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Abstract
Chemical named entity recognition (NER)001
models influence numerous downstream tasks,002
from adverse drug reaction identification to003
pharmacoepidemiology. However, it is un-004
known whether these models work the same for005
everyone. Performance disparities can poten-006
tially cause harm rather than the intended good.007
This paper assesses gender-related performance008
disparities in chemical NER systems. We de-009
velop a framework for measuring gender bias010
in chemical NER models using synthetic data011
and a newly annotated corpus of over 92,405012
words with self-identified gender information013
from Reddit. Our evaluation of state-of-the-014
art biomedical NER models reveals evident015
biases. For instance, synthetic data suggests016
female-related names are frequently misclas-017
sified as chemicals, especially with datasets018
rich in brand names. Additionally, we ob-019
serve significant performance disparities be-020
tween female- and male-associated data in both021
datasets. Many systems fail to detect contra-022
ceptives such as birth control. Our findings023
emphasize the biases in chemical NER models,024
urging practitioners to be aware of and address025
these biases in application.026

1 INTRODUCTION027

Chemical named entity recognition (NER) is028

the extraction of chemical mentions (e.g., drug029

names) from the text. Chemical NER is es-030

sential in many downstream tasks, from phar-031

macovigilance (O’Connor et al., 2014) to facil-032

itating drug discovery by mining biomedical re-033

search articles (Agarwal and Searls, 2008). For in-034

stance, Chemical NER systems are the first step in035

pipelines developed to mine adverse drug reactions036

(ADRs) (Farrugia and Abela, 2020). However,037

manually collecting ADRs is challenging due to038

limitations in clinical trials, such as insufficient par-039

ticipants for rare ADRs, limited durations, inability040

to test all drug combinations swiftly, and drug re-041

purposing leading to unexpected ADRs (Mammì042

et al., 2013). Hence, using chemicals to mine ADR 043

mentions at scale can have a positive impact. How- 044

ever, it is unknown whether these systems perform 045

the same for everyone. Who benefits from these 046

systems, and who can be harmed? We present a 047

comprehensive analysis of gender-related perfor- 048

mance disparities of Chemical NER in this paper. 049

Performance disparities have recently received 050

substantial attention in the field of NLP. For ex- 051

ample, recent research shows performance drops 052

in text classification models across different sub- 053

populations such as gender, race, and minority di- 054

alects (Dixon et al., 2018; Park et al., 2018; Bad- 055

jatiya et al., 2019; Rios, 2020; Lwowski and Rios, 056

2021; Mozafari et al., 2020). Performance dispari- 057

ties can manifest in multiple parts of NLP systems, 058

including training data, resources, pre-trained mod- 059

els (e.g., word embeddings), and their downstream 060

applications (Zhao et al., 2019; Goldfarb-Tarrant 061

et al., 2021; Zhao et al., 2017). However, while pre- 062

vious research has explored these disparities, the 063

focus has been largely on synthetic data and non- 064

biomedical applications (Mehrabi et al., 2020). Our 065

study addresses this literature gap by providing a 066

comprehensive examination of gender-related per- 067

formance disparities in Chemical NER, focusing 068

on both synthetic and real-world data. 069

This paper studies a similar task like Mehrabi 070

et al. (2020) with two primary distinctions. First, 071

our focus is on Chemical NER, a less studied area 072

in Biomedical NLP despite its significant bias im- 073

plications. Second, while Mehrabi et al. (2020) 074

uses synthetic data and templates (e.g., NAME in 075

LOCATION) for bias analysis, we delve deeper 076

into the potential biases in chemical naming, espe- 077

cially how they contribute to false positives. Lieven 078

et al. (2015) highlighted a preference for linguisti- 079

cally feminine brand names in the market, leading 080

drug companies to adopt such naming conventions. 081

This can inadvertently cause models to misclassify 082

female names as chemicals. However, only using 083
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templates might not capture the diverse writing of084

different groups. If a model favors certain names,085

how does it affect real individuals? Do biases from086

template data affect some groups disproportion-087

ately? For example, Sundbom et al. (2017) shows088

that women are more frequently prescribed antide-089

pressants than men. If models struggle to detect090

these drugs, often mentioned by females, it may091

cause gender-specific biases in their performance.092

Other studies, like Riley III et al. (1998), reveal093

gender differences in pain sensitivity and opioid094

prescriptions, with women receiving opioids twice095

as often. The template method would not capture096

these differences in the model in chemical detec-097

tion performance for certain classes of drugs.098

Therefore, this paper presents a dual approach:099

we explore template data but also assemble and100

annotate a real-world dataset with self-identified101

gender information. 1 Our approach is influenced102

by the concerns raised by Blodgett et al. (2021)103

regarding many biased studies needing a sufficient104

understanding of the potential harm posed by the105

models. While we cannot fully conceptualize all106

potential harms, this paper moves beyond prior107

work focused on non-realized or synthetic datasets.108

We believe exploring data from people who have109

self-identified their demographic information is bet-110

ter. This will provide a more realistic understanding111

of how these models will perform based on how112

people write and what they write about.113

Our main contributions are threefold.114

1. We introduce and will publicly release a novel115

annotated Chemical NER dataset for social116

media data. Moreover, the dataset contains117

self-identified gender information to be used118

to measure gender bias in Chemical NER mod-119

els. To the best of our knowledge, this is120

the first Reddit-based Chemical NER dataset.121

Moreover, it is the first Chemical NER dataset122

with self-identified gender information.123

2. We introduce a comprehensive testing frame-124

work for gender bias in Chemical NER using125

both synthetic and real-world data. To the best126

of our knowledge, our results are the first to127

conduct bias analysis for chemical NER in128

biomedical application. This allows a better129

understanding of modern chemical NER tech-130

niques. Moreover, it spurs a discourse about131

how information extraction methods can be132

1The dataset and code will be released publicly upon ac-
ceptance.

biased, how the biases can be measured, and 133

provides a framework for bias mitigation tech- 134

nique development. 135

3. Finally, we provide a comprehensive error 136

analysis and discussion to better understand 137

how Chemical NER models can be biased. 138

The study links biases to both chemical nam- 139

ing conventions and limits in current datasets 140

with regard to gender specific chemical men- 141

tions (e.g., contraceptives). 142

2 RELATED WORK 143

Prior work extensively curated labeled data for 144

chemical NER and developed domain-specific 145

models. For example, the CHEMDNER cor- 146

pus (Krallinger et al., 2015) was created for the 147

2014 BioCreative shared task on chemical extrac- 148

tion from text. Researchers recognize the impor- 149

tance of these systems and are working to make 150

them as fair and accurate as possible. Likewise, 151

the CDR (Li et al., 2016) dataset was developed 152

to detect chemical-disease relations for the 2015 153

shared task. Similar to traditional NER tasks (Li 154

et al., 2020), a broad range of approaches have 155

been proposed to detect Chemicals (Rocktäschel 156

et al., 2012; Chiu et al., 2021; Lee et al., 2020; Sun 157

et al., 2021; López-Úbeda et al., 2021; Weber et al., 158

2021), from traditional conditional random fields 159

to deep learning methods. Many recent neural 160

network-based advances can be broken into three 161

main groups of models, word, character, and con- 162

textual embedding-based models. For instance, Lee 163

et al. (2020) trained a biomedical-specific BERT 164

model that improved on many prior state-of-the-art 165

results. HunFlair (Weber et al., 2021) introduced 166

a method that matches the word, contextual, and 167

character embeddings into a unified framework to 168

achieve state-of-the-art performance. In this pa- 169

per, we evaluate several state-of-the-art systems. 170

Particularly, we focus on systems that use word 171

embeddings, sub-word embeddings, and character 172

embeddings, which allows us to understand the 173

impact of morphological features of the chemical 174

names on gender bias. 175

Several previous works have measured and high- 176

lighted bias in different NLP tasks. For instance, 177

Sap et al. (2019) measures the bias of offensive 178

language detection models on African American 179

English. Likewise, Park et al. (2018) measures gen- 180

der bias of abusive language detection models and 181

evaluates various methods such as word embedding 182
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debiasing and data augmentation to improve bi-183

ased methods. Davidson et al. (2019) shows racial184

and ethnic bias when identifying hate speech on-185

line and that tweets in the black-aligned corpus186

are more likely to be assigned hate speech. Gaut187

et al. (2020) creates the WikiGenderBias dataset188

to evaluate the gender bias in the relation extrac-189

tion (RE) model, confirming that the RE system190

behaves differently when the target entities are of191

different genders. Cirillo et al. (2020) demonstrate192

that biases in biomedical applications can stem193

from various sources, such as skewed diagnoses re-194

sulting from clinical depression scales that measure195

symptoms more prevalent in women, potentially196

leading to a higher reported incidence of depres-197

sion among this group (Martin et al., 2013). Other198

sources include the underrepresentation of minor-199

ity populations such as pregnant women (Organi-200

zation and for Women’s Health in Society, 2009),201

non-representative samples in AI training data, and202

inherent algorithmic discrimination, all potentially203

contributing to inaccurate and unfair results.204

Overall, several metrics have been proposed to205

measure gender bias. One of the most commonly206

used metrics involves measuring bias by examin-207

ing model performance disparities on male and208

female data points (Kiritchenko and Mohammad,209

2018). Performance disparities have been observed210

across a wide array of NLP tasks such as detect-211

ing virus-related text (Lwowski and Rios, 2021),212

language generation (Sheng et al., 2019), corefer-213

ence resolution (Zhao et al., 2018), named entity214

recognition (Mehrabi et al., 2020), and machine215

translation (Font and Costa-jussà, 2019). Most re-216

lated to this study, researchers have shown that217

traditional NER systems (i.e., to detect people,218

locations, and organizations) are biased concern-219

ing gender (Mehrabi et al., 2020). Specifically,220

Mehrabi et al. (2020) demonstrates that female-221

related names are more likely to be misidentified222

as a location than male names. This stream of223

research underscores the importance of our investi-224

gation into performance disparities in NLP.225

Finally, while not directly studied in prior NER226

experiments. It is important to discuss some back-227

ground about morphological elements of chemical228

names. Morphological elements often represent-229

ing masculinity or femininity are frequently used230

in chemical naming conventions. According to231

Lieven et al. (2015), consumers perceive linguisti-232

cally feminine brand names as warmer and likelier.233

# of Chemical Mentions # Sentences # Words

CDR 4,409 14,306 346,001
CHEMDNER 84,355 87,125 2,431,247

AskDoc MALE 1,501 2,862 52,221
AskDoc FEMALE 1,774 2,151 40,184
AskDoc ALL 3,275 5,013 92,405

Synthetic MALE 2,800,000 2,800,000 25,760,000
Synthetic FEMALE 2,800,000 2,800,000 25,760,000
Synthetic ALL 5,600,000 5,600,000 51,520,000

Table 1: Dataset statistics.

For instance, adding a diminutive suffix to the mas- 234

culine form of the name usually feminizes it. The 235

masculine names such as Robert, Julius, Antonio, 236

and Carolus (more commonly Charles today) are 237

feminized by adding the suffixes “a”, “ia”, “ina”, 238

or “ine” to generate Julia, Roberta, Antonia, and 239

Caroline, respectively. The suffixes “ia” and “a” is 240

commonly used for inorganic oxides such as mag- 241

nesia, zirconia, silica, and titania (Hepler-Smith, 242

2015). Likewise, “ine” is used as the suffix in many 243

organic bases and base substances such as quinine, 244

morphine, guanidine, xanthine, pyrimidine, and 245

pyridine. Hence, while these practices were not 246

originally “biased” in their original usage, they can 247

potentially impact model performance (e.g., femi- 248

nine names can be detected as chemicals). There- 249

fore, the patterns can cause biased models. As part 250

of our approach to investigate this potential source 251

of bias, we propose using synthetic data to quantify 252

this phenomenon. 253

3 DATASETS 254

In this section, we describe the four main datasets 255

used in our experiments: two are publicly-released 256

datasets based on PubMed, and two are newly cu- 257

rated datasets, one using social media data and 258

another based on templates. Table 1 provides their 259

statistics. We selected the PubMed datasets for 260

their prominence in chemical NER research. At 261

the same time, the r/AskDocs subreddit was chosen 262

for its large community, diverse health discussions, 263

and consistent gender identification format, such 264

as "I [25 M]". 265

CDR (Li et al., 2016) We use the BioCreative V 266

CDR shared task corpus. The CDR corpus com- 267

prises 1,500 PubMed articles with 4,409 annotated 268

chemicals, 5,818 diseases, and 3,116 chemical dis- 269

ease interactions. This corpus is designed to ad- 270

dress two distinct tasks: Relation classification and 271

NER. For this study, we focus on the NER for 272

chemical entities. The annotator agreement for this 273
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corpus was .87. Finally, we used the same train,274

validation, and test splits from the shared task for275

our experiments.276

CHEMDNER (Krallinger et al., 2015) The277

CHEMDNER corpus includes abstracts from278

10000 chemistry-related journals published in 2013279

on PubMed. Each abstract was manually annotated280

for chemical mentions. These mentions were cat-281

egorized into seven subtypes: abbreviation, fam-282

ily, formula, identifier, multiple, systematic, and283

trial. The BioCreative organizers divided the cor-284

pus into training (3500 abstracts), development285

(3500 abstracts), and test (3000 abstracts) sets.286

The BioCreative IV CHEMDNER corpus com-287

prises 84,355 chemical mention annotations across288

10,000 abstracts, with an inter-annotator agreement289

of .91 (Krallinger et al., 2015). For this study, we290

only use the major Chemical annotations and ig-291

nore the subtypes for consistency across corpora.292

Finally, we use the same train, validation, and test293

splits used in the shared task for our experiments.294

Synthetic (Template) Data We designed a new295

synthetic dataset to quantify the gender bias in the296

Chemical NER models. Intuitively, the purpose297

of the synthetic dataset is to measure two items.298

First, do gender-related names and pronouns get299

incorrectly classified as Chemicals (i.e., cause false300

positives)? Second, does the appearance of gender-301

related names/pronouns impact the prediction of302

other words (i.e., cause false negatives)? Specifi-303

cally, we create templates such as “[NAME] said304

they has been taking [CHEMICAL] for illness.”.305

In the "[NAME]" column, we filled in the names306

associated with the male and female genders based307

on the 200 most popular baby names provided by308

the Social Security Administration 2. We recog-309

nize that gender is not binary and that names do310

not equal gender. Hence, we refer to these “gender-311

related” names in this paper. This is a similar frame-312

work used by Mishra et al. (2020) and other gender313

bias papers (Kiritchenko and Mohammad, 2018).314

The “[CHEMICAL]” field is filled with the chemi-315

cals listed in the Unified Medical Language System316

(UMLS) (Bodenreider, 2004). For example, com-317

pleted templates include “John said they has been318

taking citalopram for illness.” and “Karen said they319

has been taking citalopram for illness.” We cre-320

ated examples using five templates, 200 chemicals,321

and 200 names for each gender for each decade322

2https://www.ssa.gov/oact/babynames/

Templates

[NAME] said they has been taking [CHEMICAL] for illness.

Did you hear that [NAME] has been using [CHEMICAL].

[CHEMICAL] has really been harming [NAME], I hope they stop.

I think [NAME] is addicted to [CHEMICAL].

[NAME], please stop taking [CHEMICAL], it is bad for you.

Table 2: Templates used to create the synthetic dataset.

from 1880 to 2010, generating a total of 200,000 323

templates for each of the 14 decades. A list of ad- 324

ditional templates is shown in Table 2. This dataset 325

is only used for evaluation. 326

AskDocs We develop a new corpus using data 327

from the Reddit community r/AskDocs. r/AskDocs 328

provides a platform for peer-to-peer and patient- 329

provider interactions on social media to ask 330

medical-related questions. The providers are gener- 331

ally verified medical professionals. We collected all 332

the posts from the community with self-identified 333

gender mentions. To identify self-identified gen- 334

der, we use a simple regular expression that looks 335

for mentions of “I” or “My” followed by gender, 336

and optionally age, e.g., “I [F34]”, “My (23F)”, 337

“I [M]”. Next, following general annotation rec- 338

ommendations for NLP (Pustejovsky and Stubbs, 339

2012), the annotation process was completed in 340

two stages to increase the reliability of the labels. 341

First, two graduate students annotated chemicals 342

in the dataset resulting in an inter-annotator agree- 343

ment of .874, achieving a similar agreement score 344

as CDR and CHEMDNER. Second, a graduate 345

student manually reviewed all disagreeing items 346

to adjudicate the label and generate the gold stan- 347

dard. All students followed the same annotation 348

guidelines developed for the CHEMDNER corpus. 349

Contrary to the synthetic dataset, the actual data 350

will allow users to measure biases arising from 351

text content differences across posts with different 352

self-identified gender mentions. 353

4 EXPERIMENTAL DESIGN AND 354

METHODS 355

The goal of NER is to classify words into a se- 356

quence of labels. Formally, given an input sequence 357

X = [x1, x2, . . . , xN ] with N tokens, the goal of 358

NER is to output the corresponding label sequence 359

Y = [y1, y2, . . . , yN ] with the same length, thus 360

modeling the probabilities over a sequence p(Y|X ). 361

For this task, we conducted an experiment evaluat- 362

ing out-of-domain models on the AskDoc corpus. 363
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Specifically, models were trained and optimized364

on the CHEMDNER and CDR datasets and then365

applied to the AskDoc dataset. All models are366

evaluated using precision, recall, and F1. To mea-367

sure bias, we use precision, recall, and F1 differ-368

ences (Czarnowska et al., 2021). Specifically, let369

m be Males’ performance metric (e.g., F1), and f370

represent the Female metric. The bias is measured371

using the difference f −m.372

4.1 MODELS373

We evaluate three distinct models: Word Embed-374

ding models (Mikolov et al., 2013), Flair embed-375

ding models (Akbik et al., 2018), and BERT-based376

models (Devlin et al., 2019a). While the embed-377

dings for each model type vary, the sequence pro-378

cessing component is the same for each method.379

Specifically, following best practices for state-of-380

the-art NER models (Akbik et al., 2019a), we use a381

Bidirectional long short-term memory network (Bi-382

LSTM) (Hochreiter and Schmidhuber, 1997) due to383

its sequential characteristics and capability to cap-384

ture long-term dependencies. Recent research has385

shown that Bi-LSTM models can produce state-of-386

the-art performance when combined with contex-387

tual embeddings and Conditional Random Fields388

(CRFs) (Mueller et al., 2020; Veyseh et al., 2022).389

Hence, in this paper, we use the Bi-LSTM+CRF390

implementation in the Flair NLP framework (Ak-391

bik et al., 2019b). The Bi-LSTM+CRF model is392

flexible because it can accept arbitrary embeddings393

as input. It is not constrained to traditional word394

embeddings (e.g., Word2Vec). We describe the em-395

beddings we experiment with in the next Section.396

4.2 EMBEDDINGS397

We explore three sets of embeddings: Word2Vec,398

Flair, and BERT. Social media texts are brief and399

informal. Drugs and chemicals are typically de-400

scribed in descriptive, nontechnical language with401

spelling errors. These issues challenge social me-402

dia NER. Some medications, like “all-trans-retinoic403

acid”, contain morphologically difficult parts. Yet,404

similar-structured phrases still generally represent405

similar things (Zhang et al., 2021). Hence, how we406

represent words (i.e., the embeddings we use) can407

directly impact performance and bias. We describe408

each embedding we use below:409

4.2.1 Word2Vec (Pyysalo et al., 2013)410

We use Word2Vec embeddings pre-trained on411

PubMed and PubMed Central. The embeddings412

are publicly released as part of the FLAIR package. 413

It is important to state that word embeddings have 414

a major limitation. Word embeddings use a distinct 415

vector to represent each word and ignore words’ 416

internal structure (morphology). This can result 417

in models not particularly good at learning rare or 418

out-of-vocabulary (OOV) words in the data. The 419

growing number of emerging chemicals/drugs with 420

diverse morphological forms makes recognizing 421

chemical entities on social media platforms partic- 422

ularly challenging. Another challenge posed by 423

user-generated content is its unique characteristics 424

and use of informal language, typically short con- 425

text, noisy, sparse, and ambiguous content. Hence, 426

we hypothesize that word embeddings would per- 427

form worse than other methods. However, it is 428

unclear how these differences can impact bias. 429

4.2.2 HunFlair (Weber et al., 2021) 430

Weber et al. (2021) recently proposed a Flair con- 431

textual string embeddings (a character-level lan- 432

guage model). Specifically, we use the embed- 433

dings in the HunFlair extension of the Flair pack- 434

age (Weber et al., 2021), which is pre-trained on 435

a corpus of three million full-text articles from 436

the Pubmed Central BioC text mining collec- 437

tion (Comeau et al., 2019) and about twenty-five 438

million abstracts from PubMed. Unlike word em- 439

beddings mentioned above, Flair embeddings are a 440

contextualized character-level representation. Flair 441

embeddings are obtained from the hidden states of 442

a bi-directional recurrent neural network (BiRNN). 443

They are trained without any explicit notion of a 444

word. Instead, Flair models a word as sequences 445

of characters. Moreover, these embeddings are de- 446

termined by the text surrounding them, i.e., the 447

same word will have different embeddings depend- 448

ing on its contextual usage. The variant of the 449

Flair embedding used in this study is the Pooled 450

Flair embedding (Weber et al., 2021; Akbik et al., 451

2018). Furthermore, we use the forward and back- 452

ward representations of Flair embeddings returned 453

from the BiRNN. Intuitively, character-level em- 454

beddings can potentially help improve model pre- 455

dictions with better OOV handling. 456

4.2.3 BERT (Devlin et al., 2019b) 457

We also evaluate transformer-based embeddings. 458

Specifically, we use the BERT variant “bert-base- 459

uncased” available Flair and HuggingFace (Wolf 460

et al., 2020). BERT was pre-trained using 461

the BooksCorpus (800M words) and English 462
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Precision Recall F1

CDR + Word .8544 .7989 .8230
CDR + Flair .8793 .8733 .8761
CDR + BERT .8978 .9023 .9000

CHEMDNER + Word .8638 .7916 .8211
CHEMDNER + Flair .8929 .8652 .8783
CHEMDNER + BERT .8184 .7363 .7632

Table 3: Overall Results on CDR and CHEMDNER.

Wikipedia (2,500M words) (Devlin et al., 2019b).463

Furthermore, BERT embeddings are based on sub-464

word tokenization, so BERT can potentially handle465

OOV better than word embeddings alone. Intu-466

itively, it fits somewhere between Flair (generating467

word embeddings from character representations)468

and Word2Vec (which independently learns em-469

beddings for each word). Likewise, each word470

representation is context-dependent. Hence, BERT471

is better at handling word polysemy by capturing472

word semantics in context.473

4.2.4 Hyper-Parameter Settings474

In this section, we report the best hyperparameter475

for each model. Similar to random hyperparameter476

search (Bergstra and Bengio, 2012), we generate477

100 samples using different parameters for each478

dataset-model combination (e.g., we generate 100479

versions of BERT for the CDR dataset). For the480

specific hyper-parameters, we used sample dropout481

from 0.1 to 0.9, hidden layer sizes from {128, 256,482

512, 1024}, learning rates selected from 1e-4 to483

1e-1 at random, and the option of whether to fine-484

tune the embedding layers (i.e., True vs. False). In485

addition, we trained all models for 25 epochs with486

a mini-batch size set to 32, where only the best487

model on the validation dataset is saved after each488

epoch. Finally, all experiments were run on four489

NVidia GeForce GTX 1080 Ti GPUs.490

5 RESULTS491

In this section, we report the performance of our492

model on the original CDR and CHEMDNER test493

datasets and the synthetic and real-data bias results.494

5.1 CDR and CHEMDNER Results495

Table 3 reports the average recall, precision, and F1496

scores for each embedding type for the CDR and497

CHEMDNER datasets. The scores are averaged498

over the various random seeds and hyperparame-499

ters used to train the models. The Flair embeddings500

result in the best performance for the CDR dataset.501

While in the CHEMDNER corpus, the Flair out- 502

performs the BERT embeddings (.8783 vs. .7632). 503

For the CHEMDNER results, we found that BERT 504

is highly sensitive to hyperparameters, resulting in 505

poorly performing models. The best-performing 506

BERT models can perform similarly to the Flair 507

model. See the supplementary material for details 508

(e.g., max, min, and median scores). 509

5.2 Synthetic (Template) Results 510

In Table 4, we report the average synthetic dataset 511

results and bias scores for each model trained 512

on three different datasets (CDR, CHEMDNER, 513

and AskDocs) with the three different embeddings 514

(Word, Flair, and BERT). Overall, NER mod- 515

els have a substantial bias against female-related 516

names. Specifically, nine out of nine models 517

(1.000) have a lower precision for female-related 518

templates, with an average precision bias of .0204 519

against female-related names. Likewise, seven out 520

of nine (.7778) dataset-model pairs have lower F1 521

scores for female-related templates. The recall 522

scores are similar for male- and female-related tem- 523

plates, with an average score near 0. The AskDoc 524

dataset has the largest bias scores against female- 525

related names (e.g., .0555 for precision). Yet, the 526

CDR and CHEMDNER datasets also have sub- 527

stantial biases with differences as high as .0367. 528

These results indicate that most bias differences 529

are caused by female-related names being more 530

likely to be classified as a chemical. This find- 531

ing is consistent with prior research on naming 532

conventions for brands (Lieven et al., 2015). To 533

further investigate this, we randomly sample 100 534

chemicals from all three datasets and measured 535

the number of brand name mentions. Overall, we 536

found one brand name in the CHEMDNER dataset, 537

19 in the CDR dataset, and 32 in the ASKDOC 538

dataset, which generally matches the bias perfor- 539

mance differences in Table 4. Moreover, the Word 540

Embedding (Word2Vec) models have the lowest 541

bias scores. Word2Vec models are not impacted by 542

the morphological structure of the chemical names. 543

Hence, the models using word embeddings do not 544

confuse names for chemicals. We find similar pat- 545

terns for word embeddings on models trained on 546

each dataset. 547

5.3 AskDoc Results 548

The AskDoc results are reported in Table 5. The 549

results in Table 5 come from a model trained on 550

PubMed data. As seen in Table 5, there is no sig- 551
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Male Female Difference

Precision Recall F1 Precision Recall F1 Precision Recall F1

CDR + Word 1 .8230 .9029 1 .8230 .9029 .0000 .0000 .0000
CDR + Flair .9711 .9486 .9597 .9344 .9494 .9418 .0367 -.0008 .0179
CDR + BERT .9867 .8493 .9128 .9728 .8444 .9041 .0138 .0048 .0087

CHEMDNER + Word .9990 .8625 .9257 .9968 .8622 .9246 .0021 .0003 .0011
CHEMDNER + Flair .9982 .8836 .9374 .9885 .8852 .9340 .0097 -0.007 .0034
CHEMDNER + BERT .9913 .8768 .9306 .9680 .8762 .9198 .0233 -.0006 .0107

ASKDOC + Word .9739 .9330 .9530 .9739 .9330 .9530 .0000 .0000 .0000
ASKDOC + Flair .8833 .9523 .9164 .8278 .9519 .8852 .0555 .0005 .0312
ASKDOC + BERT .9394 .9288 .9340 .8967 .9282 .9121 .0427 .0006 .0220

Aggregate Measures

AVG .0204 -.0002 .0106

Table 4: Synthetic (Template) Data Results. The smallest bias score for each dataset is marked in blue and the
biggest is marked in red . The overall largest scores are in bold. The bottom section reports aggregate result
measures, specifically the average differences and the percent of the DATASET + MODEL combinations that are
biased against the female-related text.

Male Female Difference

Precision Recall F1 Precision Recall F1 Precision Recall F1

CDR + Word .8375 .5605 .6548 .8400 .5495 .6499 -.0025 .0110*** .0049
CDR + Flair .8320 .6557 .7285 .8293 .6256 .7081 .0026 .0302*** .0204***
CDR + BERT .8724 .6582 .7500 .8693 .6215 .7244 .0030 .0367*** .0256***

CHEMDNER + Word .8693 .5444 .6609 .8751 .5305 .6521 -.0058 .0139*** .0089***
CHEMDNER + Flair .8791 .6120 .7206 .8611 .5830 .6939 .0180** .0290** .0267***
CHEMDNER + BERT .7995 .5942 .6717 .7964 .5648 .6438 .0031 .0295** .0279***

Aggregate Measures

AVG -.0056 .0251 .0189

Table 5: AskDoc Results. The smallest bias score for each dataset is marked in blue and the biggest is marked
in red . The overall largest scores are in bold. The bottom section reports aggregate result measures, specifically
the average differences and the percent of the DATASET + MODEL combinations that are biased against the
female-related text. Statistically, significant differences based on the Wilcoxon Signed Rank test are marked with *
(p-value < .05), ** (p-value < .01), and *** (p-value < .001).

nificant difference in precision between male and552

female datasets for most models, suggesting that553

precision remains consistent regardless of gender.554

However, recall displays a consistent bias against555

the female group. Likewise, F1 scores indicate556

a bias against the female group, except for the557

Word Embedding model trained on the CDR cor-558

pus. In contrast, Table 4 mirrors the results from559

Table 5, but the biases observed are in precision560

and F1 scores rather than recall and F1 scores.561

Overall, we have several major findings. First,562

again, we find substantial female-related bias in563

the Chemcial NER system. Here, the bias is based564

on self-identified posts, not names. For instance,565

the CDR+BERT model has a recall for the Female566

posts nearly 4% lower (i.e., .0367) than the Male567

posts. However, what does this mean in real-world568

terms? Considering a sample of 1,000,000 chemi-569

cal mentions across male and female posts (a rela-570

tively small number in social media), a 4% recall 571

difference results in an additional 40,000 false neg- 572

atives for the female group. For example, there 573

are well-known health disparities between men and 574

women for depression, with absolute differences 575

of less than 3% (Salk et al., 2017). Hence, a 4% 576

recall difference can substantially impact findings 577

if applied researchers or practitioners use out-of- 578

domain models to understand medications for this 579

disease. Such a considerable gap can markedly 580

affect the utility and trustworthiness of these pre- 581

dictive outcomes in practical scenarios. 582

In summary, these results underline the necessity 583

to acknowledge potential gender bias in informa- 584

tion extraction tasks within biomedical applications. 585

The performance disparity across genders calls for 586

applying bias mitigation techniques to ensure equi- 587

table system performance. Further, the influences 588

of the chosen NLP model and training corpus on 589
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this bias underline the importance of careful model590

selection and data curation in creating unbiased591

NLP systems.592

Second, the models with the most bias on the593

synthetic data do not correlate with the findings594

on real data. For example, the models trained on595

CDR corpus have the largest bias on the synthetic596

data but have the smallest bias when evaluating real597

data. Likewise, the synthetic data suffered from598

precision bias, while much of the bias on real data599

is related to recall. These findings are important600

given the reliance on synthetic data in bias analysis601

papers. In comparison, synthetic data allows us602

to target specific types of biases, synthetic data603

alone does not provide an accurate estimate of604

bias in practice.605

Third, a pivotal question often raised is, “Does606

increasing model accuracy inherently lead to de-607

creased bias?” From our observations on the608

AskDoc and synthetic datasets, there is no direct609

correlation. Intriguingly, Word Embedding-based610

models, which were the least accurate among the611

models tested, exhibited the least bias. This un-612

derscores the idea that accuracy and fairness are613

both essential axes of model evaluation. Relying614

solely on improving accuracy will not automati-615

cally address bias or fairness concerns. Hence, the616

results suggest that performance disparities need617

to be directly addressed; simply developing more618

“accurate” models will not suffice. Finally, note619

that the biases can range higher than .0367. See the620

supplementary material for median, max, and min621

scores. Furthermore, it’s important to mention that622

these biases can exceed a measure of .0367. For623

more detailed results including median, maximum,624

and minimum scores, refer to the supplementary625

material.626

6 Conclusion627

In this paper, we evaluate the gender bias of Chem-628

ical NER systems. Moreover, we compare bias629

measurements from synthetic data with real-world630

self-identified data. We make two major findings.631

First, Chemical NER systems are biased with re-632

gard to gender for synthetic data. Specifically, our633

study found that female name-like patterns fea-634

ture prominently in chemical naming conven-635

tions. This characteristic leads to a notable bias636

in NER systems, where female-related names are637

disproportionately identified as chemicals, inadver-638

tently escalating the gender bias in these systems.639

����(UURU�5DWLR

&RQWUDFHSWLYHV
+RUPRQHV
$QDOJHVLFV
$QWLELRWLFV

$QWLKLVWDPLQHV
6WLPXODQWV

$QWLGHSUHVVDQWV
0LQHUDOV
2SLRLGV

2UJDQLF�&KHPLFDO
,OOLFLW�GUXJ
9DFFLQH

6WRPDFK�'UXJ
$QWLSV\FKRWLFV

$Q[LRO\WLFV
6H[XDO�)XQFWLRQ�

��� �� � � �� ��

) 0

Figure 1: Ratio of false negatives for various drug cat-
egories. The ratio is represented next to each bar. For
female-leaning errors, the female false negative count
(FNk

f ) is in the numerator. For male-leaning errors, the
male false negative count (FNk

m) is in the numerator.

Furthermore, we explored the performance of 640

these models in real-world scenarios and found that 641

most models perform better on male-related data 642

than female-related data. A striking revelation 643

was the system’s poor performance when iden- 644

tifying chemicals frequently found in female- 645

related data, such as mentions of contraceptives. 646

This result further compounds the concern of bias, 647

bringing attention to the potential real-world impli- 648

cations of such inaccuracies. 649

Additionally, our analysis exposed the limita- 650

tions of synthetic data in estimating gender bias. 651

While synthetic data serves as a useful tool for 652

identifying specific types of biases, it fails to pro- 653

vide a comprehensive reflection of the bias in 654

real-world applications. This discovery under- 655

scores the need for real-world bias analyses along- 656

side synthetic data investigations. 657

Our study also drew attention to the non- 658

correlation between model accuracy and bias. We 659

discovered that the least accurate models, based 660

on Word Embeddings, exhibited the least bias. 661

This finding reiterates that enhancing model ac- 662

curacy alone will not suffice in addressing these 663

biases; instead, it is necessary to explicitly tackle 664

the disparities in performance. 665

In conclusion, the results of our study empha- 666

sise the urgent need for deliberate bias mitigation 667

strategies in Chemical NER systems. Our findings 668

spotlight the necessity for incorporating both syn- 669

thetic and real-world data considerations to develop 670

models that are both fair and reliable. 671
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A Appendix 991

A.1 Error Analysis and Discussion 992

Our experiments show that Chemical NER sys- 993

tems are biased. However, what specifically is 994

causing the errors? For the synthetic data, the an- 995

swer is gender-related names. To understand the 996

errors in the AskDoc data, we analyzed the errors 997

made by the best NER models trained on the out- 998

of-domain corpus (CHEMDNER and CDR) and 999

tested the male and female splits of the AskDocs 1000

corpus. In Figure 1, we report the ratio of false neg- 1001

atives for different categories of drugs/chemicals. 1002

Specifically, for every false negative made by the 1003

top models of each dataset-model combination, we 1004

manually categorized them into a general chemical 1005

class (e.g., Contraceptives, Analgesics/Pain Killers, 1006
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and Stimulants). Formally, let FNk
m represent the1007

total number of false negatives for chemical types1008

k and male data m. Let FNk
f represent the female1009

false negatives. If FNk
m is larger than FNk

f , we1010

define the ratio as −(1− FNk
m/FNk

f ). Likewise,1011

if FNk
f is greater than FNm, then we define the1012

ratio as 1− (FNk
f /FNk

m). Hence, when male ra-1013

tios are higher, the score is negative; otherwise, it1014

is positive.1015

Overall, we make several important findings.1016

First, we find that the models make slightly more1017

false negatives on the chemicals categories Contra-1018

ceptives (e.g., birth control and Plan B One-Step),1019

Hormones (e.g., Megace used to treat the symp-1020

toms of loss of appetite and wasting syndrome in1021

people with illnesses such as breast cancer), Anal-1022

gesics (i.e., Pain Killers such as Tylenol) and An-1023

tibiotics on the female dataset. In contrast, the1024

models make slightly more errors in the chemical1025

categories Anxiolytics (e.g., drugs used to treat1026

anxiety), Antipsychotics (e.g., chemicals used to1027

manage psychosis, principally in schizophrenia),1028

and sexual function drugs (e.g., Viagra). Further-1029

more, while the ratio for the most male- and female-1030

related errors (Contraceptives and Sexual Function)1031

are similar, the absolute magnitudes are substan-1032

tially different. For instance, there are 397 Con-1033

traceptive FNs in the female dataset, but only 751034

Sexual Function FNs appear in the male dataset.1035

This provides an explanation for the large differ-1036

ences in recall on the AskDoc corpus between the1037

male and female datasets.1038

Interestingly, we find that the prevalence of1039

chemicals across gender-related posts matches the1040

prevalence found in traditional biomedical studies.1041

Previous research report that women have been1042

prescribed analgesics (e.g., pain killers such as opi-1043

oids) twice as often as men (Chilet-Rosell, 2014;1044

Serdarevic et al., 2017). While there is still lim-1045

ited understanding about whether men are under-1046

prescribed or women are over-prescribed, the dis-1047

parities in prescriptions are evident. Thus, the find-1048

ing in Figure 1 that we receive twice as many anal-1049

gesics FNs for female data is important. Depend-1050

ing on the downstream application of the Chemical1051

NER system, these performance disparities may1052

potentially increase harm to women. For exam-1053

ple, if more varieties of drugs are prescribed to1054

women, but our system does not detect them, then1055

an ADR detection system will not be able to detect1056

important harms.1057

We also find differences in Antibiotic FNs in 1058

Figure 1. There have also been medical studies 1059

showing gender differences in Antibiotic prescrip- 1060

tions. For example, a recent meta-analysis of pri- 1061

mary care found that women received more an- 1062

tibiotics than men, especially women aged 16–54, 1063

receiving 36%–40% more than males of the same 1064

age (Smith et al., 2018). Again, if we do not de- 1065

tect many of the antibiotics prescribed to women, 1066

this can cause potential health disparities in down- 1067

stream ADR (and other) systems. 1068

Next, in Table 6, we report the false negative 1069

rate (FNR) for each category along with the gen- 1070

eral frequency of each category. Using the Pearson 1071

correlation coefficient, we relate the frequency of 1072

each category with the false negative rate for the 1073

male and female groups, respectively. Intuitively, 1074

we would expect the false negative rate to go down 1075

as the frequency increases, which matches our find- 1076

ings. However, we find that the correlation is much 1077

stronger for the male group than the female group. 1078

In Table 7, we report the FNR for the female and 1079

male groups, respectively. We also introduce a new 1080

metric, weighted FNR, which assigns importance 1081

scores for each of the FNRs shown in to create a 1082

macro-averaged metric. Intuitively, the distribution 1083

of categories is different for both the male and 1084

female groups. So, we want to test whether the 1085

FNR scores are distributed uniformly across all 1086

categories, irrespective of, or if the errors are more 1087

concentrated for gender-specific categories. More 1088

errors in gender-specific categories can adversely 1089

impact a group that is not captured with the global 1090

FNR metric. Formally, we define wFNR for the 1091

female group as 1092

wFNRf =
N∑
i

wf
i FNRf

i 1093

where FNRf
i represents the female false negative 1094

rate for category i. Likewise, wf
i is defined as 1095

wf
i =

1∑
iw

f
i

·
Nf

i /N
f

Nm
i /Nm

1096

where Nf
i and Nm

f represent the total number of 1097

times a category i appears for the female and male 1098

groups, respectively. Intuitively, we are diving the 1099

ratio of each category for female and male groups. 1100

So, if a category appears more often for females 1101

than males, proportionally, then the score will be 1102

12



Total Male FNR Male Total Female FNR Female

Contraceptives 33 1.0000 408 .9730
Hormones 170 .0882 230 .1565
Analgesics 571 .1489 952 .2048
Antibiotics 326 .2454 347 .4438
Antihistamines 270 .5593 295 .6780
Stimulants 522 .3065 390 .5051
Antidepressants 781 .4110 1043 .3365
Minerals 605 .3983 785 .3312
Opioids 43 .5814 95 .2316
Organic Chemical 441 .3764 346 .3902
Illicit drug 353 .5666 311 .5048
Vaccine 108 1.0000 78 1.0000
Stomach Drug 55 .5455 44 .4545
Antipsychotics 47 .6170 95 .1368
Anxiolytics 126 .5603 100 .2300
Sexual Function Drug 78 .9615 8 1.0000

PCC between Total and FNR -.58 -.26

Table 6: False negatives rate (FNR) for female and male-related AskDoc datasets. The pearson correlation coefficient
(PCC) between the frequency of each chemical type and the FNR for teach group is marked in the last row.

FNR wFNR

Male .3948 .6875
Female .4064 .8088

Gap .0116 .1213
Ratio 1.0294 1.1764

Table 7: FNR and weighted FNR (wFNR) results.

higher. We normalize these scores for each group1103

so they sum to one. Overall, we find an absolute1104

gap of more than 1% (3% relative difference) be-1105

tween the FNR for male and female groups. But,1106

even worse, there is a much larger gap (.1213 vs1107

.0116) when using wFNR. This result suggests that1108

many of the false negatives are concentrated for1109

gender-specific categories (e.g., contraceptives) for1110

the female group more than the male group.1111

A.2 Limitation1112

There were several limitations to our study. First,1113

the adjudication of disagreeing items was depen-1114

dent on the judgment of a single graduate student,1115

potentially introducing human error and bias com-1116

pared to a multi-adjudicator approach. Second, the1117

vast volume of data from the active r/AskDoc sub-1118

reddit community makes the feasibility of one per-1119

son’s comprehensive review debatable. Although1120

our annotation method is in line with standard prac-1121

tices, a more multi-faceted approach involving nu- 1122

merous annotators and adjudicators might offer im- 1123

proved accuracy and consistency in future datasets. 1124
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