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Abstract

The effectiveness of LLMs remains uncertain
in scenarios where pre-trained models have lim-
ited prior knowledge of a language. In this
work, we examine LLMs’ generalization in
under-resourced settings through the task of
orthographic normalization across Otomi lan-
guage variants. We develop two approaches:
a rule-based method using a finite-state trans-
ducer (FST) and an in-context learning (ICL)
method that provides the model with string
transduction examples. We compare the per-
formance of FSTs and the neural approach in
low-resource scenarios, providing insights into
their potential and limitations. Our results show
that while FSTs outperform LLMs in zero-shot
settings, ICL enables LLMs to surpass FSTs,
stressing the importance of combining linguis-
tic expertise with machine learning in current
approaches for low-resource scenarios. !

1 Introduction

Large Language Models (LLMs) have been widely
adopted to tackle many traditional NLP tasks. Part
of their success is attributed to their extensive pre-
training, which enables them to generalize well
across different domains and diverse linguistic
structures. The rapid advancement of the field has
led to techniques like in-context learning (ICL),
which have further showcased the impressive gen-
eralization capabilities of LLMs, allowing them
to adapt to new tasks and domains with minimal
training data, often requiring only a few examples.

However, the effectiveness of these approaches
remains uncertain in scenarios where pretrained
models have limited prior knowledge of a language.
This is particularly relevant for under-resourced
languages, where training data is scarce or highly
non-homogeneous. The performance of LLMs in
these situations is not yet well understood, and it is

!The code and data will be available at

Figure 1: Geographical distribution of Otomi

unclear whether their impressive generalization ca-
pabilities can be replicated in all type of scenarios.
This raises critical questions about the extent to
which in-context learning and other recent innova-
tions can bridge the gap in multilingual coverage.

In this work, we examine LLMs’ generalization
in under-resourced settings through the task of or-
thographic normalization across Otomi language
variants. We develop two approaches: a rule-based
method using a finite-state transducer (FST) and an
in-context learning (ICL) approach that provides
the model with string transduction examples. We
focus on the scenarios that are particularly difficult
for a transducer-based approach.

2 Background

In-context learning. A paradigm where language
models learn to perform tasks by recognizing pat-
terns from a few provided examples (demonstra-
tions). Unlike supervised learning, which requires
explicit parameter updates or a separate training
stage. ICL enables models to make predictions by
drawing analogies from the given context (Brown
et al., 2020).

Although the mechanisms that underlie and influ-
ence this type of learning are not fully understood
(Dong et al., 2024), it has proved successful in
several domains. ICL techniques can be exploited



in domains with minimal training data, requiring
only a few examples. For example, multilingual
tasks involving under-resourced languages sucha as
machine translation and interlinear glossing (Cole-
man et al., 2024; Clarke et al., 2024; Aycock et al.,
2025).

Therefore, ICL can be considered a form of gen-
eralization, but it has nuances compared to tradi-
tional ML.

Orthographic normalization of Otomi. Or-
thographic normalization is the process of convert-
ing written text into a standardized form within
a language. For many dominant languages with
long-established writing conventions, this task is
either well-solved or of limited concern. However,
for numerous other languages, particularly those
lacking a long tradition of standardization due to
sociopolitical factors, normalization remains a sig-
nificant challenge. These languages often exhibit
high internal diversity, making the task even more
complex.

Otomi is a group of languages spoken in central
Mexico (Fig. 1) that are part of the Oto-Manguean
language family. They exhibit around nine dialectal
variants (Lewis, 2009; INALI, 2008). This is an
endangered language (round 300,000 speakers) that
faces a scarcity of NLP tools and digital resources,
plus there are several orthographic standards that
speakers can use when writing their language.

Automatically converting text across the differ-
ent standards is a crucial upstream task for develop-
ing more advanced language technologies. To our
knowledge, no normalizers exist for Otomi. How-
ever, in low-resource settings, common approaches
include building FSTs based on linguistic expertise
(Johny et al., 2021; O’neil et al., 2023) and apply-
ing neural models like seq2seq (Lusetti et al., 2018;
Lutgen et al., 2025).

3 Data and Methods
3.1 Orthographic norms

Documents written in Otomi exhibit variability,
with multiple orthographic standards in use. This
study focuses on the most common norms (Table
1).

Rule-based normalizer. We developed finite-
state transducers (FST)? to convert text between
different Otomi orthographic standards (norms), us-
ing a two-step process: first, mapping source text
to a phonetic alphabet (IPA), and then generating

The tool will be available as an open source normalizer

Norm
INALI

Description Ref
Norm designed by the Na- (Inali, 2014)
tional Institute of Indige-
nous Laguages of Mexico
OTS Standard used in some
texts from variants in the
State of Mexico

(De la Vega, 2017)

OoTQ Standard proposed mainly (Hekking and de Jesus, 1989)
for Querétaro variants.

Norm Example sentence

INALI [...]bijigigé escuela pero ndichichith6hé

OTQ  [...]bijugigd escuela pero nditxitxith6hd

OTS [...Jbikjugigd escuela pero ndichichitj6jé

Table 1: Otomi orthographic standards

the target orthography. The transduction rules were
informed by a linguist’s expertise and existing doc-
umentation (Herndndez-Green, 2016). The system
was implemented using the HFST toolkit®>. The
FST converts text across standards without requir-
ing a specified source norm.

Neural approaches If we already have linguis-
tic rules for converting text across orthographic
norms, costly neural network-based methods may
be unnecessary. However, transducers have limita-
tions, as they lack flexibility and struggle to adapt
to speakers’ linguistic realities. We identify two
key challenges where this approach falls short:

e Code-switching: Texts often include words
from other languages, mainly Spanish and
Nahuatl (e.g., escuela and pero in Table 1).
Since FSTs apply rules that were specific for
otomi, handling these cases is challenging.
Additionally, language identification tools for
many indigenous languages are limited.

* Ambiguity: Instances where the same input can
be mapped to multiple outputs. A transduc-
tion rule may be favored over others, sometimes
leading to incorrect mappings. In Otomi, we
observed that the same grapheme can be tran-
scribed to different phonemes based on the or-
thographic norm of the source text. This phono-
logical ambiguity can lead to errors, which can
propagate to the target norm realization.

With these challenges in mind, we tried to lever-
age the generalization and adaptability of neural
approaches to tackle these complex cases. Specifi-
cally, we focus on using LL.Ms with ICL.

3.2 Few shot examples and test set

To compare FSTs and neural approaches, we
built two test datasets: (a) OTS—INALI: OTS as

3https://github.com/hfst/hfst/wiki



OTS—INALI | OTS+OTQ—INALI
# sentences (test) 191 191
# sentences (few-shot) 10 10

Table 2: Datasets size for each normalization setting

the source norm and INALI as the target, and (b)
OTS+0OTQ—INALI : sentences in OTS or OTQ with
INALI as the target*.

These sentences® were selected in all cases to
ensure coverage of code-switching, ambiguity phe-
nomena, and the typical transformations across the
written standards. The initial transduction for ob-
taining the different normalizations of the test sen-
tences was performed using FSTs, followed by
manual correction of errors. The target norm is al-
ways INALI . We made this decision as it represents
an institutional effort to unify standards; convert-
ing text to this standard is a typical case of use for
speakers of this language.

Additionally, for each case, we manually se-
lected 10 representative sentences to use as demon-
strations for an ICL approach (Table 2).

3.3 LLMs

For the ICL neural approaches, we used the follow-
ing base models: GPT-3.5 Turbo, GPT-40, LLaMA
3.1, and LLaMA 3.3.

Zero-shot setting: We prompt the system to
generate normalized test sentences without prior
examples. For OTS—INALI, we explicitly specify
the source and target norms. For OTS+OTQ—INALI,
we do not specify the source norm, only that input
sentences may come from either norm and should
be transduced into INALI .

Few-shot setting: We provide models with 10-
shot examples of orthographic transductions. For
OTS—INALI we show 10 examples and specify that
test sentences are in OTS , requiring INALI ortho-
graphic normalization. For OTS+OTQ—INALI, ex-
amples include transductions across INALI, OTS ,
and OTQ . During testing, the source norm is un-
specified (either OTS or OTQ ), and the model must
generate the INALI normalization.

In all settings, we state the language and alert the
system that there might be cases of code-switching
and challenging transductions. See Appendix A for
example prompts and details about the models.

“We omitted the OTQ—INALI case since both standards
are similar. Instead, we created a more challenging setup

Our dataset is built from a small online Otomi corpus
that gathers different sources and varieties https://tsunkua.
elotl.mx/

4 Findings and Interpretation

To compare model performance, we measure the
error rate between predicted orthographic normal-
izations and gold standards using Word Error Rate
(WER) and Character Error Rate (CER), the latter
being particularly useful for morphologically rich
languages (James et al., 2024). Figure 2 shows the
overall results.

Both settings, OTS—INALI and OTS+0OTQ—INALI,
exhibit a similar trend: the rule-based FST ap-
proach outperforms state-of-the-art LLMs in or-
thographic normalization of Otomi text when they
are prompted in a zero-shot setting. This is notable
since FSTs are computationally lightweight com-
pared to the extensive resources (data and infras-
tructure) required for training large neural models.
Despite their robustness across many tasks, these
LLMs struggle to generalize to orthographic varia-
tions in an under-resourced language like Otomi

Surprisingly, providing neural models with few-
shot examples drastically improves their perfor-
mance. Models like GPT-40 show some of the
worst performances in a zero-shot setting. Still,
with just 10 examples provided, the error rate de-
creases, outperforming FSTs and becoming the
best model for orthographic normalization. See
for example, GPT-40_zero (WER: 31.5% CER: 10.1%) VS.
GPT-40_few (WER: 11.2% CER: 2.6% ) in OTS—INALI .

The plots show a clear trend: LLMs make more
errors than FSTs but surpass them in a few-shot
setting, highlighting the effectiveness of ICL. How-
ever, further exploration is needed, as some studies
suggest LLMSs’ sensitivity to input and target proba-
bilities may affect their emergent capabilities, espe-
cially in rare languages and text sequences (McCoy
et al., 2024).

Interestingly, the most recent models perform
worst in zero-shot, contrary to expectations given
their sophistication. We conjecture that they may
prioritize specialized reasoning capabilities over
multilingual flexibility. However, their ICL capa-
bility remains remarkable.

Despite expectations, the OTS+OTQ—INALI set-
ting yielded lower error rates, suggesting it was
easier. We anticipated greater difficulty since neu-
ral models lacked source orthography information
at test time. A possible reason is that OTQ and IN-
ALI are similar, with few character transformations,
making sentences in this norm relatively easy to
normalize, even without source orthography infor-
mation at test time.
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Figure 2: Performance of different models for Otomi orthographic normalization

4.1 Error analysis

We know that FSTs make mistakes when trying to
normalize cases of code-switching and rule ambi-
guities since our approach has limited strategies to
deal with that. But what errors are neural models
most prone to? We analyzed test sentences with
the highest CER and WER to answer this.

A key finding is that both zero-shot and few-
shot neural models handle code-switching well,
easily recognizing non-Otomi words and avoiding
unnecessary transformations. This good handling
performed by LLMs is expected for dominant lan-
guages like Spanish and English but also extends
to proper names, place names, and loanwords of
Nahuatl, an under-resourced language.

Errors in the few-shot setting mainly stemmed
from failing to infer transduction rules (espe-
cially the ambiguous ones) and mixing up norms
when trying to generate the target norm. In zero-
shot, there were additional errors that introduced
noise,e.g., difficulty in handling the graphemes that
correspond to vowels and tones of Otomi, the sys-
tems often modified them or added accent marks
even though this was not required for the normal-
ization (e.g., —aa, 0—0, umbabihe —iimbdbihé),
and hypercorrections that treated Otomi words as
Spanish.

Original sentences vs gold standard: As a san-
ity check, we calculated error rates (WER, CER)
between the source text and its INALI-standardized
form (gold standard). These rates are typically
high due to differences in written forms and should
decrease when a normalization tool is applied.
However, our case is unique since many test
sentences contain code-switching, where several
words should remain unchanged. This results in
lower-than-expected error rates, making it unsuit-
able as a baseline. Still, few-shot models outper-

formed this measure. See Appendix B for details.

5 Conclusions

Our work investigates the generalization limits of
LLMs in an orthographic normalization task where
the models likely have little prior knowledge of the
language. To do this, we developed the first rule-
based system for converting Otomi text across dif-
ferent norms and compared its performance against
neural approaches, particularly in zero-shot and
few-shot settings.

The test set was designed to assess the model’s
capacity to normalize cases that are difficult for a
rule-based approach, i.e., code-switching and am-
biguous orthographic rules.

One of the main takeaways is that when working
in a limited resource scenario, one can leverage
knowledge of the language to build an FST, and
this can be more effective than simply doing zero-
shot prompting with sophisticated LLMs. How-
ever, once you have a FST you can use it to gener-
ate demonstrations of orthographic transductions
across orthographic norms and use them to im-
prove a neural model. Our results showed that
LLMs surpass FSTs with just 10 examples in few-
shot settings, they were particularly good in code-
switching cases.

This highlights the potential of ICL to gener-
alize from limited data, reducing the reliance on
extensive labeled datasets while reaffirming the
value of linguistically informed data. This could be
promising for many practical applications, includ-
ing developing technologies for under-resourced
languages.



6 Limitations

In this work, we examine the limits of LLMs’ gen-
eralization through an orthographic normalization
task using ICL approaches. While our conclusions
are based on experimental results, a more compre-
hensive understanding of these limits may require
testing across additional languages and tasks.

Although we cover the main orthographic norms
used for this language, we excluded some lesser-
used variants and phonological transcriptions.
Phonological transcriptions were used for build-
ing the FSTs but not for the LLM approach. Ad-
ditionally, our experiments kept the target norm
constant, potentially simplifying the task for LLMs.
Future work could explore different normalization
directions across multiple norms.

Finally, while we demonstrated that combin-
ing LLMs with ICL and linguistic knowledge is
a promising approach for orthographic normaliza-
tion in under-resourced languages, practical con-
siderations remain. The cost-benefit of using large
models for relatively simple tasks should be evalu-
ated, especially regarding accessibility for speakers
and researchers working with these languages. Ad-
ditionally, concerns about data handling in commer-
cial systems must be addressed to ensure ethical
and practical deployment.
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A Models and prompts

GPT-3.5 Turbo, GPT-40, LLaMA 3.1, and LLaMA
3.3 were used with default hyperparameters, setting
a temperature of 0.2 via the APL

The LLaMA models were trained with 70B pa-
rameters, while the exact parameter count for GPT
models is not publicly available.

e Prompt for OTS—INALI (few-shot)

Below are examples of orthographic conversions
of strings from the OTS standard (State of
Mexico Otomi) to the INALI standard for the
Otomi language. Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

Examples:

1. OTS: r’atsa noya ra sahagun: ndxkjua k’oi
florentino. jem’i xiii, xeni xiii (versidn
del nahuatl por angel ma. garibay k.).

INALI: r’atsa noya ra sahagun: ndxjua k’oi
florentino. hem’i xiii, xeni xiii (version
del nahuatl por angel ma. garibay k.).

2. [...]

Task:

Using these examples as a guide, predict the
INALI orthographic standardization for the
following sentence. Return only the
standardized sentence without any
explanation.

OTS: ( test sentence )

INALI: [Your prediction here]

* Prompt for OTS+OTQ—INALI (few-shot)

Below are examples of orthographic conversions
of strings from the OTS standard (State of
Mexico Otomi) and the OTQ standard (Otomi of

Queretaro) to the INALI standard for the
Otomi language. Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

Examples:

1. OTS: r’atsa noya ra sahagin: ndxkjua k’oi
florentino. jem’i xiii, xeni xiii (versidn
del nahuatl por angel ma. garibay k.).
0TQ: r’atsa noya ra sahagin: ndxjua k’oi
florentino. hem’i xiii, xeni xiii (version
del nahuatl por angel ma. garibay k.).
INALI: r’atsa noya ra sahagun: ndxjua k’oi
florentino. hem’i xiii, xeni xiii (versidn
del ndhuatl por angel ma. garibay k.).

2. [...]
Task:

Using these examples as a guide, predict the
INALI orthographic standardization for the
following sentence. The sentence originates
from either the OTS or OTQ standards, but
its source is unspecified. Return only the
standardized sentence without any
explanation.

Sentence: ( test sentence )

INALI: [Your prediction herel]

* Prompt for OTS—INALI (zero-shot)

Predict the INALI orthographic standardization
for the following Otomi sentence written in
the OTS standard (State of Mexico Otomi) (
please return only the normalized sentences,

no explanations). Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

0TS: ( test sentence )

INALI: [Your prediction herel]

* Prompt for OTS+OTQ—INALI (zero-shot)

predict the INALI orthographic standardization
for the following sentence. The sentence
originates from either the 0TS (State of
Mexico Otomi) or OTQ (Queretaro Otomi)
standards, but its source is unspecified.
Return only the standardized sentence
without any explanation.

Sentence: ( test sentence )

INALI: [Your prediction here]
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B Original sentences vs gold standard

The following plots show the WER and CER for
the different models. We have added a dotted line
that indicates the error rate when comparing the
source text and its INALI standardized form (gold
standard), i.e., how dissimilar the source and target
sentence are when no normalizer has been applied.
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