 2014) to facil-
itating drug discovery by mining biomedical re-
search articles (Agarwal and Searls, 2008). For in-
stance, Chemical NER systems are the first step in
pipelines developed to mine adverse drug reactions
(ADRs) (Farrugia and Abela, 2020). However,
manually collecting ADRs is challenging due to
limitations in clinical trials, such as insufficient par-
ticipants for rare ADRs, limited durations, inability
to test all drug combinations swiftly, and drug re-
purposing leading to unexpected ADRs (Mammi

et al., 2013). Hence, using chemicals to mine ADR
mentions at scale can have a positive impact. How-
ever, it is unknown whether these systems perform
the same for everyone. Who benefits from these
systems, and who can be harmed? We present a
comprehensive analysis of gender-related perfor-
mance disparities of Chemical NER in this paper.

Performance disparities have recently received
substantial attention in the field of NLP. For ex-
ample, recent research shows performance drops
in text classification models across different sub-
populations such as gender, race, and minority di-
alects (Dixon et al., 2018; Park et al., 2018; Bad-
jatiya et al., 2019; Rios, 2020; Lwowski and Rios,
2021; Mozafari et al., 2020). Performance dispari-
ties can manifest in multiple parts of NLP systems,
including training data, resources, pre-trained mod-
els (e.g., word embeddings), and their downstream
applications (Zhao et al., 2019; Goldfarb-Tarrant
etal., 2021; Zhao et al., 2017). However, while pre-
vious research has explored these disparities, the
focus has been largely on synthetic data and non-
biomedical applications (Mehrabi et al., 2020). Our
study addresses this literature gap by providing a
comprehensive examination of gender-related per-
formance disparities in Chemical NER, focusing
on both synthetic and real-world data.

This paper studies a similar task like Mehrabi
et al. (2020) with two primary distinctions. First,
our focus is on Chemical NER, a less studied area
in Biomedical NLP despite its significant bias im-
plications. Second, while Mehrabi et al. (2020)
uses synthetic data and templates (e.g., NAME in
LOCATION) for bias analysis, we delve deeper
into the potential biases in chemical naming, espe-
cially how they contribute to false positives. Lieven
et al. (2015) highlighted a preference for linguisti-
cally feminine brand names in the market, leading
drug companies to adopt such naming conventions.
This can inadvertently cause models to misclassify
female names as chemicals. However, only using



templates might not capture the diverse writing of
different groups. If a model favors certain names,
how does it affect real individuals? Do biases from
template data affect some groups disproportion-
ately? For example, Sundbom et al. (2017) shows
that women are more frequently prescribed antide-
pressants than men. If models struggle to detect
these drugs, often mentioned by females, it may
cause gender-specific biases in their performance.
Other studies, like Riley III et al. (1998), reveal
gender differences in pain sensitivity and opioid
prescriptions, with women receiving opioids twice
as often. The template method would not capture
these differences in the model in chemical detec-
tion performance for certain classes of drugs.

Therefore, this paper presents a dual approach:
we explore template data but also assemble and
annotate a real-world dataset with self-identified
gender information. ! Our approach is influenced
by the concerns raised by Blodgett et al. (2021)
regarding many biased studies needing a sufficient
understanding of the potential harm posed by the
models. While we cannot fully conceptualize all
potential harms, this paper moves beyond prior
work focused on non-realized or synthetic datasets.
We believe exploring data from people who have
self-identified their demographic information is bet-
ter. This will provide a more realistic understanding
of how these models will perform based on how
people write and what they write about.

Our main contributions are threefold.

1. We introduce and will publicly release a novel
annotated Chemical NER dataset for social
media data. Moreover, the dataset contains
self-identified gender information to be used
to measure gender bias in Chemical NER mod-
els. To the best of our knowledge, this is
the first Reddit-based Chemical NER dataset.
Moreover, it is the first Chemical NER dataset
with self-identified gender information.

2. We introduce a comprehensive testing frame-
work for gender bias in Chemical NER using
both synthetic and real-world data. To the best
of our knowledge, our results are the first to
conduct bias analysis for chemical NER in
biomedical application. This allows a better
understanding of modern chemical NER tech-
niques. Moreover, it spurs a discourse about
how information extraction methods can be

'The dataset and code will be released publicly upon ac-
ceptance.

biased, how the biases can be measured, and
provides a framework for bias mitigation tech-
nique development.

3. Finally, we provide a comprehensive error
analysis and discussion to better understand
how Chemical NER models can be biased.
The study links biases to both chemical nam-
ing conventions and limits in current datasets
with regard to gender specific chemical men-
tions (e.g., contraceptives).

2 RELATED WORK

Prior work extensively curated labeled data for
chemical NER and developed domain-specific
models. For example, the CHEMDNER cor-
pus (Krallinger et al., 2015) was created for the
2014 BioCreative shared task on chemical extrac-
tion from text. Researchers recognize the impor-
tance of these systems and are working to make
them as fair and accurate as possible. Likewise,
the CDR (Li et al., 2016) dataset was developed
to detect chemical-disease relations for the 2015
shared task. Similar to traditional NER tasks (Li
et al., 2020), a broad range of approaches have
been proposed to detect Chemicals (Rocktischel
et al., 2012; Chiu et al., 2021; Lee et al., 2020; Sun
et al., 2021; Lépez—fJbeda etal., 2021; Weber et al.,
2021), from traditional conditional random fields
to deep learning methods. Many recent neural
network-based advances can be broken into three
main groups of models, word, character, and con-
textual embedding-based models. For instance, Lee
et al. (2020) trained a biomedical-specific BERT
model that improved on many prior state-of-the-art
results. HunFlair (Weber et al., 2021) introduced
a method that matches the word, contextual, and
character embeddings into a unified framework to
achieve state-of-the-art performance. In this pa-
per, we evaluate several state-of-the-art systems.
Particularly, we focus on systems that use word
embeddings, sub-word embeddings, and character
embeddings, which allows us to understand the
impact of morphological features of the chemical
names on gender bias.

Several previous works have measured and high-
lighted bias in different NLP tasks. For instance,
Sap et al. (2019) measures the bias of offensive
language detection models on African American
English. Likewise, Park et al. (2018) measures gen-
der bias of abusive language detection models and
evaluates various methods such as word embedding



debiasing and data augmentation to improve bi-
ased methods. Davidson et al. (2019) shows racial
and ethnic bias when identifying hate speech on-
line and that tweets in the black-aligned corpus
are more likely to be assigned hate speech. Gaut
et al. (2020) creates the WikiGenderBias dataset
to evaluate the gender bias in the relation extrac-
tion (RE) model, confirming that the RE system
behaves differently when the target entities are of
different genders. Cirillo et al. (2020) demonstrate
that biases in biomedical applications can stem
from various sources, such as skewed diagnoses re-
sulting from clinical depression scales that measure
symptoms more prevalent in women, potentially
leading to a higher reported incidence of depres-
sion among this group (Martin et al., 2013). Other
sources include the underrepresentation of minor-
ity populations such as pregnant women (Organi-
zation and for Women’s Health in Society, 2009),
non-representative samples in Al training data, and
inherent algorithmic discrimination, all potentially
contributing to inaccurate and unfair results.

Overall, several metrics have been proposed to
measure gender bias. One of the most commonly
used metrics involves measuring bias by examin-
ing model performance disparities on male and
female data points (Kiritchenko and Mohammad,
2018). Performance disparities have been observed
across a wide array of NLP tasks such as detect-
ing virus-related text (Lwowski and Rios, 2021),
language generation (Sheng et al., 2019), corefer-
ence resolution (Zhao et al., 2018), named entity
recognition (Mehrabi et al., 2020), and machine
translation (Font and Costa-jussa, 2019). Most re-
lated to this study, researchers have shown that
traditional NER systems (i.e., to detect people,
locations, and organizations) are biased concern-
ing gender (Mehrabi et al., 2020). Specifically,
Mehrabi et al. (2020) demonstrates that female-
related names are more likely to be misidentified
as a location than male names. This stream of
research underscores the importance of our investi-
gation into performance disparities in NLP.

Finally, while not directly studied in prior NER
experiments. It is important to discuss some back-
ground about morphological elements of chemical
names. Morphological elements often represent-
ing masculinity or femininity are frequently used
in chemical naming conventions. According to
Lieven et al. (2015), consumers perceive linguisti-
cally feminine brand names as warmer and likelier.

# of Chemical Mentions # Sentences # Words

CDR 4,409 14,306 346,001
CHEMDNER 84,355 87,125 2,431,247
AskDoc MALE 1,501 2,862 52,221
AskDoc FEMALE 1,774 2,151 40,184
AskDoc ALL 3,275 5,013 92,405
Synthetic MALE 2,800,000 2,800,000 25,760,000
Synthetic FEMALE 2,800,000 2,800,000 25,760,000
Synthetic ALL 5,600,000 5,600,000 51,520,000

Table 1: Dataset statistics.

For instance, adding a diminutive suffix to the mas-
culine form of the name usually feminizes it. The
masculine names such as Robert, Julius, Antonio,
and Carolus (more commonly Charles today) are
feminized by adding the suffixes “a”, “ia”, “ina”,
or “ine” to generate Julia, Roberta, Antonia, and
Caroline, respectively. The suffixes “ia” and “a” is
commonly used for inorganic oxides such as mag-
nesia, zirconia, silica, and titania (Hepler-Smith,
2015). Likewise, “ine” is used as the suffix in many
organic bases and base substances such as quinine,
morphine, guanidine, xanthine, pyrimidine, and
pyridine. Hence, while these practices were not
originally “biased” in their original usage, they can
potentially impact model performance (e.g., femi-
nine names can be detected as chemicals). There-
fore, the patterns can cause biased models. As part
of our approach to investigate this potential source
of bias, we propose using synthetic data to quantify
this phenomenon.

3 DATASETS

In this section, we describe the four main datasets
used in our experiments: two are publicly-released
datasets based on PubMed, and two are newly cu-
rated datasets, one using social media data and
another based on templates. Table 1 provides their
statistics. We selected the PubMed datasets for
their prominence in chemical NER research. At
the same time, the r/AskDocs subreddit was chosen
for its large community, diverse health discussions,
and consistent gender identification format, such
as "[ [25 M]".

CDR (Li et al., 2016) We use the BioCreative V
CDR shared task corpus. The CDR corpus com-
prises 1,500 PubMed articles with 4,409 annotated
chemicals, 5,818 diseases, and 3,116 chemical dis-
ease interactions. This corpus is designed to ad-
dress two distinct tasks: Relation classification and
NER. For this study, we focus on the NER for
chemical entities. The annotator agreement for this



corpus was .87. Finally, we used the same train,
validation, and test splits from the shared task for
our experiments.

CHEMDNER (Krallinger et al., 2015) The
CHEMDNER corpus includes abstracts from
10000 chemistry-related journals published in 2013
on PubMed. Each abstract was manually annotated
for chemical mentions. These mentions were cat-
egorized into seven subtypes: abbreviation, fam-
ily, formula, identifier, multiple, systematic, and
trial. The BioCreative organizers divided the cor-
pus into training (3500 abstracts), development
(3500 abstracts), and test (3000 abstracts) sets.
The BioCreative IV CHEMDNER corpus com-
prises 84,355 chemical mention annotations across
10,000 abstracts, with an inter-annotator agreement
of .91 (Krallinger et al., 2015). For this study, we
only use the major Chemical annotations and ig-
nore the subtypes for consistency across corpora.
Finally, we use the same train, validation, and test
splits used in the shared task for our experiments.

Synthetic (Template) Data We designed a new
synthetic dataset to quantify the gender bias in the
Chemical NER models. Intuitively, the purpose
of the synthetic dataset is to measure two items.
First, do gender-related names and pronouns get
incorrectly classified as Chemicals (i.e., cause false
positives)? Second, does the appearance of gender-
related names/pronouns impact the prediction of
other words (i.e., cause false negatives)? Specifi-
cally, we create templates such as “[NAME] said
they has been taking [CHEMICAL] for illness.”.
In the "[NAME]" column, we filled in the names
associated with the male and female genders based
on the 200 most popular baby names provided by
the Social Security Administration 2. We recog-
nize that gender is not binary and that names do
not equal gender. Hence, we refer to these “gender-
related” names in this paper. This is a similar frame-
work used by Mishra et al. (2020) and other gender
bias papers (Kiritchenko and Mohammad, 2018).
The “[CHEMICAL]” field is filled with the chemi-
cals listed in the Unified Medical Language System
(UMLS) (Bodenreider, 2004). For example, com-
pleted templates include “John said they has been
taking citalopram for illness.” and “Karen said they
has been taking citalopram for illness.” We cre-
ated examples using five templates, 200 chemicals,
and 200 names for each gender for each decade

https://www.ssa.gov/oact /babynames/

Templates

[NAME] said they has been taking [CHEMICAL] for illness.

Did you hear that [NAME] has been using [CHEMICAL].
[CHEMICAL] has really been harming [NAME], I hope they stop.
I think [NAME] is addicted to [CHEMICAL].

[NAME], please stop taking [CHEMICALY], it is bad for you.

Table 2: Templates used to create the synthetic dataset.

from 1880 to 2010, generating a total of 200,000
templates for each of the 14 decades. A list of ad-
ditional templates is shown in Table 2. This dataset
is only used for evaluation.

AskDocs We develop a new corpus using data
from the Reddit community r/AskDocs. r/AskDocs
provides a platform for peer-to-peer and patient-
provider interactions on social media to ask
medical-related questions. The providers are gener-
ally verified medical professionals. We collected all
the posts from the community with self-identified
gender mentions. To identify self-identified gen-
der, we use a simple regular expression that looks
for mentions of “I”” or “My” followed by gender,
and optionally age, e.g., “I [F34]”, “My (23F)”,
“I [M]”. Next, following general annotation rec-
ommendations for NLP (Pustejovsky and Stubbs,
2012), the annotation process was completed in
two stages to increase the reliability of the labels.
First, two graduate students annotated chemicals
in the dataset resulting in an inter-annotator agree-
ment of .874, achieving a similar agreement score
as CDR and CHEMDNER. Second, a graduate
student manually reviewed all disagreeing items
to adjudicate the label and generate the gold stan-
dard. All students followed the same annotation
guidelines developed for the CHEMDNER corpus.
Contrary to the synthetic dataset, the actual data
will allow users to measure biases arising from
text content differences across posts with different
self-identified gender mentions.

4 EXPERIMENTAL DESIGN AND
METHODS

The goal of NER is to classify words into a se-
quence of labels. Formally, given an input sequence
X = [r1,x2,...,2N] with N tokens, the goal of
NER is to output the corresponding label sequence
Y = [y1,92,...,yn] with the same length, thus
modeling the probabilities over a sequence p(Y|X).
For this task, we conducted an experiment evaluat-
ing out-of-domain models on the AskDoc corpus.
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Specifically, models were trained and optimized
on the CHEMDNER and CDR datasets and then
applied to the AskDoc dataset. All models are
evaluated using precision, recall, and F1. To mea-
sure bias, we use precision, recall, and F1 differ-
ences (Czarnowska et al., 2021). Specifically, let
m be Males’ performance metric (e.g., F1), and f
represent the Female metric. The bias is measured
using the difference f — m.

4.1 MODELS

We evaluate three distinct models: Word Embed-
ding models (Mikolov et al., 2013), Flair embed-
ding models (Akbik et al., 2018), and BERT-based
models (Devlin et al., 2019a). While the embed-
dings for each model type vary, the sequence pro-
cessing component is the same for each method.
Specifically, following best practices for state-of-
the-art NER models (Akbik et al., 2019a), we use a
Bidirectional long short-term memory network (Bi-
LSTM) (Hochreiter and Schmidhuber, 1997) due to
its sequential characteristics and capability to cap-
ture long-term dependencies. Recent research has
shown that Bi-LSTM models can produce state-of-
the-art performance when combined with contex-
tual embeddings and Conditional Random Fields
(CRFs) (Mueller et al., 2020; Veyseh et al., 2022).
Hence, in this paper, we use the Bi-LSTM+CRF
implementation in the Flair NLP framework (Ak-
bik et al., 2019b). The Bi-LSTM+CRF model is
flexible because it can accept arbitrary embeddings
as input. It is not constrained to traditional word
embeddings (e.g., Word2Vec). We describe the em-
beddings we experiment with in the next Section.

4.2 EMBEDDINGS

We explore three sets of embeddings: Word2Vec,
Flair, and BERT. Social media texts are brief and
informal. Drugs and chemicals are typically de-
scribed in descriptive, nontechnical language with
spelling errors. These issues challenge social me-
dia NER. Some medications, like “all-trans-retinoic
acid”, contain morphologically difficult parts. Yet,
similar-structured phrases still generally represent
similar things (Zhang et al., 2021). Hence, how we
represent words (i.e., the embeddings we use) can
directly impact performance and bias. We describe
each embedding we use below:

4.2.1 Word2Vec (Pyysalo et al., 2013)

We use Word2Vec embeddings pre-trained on
PubMed and PubMed Central. The embeddings

are publicly released as part of the FLAIR package.
It is important to state that word embeddings have
a major limitation. Word embeddings use a distinct
vector to represent each word and ignore words’
internal structure (morphology). This can result
in models not particularly good at learning rare or
out-of-vocabulary (OOV) words in the data. The
growing number of emerging chemicals/drugs with
diverse morphological forms makes recognizing
chemical entities on social media platforms partic-
ularly challenging. Another challenge posed by
user-generated content is its unique characteristics
and use of informal language, typically short con-
text, noisy, sparse, and ambiguous content. Hence,
we hypothesize that word embeddings would per-
form worse than other methods. Howeyver, it is
unclear how these differences can impact bias.

4.2.2 HunFlair (Weber et al., 2021)

Weber et al. (2021) recently proposed a Flair con-
textual string embeddings (a character-level lan-
guage model). Specifically, we use the embed-
dings in the HunFlair extension of the Flair pack-
age (Weber et al., 2021), which is pre-trained on
a corpus of three million full-text articles from
the Pubmed Central BioC text mining collec-
tion (Comeau et al., 2019) and about twenty-five
million abstracts from PubMed. Unlike word em-
beddings mentioned above, Flair embeddings are a
contextualized character-level representation. Flair
embeddings are obtained from the hidden states of
a bi-directional recurrent neural network (BiRNN).
They are trained without any explicit notion of a
word. Instead, Flair models a word as sequences
of characters. Moreover, these embeddings are de-
termined by the text surrounding them, i.e., the
same word will have different embeddings depend-
ing on its contextual usage. The variant of the
Flair embedding used in this study is the Pooled
Flair embedding (Weber et al., 2021; Akbik et al.,
2018). Furthermore, we use the forward and back-
ward representations of Flair embeddings returned
from the BiRNN. Intuitively, character-level em-
beddings can potentially help improve model pre-
dictions with better OOV handling.

4.2.3 BERT (Devlin et al., 2019b)

We also evaluate transformer-based embeddings.
Specifically, we use the BERT variant “bert-base-
uncased” available Flair and HuggingFace (Wolf
et al.,, 2020). BERT was pre-trained using
the BooksCorpus (800M words) and English



Precision Recall F1
CDR + Word 8544 7989 .8230
CDR + Flair 8793  .8733 8761
CDR + BERT 8978 .9023 .9000
CHEMDNER + Word 8638 .7916 .8211
CHEMDNER + Flair 8929 8652 .8783
CHEMDNER + BERT 8184 7363 .7632

Table 3: Overall Results on CDR and CHEMDNER.

Wikipedia (2,500M words) (Devlin et al., 2019b).
Furthermore, BERT embeddings are based on sub-
word tokenization, so BERT can potentially handle
OOV better than word embeddings alone. Intu-
itively, it fits somewhere between Flair (generating
word embeddings from character representations)
and Word2Vec (which independently learns em-
beddings for each word). Likewise, each word
representation is context-dependent. Hence, BERT
is better at handling word polysemy by capturing
word semantics in context.

4.2.4 Hyper-Parameter Settings

In this section, we report the best hyperparameter
for each model. Similar to random hyperparameter
search (Bergstra and Bengio, 2012), we generate
100 samples using different parameters for each
dataset-model combination (e.g., we generate 100
versions of BERT for the CDR dataset). For the
specific hyper-parameters, we used sample dropout
from 0.1 to 0.9, hidden layer sizes from {128, 256,
512, 1024}, learning rates selected from le-4 to
le-1 at random, and the option of whether to fine-
tune the embedding layers (i.e., True vs. False). In
addition, we trained all models for 25 epochs with
a mini-batch size set to 32, where only the best
model on the validation dataset is saved after each
epoch. Finally, all experiments were run on four
NVidia GeForce GTX 1080 Ti GPUs.

S RESULTS

In this section, we report the performance of our
model on the original CDR and CHEMDNER test
datasets and the synthetic and real-data bias results.

5.1 CDR and CHEMDNER Results

Table 3 reports the average recall, precision, and F1
scores for each embedding type for the CDR and
CHEMDNER datasets. The scores are averaged
over the various random seeds and hyperparame-
ters used to train the models. The Flair embeddings
result in the best performance for the CDR dataset.

While in the CHEMDNER corpus, the Flair out-
performs the BERT embeddings (.8783 vs. .7632).
For the CHEMDNER results, we found that BERT
is highly sensitive to hyperparameters, resulting in
poorly performing models. The best-performing
BERT models can perform similarly to the Flair
model. See the supplementary material for details
(e.g., max, min, and median scores).

5.2 Synthetic (Template) Results

In Table 4, we report the average synthetic dataset
results and bias scores for each model trained
on three different datasets (CDR, CHEMDNER,
and AskDocs) with the three different embeddings
(Word, Flair, and BERT). Overall, NER mod-
els have a substantial bias against female-related
names. Specifically, nine out of nine models
(1.000) have a lower precision for female-related
templates, with an average precision bias of .0204
against female-related names. Likewise, seven out
of nine (.7778) dataset-model pairs have lower F1
scores for female-related templates. The recall
scores are similar for male- and female-related tem-
plates, with an average score near 0. The AskDoc
dataset has the largest bias scores against female-
related names (e.g., .0555 for precision). Yet, the
CDR and CHEMDNER datasets also have sub-
stantial biases with differences as high as .0367.
These results indicate that most bias differences
are caused by female-related names being more
likely to be classified as a chemical. This find-
ing is consistent with prior research on naming
conventions for brands (Lieven et al., 2015). To
further investigate this, we randomly sample 100
chemicals from all three datasets and measured
the number of brand name mentions. Overall, we
found one brand name in the CHEMDNER dataset,
19 in the CDR dataset, and 32 in the ASKDOC
dataset, which generally matches the bias perfor-
mance differences in Table 4. Moreover, the Word
Embedding (Word2Vec) models have the lowest
bias scores. Word2Vec models are not impacted by
the morphological structure of the chemical names.
Hence, the models using word embeddings do not
confuse names for chemicals. We find similar pat-
terns for word embeddings on models trained on
each dataset.

5.3 AskDoc Results

The AskDoc results are reported in Table 5. The
results in Table 5 come from a model trained on
PubMed data. As seen in Table 5, there is no sig-



Male Female Difference
Precision Recall F1 Precision Recall F1 Precision Recall F1
CDR + Word 1 .8230 9029 1 8230  .9029  .0000 .0000  .0000
CDR + Flair 9711 9486  .9597 .9344 9494 9418  .0367 -.0008 .0179
CDR + BERT 9867 .8493 9128 .9728 8444 9041 .0138 .0048  .0087
CHEMDNER + Word .9990 8625  .9257 .9968 8622 .9246  .0021 .0003 .0011
CHEMDNER + Flair 9982 .8836  .9374 9885 8852  .9340 .0097 -0.007 .0034
CHEMDNER + BERT 9913 .8768  .9306 .9680 8762 9198 .0233 -.0006 .0107
ASKDOC + Word 9739 9330 9530 .9739 9330  .9530 @ .0000 .0000 .0000
ASKDOC + Flair .8833 9523 9164 8278 9519  .8852  .0555 .0005  .0312
ASKDOC + BERT .9394 9288 9340 .8967 9282 9121 .0427 .0006  .0220
Aggregate Measures
AVG .0204 -.0002 .0106

Table 4: Synthetic (Template) Data Results. The smallest bias score for each dataset is marked in 'blue and the

biggest is marked in red . The overall largest scores are in bold. The bottom section reports aggregate result
measures, specifically the average differences and the percent of the DATASET + MODEL combinations that are

biased against the female-related text.

Male Female Difference

Precision Recall F1 Precision Recall F1 Precision Recall F1
CDR + Word 8375 5605 .6548 8400 5495 .6499 -.0025 .0110%** .0049
CDR + Flair 8320  .6557 .7285 8293 .6256 .7081 0026 .0302%** .0204***
CDR + BERT 8724 6582 .7500 8693  .6215 7244 0030 .0367%*%  0256%**
CHEMDNER + Word 8693 5444  .6609 8751  .5305 .6521 -.0058 .0139%**  0089***
CHEMDNER + Flair 8791  .6120 .7206 8611 5830 .6939  .0180%**  .0290%* (0267%**
CHEMDNER + BERT 7995 5942 6717 7964 5648 6438 .0031  .0295%* .0279%***

Aggregate Measures

AVG -.0056 0251 .0189

Table 5: AskDoc Results. The smallest bias score for each dataset is marked in blue and the biggest is marked

in red . The overall largest scores are in bold. The bottom section reports aggregate result measures, specifically
the average differences and the percent of the DATASET + MODEL combinations that are biased against the
female-related text. Statistically, significant differences based on the Wilcoxon Signed Rank test are marked with *
(p-value < .05), ** (p-value < .01), and *** (p-value < .001).

nificant difference in precision between male and
female datasets for most models, suggesting that
precision remains consistent regardless of gender.
However, recall displays a consistent bias against
the female group. Likewise, F1 scores indicate
a bias against the female group, except for the
Word Embedding model trained on the CDR cor-
pus. In contrast, Table 4 mirrors the results from
Table 5, but the biases observed are in precision
and F1 scores rather than recall and F1 scores.
Overall, we have several major findings. First,
again, we find substantial female-related bias in
the Chemcial NER system. Here, the bias is based
on self-identified posts, not names. For instance,
the CDR+BERT model has a recall for the Female
posts nearly 4% lower (i.e., .0367) than the Male
posts. However, what does this mean in real-world
terms? Considering a sample of 1,000,000 chemi-
cal mentions across male and female posts (a rela-

tively small number in social media), a 4% recall
difference results in an additional 40,000 false neg-
atives for the female group. For example, there
are well-known health disparities between men and
women for depression, with absolute differences
of less than 3% (Salk et al., 2017). Hence, a 4%
recall difference can substantially impact findings
if applied researchers or practitioners use out-of-
domain models to understand medications for this
disease. Such a considerable gap can markedly
affect the utility and trustworthiness of these pre-
dictive outcomes in practical scenarios.

In summary, these results underline the necessity
to acknowledge potential gender bias in informa-
tion extraction tasks within biomedical applications.
The performance disparity across genders calls for
applying bias mitigation techniques to ensure equi-
table system performance. Further, the influences
of the chosen NLP model and training corpus on



this bias underline the importance of careful model
selection and data curation in creating unbiased
NLP systems.

Second, the models with the most bias on the
synthetic data do not correlate with the findings
on real data. For example, the models trained on
CDR corpus have the largest bias on the synthetic
data but have the smallest bias when evaluating real
data. Likewise, the synthetic data suffered from
precision bias, while much of the bias on real data
is related to recall. These findings are important
given the reliance on synthetic data in bias analysis
papers. In comparison, synthetic data allows us
to target specific types of biases, synthetic data
alone does not provide an accurate estimate of
bias in practice.

Third, a pivotal question often raised is, “Does
increasing model accuracy inherently lead to de-
creased bias?” From our observations on the
AskDoc and synthetic datasets, there is no direct
correlation. Intriguingly, Word Embedding-based
models, which were the least accurate among the
models tested, exhibited the least bias. This un-
derscores the idea that accuracy and fairness are
both essential axes of model evaluation. Relying
solely on improving accuracy will not automati-
cally address bias or fairness concerns. Hence, the
results suggest that performance disparities need
to be directly addressed; simply developing more
“accurate” models will not suffice. Finally, note
that the biases can range higher than .0367. See the
supplementary material for median, max, and min
scores. Furthermore, it’s important to mention that
these biases can exceed a measure of .0367. For
more detailed results including median, maximum,
and minimum scores, refer to the supplementary
material.

6 Conclusion

In this paper, we evaluate the gender bias of Chem-
ical NER systems. Moreover, we compare bias
measurements from synthetic data with real-world
self-identified data. We make two major findings.
First, Chemical NER systems are biased with re-
gard to gender for synthetic data. Specifically, our
study found that female name-like patterns fea-
ture prominently in chemical naming conven-
tions. This characteristic leads to a notable bias
in NER systems, where female-related names are
disproportionately identified as chemicals, inadver-
tently escalating the gender bias in these systems.
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Figure 1: Ratio of false negatives for various drug cat-
egories. The ratio is represented next to each bar. For
female-leaning errors, the female false negative count
(FN ]’f ) is in the numerator. For male-leaning errors, the

male false negative count (FN,’;) is in the numerator.

Furthermore, we explored the performance of
these models in real-world scenarios and found that
most models perform better on male-related data
than female-related data. A striking revelation
was the system’s poor performance when iden-
tifying chemicals frequently found in female-
related data, such as mentions of contraceptives.
This result further compounds the concern of bias,
bringing attention to the potential real-world impli-
cations of such inaccuracies.

Additionally, our analysis exposed the limita-
tions of synthetic data in estimating gender bias.
While synthetic data serves as a useful tool for
identifying specific types of biases, it fails to pro-
vide a comprehensive reflection of the bias in
real-world applications. This discovery under-
scores the need for real-world bias analyses along-
side synthetic data investigations.

Our study also drew attention to the non-
correlation between model accuracy and bias. We
discovered that the least accurate models, based
on Word Embeddings, exhibited the least bias.
This finding reiterates that enhancing model ac-
curacy alone will not suffice in addressing these
biases; instead, it is necessary to explicitly tackle
the disparities in performance.

In conclusion, the results of our study empha-
sise the urgent need for deliberate bias mitigation
strategies in Chemical NER systems. Our findings
spotlight the necessity for incorporating both syn-
thetic and real-world data considerations to develop
models that are both fair and reliable.
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A Appendix

A.1 Error Analysis and Discussion

Our experiments show that Chemical NER sys-
tems are biased. However, what specifically is
causing the errors? For the synthetic data, the an-
swer is gender-related names. To understand the
errors in the AskDoc data, we analyzed the errors
made by the best NER models trained on the out-
of-domain corpus (CHEMDNER and CDR) and
tested the male and female splits of the AskDocs
corpus. In Figure 1, we report the ratio of false neg-
atives for different categories of drugs/chemicals.
Specifically, for every false negative made by the
top models of each dataset-model combination, we
manually categorized them into a general chemical
class (e.g., Contraceptives, Analgesics/Pain Killers,
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and Stimulants). Formally, let I Nﬁl represent the
total number of false negatives for chemical types
k and male data m. Let F'N }‘“ represent the female

false negatives. If FN® is larger than FN ]lf, we
define the ratio as —(1 — FNf%/FN}“) Likewise,
if FN ]lf is greater than F'N,, then we define the

ratioas 1 — (FN]’f/FNﬁL) Hence, when male ra-
tios are higher, the score is negative; otherwise, it
is positive.

Overall, we make several important findings.
First, we find that the models make slightly more
false negatives on the chemicals categories Contra-
ceptives (e.g., birth control and Plan B One-Step),
Hormones (e.g., Megace used to treat the symp-
toms of loss of appetite and wasting syndrome in
people with illnesses such as breast cancer), Anal-
gesics (i.e., Pain Killers such as Tylenol) and An-
tibiotics on the female dataset. In contrast, the
models make slightly more errors in the chemical
categories Anxiolytics (e.g., drugs used to treat
anxiety), Antipsychotics (e.g., chemicals used to
manage psychosis, principally in schizophrenia),
and sexual function drugs (e.g., Viagra). Further-
more, while the ratio for the most male- and female-
related errors (Contraceptives and Sexual Function)
are similar, the absolute magnitudes are substan-
tially different. For instance, there are 397 Con-
traceptive F'N's in the female dataset, but only 75
Sexual Function F'N's appear in the male dataset.
This provides an explanation for the large differ-
ences in recall on the AskDoc corpus between the
male and female datasets.

Interestingly, we find that the prevalence of
chemicals across gender-related posts matches the
prevalence found in traditional biomedical studies.
Previous research report that women have been
prescribed analgesics (e.g., pain killers such as opi-
oids) twice as often as men (Chilet-Rosell, 2014;
Serdarevic et al., 2017). While there is still lim-
ited understanding about whether men are under-
prescribed or women are over-prescribed, the dis-
parities in prescriptions are evident. Thus, the find-
ing in Figure 1 that we receive twice as many anal-
gesics F'N's for female data is important. Depend-
ing on the downstream application of the Chemical
NER system, these performance disparities may
potentially increase harm to women. For exam-
ple, if more varieties of drugs are prescribed to
women, but our system does not detect them, then
an ADR detection system will not be able to detect
important harms.
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We also find differences in Antibiotic F'Ns in
Figure 1. There have also been medical studies
showing gender differences in Antibiotic prescrip-
tions. For example, a recent meta-analysis of pri-
mary care found that women received more an-
tibiotics than men, especially women aged 1654,
receiving 36%—-40% more than males of the same
age (Smith et al., 2018). Again, if we do not de-
tect many of the antibiotics prescribed to women,
this can cause potential health disparities in down-
stream ADR (and other) systems.

Next, in Table 6, we report the false negative
rate (FNR) for each category along with the gen-
eral frequency of each category. Using the Pearson
correlation coefficient, we relate the frequency of
each category with the false negative rate for the
male and female groups, respectively. Intuitively,
we would expect the false negative rate to go down
as the frequency increases, which matches our find-
ings. However, we find that the correlation is much
stronger for the male group than the female group.

In Table 7, we report the FNR for the female and
male groups, respectively. We also introduce a new
metric, weighted FNR, which assigns importance
scores for each of the FNRs shown in to create a
macro-averaged metric. Intuitively, the distribution
of categories is different for both the male and
female groups. So, we want to test whether the
FNR scores are distributed uniformly across all
categories, irrespective of, or if the errors are more
concentrated for gender-specific categories. More
errors in gender-specific categories can adversely
impact a group that is not captured with the global
FNR metric. Formally, we define wFNR for the
female group as

N
wFNRf = w/FNR]

where F'N le represents the female false negative
rate for category ¢. Likewise, wlf is defined as

1 N//NS
> w"if Ni*/N™

f =
K3

w,

where V. Zf and N]C” represent the total number of
times a category ¢ appears for the female and male
groups, respectively. Intuitively, we are diving the
ratio of each category for female and male groups.
So, if a category appears more often for females
than males, proportionally, then the score will be



Total Male FNR Male Total Female FNR Female
Contraceptives 33 1.0000 408 9730
Hormones 170 .0882 230 1565
Analgesics 571 .1489 952 2048
Antibiotics 326 2454 347 4438
Antihistamines 270 .5593 295 .6780
Stimulants 522 .3065 390 5051
Antidepressants 781 4110 1043 3365
Minerals 605 .3983 785 3312
Opioids 43 5814 95 2316
Organic Chemical 441 3764 346 .3902
Illicit drug 353 .5666 311 5048
Vaccine 108 1.0000 78 1.0000
Stomach Drug 55 .5455 44 4545
Antipsychotics 47 .6170 95 1368
Ancxiolytics 126 .5603 100 .2300
Sexual Function Drug 78 9615 8 1.0000
PCC between Total and FNR -58 -.26

Table 6: False negatives rate (FNR) for female and male-related AskDoc datasets. The pearson correlation coefficient
(PCC) between the frequency of each chemical type and the FNR for teach group is marked in the last row.

FNR wFNR
Male 3948 .6875
Female .4064 .8088
Gap 0116 .1213

Ratio 1.0294 1.1764

Table 7: FNR and weighted FNR (wWFNR) results.

higher. We normalize these scores for each group
so they sum to one. Overall, we find an absolute
gap of more than 1% (3% relative difference) be-
tween the FNR for male and female groups. But,
even worse, there is a much larger gap (.1213 vs
.0116) when using wFNR. This result suggests that
many of the false negatives are concentrated for
gender-specific categories (e.g., contraceptives) for
the female group more than the male group.

A.2 Limitation

There were several limitations to our study. First,
the adjudication of disagreeing items was depen-
dent on the judgment of a single graduate student,
potentially introducing human error and bias com-
pared to a multi-adjudicator approach. Second, the
vast volume of data from the active r/AskDoc sub-
reddit community makes the feasibility of one per-
son’s comprehensive review debatable. Although
our annotation method is in line with standard prac-
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tices, a more multi-faceted approach involving nu-
merous annotators and adjudicators might offer im-
proved accuracy and consistency in future datasets.



