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ABSTRACT

Node classification in heterophilic graphs remains a challenging task, as connected
nodes often belong to different classes and exhibit heterogeneous features. The as-
sumption of homophily, which is typical in GNNs, encounters problems such as
oversmoothing and reduced separability and leads to low performance on dense
heterophilic benchmarks such as Squirrel and Chameleon. We therefore propose
a unified framework that improves feature representation, structural learning and
spectral aggregation. Our approach combines attention-based mechanisms to in-
tegrate local and global neighborhood information, spectral modulation to cap-
ture oscillatory node—edge patterns and edge augmentation inspired by structure
learning to refine graph connectivity. Extensive experiments demonstrate that our
model consistently offers robust and discriminative node embeddings and outper-
forms state-of-the-art methods on the task of node classification in dense graphs.

1 INTRODUCTION

Node classification in graphs is a fundamental task in machine learning, with applications in so-
cial networks, biological networks and recommendation systems (Kipf & Welling, [2017; |Velickovic
et al., 2018)). Traditional GNNs rely on the homophily assumption, which posits that neighboring
nodes share similar features or classes (Hamilton et al., [2017). While valid for many benchmarks,
this assumption fails in heterophilic graphs, where adjacent nodes often differ in class and fea-
tures (Yan et al.l [2021)), causing oversmoothing and reduced discriminative power (Li et al., 2018;
Li & et al., [2023).

Recent research has highlighted that effective graph learning in heterophilic settings requires ad-
dressing challenges across multiple dimensions: structural design, feature aggregation, representa-
tion learning, and spectral filtering. We group related approaches into four categories, each reflecting
a core strategy for graph representation learning.

Feature-driven models rely on explicit node attributes to reduce dependence on noisy graph struc-
tures, with architectures such as MixHop (Abu-El-Haija et al., 2019), LINKX (Lim et al.| [2021),
Graphformer (Ying et al.| 2021 and Gophormer (Yang et al.}2021)) exploring multi-hop feature mix-
ing, layer-wise feature transformation or attention-based fusion of local and global contexts. Self-
supervised contrastive learning reduces reliance on labels by maximizing agreement between posi-
tive pairs and pushing apart negatives (VelickoviC et al., 2019; [Hassani & Khasahmadi, [2020; |Qiu
et al., 2020), yielding discriminative embeddings. In heterophilic graphs, methods like HLCL (Yang
& Mirzasoleimanl, [2024), RGSL (Xie et al., [2024), HGIF (Ren et al.l 2024), Co-GSL (Liu et al.,
2021), SLAPS (Zheng et al.| [2021}), and GCC (Qiu et al., 2020) face hard negatives, where nodes
from different classes may appear similar, leading to misleading supervision. Graph Structure Learn-
ing (GSL) infers task-specific adjacency matrices with node representations when the graph is in-
complete or noisy (Wu & et al.,|[2023)). Methods such as FAGCN (Bo et al.| [2021]), Geom-GCN (Pei1
et al., [2020), LDS (Franceschi et al., 2019), PTDNet (Zhang et al.| [2020), and KDGA (Wu et al.,
2022) refine or augment edges. In heterophilic graphs, GSL must balance preserving informative

*We utilized ChatGPT to assist in text creation and refinement, support literature research and facilitate idea
generation and development.
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Figure 1: Our model GRIP first generates one-hop self-attention embeddings, which are subse-
quently processed by feature—spectral GCN layers to obtain multi-hop representations. These repre-
sentations are then fused through cross-attention to yield the final node embedding.
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edges with denoising spurious links. Spectral approaches analyze graph signals in the frequency do-
main to enhance node feature aggregation and filtering, with models such as GPR-GNN
[2020), att-Node-level NLSFs [2024), and APPNP (Klicpera et al., 2019) exploiting low- and
high-frequency components to improve expressivity. In heterophilic graphs, these methods must
carefully modulate oscillatory signals, as class information can be entangled with high-frequency
noise.

Contributions. We introduce a unified framework for node classification in heterophilic dense
graphs that integrates advances in feature learning, spectral aggregation and structure refinement
see fig.[I] First, similar to models as Graphformer 2021) and Gophormer (Yang et al.,
[2021)), our model enhances feature-based learning with attention: a hop-1 self-attention module
precedes the GCN layers to capture fine-grained local signals, while cross-attention after the GCN
layers fuses local and global representations.

Second, to provide embeddings with as much relevant information as possible from both nearby and
distant neighbors, the framework leverages local and global aggregation of feature- and spectral-
based neighborhood relationships. In particular, we incorporate a novel spectral approach to capture
oscillatory node—edge patterns. This spectral modulation extends beyond feature-only methods like
MixHop (Abu-El-Haija et al.l 2019) or LINKX (Lim et al., [2021), and it is related to frequency-
based approaches such as att-Node-level NLSFs (Lin, [2024).

Finally, inspired by structure learning, we adopt KDGA-style edge augmentation
to refine graph connectivity, preserving heterophilic links and strengthening meaningful structures.
The integration of these components yields strong performance on dense heterophilic benchmarks
like Squirrel and Chameleon, better exploiting heterophilic signals. Our model will be available on
GitHub upon acceptance.

2 RELATED WORK

In this section, we review related work most relevant to our model, focusing on three key areas
already outlined in the introduction: feature learning, structure learning, and spectral methods. Note
that contrastive learning approaches are not discussed here as they are not applied in our framework.

2.1 FEATURE LEARNING IN GRAPHS

Feature-based approaches in graphs can be grouped into two categories (Yuan et al.,[2023): the first
exploits distant neighbors to capture semantic similarity beyond immediate adjacency, while the

second adapts GNN architectures to handle heterogeneous neighbors more effectively.
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MixHop (Abu-El-Haija et al., 2019) aggregates multi-hop neighborhoods, and WRGAT (Suresh
et al., 2021) models long-range dependencies with adaptive edge weights. Transformer-inspired
models such as Graphormer (Ying et al.,|2021)) and Gophormer (Yang et al., 202 1)) encode structural
priors and global context. These methods leverage node attributes and multi-hop feature mixing,
often via attention, to fuse local and global information. While reducing reliance on noisy struc-
tures, capturing long-range dependencies remains difficult. The second category modifies GNNs
for heterogeneous neighbors. H2GCN (Zhul [2020) separates ego features from neighbors to miti-
gate oversmoothing, LINKX (Lim et al.l [2021)) disentangles feature and structural processing, and
GGCN (Yan et al., [2021) applies signed, weighted combinations of previous-layer representations.

Our approach aligns with the first category, integrating multi-hop information. Similar to
Transformer-based methods, we use attention to capture fine-grained neighborhood differences
while retaining GCN-style message passing. This hybrid combines attention expressivity with GCN
efficiency, enabling deeper inspection of node features and explicit fusion of local and global neigh-
bor information to capture short-, mid-, and long-range dependencies.

2.2  STRUCTURAL GRAPH LEARNING

Structural Graph Learning (GSL) addresses incomplete, noisy, or missing graph structures by jointly
learning task-specific adjacency matrices and node representations (Wu & et al.l [2023). GSL typ-
ically combines structure optimization with feature or label propagation, refining or augmenting
edges to capture relevant information (Bo et al., 2021} [Pei et al.| 2020} [Franceschi et al., 2019
Zhang et al., [2020; Wu et al., [2022). In heterophilic graphs, preserving informative edges while
denoising spurious links remains challenging.

GSL approaches fall into three groups. The first, classical adaptive structure modification, adds or
removes edges to improve information flow, e.g., FAGCN (Bo et al.l 2021) adjusts edge weights
via feature similarity, GEOM-GCN (Pei et al., 2020) selects neighbors in both original and latent
spaces, and IDGL (Chen et al.| 2020) iteratively optimizes the adjacency matrix. The second group,
distillation-based approaches, includes KDGA (Wu et al.} 2022), using a student—teacher strategy
to stabilize edge learning, and LDS (Franceschi et al.l 2019), which iteratively refines edges and
node representations probabilistically. The third group integrates structural refinement into features
or architecture. JK-Net (Xu et al., 2018) and ResNet+adj use aggregated representations or ResNet-
style skip connections to weight neighbor contributions and stabilize the graph.

Our method excels on dense graphs, so we enhance performance by adding edges to the learned
graph. Direct addition fails if the graph is unlearned or fully learned, making embeddings
hard to modify. We thus adopt KDGA, adding and removing edges during training and using
teacher—student distillation to improve connectivity and capture meaningful relationships.

2.3  SPECTRAL METHODS IN GRAPHS

Spectral graph theory underlies many graph learning methods by analyzing Laplacian eigenvalues
and eigenvectors, with eigenvectors forming a Fourier basis and eigenvalues representing frequen-
cies. Spectral GNNs use this to design filters controlling information flow and improve feature
aggregation (Klicpera et al., |2019). In heterophilic graphs, oscillatory components must be care-
fully modulated to separate class signals from high-frequency noise. We categorize spectral models
into three classes to clarify their designs.

The first category uses polynomial approximations of Laplacian eigenvalues for multi-hop aggre-
gation, e.g., ChebNet (Defferrard et al.| [2016) via Chebyshev polynomials. The second learns
task-specific spectral responses, e.g., APPNP (Klicpera et al., 2019) combining predictions with
personalized PageRank diffusion, and GPR-GNN (Chien et al., | 2020) learning polynomial coeffi-
cients to emphasize selected frequency bands. The third category incorporates attention, nonlinear
operations, or hybrid designs, e.g., Specformer (Bo et al.l [2023) and att-Node-level NLSFs (Lin,
2024]), exploiting both low- and high-frequency components to reduce oversmoothing and improve
expressivity.

Our model explicitly uses edge oscillation to modulate edge—feature relations, emphasizing mean-
ingful high-frequency differences while downweighting noisy connections. This spectral perspec-
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tive complements feature-based similarity measures, placing the model in the third category with
oscillation-aware, nonlinear modulation beyond standard polynomial filters.

3 FEATURE-SPECTRAL NEIGHBOUR PROPAGATION FRAMEWORK

3.1 PROBLEM FORMULATION

Let G = (V, E) be a graph with n nodes, where each node v; € V is associated with an input feature
vector z; € RY, collected in the feature matrix X € R"™*“, In the transductive setting, the graph
structure A € R™*" is fixed and used to learn improved node representations Z € R™*4" These
embeddings are then used to perform a downstream node-level task, such as (semi-)supervised node
classification. Graph convolution networks (GCNs) update node representations through iterative
message passing. At each layer ¢, a node v; aggregates messages from its neighbors N (v;) and
updates its representation based on the aggregated message and its previous representation according
to the update equations

m") = AGGREGATE {h{'™") | v; € N(v;)}

’ (M
and A{") = COMBINE® (h{""" m{"),

?

where hl(.t) denotes the representation of node v; at layer ¢. In general, a graph neural network
layer updates each node’s representation in two steps. First, the node aggregates messages from
its neighbors to form mz(-t), which encodes information about the local neighborhood. Second, the

node combines this aggregated message with its previous representation to produce the updated
embedding h"). The exact choice of aggregation and combination functions can vary between GCN

i
architectures. Some methods may incorporate attention mechanisms, normalization, or spectral
information, but the core principle remains the same: information flows from neighbors to the target

node through iterative message passing (Chen et al., [2020; |Yuan et al.| 2023)).

3.2 INITIAL ONE-HOP SELF-ATTENTION NODE EMBEDDINGS

Before performing standard GCN message passing, we first enhance each node’s initial embedding
by attending over its immediate neighbors. While standard GCNs aggregate neighbor features using
uniform or degree-normalized weights, self-attention computes a context-dependent weighting for
each neighbor in parallel. This enables the model to capture subtle differences between neighbors
and fine-grained relational patterns, which is especially important in heterophilic graphs (Velickovié
et al., 2018} |Yang et al., 2021).

Each node uses query @, key K, and value V, which are created from the raw node features via
simple linear projections, to compute attention over its neighbors. We include self-loops, meaning
that each node attends not only to its neighbors but also to itself; in other words, we use the extended
neighborhood N (i) = N (i) U {4}, see|Lampert & Scholtes (2023). Attention is then computated
by

QK
€ij = ——=,
" VFhidden
exp(e;;)
Q5 = 2
! Zke/\/”r(i) exp(e;k) @
and h, = Z a;;Vj.
JENT (1)

The raw attention score e;; measures the compatibility between node v; and its neighbor v;, with
Figden denoting the dimensionality of the hidden node embeddings. The normalized attention weight
;5 is obtained by applying a softmax over all neighbors in the extended neighborhood. This allows
the model to assign more importance to the most relevant neighbors while reducing the influence of
less informative ones.

Before passing node embeddings into the actual GCN layer, the original input h; from eq. is
replaced by these optimized embeddings /. In this way, one-hop self-attention refines the initial
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node representations, providing the GCN with richer and more informative features for subsequent
message passing. This preprocessing step can improve the ability of the GCN to capture subtle
differences between neighbors and model complex relational patterns in the graph.

3.3 FEATURE-SPECTRAL NEIGHBOUR PROPAGATION

After the one-hop self-attention step from section the refined embeddings h} serve as input to
the subsequent GCN-style layer. Each h;» denotes the optimized representation of neighbor node
v, obtained from the self-attention mechanism, which already captures context-dependent neighbor
relations. The goal of this layer is to provide wide neighborhood information, which can then be
selectively used through attention. To achieve this, we first compute feature-driven edge relations,
then measure spectral oscillations in the Laplacian space, and finally fuse both signals into a compact
and expressive representation. For each edge (i,j) € E, we compute a feature-driven attention
score (Chen & Chen| [2021) _

ef5' = MLP([Wh, || WhS]), 3)

where W is a linear projection and || denotes concatenation. In parallel, we compute a spectral term

K
e = Jo (Z Ak (uk,i — u,w-)Q) (4)
k=1

to measure how nodes differ in the Laplacian eigenbasis. Here, A are the eigenvalues and uy, ; are
components of the Laplacian eigenvectors. The eigenpairs (A, uy) are obtained from the graph
Laplacian L. Eigenvalues correspond to frequency scales of the graph, while eigenvectors encode
oscillation modes. Only the K leading eigenvectors of the Laplacian are used for the spectral term,
where K is manually set as a hyperparameter. Thus, ¢;"° quantifies how strongly two nodes oscillate
relative to each other in the spectral domain. This provides a structural signal complementary to the

feature-based similarity. The two signals e and ;> are then fused via modulation (Liu et al.,
2023a) ‘ |
eij = e;;*“ (14 tanh(ezgec)), )

where thg spectral signal acts only in a moderating way—it slightly amplifies e%‘“ depending on
spectral differences.

The final attention weights «;; are obtained by applying a softmax normalization over e;; across the
neighbors of 4, and the node update is then perfomed by

WY = " ay Wh + (L) (6)
JEN (@)

Here, the weighted sum aggregates neighbor embeddings according to their learned importance,
while the Laplacian diffusion term (Lh’); (Sahbi, 2021) corresponds to the COMBINE step from

1 1
Equation (2) in GCN layers. The graph Laplacian L is definedas L = I — D™ 2 AD™ 2, where A

is the adjacency matrix and D the degree matrix. The aim is to refine /) into hz(-t), producing richer
node representations that integrate both structural and spectral information.

3.4 MULTI-HOP CROSS-ATTENTION

The objective of our approach is to provide node embeddings with as much relevant information as
possible. To this end, the GCN layer is applied in two parallel streams: one executes the layer p times
to aggregate information up to p hops, capturing local structures, while the other applies it ¢ > p
times to integrate more distant neighbors, see fig. [I|for an illustration with p = 3, ¢ = 6. This design
avoids excessive dilution of p-hop features while still incorporating global context through g-hop
embeddings. The two representations are then fused via cross-attention, allowing local embeddings
to selectively integrate broader information. Together, the p- and g-hop embeddings yield balanced
representations that capture both local details and global context.

The integration of p-hop and ¢-hop embeddings is performed via a cross-attention mechanism. Let
HP,H? ¢ RY*P denote the node embeddings computed by the p-hop and g-hop GCN layers as
presented in Section 3.3. Linear projections are applied to obtain the query, key, and value vectors:
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the query vectors QP are derived from the p-hop embeddings H”, while the key K? and value
vectors V4 are derived from the g-hop embeddings HY.

The attention mechanism is designed to allow each node’s p-hop embedding to selectively incorpo-
rate information from the g-hop embeddings. First, the attention weight

P.(K4 T
o; = J(W) 7

of each node i is computed via the sigmoid function o(-). It balances the contribution of global
g-hop and local p-hop information, enabling each node to adaptively integrate both contexts. The
fused embeddings

HM =, VI+ (1 — a;)HY (8)
are then passed to the classification head for the downstream task of node classification (Liu et al.,
2025).

4 EVALUATION

4.1 EXPERIMENTAL SETTINGS

We conduct experiments on six real-world datasets. Three are homophilic (Cora, CiteSeer, PubMed)
and three are heterophilic (Chameleon, Squirrel, Actor), summarized in Table E} The homophilic
datasets are citation networks, while Chameleon and Squirrel are Wikipedia networks and Actor is
an actor co-occurrence network. We use widely adopted datasets for comparability with prior work,
avoiding very small or sparse graphs, since our model is designed for dense graphs emphasizing
neighborhood aggregation. We do not apply the Squirrel and Chameleon cleaning procedure sug-
gested in [Platonov et al.| (2023), since this procedure is less commonly used and in our view and
nodes with identical neighbors can legitimately have different features (Yuan et al., 2023} Sen et al.,
2008 [Pei et al., [2020).

Table 1: Dataset statistics

Dataset Nodes Edges Features Classes
Chameleon 2,277 36,051 2,325 5
Squirrel 5,201 216,933 2,089 5
Actor 7,600 29,926 932 5
Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3

For the experiments presented in Section 4.2, we adopt commonly used variants of data splits.
Specifically, for homophilic datasets, we follow the standard protocol of selecting 20 nodes per class
for training, and randomly assigning 500 nodes for validation and 1000 nodes for testing (Chien
et al., 2021bj |Lin, 2024; Kipf & Welling, |2016). This setup aligns with the typical splits employed
in the literature. For heterophilic graphs, we use a split of 48% training, 32% validation, and 20%
test nodes (Liu et al.l [2023bj |Yuan et al.,|2023), although some works report alternative splits such
as 60%/20%/20% (Chien et al.| 2021a).

To ensure robust evaluation, we generate 10 random splits per dataset and report performance
using the 95% confidence interval (Lin, [2024), noting where other studies report standard devia-
tion instead (Yuan et al.l 2023). To assess generalization, we perform additional experiments on
similarly dense but smaller graphs (2.5% train, 2.5% validation, 95% test nodes) for heterophilic
datasets (Chien et al., [2021a}; [Lin} [2024); this is not done for homophilic datasets due to the limited
training nodes per class.

For all splits, a new model, trainer, and optimizer are initialized. We employ GRIP with input
dimension equal to the number of node features, output dimension equal to the number of classes,
hidden dimension 64, three p-hop layers, and six g-hop layers (Section 3.4). A dropout rate of 0.1 is
applied, with Adam optimizer (learning rate 0.01, weight decay 5 x 10~*), and the loss function is
cross-entropy loss for classification. For spectral information, we select at most k& = 32 Laplacian
eigenvectors to provide a compact spectral representation.
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4.2 EDGE AUGMENTATION VIA GRAPH STRUCTURE LEARNING

Since GRIP shows strong performance on edge-centric tasks, we extend it to GRIPedge. GRIP is
first trained until convergence, after which we adopt the teacher—student framework of [Wu et al.
(2022). Here, the student continues training on an augmented graph, learning jointly from the
teacher’s predictions and its own objective to improve generalization. Initialized with GRIP weights,
the student produces embeddings H°" from Eq. 11. We denote Z = H°", which are then passed
to a multi-view edge scorer. Given embeddings Z € RV*?, edge scores combine similarity and
difference terms:

S=0(ZWAiZ" + (Zi — Z;)Wa,(Z; — Z;))), )

with learnable W1, W5 € R%*? and sigmoid o(-). Edges are dropped from the original Graph G
with probability pgrop, While new ones are sampled from the top-k candidates of S with probability
Padd- The final adjacency is a convex combination:

AY =0, G+ (1—y) S, (10)

where «; decreases linearly from oy t0 aeng. Early epochs thus rely primarily on G, while later
epochs progressively incorporate more augmented edges. The student minimizes a cross-entropy
classification loss with additional distillation and regularization:

L = Log + MT? KL (softmax (%) || softmax(2)) + Aeg AV 1%, (11)

where zg, z; are student and teacher logits, 7" is the distillation temperature, and \; balances the
distillation contribution. Here, [|A® || denotes the Frobenius norm of the adjacency, encouraging
sparsity, and ); is linearly annealed from Aggseare (Strong teacher guidance at early epochs) to Axqend
(greater reliance on the student at later epochs).

We adopt hidden dimension 64, with edge dropout pgrop = 0.1, learning rate 0.002 and allow up
to k = 8 candidate edges to be added with probability p,qg = 0.5. Graph mixing gradually shifts
from ase = 0.9 to aeng = 0.5, while the distillation weight decreases from Agggarr = 1.0 to
Akdend = 0.2 with T' = 2.0. Finally, the regularization term A, = 0.1 promotes sparsity in the
learned adjacency. GRIPedge follows the experimental setup described in Section 4.1, but for each
split we report the maximum accuracy obtained from either the teacher (GRIP) or the student, as the
teacher occasionally achieves better performance.

4.3 EXPERIMENTAL RESULTS

Our model is evaluated and compared with a range of baseline methods, whose results are taken
from five studies examining semi-supervised node classification accuracy (%) on heterophilic and
homophilic datasets (Chien et al.| 2021a; Zhu, [2020; |Yuan et al., 2023} |Linl [2024} |L1u et al.| 2025)).
From these five papers, we select a subset of models, focusing primarily on those that perform well
on heterophilic graphs and ensuring that there are methods in each of the following groups. Feature-
based methods (Group 1), including GAT (Velickovic et al., 2017), MLP, WRGAT (Suresh et al.,
2021)), H2GCN (Zhu, 2020), GraphSAGE (Hamilton et al.,[2017), and MixHop (Abu-El-Haija et al.,
2019)), rely on explicit node features without directly leveraging the graph structure. Contrastive
learning approaches (Group 2) such as MVGRL (Hassani & Khasahmadi, [2020), NWR-GAE (Tang
et al} 2022)), GREET (Liu et al.l 2023b), and MUSE (Yuan et al.l 2023)) employ self-supervised
learning to obtain robust node embeddings by maximizing similarities and differences between node
pairs. Graph structure learning methods (Group 3), for example ResNet+adj, FAGCN (Bo et al.|
2021)), GEOM-GCN (Pei et al.| 2020), HDP (Zheng et al.,[2025), and AFMF (Liu et al.| 2025)), aim
to learn or refine the graph structure itself to improve node representations and classification per-
formance. Finally, spectral methods (Group 4), including Cheby+JK (Zhu, 2020), GCN+JK (Zhu,
2020), GCN (Kipf & Welling, [2016), FSGNN (Maurya et al.| 2022)), GIoGNN (Li et al.,[2022), and
att-Node-level NLSFs (Lin, [2024), analyze the graph in the frequency domain to efficiently aggre-
gate and transform node features. This grouping highlights the primary strategy employed by each
method within the context of graph representation learning.

From table [2| feature-based methods generally perform best on homophilic graphs, while spectral
approaches achieve higher accuracy on heterophilic graphs. Many methods show dataset-specific
strengths, though exceptions exist, such as NLSF (Linl [2024), which performs consistently well
across all datasets.
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Table 2: Node classification mean accuracy (%) on heterophilic and homophilic datasets; * = stan-
dard deviation, otherwise 95% confidence interval. See text for the grouping of the methods. Our
method outperforms all other methods on two of the three heterohilic datasets.

heterophilic homophilic
Method Group | Chameleon Squirrel Actor Cora Citeseer PubMed
GAT 1 56.38+2.2%  32.09+3.3*  28.06+1.5% 81.9+£0.9* 70.7£1.1% 80.1£0.6*
MLP 1 46.91+£2.2* 29.284+1.3*  35.66+0.9* 56.1£0.3* 56.9+£0.4" 71.4£0.1%
WRGAT 1 65.24+0.9*  48.85+0.8*  36.53+0.8" 88.2+2.3" 76.8£1.9* 88.5+£0.9*
H2GCN 1 59.394£2.0*  37.90+2.0*  35.86+1.0* 87.8+£1.4* 77.1£1.6" 89.6+0.3"
GraphSAGE 1 58.73£1.7*  41.61+0.7*  34.23£1.0* 86.9+1.0" 76.0£1.3" 88.5+0.5"
MixHop 1 60.50+2.5* 43.80+1.5*  32.2242.3* | Nodata/split Nodata/split No data/ split
MVGRL 2 51.07£2.7%  3547%+1.3*  30.02+0.7* 83.0+0.3* 72.8£0.5% 79.6+0.4*
NWR-GAE 2 72.04+£2.6* 64.81+1.8  30.17+0.2* 83.6+1.6" 71.5£2.4* 83.4+0.9*
GREET 2 63.64+1.3*  42.29+1.4*  36.55+1.0* 83.8+£0.9* 73.1£0.8* 80.3£1.0*
MUSE 2 72.37+£2.2*  54.19+3.0*  38.55+1.3* 82.2+0.4* 71.1£0.4* 82.9+0.6"
ResNet+adj 3 71.1+£2.2 65.5+1.6  Nodata/split | No data/split No data/split No data/ split
FAGCN 3 64.2+2.0 47.6+£1.9  Nodata/split | No data/split No data/split No data / split
GEOM-GCN 3 60.9 38.1 31.6 20.4+£1.1 20.3£0.9 58.2+1.2
HDP 3 71.6+£2.5* 62.1+£1.6* 37.3+0.7* No data/ split No data/split No data / split
AFMF 3 78.2+£1.2*  72.06+1.6* 35.440.7* No data/ split No data/split No data / split
Cheby+JK 4 63.8+2.3" 45.0£1.7F 35.1+1.4% No data/split No data/split No data / split
GCN+JK 4 63.4+£2.0* 40.5£1.6* 34.2+0.9* No data/split No data/split No data / split
GCN 4 59.63£2.3*  36.284+1.5*  30.83+0.8" 81.9+0.9 70.7£1.1 80.1+0.6
FSGNN 4 77.9+0.5 68.9+1.7  Nodata/split | No data/split No data/split No data/ split
GloGNN 4 70.0+2.1 61.242.0  Nodata/split | No data/split No data/split No data/ split
NLSFs 4 79.8£1.2 68.2+£1.9  No data/ split 85.4+1.8 75.4+0.8 82.2+1.2
GRIP 1 79.6£1.1 73.2£0.6 29.1£0.6 752+14 63.1+1.4 68.4+3.4
GRIPedge 1 79.9+1.7 73.7£1.5 29.2+0.5 75.6+1.2 63.4+1.1 68.8+2.4

The GRIPedge model achieves higher performance than state-of-the-art methods on dense het-
erophilic datasets. Its performance, however, decreases rapidly on graphs with less neighborhood
information. Notably, GRIPedge performs worse on the on more sparse datasets. This behavior can
be attributed to the GRIP architecture: its attention mechanisms are most effective on datasets with
rich neighborhood information. In contrast, other approaches, such as NLSF, which focus more on
mathematically optimized usage of the GCN layers themselves, generally perform better on smaller
datasets and sparser graphs.

Table 3: Node classification accuracy (%); values show mean + 95% confidence interval (CI).

Model Group | Chameleon Squirrel Actor

GAT 1 42.19+1.3  28.21+09 29.46+0.9
GraphSAGE 1 41.924+0.7 27.64+2.1 30.85+1.8
ChebNetll 4 46.37+3.1 34.40+1.1 33.48%1.2
JacobiConv 4 49.66+1.9 33.65+0.8 34.61+0.7
Specformer 4 49.79+1.2 3824409 34.12+0.6
OptBasisGNN 4 47.12424  37.66+1.1 34.84+1.3
NLSFs 4 50.58+1.3 38.39+0.9 35.13+1.0
GRIP 1 45.18+1.9 34.45+0.8 24.66£0.5
GRIPedge 1 45.4942.1 35.394+0.7 24.76+0.5

4.4 GENERALIZATION AND ROBUSTNESS UNDER GRAPH SPARSIFICATION

In many real-world scenarios, labeled data is limited. We evaluate GRIPedge on a strongly reduced
dataset using the 2.5/2.5/95 split from Section 4.1, with baseline results taken from |Lin| (2024)
and Table [2] shows that spectral methods generally perform best on heterophilic datasets. While
GRIPedge does not top the rankings, it remains relatively stable on denser heterophilic graphs like
Squirrel and Chameleon, demonstrating robustness even with very few labels, see table[3]

This is also illustrated in fig. [2] where, based on the 48/32/20 split, we halve the number of edges
in 6 random splits and reduce the number of nodes by 25% in 10 random splits. In both scenar-
i0s, GRIP.qe. shows robustness on the Squirrel and Chameleon datasets. For the Actor dataset,
there are few edges, providing neighborhood information and the existing connections do not ade-
quately reflect the graph structure, which impairs classification performance. Notably, Actor even
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Figure 2: Robustness under Node and Edge Sparsification

benefits from having fewer edges, as removing uninformative connections can improve node classi-
fication (Ye & Ji,2019; [Kohn et al.,[2024)). This highlights that GRIPedge is most effective on dense,
informative graphs, while performance drops when the graph lacks sufficient structural information.

4.5 ABLATION STUDIES

In the following, we aim to evaluate the individual mechanisms of the GRIP model and investi-
gate their impact on its overall performance. As discussed in the previous sections, the two main
mechanisms are the use of attention mechanisms and the extension of neighborhood information
through spectral modulation combined with the p-/q-hop layer architecture. Within the framework
of the ablation studies, we remove three components individually from the model under otherwise
identical conditions: GRIP_linear replaces the 1-hop neighborhood attention before applying the
GCN layers with a simple linear projection, GRIP_p_hop removes the use of cross-attention with
the ¢-hop layer output so that only the p-hop neighbor information is used, and GRIP _feature omits
the spectral modulation of the feature-based edge relations attention.

Results show that all three mechanisms improve performance by 1-5%, with the strongest gains from
self-attention; for dense graphs like Squirrel and Chameleon, attention enhances neighborhood ag-
gregation, whereas for Actor, edges contribute little to informative neighborhood features, and even
without attention slightly better results are obtained (cf. Section 4.4). This analysis is conducted on
the three heterophilic datasets using the 48/32/20 splits described in Section 4.1, see table[d]

Table 4: Accuracy on GRIP ablation (mean + 95% CI)
Model Chameleon Squirrel Actor
GRIP_linear 76.7+1.6 67.3+1.3 31.6+0.6
GRIP_p_hop 77.2+0.9 69.9+0.8 28.1£0.5
GRIP_feature 78.5+0.7 72.44+0.7 29.0+0.5
GRIP 79.6+1.1 73.240.6 29.1+0.6

5 CONCLUSION

We propose a unified framework for node classification in heterophilic graphs that integrates mul-
tiple complementary strategies. Combining attention mechanisms with classical GCN layers, our
model captures both local interactions and global neighborhood dependencies. Neighborhood aggre-
gation is enhanced via spectral oscillation modulation, retaining informative high-frequency signals
while filtering noise. To further strengthen graph representations, we adopt an edge augmentation
technique inspired by KDGA, preserving critical heterophilic links and improving structural robust-
ness. Experiments on dense heterophilic benchmarks such as Squirrel and Chameleon show that
our approach consistently outperforms state-of-the-art methods, producing more discriminative and
robust node embeddings. As a future direction, mathematically optimized spectral methods like att-
Node-level NLSFs, which leverage symmetries to reduce complexity and enhance generalization,
could serve as a core component. Extending these with task-specific mechanisms, such as feature-
based attention, may further improve performance on challenging dense heterophilic graphs and
advance broadly effective graph learning models.
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