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Abstract

Recently, multimodal in-context learning (ICL)
has made significant progress, showing impres-
sive performance across various tasks. Existing
works demonstrate that demonstration selec-
tion have a big influence on the effectiveness
of multimodal ICL. However, these methods
focus on extracting visual features and textual
features from multimodal examples indepen-
dently and use them for demonstration retrieval.
The influence of multimodal embedding meth-
ods for ICL demonstration selection is not fully
understood. Besides current mulitmodal ICL
demonstration retrieval methods are mainly un-
supervised, hindering adaptation to specific
features of different tasks. To address these
challenges, we firstly compare the modality-
independent and modality-integrated encoders
in representing multimodal examples. Then we
introduce MeCO, a supervised training pipeline
for multimodal ICL demonstration retriever, co-
operating multiple encoders to mitigate their
inherent bias and enhance adaptation to spe-
cific tasks. Experiments across a wide range
of multimodal tasks and MLLMs demonstrate
that modality-integrated retrievers show superi-
ority over modality-independent retrievers and
our supervised training pipeline significantly
improve the performance of multimodal ICL
demonstration retrievers which benefit MLLMs
on various tasks.

1 Introduction

Recently, multimodal large language models
(MLLMs) enable visual understanding and reason-
ing on complex multimodal tasks (Zhao et al., 2024;
Lietal., 2022, 2023b; Liu et al., 2023; Chen et al.,
2024b). These models also exhibit in-context learn-
ing ability, which has been shown to be largely in-
fluenced by the selected in-context learning demon-
stration examples (Awadalla et al., 2023; Bai et al.,
2023; Qin et al., 2024). In LLMs, a series of studies
have focused on demonstration retrieval, exploring
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Figure 1: Comparison of ICL demonstration retrieval
results with supervised and unsupervised retriever.

how to select the optimal examples from the train-
ing set for in-context learning (Rubin et al., 2022;
Wang et al., 2024a; Li et al., 2023c; Zhang et al.,
2023; Qin et al., 2024). In MLLMs, some works
study the influence of textual and visual modalities
in demonstration selection (Wu et al., 2024a; Jia
et al., 2021; Chen et al., 2024a; Luo et al., 2024b).

However, current demonstration retrieval for
MLLMs has two main challenges. First, existing
works employ modality-independent retrievers to
extract visual and textual features separately for
demonstration selection, which hinders the estab-
lishment of fused representations for multimodal
examples. Recent multimodal embedding methods
based on Vision-Language Models (VLMs) pro-
vide new possibilities for demonstration retrieval,
warranting further investigation. Second, existing
mulitmodal in-context learning demonstration re-
trieval methods are mainly unsupervised, hindering
adaption to specific features of different tasks (Qin
et al., 2024). Figure 1 demonstrates a case of Vi-
sual Caption Restoration (VCR) which involves
restoring masked text in images, where the visual
elements merely provide supporting context. Given
the nature of the task, the retriever should prioritize
textual elements within the images over visual fea-



tures. In this example, the demonstration retrieved
by unsupervised retriever focus on providing sim-
ilar visual part, which fails to function as a good
one-shot example. In contrast, the demonstration
retrieved by supervised retriever contains similar
textual parts to the test example, thereby enabling
the model to generate the correct response.

To address these two challenges, this paper ex-
amines the impact of multimodal encoders on mul-
timodal in-context learning demonstration retrieval
and proposes a supervised training pipeline for
multimodal demonstration retrievers. For multi-
modal demonstration embedding, we compare two
methods for embedding multimodal demonstra-
tions: the modality-independent encoder which
treats the text and visual components separately and
the modality-integrated encoder which integrates
different modalities into a deeply fused represen-
tation. For supervised demonstration retriever
training, we propose a Multi-encoder Collabora-
tive Optimization pipeline (MeCO). Typical su-
pervised demonstration retriever training pipeline
for large language models involves generating a
demonstration candidate set, scoring this candidate
set, and subsequently training the retriever through
contrastive learning. MeCO leverages the varied re-
call results of different encoders to provide a high-
quality set of positive candidates. Our pipeline
mitigates the potential bias on candidates selection
brought by single-way candidate recall, enabling
the encoders to learn from each other.

We conduct experiments on a wide range of mul-
timodal tasks and MLLMs. Experiments show that
the modality-integrated retrievers trained with the
MeCO pipeline significantly improve the perfor-
mance of MLLMs in multiple tasks. We summarize
the contribution of this as follows.

(1) We comprehensively evaluate the perfor-
mance of modality-independent retriever ver-
sus modality-integrated retriever in demonstra-
tion retrieval for multimodal in-context learn-
ing. Modality-integrated retrievers outper-
form modality-integreated retriever, especially
on the challenging tasks. Moreover, modality-
independent retriever tends to learn spurious fea-
tures during supervised training while modality-
integrated retrievers are more robust.

(2) We propose Multi-encoder Collaborative Opti-
mization (MeCO), a supervised in-context learning
demonstration retrieval method for MLLMs, which
cooperates multiple encoders to mitigate their inher-
ent bias and enhance adaptation to specific tasks.

2 Related Works

2.1 Multimodal In-Context Learning

In-context learning, a crucial capability of LLMs,
is also considered as important for MLLM. A series
of MLLMs successfully inherit in-context learning
capabilities by employing various techniques dur-
ing pre-training and fine-tuning stage (Huang et al.,
2023; Laurencon et al., 2024; Bai et al., 2023).
These techniques include constructing interleaved
image-text training data and instruction tuning (Li
et al., 2023a), multi-turn curriculum-based learn-
ing methodology with effective data mixes (Doveh
et al., 2024), and compacting the latent space of
visual prompts (Gao et al., 2024). Recently Qin
et al. (2024) propose a general analysis of the un-
derlying factors affecting the effectiveness of mul-
timodal in-context learning, including multimodal
demonstration retrieval, intra-demonstration order-
ing, and the introductory instructions in prompts.
Our work differs from Qin et al. (2024) by focus-
ing on harnessing demonstration retrieval to boost
multimodal in-context learning and propose a su-
pervised training pipeline .

2.2 Demonstration Retrieval

Existing studies have witnessed the huge impact
of in-context examples selection on LLMs’ perfor-
mance (Liu et al., 2022; Luo et al., 2024a; Agrawal
et al., 2023). A line of studies then focused on
finding good in-context examples by representing
examples with dense encoder and choosing the se-
mantically similar ones (Rubin et al., 2022; Li et al.,
2023c; Liu et al., 2022). Rubin et al. (2022) use
unsupervised encoder to get candidates and then
generate training data by scoring them to train a su-
pervised demonstration retriever. A series of works
follows Rubin et al. (2022), such as proposing a
unified demonstration retriever and expanding this
procedure to visual in-context learning (Li et al.,
2023c; Liu et al., 2022; Wang et al., 2024a; Luo
et al., 2024b). In this paper, we adapt this training
pipeline in the realm of multimodal tasks to boost
the performance of MLLMs.

3 Method
3.1 Problem Definition

The goal of multimodal in-context learning demon-
stration retrieval is to retrieve the most suitable ex-
amples from the training set D to construct the in-
context learning prompt P = {(z;,y;)}1*; C D,
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Figure 2: Multimodal demonstration embedding meth-
ods.

for a given test example x,. We formulate this
problem in the context of multimodal task as:

f@((l'{w IL‘Z), (3357 Jfg))

)
where z! and 27 represent respectively the visual
part and textual part of the examples and fj is the
retrieval function parameterized by 6. In this work,
we implement fy as the cosine similarity of dense
embeddings of the query and training examples.
The two critical steps of a demonstration retrieval is
(1) representing the multimodal examples as dense
embeddings, incorporating information from both
modalities, and (2) fine-tuning the representation
space according to different tasks to explicitly opti-
mize it for multimodal in-context learning.

(27, 2T) = arg  max

(wh.a5)€D

3.2 Mulitmodal Demonstration Embedding

In this section, we compare two methods to rep-
resent multimodal examples considering the two
modalities as showed in Figure 2.

The modality-independent embedding calculates
the image embedding and text embedding with a
CLIP-like encoder and concatenate the embedding
together to get the multimodal example represen-
tation. In this case, the embeddings of the two
modalities are independent and final example simi-
larity is equivalent to the sum of visual similarity
and textual similarity as showed in Equation 2.

Sim(E;, Ej) = Sim([E;rv Ezf]v [EJT’EJI])
= sim(E], E]) + Sim(E], El ),

The modality-integrated embedding aims to rep-
resent the image, text, and the task instruction as
an integrated embedding. As illustrated in Figure 2,
we employ an embedding model based on a vision-
language model. The entire example is structured

into a template and then embedded using the last
token of the vision-language model, which is fol-
lowed by an output layer. The advantage of this
approach is that the image features and text fea-
tures are deeply integrated within the transformer
architecture, enabling better capture of cross-modal
relationships. Furthermore, this embedding model
can process input with various combinations of im-
ages and texts, thereby aligning the task description
to establish a task-specific embedding.

3.3 MeCO Pipeline

In this section, we present our MeCO pipeline to
jointly train multimodal in-context learning demon-
stration retrievers. We want to explicitly optimize
the demonstration retrievers so that the selected ex-
amples based on Equation 1 can maximize few-shot
performance of multimodal large language models.
In Section 3.3.1, we first introduce how to obtain
positive-negative example pairs for each query as
training data through the cooperation of multiple
encoders. Then, in Section 3.3.2, we describe how
to train the retrievers using this data.

3.3.1 Generating Training Data

Our evaluation of the two demonstration embed-
ding models indicates that both can enhance the
few-shot performance of multimodal large lan-
guage models. Notably, we observed a small over-
lap in their retrieval results, suggesting that dif-
ferent multimodal embedding models can identify
distinct, characteristic demonstrations. This finding
motivates us to conduct a multi-faceted candidates
recall process by integrating different demonstra-
tion embedding models to retrieve a diverse candi-
date set. This strategy facilitates mutual learning
among encoders and mitigates the inherent biases
in their demonstration selection process.

Specifically, for a given query from the training
set, we first utilize each unsupervised retriever to
recall a candidate set of demonstrations with the
top-k cosine-similarity scores relative to the query.
Then we combine these results and augment them
with randomly sampled examples from the training
set to increase diversity.

5(P) = log p(yq| P, xq). 3)
s(P) = metric(yq, Go (P, xq)). (@)

Subsequently, we evaluate all the demonstrations
in the candidate set using Equation 3 or 4 . z, and
yq in Equation 3 and 4 denote respectively the in-
put and ground truth of the query, P denotes the



sample
[ querv |

1 query I

contrastive training |

Y

retrieve
\ \

Colgwen ‘! >

.

trainset

[ VLM2Vec f§ ——>

cup & >

random
candidates

candidate set 1 >

candidate set

b

candidate set 2

candidate set 3

positive

supervised data

proxy model
':{> (scoring MLLM) %
negative

one-shot
inference

~~

multimodal retriever

Figure 3: Overview of MeCO pipeline. ColQwen and VLM2Vec are modality-integrated retriever and CLIP is

modality-independent retriever.

one-shot example and Gg represents the MLLM.
The evaluation is performed by inputting the exam-
ples into a proxy model, a smaller multimodal large
language model. Equation 3 computes the score as
the log-likelihood of generating the ground-truth
when using the chosen example as a prompt, while
Equation 4 directly decodes the answer and em-
ploys the resulting task-specific metric as the score.
Empirically, we find that score calculation using
Equation 4 yields superior performance. This supe-
riority can be attributed to its better alignment with
the evaluation criteria of each task, particularly for
text generation tasks where exact matching with
the ground truth is not essential.

Finally, we select the top-5 scoring examples as
public positive examples. For each retriever we
identify its hard negative examples by intersecting
the set of bottom-5 scoring examples with the ex-
amples retrieved by itself. This approach, which
incorporates all unsupervised retrievers, allows us
to construct a high-quality set of public positive
examples and several personalized sets of hard neg-
ative examples for each demonstration retriever.

3.3.2 Contrastive Learning of Retrievers

Now we have a supervised trainset for demonstra-
tion retriever Dy, built from the original trainset
D. For each example g; in the trainset D, we have
a set a positive examples &y, () and a set of hard
negative examples &y,eq(7)).

Dsup = {(Qi7§pos(i)7fneg(i))’VQi € D}

We train the retriever with typical contrastive
learning objective. For each training instance in a
mini-batch of size B, we sample one positive exam-
ple d; from the positive set &,5(i) and one hard
negative d; from the negative set &,.4(i), which
consists the negative examples with the other B — 1

positive examples in the same min-batch. The final
contrastive loss is computed as:

exp(s(gi, 7))

{ = —log )
exp(s(gi,d; ) + Z]'le,j;éi eXP(S(Qi,dy))

)

s(q.d) = Ey(q)" Eo(d)/7. (6)

where we have the similarity of a query and a
demonstration is the inner-product of their embed-
dings scaled by a temperature 7.

4 Experimental Results

In this section we first comprehensively compare
the performance of different unsupervised mul-
timodal retrievers. Then we evaluate the per-
formance of supervised demonstration retrievers
trained with MeCO pipeline.

Dataset We conduct experiments on a series of
multimodal tasks including Visual Question An-
swering (VQA), Visual Captioning, and Visual
Caption Restoration (VCR).

VQA Weinclude three traditional VQA datasets,
Vizwiz (Gurari et al., 2018), OK-VQA (Marino
et al., 2019), and VQAV2 (Goyal et al., 2017), us-
ing BertScore as the metric. We also include Hate-
ful Memes (Kiela et al., 2020), which focuses on
detecting hateful speech in multimodal memes. We
use AUC-ROC as the metric.

Visual Caption We include Flickr30k (Young
et al., 2014) and use CIDEr as the metric.

Visual Caption Restoration VCR challenges
models to restore partially obscured text within im-
ages, leveraging pixel-level hints and contextual
cues from the image (Zhang et al., 2024). It in-
cludes two languages, English (VCR-en) and Chi-
nese (VCR-zh). VCR-zh poses greater challenges
due to the complexity of Chinese character. For



VizWiz  VQAv2 OK-VQA VCR-en VCR-zh Flickr30k Hateful avg

Zero-shot  62.4 89.5 67.6 76.5 60.3 79.5 660 717

Owenz.y,  Random 62.8 90.5 70.8 83.2 63.7 82.6 669 744

o CLIP-ViT  66.4 91.0 70.9 84.2 69.9 81.2 713 764

VLM2Vec  66.8 91.0 71.2 84.9 - 80.7 702 775

ColQwen 66.6 91.8 71.0 85.0 76.9 80.8 709 776

Zero-shot  52.8 75.6 70.9 413 0.0 54.5 62.1 510

Random 54.9 73.8 73.6 40.9 15.3 57.3 622 540

DeepSeek  ~y1pvit  60.6 78.4 743 48.5 30.2 60.4 647 596
—VL2—7B 1 X R . . . R . .

VLM2Vec  59.9 82.4 74.5 473 - 61.4 649  65.1

ColQwen 59.5 81.1 75.0 50.9 50.4 61.8 655 635

Zero-shot  30.0 58.8 31.7 61.6 0.04 25.8 739 403

Clande3.s  Random 40.8 79.9 50.4 68.3 0.06 35.8 737 499

o CLIP-VIT 462 80.2 51.9 71.9 272 35.1 762 555

VLM2Vec  46.6 81.1 53.1 74.2 - 34.7 769  61.1

ColQwen 453 81.2 53.0 74.6 48.4 34.0 756 589

Zero-shot  51.0 67.6 424 78.2 1.1 477 756 534

GPT4o Random 55.5 85.5 59.8 83.8 17.5 57.4 756 622

0513 CLIP-ViT  55.7 86.1 61.0 84.1 353 55.4 773 650

VLM2Vec  56.4 86.8 63.8 84.8 - 56.0 776 709

ColQwen 56.1 86.8 62.3 84.8 50.4 55.0 773 675

Table 1: Zero-shot and in-context learning performance of MLLMs with different unsupervised demonstration
retrievers. The VLM2Vec model does not support Chinese, so we mask its performance on VCR-zh.

this visual cloze task, we use exact match accuracy
as the metric.

Retrievers and Models We conduct experiments
with one modality-independent retriever based on
CLIP-ViT-Large (Radford et al., 2021), and two
modality-integrated retrievers VLM2Vec (Jiang
et al., 2024) and ColQwen (Faysse et al., 2024).
VLM2Vec process any combination of images, text
and task description to generate an embedding us-
ing the final token’s hidden state from a vision-
language model. ColQwen leverages contextual-
ized embeddings from Qwen2-VL along with a late
interaction matching mechanism for visual docu-
ment retrieval. We assess the performance of these
retrievers across various multimodal large language
models, including both closed-source models (GPT-
40-0513 and Claude3.5-Sonnet) and open-source
models (Qwen2-VL-7B (Wang et al., 2024b), and
DeepSeek-VL2 (Wu et al., 2024b)).

4.1 Unsupervised Retrieval Results

Main results Table 1 shows that demonstrations
retrieved by all three unsupervised retrievers signif-
icantly enhance the model’s few-shot performance
compared to randomly selected demonstrations.
Meanwhile modality-integrated encoders outper-
form modality-independent encoders in demon-
stration retrieval capability. Specifically, Qwen2-
VL achieves an average few-shot performance
of 77.6 across all tasks using ColQwen-retrieved

demonstrations, while the performance drops to
76.4 when using CLIP-ViT for retrieval. Notably,
the performance differential between these two re-
trieval approaches exhibits task-specific and model-
specific variations.

Analysis for different models Notably, the two
closed-source models demonstrate superior per-
formance on challenging tasks such as VCR and
Hateful Memes, which require sophisticated visual-
linguistic understanding and reasoning. However,
they show relatively lower performance compared
to open-source models on conventional tasks like
VQA and Visual Caption. This performance dis-
crepancy can be attributed to their tendency to gen-
erate more elaborate and nuanced responses, which
ironically becomes disadvantageous when handling
simpler tasks that require simple and straightfor-
ward answers. Nevertheless, this observation does
not affect our primary analysis, which focuses on
comparing the effectiveness of different demon-
stration retrieval strategies rather than conducting
cross-model evaluations.

Analysis for different tasks We find that the
impact of demonstration selection varies across
different tasks. For VQA tasks, demonstration
retrieval shows relatively small impact on model
performance, primarily because current VQA
datasets mainly evaluate basic image understand-
ing capabilities. In this context, demonstrations
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primarily serve to regularize responses into concise
phrases, particularly for closed-source models, an
effect achievable even with random demonstrations.
In contrast, demonstration selection significantly
impacts model performance on Visual Caption
Restoration (VCR) and Hateful Memes tasks.
These tasks pose substantial challenges, requiring
models to process pixel-level details and perform
complex visual-linguistic reasoning. For such chal-
lenging tasks, modality-integrated retrievers con-
sistently outperform their modality-independent
counterparts in demonstration selection, leading
to notable performance improvements. For im-
age caption tasks, our experiments reveal that re-
trieved demonstrations prove less effective than
randomly selected samples for in-context learn-
ing. This observation aligns with Yang et al. (2023),
who found that visually similar images may not pro-
vide optimal demonstrations and could potentially
interfere with the generation of accurate descrip-
tions for the target image.

The above analysis demonstrates that the criteria
for effective demonstrations vary across different
tasks, emphasizing the importance of task-specific
retriever optimization.

Comparison of retrieval outcomes To compare
the retrieval outcomes from the three multimodal re-
trievers, we computed the Intersection over Union
(IoU) of the top-k candidates recalled by each re-
triever on VCR-en. As depicted in Figure 4, the
three retrieval methods demonstrate limited overlap
in their retrieval results, and the IoU drops to less
than 0.15 when top-k is above 5. This indicates
that each retriever identifies distinctive demon-
strations for multimodal in-context learning.
To assess the upper bound of retrieval effec-
tiveness, we manually identify the most beneficial
demonstration from the top-20 candidates retrieved
by each retriever for each test example. Figure
4 compares the performance on VCR-en under

Viz. ver-e. hate. Flickr.
Qwen2-VL-7B
Random 62.8 83.2 66.9 82.6
CLIP-ViT  66.710.3 84.610.4 704,00 82.611.4
VLM2Vec 67-4T0.6 86.5T1,6 71 '2T1»1 83.3¢2,6
CO]QWCH 67'3T1 .3 86.4¢1,4 71.8¢0A9 83.5¢2A7
DeepSeek-VL2
Random 55.5 40.9 62.1 57.3
CLIP-ViT 621415 519134 641506 62.6122
VLM2Vec 61'9T2»0 52~9T5.6 66.3¢1,4 62.0¢o,4
CO]QWCII 62'2T2»7 55.6¢4‘7 66.9¢1A4 64.0¢2A2
GPT40-0513
Random 55.5 83.8 75.6 57.4
CLIP-ViT  56.1404 84.6105 78.0703 55.610.2
VLM2Vec 56'7T0»3 85.6¢(),8 78'3T0»7 55.8“),2
CO]QWCH 56.8T0_7 85.9‘“_1 77.2‘L0‘1 55'4T0~4
Claude3.5-Sonnet

Random 45.8 68.3 73.7 35.8
CLIP-ViT 467105 733114 760,02 354103
VLM2Vec 46-3l0'3 73.7¢0,5 77.0T0.1 36'4T1»7
CO]QWCII 47’4T1-9 75-4T0.8 75'8T0-2 35'7T1-7

Table 2: Few-shot performance of multimodal large lan-
guage models with supervised demonstration retrievers.
The number 1 indicates the performance improve-
ment from MeCO pipeline.

zero-shot and one-shot settings, contrasting results
between unsupervised retrieval and these manu-
ally selected optimal demonstrations. While mul-
timodal large language models show substantial
improvements with demonstrations from unsuper-
vised retrievers, there remains a considerable per-
formance gap between unsupervised retrieval
and the achievable upper bound. These findings
underscore the potential benefits of supervised re-
triever fine-tuning.

4.2 Supervised Retrieval Results (MeCO)

Setup We evaluate our supervised retrievers on
four tasks, Vizwiz, VCR, HatefulMemes and
Flickr30k. In our training pipeline, we employed
Qwen2-VL-2B as the proxy for Qwen2-VL-7B.
DeepSeek-VL served as its own proxy model
thanks to its efficient inference capabilities. For
the two closed source model, we opted for Qwen?2-
VL-2B as the proxy model. More experimental
details are shown in the Appendix A.2.

Results Table 2 demonstrates that all three re-
trievers can benefit from our MeCO pipeline and
retrieve better prompts compared to unsupervised
ones. For image caption task, supervised retrievers
can lead to a performance boost of average 2.3 for



Viz. ver-e. hate. Flickr. Viz. ver-e. hate. Flickr.
proxy: DeepSeek-VL2 (itself) MeCO: multi-way candidate recall
CLIP-ViT 62-1T1-5 51 ~9T344 64.1J’0‘6 62.6T2‘2 CLIP-ViT 66.7T0,3 84.6¢0,6 70.4¢o,9 82.6¢1,4
VLM2Vec 61'9T2~0 5291‘5.6 66.3T1‘4 62.0T044 VLM2Vec 67-4T0.6 86.5¢1,6 71.2¢1_1 83-37‘2‘6
Coleen 62'2'?247 55'6'?447 66.9T1‘4 64'0'?242 CO]QWGH 67~3T1»3 86.4T1,4 71'8T0»9 83.5¢2,7
proxy: Qwen2-VL-2B traditional EPR: single-way candidate recall
CLIP-ViT 619413 454,351 648401 60.510.1 CLIP-ViT 659,05 84.6106 705,08 81.810.6
VLM2Vec 60-4'?045 49-4T2< 1 65. lT()‘Q 60.7“)‘7 VLM2Vec 67~0T0»2 85-5T0.6 70.8¢0,7 81 .6¢0,9
Coleen 61‘61-2‘1 51'5T0~6 65.3¢0‘2 62'4T0-6 CO]QWBII 67'1T1»1 85.7¢0‘7 71'2T0~3 81.9¢0A7

Table 3: The impact of proxy model selection to MeCO
pipeline. We use DeepSeek-VL2 as the multimodal
large language model.

Qwen2-VL compared with unsupervised retrievers
and outperforms random demonstrations.

Results also indicate that supervised training
demonstrates greater effectiveness for modality-
integrated retrievers than for their modality-
independent counterpart. Specifically, when tested
with Deepseek2-VL, the modality-integrated re-
trievers ColQwen and VLM2Vec show substantial
improvements after MeCO training, achieving aver-
age performance gains of 2.7 and 2.4 points respec-
tively across all four tasks. Notably the modality-
independent CLIP-ViT exhibits a smaller improve-
ment of 1.6 points. Similar patterns are observed
in experiments with Qwen2-VL. This stronger ben-
efit from supervised training stems from modality-
integrated retrievers’ capacity to generate unified
representations that deeply fuse information from
images, texts, and task descriptions. This compre-
hensive multimodal fusion enables better under-
standing of task-specific features during training,
thus facilitating more effective fine-tuning.

Influence of Proxy Model We find that the two
closed-source model using Qwen2-VL-2B as proxy
model can also benefit from the MeCO training
pipeline, but performance gains are smaller than
Qwen2-VL and DeepSeek-VL2. To study the in-
fluence of proxy model selection to the MeCO
training pipeline, we employ respectively Qwen2-
VL-2B and DeepSeek-VL2 as the proxy model
for DeepSeek-VL2 and compare the final few-shot
learning performance. Table 3 reveals the impor-
tance of using a proxy model with the same ar-
chitecture in MeCQO pipeline. When optimizing
retrievers for DeepSeek-VL2, ColQwen achieves
an average improvement of 2.8 points when trained
with the same proxy model, while this improve-
ment drops significantly to 0.8 points when using
a different proxy model, Qwen2-VL-2B. This sub-

Table 4: The influence of using MeCO. We use Qwen2-
VL as the multimodal large language model.

stantial performance gap arises from the architec-
tural differences between the models, as DeepSeek-
VL2 employs MoE architecture while Qwen2-VL
does not.

Multi-encoder Collaboration We conducted a
comparative analysis between retrievers trained
using our MeCO pipeline and those trained with
the traditional Efficient Prompt Retriever (EPR)
pipeline (Rubin et al., 2022). In the EPR approach,
each retriever independently recalls its candidate
set, which is then processed by the proxy model
to generate supervised training data. As shown
in Table 4, MeCO consistently improves the per-
formance across all three retrievers. Notably, on
the Flickr30k dataset, MeCO-trained retrievers out-
perform random demonstration selection, while
EPR-trained retrievers fail to surpass this baseline.

5 Further Analysis

5.1 Number of In-Context Examples

We investigate the relationship between the num-
ber of in-context learning examples and the per-
formance of multimodal large language models.
Specifically, we examine Qwen2-VL’s performance
on two distinct tasks: VCR-en and Flickr30k, uti-
lizing ColQwen as the multimodal retriever. The
results, as illustrated in Figure 6, reveal that the
impact of in-context learning examples varies sig-
nificantly across different tasks. For the VCR task,
we observe that one-shot yields already substantial
performance improvements, while additional exam-
ples showing small returns. In contrast, the Visual
Caption task demonstrates a consistent positive cor-
relation between performance and the number of
in-context learning examples, showing steady im-
provements as more examples are added. Notably,
our supervised retriever trained with our MeCO
pipeline effectively enhances few-shot performance
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across both tasks, maintaining its efficacy across
varying numbers of in-context examples.

5.2 How Supervised Training Affects
Multimodal Embedding

To better understand the differences between
modality-independent and modality-integrated re-
trievers, as well as their changes after MeCO train-
ing, we present attention maps showing how image
tokens attend to the pooling token in CLIP-ViT
and VLM2Vec. ColQwen is excluded from this
analysis as it employs a late interaction mechanism
to compute the final embedding, rather than uti-
lizing a pooling token. The example images are
selected from the VCR-en dataset, where identify-
ing demonstrations with similar visual characters
(shown in the lower portion of the image) is crucial,
while the background picture in the upper portion
serves as contextual reference.

As shown in Figure 8, the unsupervised CLIP-
ViT retriever fails to allocate sufficient attention to
visual characters in the image. After MeCO train-
ing this region receives notably increased attention,
which explains the model’s enhanced ability to
identify relevant demonstrations for the VCR task.

The second example demonstrates a failure case of
the CLIP retriever trained with MeCO, where CLIP-
ViT predominantly focuses on the white regions
of the image instead of the relevant visual charac-
ters. This case along with more examples presented
in the Appendix B.2 , suggests that the CLIP-ViT
retriever trained on VCR-en learns spurious correla-
tions by incorrectly attributing importance to white
areas (which happen to coincide with character re-
gions). This observation highlights a fundamental
limitation of modality-independent retriever: with-
out proper cross-modal fusion guided by natural
language task descriptions, they are more suscepti-
ble to learning spurious features during supervised
training in the MeCO pipeline.

In contrast, VLM2Vec demonstrates stronger at-
tention to character-containing regions even before
MeCO training, attributed to its unified represen-
tation that incorporates task descriptions from the
text input. The attention pattern remains relatively
consistent after MeCO training.

6 Conclusion

This study investigates demonstration retrieval
strategy for multimodal in-context learning. We
find that the modality-integrated retriever has su-
perior performance to the modality-independent
retriever. We also propose MeCO, the first multi-
modal in-context learning demonstration retriever
training pipeline, which make three retrievers to
jointly recall candidate set to optimize for different
tasks. Experiments show that the MeCO pipeline
significantly improve the in-context learning ex-
ample retrieval abilities of multimodal demonstra-
tion retrievers. We also visualize the differences
between the modality-independent and modality-
integrated retrievers.



7 Limitations

The proposed MeCO training pipeline in this paper
relies on proxy models for scoring candidate sets,
which is resource-intensive. This is especially true
for closed-source models like GPT-40, where uti-
lizing the model itself as a proxy to label training
samples incurs substantial costs. This issue is a
common challenge for existing in-context learning
demonstration retrieval training methods. Future
research could explore in-context learning demon-
stration retrieval approaches that do not depend on
proxy model supervision, thereby reducing training
costs.
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A Experimental Details

A.1 Dataset and Metrics

To control computational costs, we sliced larger
datasets into subsets to match our computational
resource levels. For VQAv2, we take the first 2500
examples in the original test set for evaluation. For
VCR-en we use the official test subset of 500 exam-
ples for evaluation and take the first 100k examples
in the train set for in-context learning demonstra-
tion retriever training. For the other datasets used
in this paper, we use the original test set for evalua-
tion and train set for the training of the in-context
learning demonstration retriever. We report the
statistics of dataset in Table 5.

A.2 Training settings in MeCO

We finetune CLIP-ViT-Large with learning rate of
le-4 and batch size of 256, ColQwen with LoRA
tuning and a rank of 32, VLM2Vec with LoRA
tuning and a rank of 16. The learning rate and
batch size are respectively le-4 and 64 for both
VLM2Vec and ColQwen. The experiments are
conducted on Nvidia A800 80G.
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B Case Study

B.1 Multimodal In-Context Learning
Demonstration Retrieval for Different
Tasks

We give four examples of multimodal in-context
learning demonstrations for respectively VQA,
Hateful Memes, Visual Caption, and Visual Cap-
tion Restorations. We note that for modality-
independent retrievers, when the text input is only
the task description it is the same for the query
and doc and thus can not be used to demonstration
retrieval.

B.2 Attention Map of two Retrievers

We give more examples showcasing that CLIP-ViT
retriever trained on VCR-en and VCR-zh learns
spurious correlations by incorrectly attributing im-
portance to white areas, instead of (which happen
to coincide with character regions). In contrast,
VLM2Vec, a modality-integrated retriever can suc-
cessfully attribute more attention to the true char-
acter areas and retrieval better in-context learning
examples for multimodal large language models.
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split VizWiz VQAv2 OK-VQA VCR-en VCR-zh Flickr30k Hateful

support 20523 — — 100k — 130k 6744
test 4319 2500 70.8 500 500 5000 2408

Table 5: Statistics of the datasets.
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[ VQA ]

What's the white cord around the

is it illegal or legal?
6 1t flegal orfega guy on the left? Answer: 'earbud’

Hateful memes

. Please tell me if the
Please tell me if the above text and image is
~ above text and image a hateful speech or not
is a hateful speech or not ? Answer: No.
?

[ Visual Caption }

Provide a one-sentence caption
for the provided image.

Provide a one-sentence
caption for the provided
image. Answer: A man with
a red beard and mustache
is smiling and wearing a hat
crocheted with green yarn
and Miller beer cans.

[ Visual Caption Restoration J

_ What is the covered
What is the covered texts in the image?

texts in the image? Please restore the

Please restore the covered texts without
covered texts without outputting the

outputting the explanations.
explanations. Answer: 'transport of
cargo by air', 'Some
cargo airlines are
divisions'

Figure 7: Cases of multimodal demonstration retrieval
in different tasks.
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Figure 8: The attention map of image tokens to the pooling tokens. We use the attention scores in the first head of
the first layer.
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