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Abstract
Large language models (LLMs) have demon-001
strated impressive performance in various nat-002
ural language processing tasks when given ap-003
propriate input prompts without requiring fine-004
tuning on specific training data. However, their005
application in next-item recommendation re-006
mains unexplored due to the vast, task-specific007
recommendation space and unfamiliarity with008
user preferences. To address these issues, this009
paper introduces the Zero-Shot Next-Item010
Recommendation (NIR) strategy, using an ex-011
ternal module for candidate item generation012
and a 3-step prompting method for capturing013
user preferences and making ranked recommen-014
dations. Evaluations on MovieLens 100K and015
LastFM datasets using GPT-3.5 reveal that the016
proposed NIR competes well with strong se-017
quential recommendation models, opening up018
new interesting research opportunities to lever-019
age LLMs as recommender systems.020

1 Introduction021

Large language models (LLMs) (Brown et al.,022

2020; Zhang et al., 2022; Chowdhery et al., 2022),023

such as GPT-3 (Brown et al., 2020), have demon-024

strated impressive results in various natural lan-025

guage processing (NLP) tasks. Nevertheless,026

LLMs are usually very large and only accessible027

only via some API services. Hence, they cannot028

be fine-tuned like the earlier pre-trained language029

models (PTMs) (Devlin et al., 2018; Radford et al.,030

2019). Many works have also demonstrated that031

LLMs are capable of solving many known NLP032

problems through task-specific prompts under the033

zero-shot setting, i.e., without any examples or fur-034

ther fine-tuning (Brown et al., 2020; Chowdhery035

et al., 2022). Nevertheless, using LLMs to perform036

next-item recommendations is still a relatively new037

research topic which awaits investigation.038

Unlike NLP tasks that rely on the inherent tex-039

tual knowledge of LLMs, recommendation tasks re-040

quire LLMs to utilize a user’s past item interactions041

to make item recommendations. Direct methods, 042

such as the Simple Prompting method in Section 3, 043

yield poor recommendations (Zhang et al., 2021). 044

Moreover, LLMs struggle to contribute to recom- 045

mendations without prior knowledge of the items. 046

In this research, we assume that recommended 047

items should be included in the pre-training data of 048

LLMs (e.g., reviews, Wikipedia pages, etc.). Ex- 049

amples of such items include movies, artists, songs, 050

etc.. For illustration and evaluation, we focus on 051

movie and artist recommendations using GPT-3.5. 052

In this paper, we introduce an approach for next- 053

item recommendation called Next-Item Recom- 054

mendation (NIR) prompting. It first limits the rec- 055

ommendation space for a user to items within a 056

candidate item set by using user or item filtering 057

techniques. Secondly, the NIR recommends items 058

using a 3-step prompting method: (i) capturing 059

user preferences (Step 1), (ii) selecting represen- 060

tative items from the user’s interacted items (Step 061

2), and (iii) recommending a ranked list of items 062

(Step 3). Finally, we use a formatting technique in 063

Step 3 to ensure easier extraction of recommended 064

items. Our experiments on MovieLens 100K and 065

LastFM 2k with GPT-3.5 (text-davinci-003) in- 066

dicate that NIR prompting is competitive compared 067

to strong supervised learning baselines. Related 068

work is detailed in Appendix Section A. 069

2 Zero-Shot NIR Prompting Strategy 070

This section presents our proposed zero-shot NIR 071

prompting strategy. As shown in Figure 1, the 072

proposed method has three main components: 073

Candidate set construction: This component 074

performs user-filtering or item-filtering to create 075

a candidate item set for the target user using the 076

training data, which effectively narrows down the 077

recommendation space. These candidate items are 078

then used in the three-step prompting. 079

Three-step prompting: This component in- 080
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Figure 1: Zero-Shot NIR prompts. The ground truth movie in this example is The Rock

volves three instruction prompts corresponding to081

three subtasks. In the first subtask (user preference082

subtask), we design a user preference prompt (Step083

1 prompt) to summarize the target user’s prefer-084

ences based on the previously interacted items. In085

the second subtask (representative items subtask),086

we then define the Step 2 prompt to combine the087

user preference prompt and its answer to request088

GPT-3.5 to list representative items based on user089

preference. In the third subtask (item recommenda-090

tion subtask), we direct GPT-3.5 to recommend k091

items similar to the representative ones.092

Answer extraction: This component extracts093

the recommended items from the textual results of094

the three-step GPT-3.5 prompting using a simple095

extraction rule.096

2.1 Candidate Set Construction097

In Section 1, we highlight the challenge of large098

recommendation spaces for LLM-based recommen-099

dation. Handling the vast number of recommen-100

dations is complex, and not all items can be fed101

to the LLM. For instance, 1,683 movies from the102

MovieLens 100K are too large to be fed into a103

prompt. Thus, in our approach, we build a candi-104

date item set for the user based on the relevance to105

the user. Specifically, we employ user filtering and106

item filtering to determine candidate items.107

User-Filtering. This principle assumes that108

the candidate items should also be liked by other109

users similar to the target user. Hence, we first110

represent every user by a multi-hot vector of their111

watched items. Users similar to the target user are112

then derived by cosine similarity between the target113

user’s vector and vectors of other users. Next, we114

select the m most similar users and the candidate115

item set of size ns is constructed by selecting the116

most popular items among the interacted items by 117

the similar users. 118

Item-Filtering. Similar to user filtering, we rep- 119

resent each item by a multi-hot vector based on its 120

interacted users. Using cosine similarity between 121

two items, we select the nm most similar items for 122

each item in the target user’s interaction history. 123

We then generate a candidate item set of size ns 124

based on the “popularity” of these similar items 125

among items in the target user’s interaction history. 126

The constructed candidate item set is then incor- 127

porated into the prompts for recommendation using 128

the sentence: “Candidate Set (candidate tt items):” 129

as shown in Figure 1. Following the candidate set, 130

the prompts also include the list of target user’s 131

previously interacted items. 132

2.2 Three-Step Prompting 133

Step 1: User Preference Prompting. To cap- 134

ture the user’s preferences, we include the sentence 135

“Step 1: What features are most important to me 136

when selecting items (summarize my preferences 137

briefly)?” into the first prompt. As shown in Fig- 138

ure 1, the answer returned by GPT-3.5 summarizes 139

the target user preference (highlighted in yellow). 140

Step 2: Representative Item Selection Prompt- 141

ing. As the second step, this prompt includes the 142

previous prompt text appended with the answer of 143

Step 1, including the instruction: “Step 2: You will 144

select the items ... that appeal to me the most ... 145

presented in descending order of preference (...)” 146

to determine the previously interacted items that 147

best reflect the target user’s preferences. Figure 1 148

shows the GPT-3.5’s answers highlighted in purple. 149

Step 3: Recommendation Prompting. Again, this 150

prompt includes the previous text appended with 151

the answers of Step 2, including the instruction 152
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Method
MovieLens 100K LastFM 2K

HR NDCG HR NDCG

POP 0.0519 0.0216 0.0755 0.0458
FPMC 0.1018 0.0463 0.0872 0.0449
GRU4Rec 0.1230 0.0559 0.0890 0.0480
SASRec 0.1241 0.0573 0.1101 0.0539

Simple Prompting 0.0297 0.0097 0.1032 0.0410
CS-Random-IF 0.0805 0.0352 0.0851 0.0440
CS-Random-UF 0.0954 0.0457 0.0869 0.0378
NIR-Single-IF 0.0975 0.0501 0.1198 0.0624
NIR-Single-UF 0.1135 0.0529 0.1140 0.0621
NIR-Multi-IF 0.1028 0.0505 0.1013 0.0512
NIR-Multi-UF 0.1187 0.0546 0.0936 0.0492

Table 1: HR@10 (HR) and NDCG@10 (NDCG) on the
test sets of MovieLens 100K and LastFM. (Best results
in each group of methods are boldfaced.

“Step 3: Can you recommend 10 items from the153

Candidate Set similar to ...”. This prompt explic-154

itly instructs GPT-3.5 to generate 10 recommended155

items from the candidate set as highlighted in blue.156

3 Experiments and Results157

3.1 Experiment Setup.158

We empirically investigate the performance of the159

zero-shot NIR strategy against fully trained and160

zero-shot baselines using the MovieLens 100K161

dataset (Harper and Konstan, 2015) (943 users and162

1,682 movies) and Last.FM 2k dataset (Cantador163

et al., 2011) (1,892 users and 17,632 artists) for164

movie and artist recommendations, respectively.165

We evaluate our proposed NIR-based meth-166

ods including: (i) Zero-Shot NIR-Single-IF/NIR-167

Single-UF (that combines the 3 steps into a single168

prompt leaving out the intermediate answers, and169

prompts GPT-3.5 only once to generate n recom-170

mended items from IF/UF-based candidate set.);171

(ii) Zero-Shot NIR-Multi-IF/NIR-Multi-UF (that172

uses three separate prompts to guide GPT-3.5 step-173

by-step and incorporates intermediate answers to174

the subsequent prompts with the IF/UF-based can-175

didate set.). NIR-Single can save some prompting176

cost compared with NIR-Multi.177

The strong next-item recommendation baselines178

to be compared include: (i) POP (that recom-179

mends most popular items), (ii) FPMC (Rendle180

et al., 2010) (that combines matrix factorization181

and Markov chains), (iii) GRU4Rec (Hidasi et al.,182

2015) (a GRU-based sequential recommendation183

model), and SASRec (Kang and McAuley, 2018)184

(a sequential recommendation model based on self-185

attention). As FPMC and GRU4Rec are fully186

trained models, they are expected to outperform187

CSet UPref RItem ML100K LastFM2K Average

– – – 0.0297 0.1032 0.0664
✓ – – 0.1019 0.1093 0.1056
✓ ✓ – 0.1081 0.1112 0.1096
✓ – ✓ 0.1060 0.1102 0.1081
✓ ✓ ✓ 0.1135 0.1140 0.1137

Table 2: Ablation study of the impact of Candidate
Set (CSet), User Preference (UPref), and Represen-
tative Items (RItem) in the proposed NIR-Single-UF
prompting on MovieLens100K (ML100K) and LastFM
datasets. HR@10 is adopted for this evaluation.

zero-shot methods. The zero-shot baseline meth- 188

ods to be compared include: (i) Simple Prompt- 189

ing (that prompts LLMs to recommend n items di- 190

rectly), (ii) CS-Random-IF (that randomly selects 191

n items from the item filtering-based candidate set), 192

and (iii) CS-Random-UF (that randomly selects n 193

items from the UF-based candidate set). 194

We utilize the GPT-3.5 text-davinci-003 195

(175B) with public APIs1, setting the temperature 196

to 0 for consistent results. For ∗-UF’s, default val- 197

ues are: most similar users (m) as 12, and candidate 198

items (ns) as 19. For ∗-IF’s, we use: most similar 199

items (nm) as 10 and candidate items (ns) as 19. 200

We apply a leave-one-out strategy for performance 201

measurement: the last item in each user sequence is 202

test data, the penultimate is validation, and others 203

form the training set. Evaluation metrics include 204

Hit Ratio (HR) at 10 and Normalized Discounted 205

Cumulative Gain (NDCG) at 10, following SAS- 206

Rec (Kang and McAuley, 2018). 207

3.2 Experiment Results 208

Main results. Table 1 reveals that our zero- 209

shot NIR-based methods significantly surpass POP. 210

Notably, Zero-Shot NIR-Single-UF, NIR-Multi- 211

IF, and NIR-Multi-UF even outperform the fully 212

trained FPMC. Although the three Zero-Shot NIR- 213

based methods perform slightly worse than the 214

strong sequential recommendation model SASRec, 215

they still compete strongly with SASRec. Among 216

zero-shot methods, CS-Random-UF(IF) surpasses 217

Simple Prompting, demonstrating that candidate 218

sets enhance recommendation performance. Our 219

NIR-based prompts outperform Simple Prompt- 220

ing and CS-Random-IF/UF, indicating that com- 221

bining user preferences and other strategies en- 222

rich LLM recommendations. Additionally, Multi- 223

IF(UF) excels over Single-IF(UF) on MovieLens 224

100K, but not LastFM 2K. Simple prompting leads 225

1https://beta.openai.com/docs/models/gpt-3
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Figure 2: HR@10 of Full-Trained SASRec, FPMC and
NIR-Single-UF prompting with varying number of can-
didate movies ns on MovieLens 100K.

Figure 3: HR@10 of NIR-Single-UF prompting using
backbone LLMs with different sizes. 0.3B: GPT-3 ada,
1.3B: GPT-3 babbage, 6.7B: GPT-3 curie, 175B: GPT-
3 davinci, X: Instruct GPT-3 text-davince-001,
XL: Instruct GPT-3 text-davinci-002, 003: GPT-3.5
text-davinci-003.

in HR@10 on LastFM but lags in NDCG@10. UF-226

based NIR prompts generally perform better than227

IF-based ones, though IF-based methods are better228

in a zero-shot setting on LastFM 2K.229

Effects of NIR Prompt Components. Our pro-230

posed methods, NIR-Single-UF/IF and NIR-Multi-231

UF/IF, involve candidate set construction and a232

three-step prompting process. We evaluate the ef-233

fectiveness of these components on MovieLens234

100K and LastFM 2K datasets with HR@10. Re-235

sults (Table 2) reveal that each step enhances236

recommendation accuracy. The Simple Prompt-237

ing method, which employs a candidate set, per-238

formed better than the one without it on average239

(HR@10=0.1056 vs. HR@10=0.0664), highlight-240

ing the importance of the candidate set. Our find-241

ings show that integrating candidate sets and spe-242

cific prompting steps improve performance, sug-243

gesting that a narrowed recommendation space and244

clear guidelines improve GPT-3.5’s output.245

Impact of Candidate Set Size ns. In this study,246

we examine how the candidate set size affects the247

performance of NIR-based methods on the Movie- 248

Lens 100K dataset. We tested the NIR-Single-UF 249

method with candidate set sizes ranging from 17 250

to 21. The results, depicted in Figure 2, show 251

that an optimal candidate set size is around 20; 252

both smaller and larger sizes diminish performance, 253

though it remains between the levels of SASRec 254

and FPMC. Similar results were seen with the 255

LastFM dataset. Moreover, we observe the ora- 256

cle’s performance continues to improve with larger 257

candidate set (ns = 21). Nevertheless, NIR-Single- 258

UF could not exploit this for performance improve- 259

ment. Furthermore, while an oracle model, which 260

returns the true item when present in the candidate 261

set, improves its performance with a larger candi- 262

date set, NIR-Single-UF does not. This indicates 263

potential for further enhancements in the zero-shot 264

NIR approach. We thus believe there are ample 265

room for the zero-shot NIR approach to further 266

improve. 267

Impact of Backbone LLMs. In this study, we 268

investigate the impact of LLM model size and ca- 269

pability on NIR-based prompting methods for rec- 270

ommendations using various models, such as dif- 271

ferent versions of GPT-3.5, accessed via OpenAI 272

API on MovieLens 100K. Figure 3 ranks these 273

models by capability, from GPT-3 ada (lowest) 274

to ChatGPT (highest). Testing on a subset of 275

200 examples from the MovieLens 100K dataset 276

shows an improvement in performance from ada to 277

text-davinci-003. However, ChatGPT underper- 278

forms text-davinci-003, possibly due to Chat- 279

GPT’s flexible generation nature. These results 280

indicate that more capable LLMs typically yield 281

better recommendation results. 282

4 Conclusion 283

In this paper, we propose a three-step prompt- 284

ing strategy called Next-Item Recommendation 285

(NIR) for LLM to make next-item recommenda- 286

tion for user-item interaction sequences. We eval- 287

uate our approach using GPT-3.5 as the LLM on 288

both Movielen 100K and LastFM 2K datasets, and 289

obtain promising accuracy. Our results show the 290

potential of using LLMs in zero-shot recommenda- 291

tion and call for further exploration of using LLMs 292

in recommendation tasks. This work can be ex- 293

tended in several directions, including the few-shot 294

approach (instead of zero-shot), choice of LLMs, 295

recommendation of proprietary items, and explain- 296

able LLM-based recommendations. 297
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5 Limitations298

Our proposed prompting method partially relies on299

handcrafted prompts when writing the prompting300

questions. However, handcrafted prompts are usu-301

ally based on the personal knowledge and experi-302

ence of the exports, which can introduce subjective303

biases.304
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A Related Works 482

A.1 Supervised Learning-based 483

Recommender Systems 484

Next-item recommendation is an important and 485

well studied research problem. Early research 486

works proposed Markov Chains to model low-order 487

relationships between items for next-item recom- 488

mendation (Rendle et al., 2010; He and McAuley, 489

2016). With the advancement of neural models, 490

deep neural networks (Hidasi et al., 2015; Tang 491

and Wang, 2018; Kang and McAuley, 2018; Huang 492

et al., 2018; Wang et al., 2020; Sun et al., 2019; 493

Chang et al., 2021) have been applied to the model- 494

ing of sequential patterns which leads to improved 495

recommendation accuracy. Recent research has 496

also explored the use of data augmentation and 497

contrastive learning to enhance the representations 498

of users and items, thereby making further improve- 499

ment to recommendation performance (Zhou et al., 500

2020; Xie et al., 2020; Liu et al., 2021; Yao et al., 501

2021; Wu et al., 2021). Nevertheless, all the above 502

works require model training using users’ historical 503

item-interactions. In other words, they are not suit- 504

able for zero- or few-shot setting. To the best of our 505

knowledge, there has been very little research on 506

zero- and few-shot recommendation. While LLMs 507

are known to be good zero/few-shot NLP problem 508

solvers, there has been very few works that attempt 509

to use LLMs as recommenders. 510

A.2 LLM-based Recommender Systems 511

Among the early efforts in LM-based recommen- 512

dation (Li et al., 2022; Zhang et al., 2021; Sileo 513
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et al., 2022; Cui et al., 2022; Geng et al., 2022;514

Wu et al., 2022), Zhang et al. (2021) proposed to515

use GPT-2 (Radford et al., 2019) or BERT (De-516

vlin et al., 2018) as the backbone recommender,517

making the next-movie prediction based on five518

previously watched movies by the target user. How-519

ever, the huge recommendation space and inade-520

quate user preference modeling make the LLMs521

perform poorly. With newer LLMs such as GPT-522

3 (Brown et al., 2020), OPT (Zhang et al., 2022),523

and PaLM (Chowdhery et al., 2022) which have524

shown significantly improved results in various525

NLP tasks, our work chooses GPT-3 to be the LLM526

for developing more effective zero/few-shot recom-527

mendation methods.528

LLM-based recommender systems can be cat-529

egorized into (a) LLM-augmented recommender530

systems (Gao et al., 2023; Xi et al., 2023), and531

(b) LLM-only recommender systems (Hou et al.,532

2023; Dai et al., 2023; Bao et al., 2023; Zhang533

et al., 2023). KAR (Xi et al., 2023) leverages LLMs534

for open-world knowledge and improving recom-535

mendation accuracy and versatility. Chat-REC is536

a LLM-based recommender system with conver-537

sational chat interface (Gao et al., 2023). It aug-538

ments a supervised learning recommender system539

by selecting a smaller set of candidate items from540

the latter and reranking them for the target user.541

Chat-REC also provides explanation to the recom-542

mended items. Hence, Chat-REC still requires fully543

supervised learning which could incur significant544

overhead. For LLM-only recommender systems,545

Dai et al. (2023) conduct an empirical analysis on546

ChatGPT’s recommendation abilities in three rank-547

ing policies. Hou et al. (2023) explore LLMs (e.g.,548

GPT-4) as ranking models in recommender sys-549

tems, revealing promising zero-shot abilities but550

position biases. Instead of designing the prompting551

strategy from scratch, our proposed NIR prompt-552

ing strategy incorporates user-filtering and item-553

filtering to derive a candidate item set. This way,554

it mimics well-known recommendation techniques555

and leverages its item knowledge and reasoning ca-556

pability to deliver more accurate recommendation557

results.558
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