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Abstract

The effectiveness of LLMs remains uncertain001
in scenarios where pre-trained models have lim-002
ited prior knowledge of a language. In this003
work, we examine LLMs’ generalization in004
under-resourced settings through the task of005
orthographic normalization across Otomi lan-006
guage variants. We develop two approaches:007
a rule-based method using a finite-state trans-008
ducer (FST) and an in-context learning (ICL)009
method that provides the model with string010
transduction examples. We compare the per-011
formance of FSTs and the neural approach in012
low-resource scenarios, providing insights into013
their potential and limitations. Our results show014
that while FSTs outperform LLMs in zero-shot015
settings, ICL enables LLMs to surpass FSTs,016
stressing the importance of combining linguis-017
tic expertise with machine learning in current018
approaches for low-resource scenarios.1019

1 Introduction020

Large Language Models (LLMs) have been widely021

adopted to tackle many traditional NLP tasks. Part022

of their success is attributed to their extensive pre-023

training, which enables them to generalize well024

across different domains and diverse linguistic025

structures. The rapid advancement of the field has026

led to techniques like in-context learning (ICL),027

which have further showcased the impressive gen-028

eralization capabilities of LLMs, allowing them029

to adapt to new tasks and domains with minimal030

training data, often requiring only a few examples.031

However, the effectiveness of these approaches032

remains uncertain in scenarios where pretrained033

models have limited prior knowledge of a language.034

This is particularly relevant for under-resourced035

languages, where training data is scarce or highly036

non-homogeneous. The performance of LLMs in037

these situations is not yet well understood, and it is038

1The code and data will be available at

Figure 1: Geographical distribution of Otomi

unclear whether their impressive generalization ca- 039

pabilities can be replicated in all type of scenarios. 040

This raises critical questions about the extent to 041

which in-context learning and other recent innova- 042

tions can bridge the gap in multilingual coverage. 043

In this work, we examine LLMs’ generalization 044

in under-resourced settings through the task of or- 045

thographic normalization across Otomi language 046

variants. We develop two approaches: a rule-based 047

method using a finite-state transducer (FST) and an 048

in-context learning (ICL) approach that provides 049

the model with string transduction examples. We 050

focus on the scenarios that are particularly difficult 051

for a transducer-based approach. 052

2 Background 053

In-context learning. A paradigm where language 054

models learn to perform tasks by recognizing pat- 055

terns from a few provided examples (demonstra- 056

tions). Unlike supervised learning, which requires 057

explicit parameter updates or a separate training 058

stage. ICL enables models to make predictions by 059

drawing analogies from the given context (Brown 060

et al., 2020). 061

Although the mechanisms that underlie and influ- 062

ence this type of learning are not fully understood 063

(Dong et al., 2024), it has proved successful in 064

several domains. ICL techniques can be exploited 065
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in domains with minimal training data, requiring066

only a few examples. For example, multilingual067

tasks involving under-resourced languages sucha as068

machine translation and interlinear glossing (Cole-069

man et al., 2024; Clarke et al., 2024; Aycock et al.,070

2025).071

Therefore, ICL can be considered a form of gen-072

eralization, but it has nuances compared to tradi-073

tional ML.074

Orthographic normalization of Otomi. Or-075

thographic normalization is the process of convert-076

ing written text into a standardized form within077

a language. For many dominant languages with078

long-established writing conventions, this task is079

either well-solved or of limited concern. However,080

for numerous other languages, particularly those081

lacking a long tradition of standardization due to082

sociopolitical factors, normalization remains a sig-083

nificant challenge. These languages often exhibit084

high internal diversity, making the task even more085

complex.086

Otomi is a group of languages spoken in central087

Mexico (Fig. 1) that are part of the Oto-Manguean088

language family. They exhibit around nine dialectal089

variants (Lewis, 2009; INALI, 2008). This is an090

endangered language (round 300,000 speakers) that091

faces a scarcity of NLP tools and digital resources,092

plus there are several orthographic standards that093

speakers can use when writing their language.094

Automatically converting text across the differ-095

ent standards is a crucial upstream task for develop-096

ing more advanced language technologies. To our097

knowledge, no normalizers exist for Otomi. How-098

ever, in low-resource settings, common approaches099

include building FSTs based on linguistic expertise100

(Johny et al., 2021; O’neil et al., 2023) and apply-101

ing neural models like seq2seq (Lusetti et al., 2018;102

Lutgen et al., 2025).103

3 Data and Methods104

3.1 Orthographic norms105

Documents written in Otomi exhibit variability,106

with multiple orthographic standards in use. This107

study focuses on the most common norms (Table108

1).109

Rule-based normalizer. We developed finite-110

state transducers (FST)2 to convert text between111

different Otomi orthographic standards (norms), us-112

ing a two-step process: first, mapping source text113

to a phonetic alphabet (IPA), and then generating114

2The tool will be available as an open source normalizer

Norm Description Ref
INALI Norm designed by the Na-

tional Institute of Indige-
nous Laguages of Mexico

(Inali, 2014)

OTS Standard used in some
texts from variants in the
State of Mexico

(De la Vega, 2017)

OTQ Standard proposed mainly
for Querétaro variants.

(Hekking and de Jesús, 1989)

Norm Example sentence
INALI [...]bijúgígó escuela pero ndichichithóhó
OTQ [...]bijúgígó escuela pero nditxitxithóhó
OTS [...]bikjúgígó escuela pero ndichichitjójó

Table 1: Otomi orthographic standards

the target orthography. The transduction rules were 115

informed by a linguist’s expertise and existing doc- 116

umentation (Hernández-Green, 2016). The system 117

was implemented using the HFST toolkit3. The 118

FST converts text across standards without requir- 119

ing a specified source norm. 120

Neural approaches If we already have linguis- 121

tic rules for converting text across orthographic 122

norms, costly neural network-based methods may 123

be unnecessary. However, transducers have limita- 124

tions, as they lack flexibility and struggle to adapt 125

to speakers’ linguistic realities. We identify two 126

key challenges where this approach falls short: 127

• Code-switching: Texts often include words 128

from other languages, mainly Spanish and 129

Nahuatl (e.g., escuela and pero in Table 1). 130

Since FSTs apply rules that were specific for 131

otomi, handling these cases is challenging. 132

Additionally, language identification tools for 133

many indigenous languages are limited. 134

• Ambiguity: Instances where the same input can 135

be mapped to multiple outputs. A transduc- 136

tion rule may be favored over others, sometimes 137

leading to incorrect mappings. In Otomi, we 138

observed that the same grapheme can be tran- 139

scribed to different phonemes based on the or- 140

thographic norm of the source text. This phono- 141

logical ambiguity can lead to errors, which can 142

propagate to the target norm realization. 143

With these challenges in mind, we tried to lever- 144

age the generalization and adaptability of neural 145

approaches to tackle these complex cases. Specifi- 146

cally, we focus on using LLMs with ICL. 147

3.2 Few shot examples and test set 148

To compare FSTs and neural approaches, we 149

built two test datasets: (a) OTS→INALI : OTS as 150

3https://github.com/hfst/hfst/wiki
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OTS→INALI OTS+OTQ→INALI
# sentences (test) 191 191
# sentences (few-shot) 10 10

Table 2: Datasets size for each normalization setting

the source norm and INALI as the target, and (b)151

OTS+OTQ→INALI : sentences in OTS or OTQ with152

INALI as the target4.153

These sentences5 were selected in all cases to154

ensure coverage of code-switching, ambiguity phe-155

nomena, and the typical transformations across the156

written standards. The initial transduction for ob-157

taining the different normalizations of the test sen-158

tences was performed using FSTs, followed by159

manual correction of errors. The target norm is al-160

ways INALI . We made this decision as it represents161

an institutional effort to unify standards; convert-162

ing text to this standard is a typical case of use for163

speakers of this language.164

Additionally, for each case, we manually se-165

lected 10 representative sentences to use as demon-166

strations for an ICL approach (Table 2).167

3.3 LLMs168

For the ICL neural approaches, we used the follow-169

ing base models: GPT-3.5 Turbo, GPT-4o, LLaMA170

3.1, and LLaMA 3.3.171

Zero-shot setting: We prompt the system to172

generate normalized test sentences without prior173

examples. For OTS→INALI , we explicitly specify174

the source and target norms. For OTS+OTQ→INALI ,175

we do not specify the source norm, only that input176

sentences may come from either norm and should177

be transduced into INALI .178

Few-shot setting: We provide models with 10-179

shot examples of orthographic transductions. For180

OTS→INALI we show 10 examples and specify that181

test sentences are in OTS , requiring INALI ortho-182

graphic normalization. For OTS+OTQ→INALI , ex-183

amples include transductions across INALI , OTS ,184

and OTQ . During testing, the source norm is un-185

specified (either OTS or OTQ ), and the model must186

generate the INALI normalization.187

In all settings, we state the language and alert the188

system that there might be cases of code-switching189

and challenging transductions. See Appendix A for190

example prompts and details about the models.191

4We omitted the OTQ→INALI case since both standards
are similar. Instead, we created a more challenging setup

5Our dataset is built from a small online Otomi corpus
that gathers different sources and varieties https://tsunkua.
elotl.mx/

4 Findings and Interpretation 192

To compare model performance, we measure the 193

error rate between predicted orthographic normal- 194

izations and gold standards using Word Error Rate 195

(WER) and Character Error Rate (CER), the latter 196

being particularly useful for morphologically rich 197

languages (James et al., 2024). Figure 2 shows the 198

overall results. 199

Both settings, OTS→INALI and OTS+OTQ→INALI, 200

exhibit a similar trend: the rule-based FST ap- 201

proach outperforms state-of-the-art LLMs in or- 202

thographic normalization of Otomi text when they 203

are prompted in a zero-shot setting. This is notable 204

since FSTs are computationally lightweight com- 205

pared to the extensive resources (data and infras- 206

tructure) required for training large neural models. 207

Despite their robustness across many tasks, these 208

LLMs struggle to generalize to orthographic varia- 209

tions in an under-resourced language like Otomi 210

Surprisingly, providing neural models with few- 211

shot examples drastically improves their perfor- 212

mance. Models like GPT-4o show some of the 213

worst performances in a zero-shot setting. Still, 214

with just 10 examples provided, the error rate de- 215

creases, outperforming FSTs and becoming the 216

best model for orthographic normalization. See 217

for example, GPT-4o_zero (WER: 31.5% CER: 10.1%) vs. 218

GPT-4o_few (WER: 11.2% CER: 2.6% ) in OTS→INALI . 219

The plots show a clear trend: LLMs make more 220

errors than FSTs but surpass them in a few-shot 221

setting, highlighting the effectiveness of ICL. How- 222

ever, further exploration is needed, as some studies 223

suggest LLMs’ sensitivity to input and target proba- 224

bilities may affect their emergent capabilities, espe- 225

cially in rare languages and text sequences (McCoy 226

et al., 2024). 227

Interestingly, the most recent models perform 228

worst in zero-shot, contrary to expectations given 229

their sophistication. We conjecture that they may 230

prioritize specialized reasoning capabilities over 231

multilingual flexibility. However, their ICL capa- 232

bility remains remarkable. 233

Despite expectations, the OTS+OTQ→INALI set- 234

ting yielded lower error rates, suggesting it was 235

easier. We anticipated greater difficulty since neu- 236

ral models lacked source orthography information 237

at test time. A possible reason is that OTQ and IN- 238

ALI are similar, with few character transformations, 239

making sentences in this norm relatively easy to 240

normalize, even without source orthography infor- 241

mation at test time. 242
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Figure 2: Performance of different models for Otomi orthographic normalization

4.1 Error analysis243

We know that FSTs make mistakes when trying to244

normalize cases of code-switching and rule ambi-245

guities since our approach has limited strategies to246

deal with that. But what errors are neural models247

most prone to? We analyzed test sentences with248

the highest CER and WER to answer this.249

A key finding is that both zero-shot and few-250

shot neural models handle code-switching well,251

easily recognizing non-Otomi words and avoiding252

unnecessary transformations. This good handling253

performed by LLMs is expected for dominant lan-254

guages like Spanish and English but also extends255

to proper names, place names, and loanwords of256

Nahuatl, an under-resourced language.257

Errors in the few-shot setting mainly stemmed258

from failing to infer transduction rules (espe-259

cially the ambiguous ones) and mixing up norms260

when trying to generate the target norm. In zero-261

shot, there were additional errors that introduced262

noise,e.g., difficulty in handling the graphemes that263

correspond to vowels and tones of Otomi, the sys-264

tems often modified them or added accent marks265

even though this was not required for the normal-266

ization (e.g., ä→aa, o→o, umbabihe →ūmbábihé),267

and hypercorrections that treated Otomi words as268

Spanish.269

Original sentences vs gold standard: As a san-270

ity check, we calculated error rates (WER, CER)271

between the source text and its INALI-standardized272

form (gold standard). These rates are typically273

high due to differences in written forms and should274

decrease when a normalization tool is applied.275

However, our case is unique since many test276

sentences contain code-switching, where several277

words should remain unchanged. This results in278

lower-than-expected error rates, making it unsuit-279

able as a baseline. Still, few-shot models outper-280

formed this measure. See Appendix B for details. 281

5 Conclusions 282

Our work investigates the generalization limits of 283

LLMs in an orthographic normalization task where 284

the models likely have little prior knowledge of the 285

language. To do this, we developed the first rule- 286

based system for converting Otomi text across dif- 287

ferent norms and compared its performance against 288

neural approaches, particularly in zero-shot and 289

few-shot settings. 290

The test set was designed to assess the model’s 291

capacity to normalize cases that are difficult for a 292

rule-based approach, i.e., code-switching and am- 293

biguous orthographic rules. 294

One of the main takeaways is that when working 295

in a limited resource scenario, one can leverage 296

knowledge of the language to build an FST, and 297

this can be more effective than simply doing zero- 298

shot prompting with sophisticated LLMs. How- 299

ever, once you have a FST you can use it to gener- 300

ate demonstrations of orthographic transductions 301

across orthographic norms and use them to im- 302

prove a neural model. Our results showed that 303

LLMs surpass FSTs with just 10 examples in few- 304

shot settings, they were particularly good in code- 305

switching cases. 306

This highlights the potential of ICL to gener- 307

alize from limited data, reducing the reliance on 308

extensive labeled datasets while reaffirming the 309

value of linguistically informed data. This could be 310

promising for many practical applications, includ- 311

ing developing technologies for under-resourced 312

languages. 313
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6 Limitations314

In this work, we examine the limits of LLMs’ gen-315

eralization through an orthographic normalization316

task using ICL approaches. While our conclusions317

are based on experimental results, a more compre-318

hensive understanding of these limits may require319

testing across additional languages and tasks.320

Although we cover the main orthographic norms321

used for this language, we excluded some lesser-322

used variants and phonological transcriptions.323

Phonological transcriptions were used for build-324

ing the FSTs but not for the LLM approach. Ad-325

ditionally, our experiments kept the target norm326

constant, potentially simplifying the task for LLMs.327

Future work could explore different normalization328

directions across multiple norms.329

Finally, while we demonstrated that combin-330

ing LLMs with ICL and linguistic knowledge is331

a promising approach for orthographic normaliza-332

tion in under-resourced languages, practical con-333

siderations remain. The cost-benefit of using large334

models for relatively simple tasks should be evalu-335

ated, especially regarding accessibility for speakers336

and researchers working with these languages. Ad-337

ditionally, concerns about data handling in commer-338

cial systems must be addressed to ensure ethical339

and practical deployment.340
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A Models and prompts437

GPT-3.5 Turbo, GPT-4o, LLaMA 3.1, and LLaMA438

3.3 were used with default hyperparameters, setting439

a temperature of 0.2 via the API.440

The LLaMA models were trained with 70B pa-441

rameters, while the exact parameter count for GPT442

models is not publicly available.443

• Prompt for OTS→INALI (few-shot)444

Below are examples of orthographic conversions445
of strings from the OTS standard (State of446
Mexico Otomi) to the INALI standard for the447
Otomi language. Note that some loanwords448
retain their original orthography, and449
certain linguistic phenomena may affect the450
transformations.451

452
Examples:453

454
1. OTS: r’atsa noya ra sahagún: ndxkjua k’oi455

florentino. jem’i xiii, xeni xiii (versión456
del náhuatl por ángel ma. garibay k.).457

INALI: r’atsa noya ra sahagún: ndxjua k’oi458
florentino. hem’i xiii, xeni xiii (versión459
del náhuatl por ángel ma. garibay k.).460

461
2. [...]462

463
Task:464

465
Using these examples as a guide, predict the466

INALI orthographic standardization for the467
following sentence. Return only the468
standardized sentence without any469
explanation.470

471
OTS: ( test sentence )472

473
INALI: [Your prediction here]474

• Prompt for OTS+OTQ→INALI (few-shot)475

Below are examples of orthographic conversions 476
of strings from the OTS standard (State of 477
Mexico Otomi) and the OTQ standard (Otomi of 478
Queretaro) to the INALI standard for the 479
Otomi language. Note that some loanwords 480
retain their original orthography, and 481
certain linguistic phenomena may affect the 482
transformations. 483

484
Examples: 485

486
1. OTS: r’atsa noya ra sahagún: ndxkjua k’oi 487

florentino. jem’i xiii, xeni xiii (versión 488
del náhuatl por ángel ma. garibay k.). 489

OTQ: r’atsa noya ra sahagún: ndxjua k’oi 490
florentino. hem’i xiii, xeni xiii (versión 491
del náhuatl por ángel ma. garibay k.). 492

INALI: r’atsa noya ra sahagún: ndxjua k’oi 493
florentino. hem’i xiii, xeni xiii (versión 494
del náhuatl por ángel ma. garibay k.). 495

496
2. [...] 497

498
Task: 499

500
Using these examples as a guide, predict the 501

INALI orthographic standardization for the 502
following sentence. The sentence originates 503
from either the OTS or OTQ standards, but 504
its source is unspecified. Return only the 505
standardized sentence without any 506
explanation. 507

508
Sentence: ( test sentence ) 509

510
INALI: [Your prediction here] 511

• Prompt for OTS→INALI (zero-shot) 512

Predict the INALI orthographic standardization 513
for the following Otomi sentence written in 514
the OTS standard (State of Mexico Otomi) ( 515
please return only the normalized sentences, 516
no explanations). Note that some loanwords 517
retain their original orthography, and 518
certain linguistic phenomena may affect the 519
transformations. 520

521
OTS: ( test sentence ) 522

523
INALI: [Your prediction here] 524

• Prompt for OTS+OTQ→INALI (zero-shot) 525

predict the INALI orthographic standardization 526
for the following sentence. The sentence 527
originates from either the OTS (State of 528
Mexico Otomi) or OTQ (Queretaro Otomi) 529
standards, but its source is unspecified. 530
Return only the standardized sentence 531
without any explanation. 532

533
Sentence: ( test sentence ) 534

535
INALI: [Your prediction here] 536
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B Original sentences vs gold standard537

The following plots show the WER and CER for538

the different models. We have added a dotted line539

that indicates the error rate when comparing the540

source text and its INALI standardized form (gold541

standard), i.e., how dissimilar the source and target542

sentence are when no normalizer has been applied.543

544
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