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Abstract

Recently, multimodal in-context learning (ICL)001
has made significant progress, showing impres-002
sive performance across various tasks. Existing003
works demonstrate that demonstration selec-004
tion have a big influence on the effectiveness005
of multimodal ICL. However, these methods006
focus on extracting visual features and textual007
features from multimodal examples indepen-008
dently and use them for demonstration retrieval.009
The influence of multimodal embedding meth-010
ods for ICL demonstration selection is not fully011
understood. Besides current mulitmodal ICL012
demonstration retrieval methods are mainly un-013
supervised, hindering adaptation to specific014
features of different tasks. To address these015
challenges, we firstly compare the modality-016
independent and modality-integrated encoders017
in representing multimodal examples. Then we018
introduce MeCO, a supervised training pipeline019
for multimodal ICL demonstration retriever, co-020
operating multiple encoders to mitigate their021
inherent bias and enhance adaptation to spe-022
cific tasks. Experiments across a wide range023
of multimodal tasks and MLLMs demonstrate024
that modality-integrated retrievers show superi-025
ority over modality-independent retrievers and026
our supervised training pipeline significantly027
improve the performance of multimodal ICL028
demonstration retrievers which benefit MLLMs029
on various tasks.030

1 Introduction031

Recently, multimodal large language models032

(MLLMs) enable visual understanding and reason-033

ing on complex multimodal tasks (Zhao et al., 2024;034

Li et al., 2022, 2023b; Liu et al., 2023; Chen et al.,035

2024b). These models also exhibit in-context learn-036

ing ability, which has been shown to be largely in-037

fluenced by the selected in-context learning demon-038

stration examples (Awadalla et al., 2023; Bai et al.,039

2023; Qin et al., 2024). In LLMs, a series of studies040

have focused on demonstration retrieval, exploring041

"What is the covered texts in
the image? Please restore the
covered texts without
outputting the explanations."

"What is the covered texts in the
image? Please restore the covered

texts without outputting the
explanations."Answer: 

Far Hills is a borough in 
Somerset County

"What is the covered texts in the
image? Please restore the

covered texts without outputting
the explanations."Answer:

Hampton is an unincorporated 
community and

one-shot output with unsupervised retriever: New Oxford is a designated place in Adams 
one-shot output with supervised retriever: New Oxford is a borough in Adams

 test example demonstration example retrieved
by unsupervised retriever

 demonstration example retrieved
 by supervised retriever

Figure 1: Comparison of ICL demonstration retrieval
results with supervised and unsupervised retriever.

how to select the optimal examples from the train- 042

ing set for in-context learning (Rubin et al., 2022; 043

Wang et al., 2024a; Li et al., 2023c; Zhang et al., 044

2023; Qin et al., 2024). In MLLMs, some works 045

study the influence of textual and visual modalities 046

in demonstration selection (Wu et al., 2024a; Jia 047

et al., 2021; Chen et al., 2024a; Luo et al., 2024b). 048

However, current demonstration retrieval for 049

MLLMs has two main challenges. First, existing 050

works employ modality-independent retrievers to 051

extract visual and textual features separately for 052

demonstration selection, which hinders the estab- 053

lishment of fused representations for multimodal 054

examples. Recent multimodal embedding methods 055

based on Vision-Language Models (VLMs) pro- 056

vide new possibilities for demonstration retrieval, 057

warranting further investigation. Second, existing 058

mulitmodal in-context learning demonstration re- 059

trieval methods are mainly unsupervised, hindering 060

adaption to specific features of different tasks (Qin 061

et al., 2024). Figure 1 demonstrates a case of Vi- 062

sual Caption Restoration (VCR) which involves 063

restoring masked text in images, where the visual 064

elements merely provide supporting context. Given 065

the nature of the task, the retriever should prioritize 066

textual elements within the images over visual fea- 067
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tures. In this example, the demonstration retrieved068

by unsupervised retriever focus on providing sim-069

ilar visual part, which fails to function as a good070

one-shot example. In contrast, the demonstration071

retrieved by supervised retriever contains similar072

textual parts to the test example, thereby enabling073

the model to generate the correct response.074

To address these two challenges, this paper ex-075

amines the impact of multimodal encoders on mul-076

timodal in-context learning demonstration retrieval077

and proposes a supervised training pipeline for078

multimodal demonstration retrievers. For multi-079

modal demonstration embedding, we compare two080

methods for embedding multimodal demonstra-081

tions: the modality-independent encoder which082

treats the text and visual components separately and083

the modality-integrated encoder which integrates084

different modalities into a deeply fused represen-085

tation. For supervised demonstration retriever086

training, we propose a Multi-encoder Collabora-087

tive Optimization pipeline (MeCO). Typical su-088

pervised demonstration retriever training pipeline089

for large language models involves generating a090

demonstration candidate set, scoring this candidate091

set, and subsequently training the retriever through092

contrastive learning. MeCO leverages the varied re-093

call results of different encoders to provide a high-094

quality set of positive candidates. Our pipeline095

mitigates the potential bias on candidates selection096

brought by single-way candidate recall, enabling097

the encoders to learn from each other.098

We conduct experiments on a wide range of mul-099

timodal tasks and MLLMs. Experiments show that100

the modality-integrated retrievers trained with the101

MeCO pipeline significantly improve the perfor-102

mance of MLLMs in multiple tasks. We summarize103

the contribution of this as follows.104

(1) We comprehensively evaluate the perfor-105

mance of modality-independent retriever ver-106

sus modality-integrated retriever in demonstra-107

tion retrieval for multimodal in-context learn-108

ing. Modality-integrated retrievers outper-109

form modality-integreated retriever, especially110

on the challenging tasks. Moreover, modality-111

independent retriever tends to learn spurious fea-112

tures during supervised training while modality-113

integrated retrievers are more robust.114

(2) We propose Multi-encoder Collaborative Opti-115

mization (MeCO), a supervised in-context learning116

demonstration retrieval method for MLLMs, which117

cooperates multiple encoders to mitigate their inher-118

ent bias and enhance adaptation to specific tasks.119

2 Related Works 120

2.1 Multimodal In-Context Learning 121

In-context learning, a crucial capability of LLMs, 122

is also considered as important for MLLM. A series 123

of MLLMs successfully inherit in-context learning 124

capabilities by employing various techniques dur- 125

ing pre-training and fine-tuning stage (Huang et al., 126

2023; Laurençon et al., 2024; Bai et al., 2023). 127

These techniques include constructing interleaved 128

image-text training data and instruction tuning (Li 129

et al., 2023a), multi-turn curriculum-based learn- 130

ing methodology with effective data mixes (Doveh 131

et al., 2024), and compacting the latent space of 132

visual prompts (Gao et al., 2024). Recently Qin 133

et al. (2024) propose a general analysis of the un- 134

derlying factors affecting the effectiveness of mul- 135

timodal in-context learning, including multimodal 136

demonstration retrieval, intra-demonstration order- 137

ing, and the introductory instructions in prompts. 138

Our work differs from Qin et al. (2024) by focus- 139

ing on harnessing demonstration retrieval to boost 140

multimodal in-context learning and propose a su- 141

pervised training pipeline . 142

2.2 Demonstration Retrieval 143

Existing studies have witnessed the huge impact 144

of in-context examples selection on LLMs’ perfor- 145

mance (Liu et al., 2022; Luo et al., 2024a; Agrawal 146

et al., 2023). A line of studies then focused on 147

finding good in-context examples by representing 148

examples with dense encoder and choosing the se- 149

mantically similar ones (Rubin et al., 2022; Li et al., 150

2023c; Liu et al., 2022). Rubin et al. (2022) use 151

unsupervised encoder to get candidates and then 152

generate training data by scoring them to train a su- 153

pervised demonstration retriever. A series of works 154

follows Rubin et al. (2022), such as proposing a 155

unified demonstration retriever and expanding this 156

procedure to visual in-context learning (Li et al., 157

2023c; Liu et al., 2022; Wang et al., 2024a; Luo 158

et al., 2024b). In this paper, we adapt this training 159

pipeline in the realm of multimodal tasks to boost 160

the performance of MLLMs. 161

3 Method 162

3.1 Problem Definition 163

The goal of multimodal in-context learning demon- 164

stration retrieval is to retrieve the most suitable ex- 165

amples from the training set D to construct the in- 166

context learning prompt P = {(xi, yi)}mi=1 ⊆ D, 167
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Figure 2: Multimodal demonstration embedding meth-
ods.

for a given test example xq. We formulate this168

problem in the context of multimodal task as:169

(xI , xT ) = arg max
(xI

n,x
T
n )∈D

fθ((x
I
n, x

T
n ), (x

I
q , x

T
q )).

(1)170

where xI and xT represent respectively the visual171

part and textual part of the examples and fθ is the172

retrieval function parameterized by θ. In this work,173

we implement fθ as the cosine similarity of dense174

embeddings of the query and training examples.175

The two critical steps of a demonstration retrieval is176

(1) representing the multimodal examples as dense177

embeddings, incorporating information from both178

modalities, and (2) fine-tuning the representation179

space according to different tasks to explicitly opti-180

mize it for multimodal in-context learning.181

3.2 Mulitmodal Demonstration Embedding182

In this section, we compare two methods to rep-183

resent multimodal examples considering the two184

modalities as showed in Figure 2.185

The modality-independent embedding calculates186

the image embedding and text embedding with a187

CLIP-like encoder and concatenate the embedding188

together to get the multimodal example represen-189

tation. In this case, the embeddings of the two190

modalities are independent and final example simi-191

larity is equivalent to the sum of visual similarity192

and textual similarity as showed in Equation 2.193

Sim(Ei, Ej) = Sim([ET
i , E

I
i ], [E

T
j , E

I
j ])

= Sim(ET
i , E

T
j ) + Sim(EI

i , E
I
j ).(2)

194

The modality-integrated embedding aims to rep-195

resent the image, text, and the task instruction as196

an integrated embedding. As illustrated in Figure 2,197

we employ an embedding model based on a vision-198

language model. The entire example is structured199

into a template and then embedded using the last 200

token of the vision-language model, which is fol- 201

lowed by an output layer. The advantage of this 202

approach is that the image features and text fea- 203

tures are deeply integrated within the transformer 204

architecture, enabling better capture of cross-modal 205

relationships. Furthermore, this embedding model 206

can process input with various combinations of im- 207

ages and texts, thereby aligning the task description 208

to establish a task-specific embedding. 209

3.3 MeCO Pipeline 210

In this section, we present our MeCO pipeline to 211

jointly train multimodal in-context learning demon- 212

stration retrievers. We want to explicitly optimize 213

the demonstration retrievers so that the selected ex- 214

amples based on Equation 1 can maximize few-shot 215

performance of multimodal large language models. 216

In Section 3.3.1, we first introduce how to obtain 217

positive-negative example pairs for each query as 218

training data through the cooperation of multiple 219

encoders. Then, in Section 3.3.2, we describe how 220

to train the retrievers using this data. 221

3.3.1 Generating Training Data 222

Our evaluation of the two demonstration embed- 223

ding models indicates that both can enhance the 224

few-shot performance of multimodal large lan- 225

guage models. Notably, we observed a small over- 226

lap in their retrieval results, suggesting that dif- 227

ferent multimodal embedding models can identify 228

distinct, characteristic demonstrations. This finding 229

motivates us to conduct a multi-faceted candidates 230

recall process by integrating different demonstra- 231

tion embedding models to retrieve a diverse candi- 232

date set. This strategy facilitates mutual learning 233

among encoders and mitigates the inherent biases 234

in their demonstration selection process. 235

Specifically, for a given query from the training 236

set, we first utilize each unsupervised retriever to 237

recall a candidate set of demonstrations with the 238

top-k cosine-similarity scores relative to the query. 239

Then we combine these results and augment them 240

with randomly sampled examples from the training 241

set to increase diversity. 242

s(P) = log p(yq|P, xq). (3) 243
244

s(P) = metric(yq, GΘ(P, xq)). (4) 245

Subsequently, we evaluate all the demonstrations 246

in the candidate set using Equation 3 or 4 . xq and 247

yq in Equation 3 and 4 denote respectively the in- 248

put and ground truth of the query, P denotes the 249
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Figure 3: Overview of MeCO pipeline. ColQwen and VLM2Vec are modality-integrated retriever and CLIP is
modality-independent retriever.

one-shot example and GΘ represents the MLLM.250

The evaluation is performed by inputting the exam-251

ples into a proxy model, a smaller multimodal large252

language model. Equation 3 computes the score as253

the log-likelihood of generating the ground-truth254

when using the chosen example as a prompt, while255

Equation 4 directly decodes the answer and em-256

ploys the resulting task-specific metric as the score.257

Empirically, we find that score calculation using258

Equation 4 yields superior performance. This supe-259

riority can be attributed to its better alignment with260

the evaluation criteria of each task, particularly for261

text generation tasks where exact matching with262

the ground truth is not essential.263

Finally, we select the top-5 scoring examples as264

public positive examples. For each retriever we265

identify its hard negative examples by intersecting266

the set of bottom-5 scoring examples with the ex-267

amples retrieved by itself. This approach, which268

incorporates all unsupervised retrievers, allows us269

to construct a high-quality set of public positive270

examples and several personalized sets of hard neg-271

ative examples for each demonstration retriever.272

3.3.2 Contrastive Learning of Retrievers273

Now we have a supervised trainset for demonstra-274

tion retriever Dsup built from the original trainset275

D. For each example qi in the trainset D, we have276

a set a positive examples ξpos(i) and a set of hard277

negative examples ξneg(i)).278

Dsup = {(qi, ξpos(i), ξneg(i))|∀qi ∈ D}.279

We train the retriever with typical contrastive280

learning objective. For each training instance in a281

mini-batch of size B, we sample one positive exam-282

ple d+i from the positive set ξpos(i) and one hard283

negative d−i from the negative set ξneg(i), which284

consists the negative examples with the other B−1285

positive examples in the same min-batch. The final 286

contrastive loss is computed as: 287

ℓ = − log
exp(s(qi, d

+
i ))

exp(s(qi, d
−
i )) +

∑B
j=1,j ̸=i exp(s(qi, d

+
j ))

.

(5) 288289

s(q, d) = Eθ(q)
TEθ(d)/τ. (6) 290

where we have the similarity of a query and a 291

demonstration is the inner-product of their embed- 292

dings scaled by a temperature τ . 293

4 Experimental Results 294

In this section we first comprehensively compare 295

the performance of different unsupervised mul- 296

timodal retrievers. Then we evaluate the per- 297

formance of supervised demonstration retrievers 298

trained with MeCO pipeline. 299

Dataset We conduct experiments on a series of 300

multimodal tasks including Visual Question An- 301

swering (VQA), Visual Captioning, and Visual 302

Caption Restoration (VCR). 303

VQA We include three traditional VQA datasets, 304

Vizwiz (Gurari et al., 2018), OK-VQA (Marino 305

et al., 2019), and VQAv2 (Goyal et al., 2017), us- 306

ing BertScore as the metric. We also include Hate- 307

ful Memes (Kiela et al., 2020), which focuses on 308

detecting hateful speech in multimodal memes. We 309

use AUC-ROC as the metric. 310

Visual Caption We include Flickr30k (Young 311

et al., 2014) and use CIDEr as the metric. 312

Visual Caption Restoration VCR challenges 313

models to restore partially obscured text within im- 314

ages, leveraging pixel-level hints and contextual 315

cues from the image (Zhang et al., 2024). It in- 316

cludes two languages, English (VCR-en) and Chi- 317

nese (VCR-zh). VCR-zh poses greater challenges 318

due to the complexity of Chinese character. For 319
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VizWiz VQAv2 OK-VQA VCR-en VCR-zh Flickr30k Hateful avg

Qwen2-VL
-7B

Zero-shot 62.4 89.5 67.6 76.5 60.3 79.5 66.0 71.7
Random 62.8 90.5 70.8 83.2 63.7 82.6 66.9 74.4
CLIP-ViT 66.4 91.0 70.9 84.2 69.9 81.2 71.3 76.4
VLM2Vec 66.8 91.0 71.2 84.9 – 80.7 70.2 77.5
ColQwen 66.6 91.8 71.0 85.0 76.9 80.8 70.9 77.6

DeepSeek
-VL2-7B

Zero-shot 52.8 75.6 70.9 41.3 0.0 54.5 62.1 51.0
Random 54.9 73.8 73.6 40.9 15.3 57.3 62.2 54.0
CLIP-ViT 60.6 78.4 74.3 48.5 30.2 60.4 64.7 59.6
VLM2Vec 59.9 82.4 74.5 47.3 – 61.4 64.9 65.1
ColQwen 59.5 81.1 75.0 50.9 50.4 61.8 65.5 63.5

Claude3.5
-Sonnet

Zero-shot 30.0 58.8 31.7 61.6 0.04 25.8 73.9 40.3
Random 40.8 79.9 50.4 68.3 0.06 35.8 73.7 49.9
CLIP-ViT 46.2 80.2 51.9 71.9 27.2 35.1 76.2 55.5
VLM2Vec 46.6 81.1 53.1 74.2 – 34.7 76.9 61.1
ColQwen 45.3 81.2 53.0 74.6 48.4 34.0 75.6 58.9

GPT4o
-0513

Zero-shot 51.0 67.6 42.4 78.2 11.1 47.7 75.6 53.4
Random 55.5 85.5 59.8 83.8 17.5 57.4 75.6 62.2
CLIP-ViT 55.7 86.1 61.0 84.1 35.3 55.4 77.3 65.0
VLM2Vec 56.4 86.8 63.8 84.8 – 56.0 77.6 70.9
ColQwen 56.1 86.8 62.3 84.8 50.4 55.0 77.3 67.5

Table 1: Zero-shot and in-context learning performance of MLLMs with different unsupervised demonstration
retrievers. The VLM2Vec model does not support Chinese, so we mask its performance on VCR-zh.

this visual cloze task, we use exact match accuracy320

as the metric.321

Retrievers and Models We conduct experiments322

with one modality-independent retriever based on323

CLIP-ViT-Large (Radford et al., 2021), and two324

modality-integrated retrievers VLM2Vec (Jiang325

et al., 2024) and ColQwen (Faysse et al., 2024).326

VLM2Vec process any combination of images, text327

and task description to generate an embedding us-328

ing the final token’s hidden state from a vision-329

language model. ColQwen leverages contextual-330

ized embeddings from Qwen2-VL along with a late331

interaction matching mechanism for visual docu-332

ment retrieval. We assess the performance of these333

retrievers across various multimodal large language334

models, including both closed-source models (GPT-335

4o-0513 and Claude3.5-Sonnet) and open-source336

models (Qwen2-VL-7B (Wang et al., 2024b), and337

DeepSeek-VL2 (Wu et al., 2024b)).338

4.1 Unsupervised Retrieval Results339

Main results Table 1 shows that demonstrations340

retrieved by all three unsupervised retrievers signif-341

icantly enhance the model’s few-shot performance342

compared to randomly selected demonstrations.343

Meanwhile modality-integrated encoders outper-344

form modality-independent encoders in demon-345

stration retrieval capability. Specifically, Qwen2-346

VL achieves an average few-shot performance347

of 77.6 across all tasks using ColQwen-retrieved348

demonstrations, while the performance drops to 349

76.4 when using CLIP-ViT for retrieval. Notably, 350

the performance differential between these two re- 351

trieval approaches exhibits task-specific and model- 352

specific variations. 353

Analysis for different models Notably, the two 354

closed-source models demonstrate superior per- 355

formance on challenging tasks such as VCR and 356

Hateful Memes, which require sophisticated visual- 357

linguistic understanding and reasoning. However, 358

they show relatively lower performance compared 359

to open-source models on conventional tasks like 360

VQA and Visual Caption. This performance dis- 361

crepancy can be attributed to their tendency to gen- 362

erate more elaborate and nuanced responses, which 363

ironically becomes disadvantageous when handling 364

simpler tasks that require simple and straightfor- 365

ward answers. Nevertheless, this observation does 366

not affect our primary analysis, which focuses on 367

comparing the effectiveness of different demon- 368

stration retrieval strategies rather than conducting 369

cross-model evaluations. 370

Analysis for different tasks We find that the 371

impact of demonstration selection varies across 372

different tasks. For VQA tasks, demonstration 373

retrieval shows relatively small impact on model 374

performance, primarily because current VQA 375

datasets mainly evaluate basic image understand- 376

ing capabilities. In this context, demonstrations 377
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Figure 4: Left: The IoU of the retrieval results of differ-
ent demonstration encoders. Right: Exact match accu-
racy on vcr-en-hard in zero-shot and in-context learning
settings.

primarily serve to regularize responses into concise378

phrases, particularly for closed-source models, an379

effect achievable even with random demonstrations.380

In contrast, demonstration selection significantly381

impacts model performance on Visual Caption382

Restoration (VCR) and Hateful Memes tasks.383

These tasks pose substantial challenges, requiring384

models to process pixel-level details and perform385

complex visual-linguistic reasoning. For such chal-386

lenging tasks, modality-integrated retrievers con-387

sistently outperform their modality-independent388

counterparts in demonstration selection, leading389

to notable performance improvements. For im-390

age caption tasks, our experiments reveal that re-391

trieved demonstrations prove less effective than392

randomly selected samples for in-context learn-393

ing. This observation aligns with Yang et al. (2023),394

who found that visually similar images may not pro-395

vide optimal demonstrations and could potentially396

interfere with the generation of accurate descrip-397

tions for the target image.398

The above analysis demonstrates that the criteria399

for effective demonstrations vary across different400

tasks, emphasizing the importance of task-specific401

retriever optimization.402

Comparison of retrieval outcomes To compare403

the retrieval outcomes from the three multimodal re-404

trievers, we computed the Intersection over Union405

(IoU) of the top-k candidates recalled by each re-406

triever on VCR-en. As depicted in Figure 4, the407

three retrieval methods demonstrate limited overlap408

in their retrieval results, and the IoU drops to less409

than 0.15 when top-k is above 5. This indicates410

that each retriever identifies distinctive demon-411

strations for multimodal in-context learning.412

To assess the upper bound of retrieval effec-413

tiveness, we manually identify the most beneficial414

demonstration from the top-20 candidates retrieved415

by each retriever for each test example. Figure416

4 compares the performance on VCR-en under417

Viz. vcr-e. hate. Flickr.
Qwen2-VL-7B

Random 62.8 83.2 66.9 82.6
CLIP-ViT 66.7↑0.3 84.6↑0.4 70.4↓0.9 82.6↑1.4
VLM2Vec 67.4↑0.6 86.5↑1.6 71.2↑1.1 83.3↑2.6
ColQwen 67.3↑1.3 86.4↑1.4 71.8↑0.9 83.5↑2.7

DeepSeek-VL2

Random 55.5 40.9 62.1 57.3
CLIP-ViT 62.1↑1.5 51.9↑3.4 64.1↓0.6 62.6↑2.2
VLM2Vec 61.9↑2.0 52.9↑5.6 66.3↑1.4 62.0↑0.4
ColQwen 62.2↑2.7 55.6↑4.7 66.9↑1.4 64.0↑2.2

GPT4o-0513

Random 55.5 83.8 75.6 57.4
CLIP-ViT 56.1↑0.4 84.6↑0.5 78.0↑0.3 55.6↑0.2
VLM2Vec 56.7↑0.3 85.6↑0.8 78.3↑0.7 55.8↓0.2
ColQwen 56.8↑0.7 85.9↑1.1 77.2↓0.1 55.4↑0.4

Claude3.5-Sonnet

Random 45.8 68.3 73.7 35.8
CLIP-ViT 46.7↑0.5 73.3↑1.4 76.0↓0.2 35.4↑0.3
VLM2Vec 46.3↓0.3 73.7↓0.5 77.0↑0.1 36.4↑1.7
ColQwen 47.4↑1.9 75.4↑0.8 75.8↑0.2 35.7↑1.7

Table 2: Few-shot performance of multimodal large lan-
guage models with supervised demonstration retrievers.
The number ↑ indicates the performance improve-
ment from MeCO pipeline.

zero-shot and one-shot settings, contrasting results 418

between unsupervised retrieval and these manu- 419

ally selected optimal demonstrations. While mul- 420

timodal large language models show substantial 421

improvements with demonstrations from unsuper- 422

vised retrievers, there remains a considerable per- 423

formance gap between unsupervised retrieval 424

and the achievable upper bound. These findings 425

underscore the potential benefits of supervised re- 426

triever fine-tuning. 427

4.2 Supervised Retrieval Results (MeCO) 428

Setup We evaluate our supervised retrievers on 429

four tasks, Vizwiz, VCR, HatefulMemes and 430

Flickr30k. In our training pipeline, we employed 431

Qwen2-VL-2B as the proxy for Qwen2-VL-7B. 432

DeepSeek-VL served as its own proxy model 433

thanks to its efficient inference capabilities. For 434

the two closed source model, we opted for Qwen2- 435

VL-2B as the proxy model. More experimental 436

details are shown in the Appendix A.2. 437

Results Table 2 demonstrates that all three re- 438

trievers can benefit from our MeCO pipeline and 439

retrieve better prompts compared to unsupervised 440

ones. For image caption task, supervised retrievers 441

can lead to a performance boost of average 2.3 for 442
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Viz. vcr-e. hate. Flickr.
proxy: DeepSeek-VL2 (itself)

CLIP-ViT 62.1↑1.5 51.9↑3.4 64.1↓0.6 62.6↑2.2
VLM2Vec 61.9↑2.0 52.9↑5.6 66.3↑1.4 62.0↑0.4
ColQwen 62.2↑2.7 55.6↑4.7 66.9↑1.4 64.0↑2.2

proxy: Qwen2-VL-2B

CLIP-ViT 61.9↑1.3 45.4↓3.1 64.8↑0.1 60.5↑0.1
VLM2Vec 60.4↑0.5 49.4↑2.1 65.1↑0.2 60.7↓0.7
ColQwen 61.6↑2.1 51.5↑0.6 65.3↓0.2 62.4↑0.6

Table 3: The impact of proxy model selection to MeCO
pipeline. We use DeepSeek-VL2 as the multimodal
large language model.

Qwen2-VL compared with unsupervised retrievers443

and outperforms random demonstrations.444

Results also indicate that supervised training445

demonstrates greater effectiveness for modality-446

integrated retrievers than for their modality-447

independent counterpart. Specifically, when tested448

with Deepseek2-VL, the modality-integrated re-449

trievers ColQwen and VLM2Vec show substantial450

improvements after MeCO training, achieving aver-451

age performance gains of 2.7 and 2.4 points respec-452

tively across all four tasks. Notably the modality-453

independent CLIP-ViT exhibits a smaller improve-454

ment of 1.6 points. Similar patterns are observed455

in experiments with Qwen2-VL. This stronger ben-456

efit from supervised training stems from modality-457

integrated retrievers’ capacity to generate unified458

representations that deeply fuse information from459

images, texts, and task descriptions. This compre-460

hensive multimodal fusion enables better under-461

standing of task-specific features during training,462

thus facilitating more effective fine-tuning.463

Influence of Proxy Model We find that the two464

closed-source model using Qwen2-VL-2B as proxy465

model can also benefit from the MeCO training466

pipeline, but performance gains are smaller than467

Qwen2-VL and DeepSeek-VL2. To study the in-468

fluence of proxy model selection to the MeCO469

training pipeline, we employ respectively Qwen2-470

VL-2B and DeepSeek-VL2 as the proxy model471

for DeepSeek-VL2 and compare the final few-shot472

learning performance. Table 3 reveals the impor-473

tance of using a proxy model with the same ar-474

chitecture in MeCO pipeline. When optimizing475

retrievers for DeepSeek-VL2, ColQwen achieves476

an average improvement of 2.8 points when trained477

with the same proxy model, while this improve-478

ment drops significantly to 0.8 points when using479

a different proxy model, Qwen2-VL-2B. This sub-480

Viz. vcr-e. hate. Flickr.
MeCO: multi-way candidate recall

CLIP-ViT 66.7↑0.3 84.6↑0.6 70.4↓0.9 82.6↑1.4
VLM2Vec 67.4↑0.6 86.5↑1.6 71.2↑1.1 83.3↑2.6
ColQwen 67.3↑1.3 86.4↑1.4 71.8↑0.9 83.5↑2.7

traditional EPR: single-way candidate recall

CLIP-ViT 65.9↓0.5 84.6↑0.6 70.5↓0.8 81.8↑0.6
VLM2Vec 67.0↑0.2 85.5↑0.6 70.8↑0.7 81.6↑0.9
ColQwen 67.1↑1.1 85.7↑0.7 71.2↑0.3 81.9↑0.7

Table 4: The influence of using MeCO. We use Qwen2-
VL as the multimodal large language model.

stantial performance gap arises from the architec- 481

tural differences between the models, as DeepSeek- 482

VL2 employs MoE architecture while Qwen2-VL 483

does not. 484

Multi-encoder Collaboration We conducted a 485

comparative analysis between retrievers trained 486

using our MeCO pipeline and those trained with 487

the traditional Efficient Prompt Retriever (EPR) 488

pipeline (Rubin et al., 2022). In the EPR approach, 489

each retriever independently recalls its candidate 490

set, which is then processed by the proxy model 491

to generate supervised training data. As shown 492

in Table 4, MeCO consistently improves the per- 493

formance across all three retrievers. Notably, on 494

the Flickr30k dataset, MeCO-trained retrievers out- 495

perform random demonstration selection, while 496

EPR-trained retrievers fail to surpass this baseline. 497

5 Further Analysis 498

5.1 Number of In-Context Examples 499

We investigate the relationship between the num- 500

ber of in-context learning examples and the per- 501

formance of multimodal large language models. 502

Specifically, we examine Qwen2-VL’s performance 503

on two distinct tasks: VCR-en and Flickr30k, uti- 504

lizing ColQwen as the multimodal retriever. The 505

results, as illustrated in Figure 6, reveal that the 506

impact of in-context learning examples varies sig- 507

nificantly across different tasks. For the VCR task, 508

we observe that one-shot yields already substantial 509

performance improvements, while additional exam- 510

ples showing small returns. In contrast, the Visual 511

Caption task demonstrates a consistent positive cor- 512

relation between performance and the number of 513

in-context learning examples, showing steady im- 514

provements as more examples are added. Notably, 515

our supervised retriever trained with our MeCO 516

pipeline effectively enhances few-shot performance 517
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Figure 5: The attention map of image tokens to the pooling tokens. We use the attention scores in the first head of
the first layer.
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Figure 6: Impact of in-context learning example number
with unsupervised retriever and supervised retriever.

across both tasks, maintaining its efficacy across518

varying numbers of in-context examples.519

5.2 How Supervised Training Affects520

Multimodal Embedding521

To better understand the differences between522

modality-independent and modality-integrated re-523

trievers, as well as their changes after MeCO train-524

ing, we present attention maps showing how image525

tokens attend to the pooling token in CLIP-ViT526

and VLM2Vec. ColQwen is excluded from this527

analysis as it employs a late interaction mechanism528

to compute the final embedding, rather than uti-529

lizing a pooling token. The example images are530

selected from the VCR-en dataset, where identify-531

ing demonstrations with similar visual characters532

(shown in the lower portion of the image) is crucial,533

while the background picture in the upper portion534

serves as contextual reference.535

As shown in Figure 8, the unsupervised CLIP-536

ViT retriever fails to allocate sufficient attention to537

visual characters in the image. After MeCO train-538

ing this region receives notably increased attention,539

which explains the model’s enhanced ability to540

identify relevant demonstrations for the VCR task.541

The second example demonstrates a failure case of 542

the CLIP retriever trained with MeCO, where CLIP- 543

ViT predominantly focuses on the white regions 544

of the image instead of the relevant visual charac- 545

ters. This case along with more examples presented 546

in the Appendix B.2 , suggests that the CLIP-ViT 547

retriever trained on VCR-en learns spurious correla- 548

tions by incorrectly attributing importance to white 549

areas (which happen to coincide with character re- 550

gions). This observation highlights a fundamental 551

limitation of modality-independent retriever: with- 552

out proper cross-modal fusion guided by natural 553

language task descriptions, they are more suscepti- 554

ble to learning spurious features during supervised 555

training in the MeCO pipeline. 556

In contrast, VLM2Vec demonstrates stronger at- 557

tention to character-containing regions even before 558

MeCO training, attributed to its unified represen- 559

tation that incorporates task descriptions from the 560

text input. The attention pattern remains relatively 561

consistent after MeCO training. 562

6 Conclusion 563

This study investigates demonstration retrieval 564

strategy for multimodal in-context learning. We 565

find that the modality-integrated retriever has su- 566

perior performance to the modality-independent 567

retriever. We also propose MeCO, the first multi- 568

modal in-context learning demonstration retriever 569

training pipeline, which make three retrievers to 570

jointly recall candidate set to optimize for different 571

tasks. Experiments show that the MeCO pipeline 572

significantly improve the in-context learning ex- 573

ample retrieval abilities of multimodal demonstra- 574

tion retrievers. We also visualize the differences 575

between the modality-independent and modality- 576

integrated retrievers. 577
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7 Limitations578

The proposed MeCO training pipeline in this paper579

relies on proxy models for scoring candidate sets,580

which is resource-intensive. This is especially true581

for closed-source models like GPT-4o, where uti-582

lizing the model itself as a proxy to label training583

samples incurs substantial costs. This issue is a584

common challenge for existing in-context learning585

demonstration retrieval training methods. Future586

research could explore in-context learning demon-587

stration retrieval approaches that do not depend on588

proxy model supervision, thereby reducing training589

costs.590
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A Experimental Details831

A.1 Dataset and Metrics832

To control computational costs, we sliced larger833

datasets into subsets to match our computational834

resource levels. For VQAv2, we take the first 2500835

examples in the original test set for evaluation. For836

VCR-en we use the official test subset of 500 exam-837

ples for evaluation and take the first 100k examples838

in the train set for in-context learning demonstra-839

tion retriever training. For the other datasets used840

in this paper, we use the original test set for evalua-841

tion and train set for the training of the in-context842

learning demonstration retriever. We report the843

statistics of dataset in Table 5.844

A.2 Training settings in MeCO845

We finetune CLIP-ViT-Large with learning rate of846

1e-4 and batch size of 256, ColQwen with LoRA847

tuning and a rank of 32, VLM2Vec with LoRA848

tuning and a rank of 16. The learning rate and849

batch size are respectively 1e-4 and 64 for both850

VLM2Vec and ColQwen. The experiments are851

conducted on Nvidia A800 80G.852

B Case Study 853

B.1 Multimodal In-Context Learning 854

Demonstration Retrieval for Different 855

Tasks 856

We give four examples of multimodal in-context 857

learning demonstrations for respectively VQA, 858

Hateful Memes, Visual Caption, and Visual Cap- 859

tion Restorations. We note that for modality- 860

independent retrievers, when the text input is only 861

the task description it is the same for the query 862

and doc and thus can not be used to demonstration 863

retrieval. 864

B.2 Attention Map of two Retrievers 865

We give more examples showcasing that CLIP-ViT 866

retriever trained on VCR-en and VCR-zh learns 867

spurious correlations by incorrectly attributing im- 868

portance to white areas, instead of (which happen 869

to coincide with character regions). In contrast, 870

VLM2Vec, a modality-integrated retriever can suc- 871

cessfully attribute more attention to the true char- 872

acter areas and retrieval better in-context learning 873

examples for multimodal large language models. 874
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split VizWiz VQAv2 OK-VQA VCR-en VCR-zh Flickr30k Hateful

support 20523 — — 100k — 130k 6744
test 4319 2500 70.8 500 500 5000 2408

Table 5: Statistics of the datasets.

12



query doc

Please tell me if the
above text and image

is a hateful speech or not
?

Please tell me if the
above text and image is
a hateful speech or not

? Answer: No.

Provide a one-sentence caption
for the provided image.

Provide a one-sentence
caption for the provided

image. Answer: A man with
a red beard and mustache

is smiling and wearing a hat
crocheted with green yarn

and Miller beer cans.

What is the covered
texts in the image?
Please restore the

covered texts without
outputting the
explanations.

What is the covered
texts in the image?
Please restore the

covered texts without
outputting the
explanations.

Answer: 'transport of
cargo by air', 'Some
cargo airlines are

divisions'

Hateful memes

Visual Caption

Visual Caption Restoration

VQA

is it illegal or legal? What's the white cord around the
guy on the left? Answer: 'earbud'

Figure 7: Cases of multimodal demonstration retrieval
in different tasks.
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Figure 8: The attention map of image tokens to the pooling tokens. We use the attention scores in the first head of
the first layer.
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