Under review as a conference paper at ICLR 2025

SHUFFLEMTM: LEARNING CROSS-CHANNEL DEPEN-
DENCE IN MULTIVARIATE TIME SERIES FROM SHUF-
FLED PATCHES

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked time-series modeling has widely gained attention as a self-supervised
pre-training method for multivariate time series (MTS). Recent studies adopt a
channel-independent (CI) strategy to enhance the temporal modeling capacity.
Despite the effectiveness and performance of this strategy, the CI methods inher-
ently overlook cross-channel dependence, which is inherent and crucial in MTS
data in various domains. To fill this gap, we propose ShuffleMTM, a simple yet
effective masked time-series modeling framework to learn cross-channel depen-
dence from shuffled patches. Technically, ShuffleMTM proposes to shuffle the
unmasked patches from masked series across different channels, positioned at
the same index. Then, Siamese encoders learn two views of masked patch rep-
resentations from original and shuffled masked series, simultaneously capturing
the temporal dependence within a channel as well as spatial dependence across
different channels. ShuffleMTM pre-trains the Siamese encoders to reconstruct
the original series by incorporating cross-channel information with intra-channel
cross-time information. Our proposed method consistently achieves superior per-
formance in various experiments, compared to advanced CI pre-training methods
and channel-dependent methods in both time series forecasting and classification
tasks.

1 INTRODUCTION

Time series analysis plays a significant role in various domains, including energy, traffic and
medicine. Significant amount of time series are collected from IoT sensors and wearable devices,
with the majority being multivariate time series (MTS) that contains multiple channels (a.k.a., vari-
ables). Due to the high cost of labeling for its indiscernible dependent structure, self-supervised pre-
training has gained increasing popularity for identifying useful time series representations through
pretext tasks on vast amounts of unlabeled data (Yue et al.,|2022; Dong et al.,2024b). Notably, con-
trastive learning and masked modeling have demonstrated the superior performance in time series
data, as well as in other fields like computer vision and natural language processing (Devlin et al.,
2018} [He et al., 2022} |Chen et al., [2020).

Masked time-series modeling (MTM) focuses on learning temporal dependency through the recon-
struction of masked segments based on the unmasked parts (Dong et al.|[2024a). Meanwhile, recent
MTMs have adopted the channel-independent (CI) strategy to strengthen the capability of modeling
temporal relationships within a channel (Nie et al.|, 2023). CI MTMs have significantly improved
the performance of various downstream tasks by concentrating on temporal patterns within each
channel through univariate encoding (Nie et al.|[2023}; |Lee et al.,[2024). However, while CI methods
separately learn cross-time dependency in each channel, their mechanism inherently overlooks the
dependence among channels in MTS: Separate processing of univariate series cannot incorporate
various interactions across channels, although these relationships might be implicitly reflected when
multiple channels are simultaneously optimized in a single iteration. As patterns of each channel
intricately influence each other (Zivot & Wangl [2006), neglecting the correlation among channels
produces sub-optimal performance in downstream tasks (Zhang & Yan|2023)). These analyses raised
an important question: how can we design a pre-training framework that effectively captures cross-
channel dependence while maintaining the effectiveness of the channel-independent strategy?

Under review as a conference paper at ICLR 2025

Reconstruction loss Encoder Reconstruction loss
i} shuffle(x) ey value)
—'[Encoder]7 shared p—

E0) x® auery x®

O

(a) Channel-independent MTM (b) ShuffleMTM

?

Figure 1: Comparison of channel-independent MTM and ShuffleMTM. (a) Channel-independent
MTM reconstructs the masked series (a channel) using its own series. (b) ShuffleMTM reconstructs
it integrating the representations of randomly shuffled masked series across channels. The gray cells
indicate the masked patches of the channel, and the green and pink cells represent patches shuffled
from other channels.

To fill the gap, we present ShuffleMTM, a simple yet effective self-supervised pre-training frame-
work for multivariate time series. Unlike previous methods that recover masked patches from un-
masked patches in the same channel (see Figure [I), ShuffleMTM proposes to randomly shuffle
unmasked patches along the channel from masked series, termed as “shuffled masked series”. Then,
ShuffleMTM utilizes patch-based Transformers as encoder and Siamese networks to take the original
and the shuffled masked series as inputs at each branch. With this simple shuffling mechanism and
Siamese networks, ShuffleMTM learns two views of masked patch representations, each leveraging
the temporal dependence between patches in the channel and spatial dependence between patches
from different channels. Then, a decoder that takes the original and shuffled views of representations
integrates these representations by utilizing cross-attention and self-attention mechanisms. Lastly,
ShuffleMTM recovers each channel of raw time series by leveraging cross-channel information from
shuffled patches.

Empowered by this design, ShufleMTM extends the channel-independent reconstruction task to ef-
ficiently capture both temporal dependence within a channel and spatial dependence across channels.
ShuffleMTM demonstrates state-of-the-art performance across various downstream tasks, including
time series forecasting and classification. The main contributions of our work are summarized as
follows:

* We identify and solve a problem in existing MTM methods: the channel-independent MTM
overlooks cross-channel dependence inherent in MTS data. To address this issue, we pro-
pose ShuffleMTM, a simple yet effective pre-training framework for MTS data to capture
complex spatial and temporal patterns.

* Specifically, ShufleMTM shuffles unmasked patches along the channel to allow the model
to attend to patches in other channels. In addition, ShuffleMTM leverages Siamese net-
works to encode both the original and shuffled masked series. This design extends the
channel-independent reconstruction task to capture both spatial and temporal dependen-
cies, representing the first technical contribution of MTM to learning cross-channel depen-
dencies within the channel-independent strategy.

» Experimentally, ShuffleMTM consistently achieves state-of-the-art performance in time
series forecasting and classification tasks. Ablation studies and further analyses show that
both the shuffling mechanism and the Siamese network architecture are effective. The
proposed ShuffleMTM is able to capture patch-level and channel-level dependencies, en-
hancing forecasting capacity and robustness compared to channel-independent MTM.

2 RELATED WORKS

Channel Independence. Channel-independent (CI) methods separately model each channel as a
univariate time series, while channel-dependent methods jointly model multiple channels. Without
explicitly considering interactions between channels, CI models focus on learning cross-time de-
pendency within a channel. The concept of channel independence was first proposed in Nie et al.
(2023), and subsequent research adopting this strategy has reported significant improvements in time
series forecasting and classification tasks (Xu et al., 2024;[Lee et al.,2024). The CI strategy has sev-
eral advantages: it improves adaptability to various temporal patterns within the channel, increases
training efficiency, and reduces the likelihood of overfitting (Nie et al.l 2023} [Liu et al. |2024b).
Analysis from|Han et al.[(2024) reveal that CI forecasting models are more robust, whereas channel-

Under review as a conference paper at ICLR 2025

dependent models have higher forecasting capability, leading to consistently improved performance
on MTS data with noise and distribution shifts. In this work, we propose a novel pre-training frame-
work that utilizes cross-channel dependence in the CI strategy and demonstrate that our pre-training
framework combines the advantages of both CI and channel-dependent models to achieve greater
robustness and capacity in MTS forecasting.

Cross-channel Dependence. As the channels mutually influence one another in MTS, capturing
cross-channel dependence is crucial in MTS modeling, allowing for richer representations of the
underlying patterns (Zhang & Yan, |2023). In time series forecasting, some deep models explicitly
capture the cross-channel dependence using convolutional neural networks or graph neural networks
(Wu et al.| 2020; |[Huang et al., [2023). For Transformer-based models, Crossformer (Zhang & Yan,
2023)) proposes a two-stage attention layer in time and channel dimensions to utilize both cross-time
and cross-channel dependencies. UniTST (Liu et al., |2024a) applies self-attention to the flattened
time series and iTransformer (Liu et al.| 2024b) inverts the embedding dimension to the channel
perspective and perform self-attention on channels.

However, applying self-attention sequentially in horizontal and vertical manners, as well as in the
inverted manner, is inefficient for learning dependencies between patches from other channels at
lagged locations (Zhao & Shen, |2024). Similarly, applying self-attention to flattened patches from
all channels allows access to unmasked patch embeddings with identical temporal information. This
simplification, however, may lead the encoder to learn spurious information, hindering its training
(Na et al.| 2024)). The proposed shuffling method dynamically imposes patches at lagged locations,
capturing patch-wise dependencies across channels and integrates cross-channel information into
the channel-independent reconstruction task without relying on identical temporal information.

Masked Time-series Modeling. While various MTS research addresses channel independence and
cross-channel dependence, this paper focuses specifically on masked time-series modeling (MTM).
As a principal paradigm in self-supervised pre-training, MTM optimizes deep models to capture
temporal dependency by reconstructing masked parts from unmasked ones. Recent MTMs have
adopted the CI strategy to enhance the capability of modeling temporal correlation. PatchTST (Nie
et al., 2023) is the first CI MTM that divides each variable into multiple patches and reconstructs
masked patches, thereby enhancing its temporal modeling capacity. SImMTM (Dong et al.| 2024b)
also utilizes the CI strategy to learn embedding manifold of variables from multiple masked vari-
ables. PITS (Lee et al.l 2024)) further advances the CI strategy to focus on temporal correlation
within the patch through a patch-independent strategy. TimeSiam (Dong et al.,[2024a)) introduces a
past-to-current reconstruction task in Siamese networks to accurately capture temporal correlations.
Previous CI MTM methods focus exclusively on modeling temporal dependency. Despite their nat-
ural advantages in modeling temporal interactions, these methods inherently overlook dependencies
among channels in MTS. Given the importance of cross-channel interactions in MTS modeling, we
propose a novel MTM framework that captures these dependencies in the CI strategy.

3 SHUFFLEMTM

To capture dependence among channels in a channel-independent setting, we propose to generate
shuffled masked series to utilize information from other channels in the reconstruction process (Sec-
tion [3.1). ShuffleMTM performs cross-view representation learning using shuffled masked series
and original masked series within Siamese networks (Section [3.2). ShuffleMTM then reconstructs
each channel by integrating temporal dependency within the channel and spatial dependence from
different channels (Section [3.3). During the fine-tuning stage, the weights of the ShuffleMTM en-
coder are transferred to downstream tasks without utilizing the shuffled view (Section [3.4).

3.1 MASKED SERIES SHUFFLING

We denote a multivariate time series sample z = (z(1), ... 2(©)) € REXC | where each () ¢ RE
contains L timestamps and C' is the number of channels. First, the input series is decomposed into
C' univariate series (%), following the CI strategy. Then, each univariate series (%) is divided into
non-overlapping patches of length P, where 2 = (z{"", ..., 2"} € RP*N is a sequence of
patches and NV is the number of patches. Afterward, we randomly mask a portion of patches, where

Under review as a conference paper at ICLR 2025

~(1)
*p

~ ~(2)
xp xp

~(3)
*p

Masked series —® Patch-based key value
shuffling Xp T

Transformer Encoder
%
P
S S

—@2)
Xp

=l
=

Weight sharing Decoder —

e

i]
Patch masking G Patch-based
Xp

Transformer Encoder query

(1)
Xp

2
» x;) XN Reconstruct

3 Original time series
xp Projection Multi- Add Feed Add
+Positonal || Head
T S S S Entesing || At || nam || <%0 || rerm

Patches

Figure 2: ShuffleMTM Architecture. Each colored cell represents a time series patch, with blue,
pink, and green corresponding to three different channels. Gray cells denote masked patches. Dur-
ing pre-training, we randomly mask patches and shuffle unmasked patches along the channel dimen-
sion. The two views of each univariate time series channel are processed by Siamese encoders and
integrated in a decoder with cross-attention layers to recover the raw time series. We illustrate the
encoding process for the univariate time series of channel 1.
we denote a masked series a?l(f) = mask, (xl(,i)) and r € [0, 1] is the mask ratio, formalized by:

L _ 0 ifjely

P 2 otherwise

where 115,? is the set of masked patch indices on channel :. We also define J %) as the set of masked
patch indices at patch index j across channels. The CI approach, by design, cannot learn relation-
ships among patches from different channels, thereby causing the model to neglect cross-channel
interactions. To incorporate information from different channels within independent channel encod-
ing, we propose to randomly shuffle unmasked patches along the channel (Figure [2). Concretely,
we generate a shuffled masked series ig) = (i‘g’l), e ,i:z(,Z’N)) by rearranging unmasked patches
along the channel axis while keeping the masked patches fixed, formalized as follows:

By = (B0, 7O) = shugfe (28, 747))

e (i)
53(1’]) _ O L lf] S Hm
P 77 otherwise

where i’ € {1,...,C}\J ,(%) is randomly selected without replacement among unmasked patches

at patch index j across channels. By obtaining a pair of (iéi), gﬁéi)), we can construct two views of
a channel univariate series: an original masked series that retains the true temporal patterns and a

shuffled masked series that establishes the inter-channel dependencies.

3.2 CROSS-VIEW REPRESENTATION LEARNING

For processing patched masked series, ShuffleMTM utilizes patch-based Transformer encoder (Nie
et al.l 2023)), where, the patches are mapped into the latent space of dimension d,,, through a learn-
able linear projection Waier, € R9*% and a learnable positional embedding W,,s € R *V:

:c((;zlb = Whyatch - :v;f) + Wy0s. Next, we apply a vanilla Transformer encoder (Vaswani, [2017) to

sequence of patch embeddings.

Given a pair of original and shuffled masked series, ShuffleMTM leverages Siamese networks to
learn two views of masked series representations. Siamese networks (Bromley et al., |1993)) are two-
branch neural network architectures sharing model parameters. After the Siamese encoders, we can
obtain pairs of representations of original and shuffled masked series as:

2" = Encoder(z\"), (") = Encoder(z{")

Under review as a conference paper at ICLR 2025

Siamese encoders allow ShuffleMTM to leverage both temporal information from the original

masked series representations Zz(,i) and spatial information from the shuffled masked series represen-

tations Zj(f) in reconstruction-based pre-training. In one branch, Zz(f) models temporal dependencies

within a channel, as done by CI MTM encoders, while the other branch, Z(l), models cross-channel
dependencies by attending to shuffled patches, similar to channel-dependent models. By processing
a pair of masked series, we obtain two views of masked series representations: one focused on the
temporal structure of a single channel and the other capturing spatial dependencies between patches

across channels.

Note that any inductive bias associated with channel information is provided to the shuffled masked
series. Some previous studies have constructed the channel embeddings to encode the relationships
across channels (Zhang & Yan| [2023). However, there is no predetermined position for different
channels in MTS (Xiao et al., 2024). It is challenging to train embeddings to build inductive bias to
understand the channel-wise structure (Su et al.,|2024). Thus, ShuffleMTM excludes any channel-
related bias, ensuring it focuses on the dependencies hidden within cross-channel patterns.

3.3 SELF-SUPERVISED PRE-TRAINING

To incorporate learned cross-time and cross-channel dependencies into pre-training of masked mod-
eling, the output representations of the Siamese encoders are fed into a decoder with cross-attention
and self-attention mechanisms (Gupta et al., 2023)). A decoder block consists of a cross-attention
layer, a self-attention layer and a Feed-Forward Network (FFN). Z,Ef) acts as the query, and éél) serves
for the key and value in the cross-attention layer. Next, the representation attends to each other via
the self-attention layer and is passed to the FFN. As the cross-attention layer is functionally simi-
lar to learning the similarity matrix between target and reference in self-supervised correspondence
learning (Gupta et al., 2023} |Vondrick et al.| 2018)), the decoder can integrate different views of patch
representations in the original and shuffled masked series. For clarity, we formalize this process as
W) = Decoder(zS”, 2"). Finally, the integrated representation 1 € R%*¥ is used to recon-
struct the original time series through a linear projection head on each patch: :Eg) = projector(l_lg)).
Leveraging this design, ShuffleMTM can reconstruct the original input series (a single channel) by
referring to cross-channel relationships encoded in the shuffled series representations, thereby cap-
turing both cross-time and cross-channel dependencies. The overall reconstruction loss is gathered

across C channels and averaged as: L = E, % Zil Hﬁt](f) - x](f)||§

3.4 FINE-TUNING TO DOWNSTREAM TASKS

Through the random shuffling mechanism in pre-training, ShuffleMTM learns both cross-time and
cross-channel dependencies in multivariate time series. During the fine-tuning process, the shuffled
view is not utilized and one branch of Siamese encoders for the shuffled view is removed. The
weights of the encoder are transferred to project each channel (univariate time series) into a deep
representation, which is then fine-tuned with a linear decoder layer to predict for the downstream
tasks. The cross-channel dependence learned during the pre-training is effectively transferred to the
downstream tasks without the shuffled view.

3.5 RELATIONS WITH PREVIOUS WORKS

It is notable that ShuffleMTM can be reduced to PatchTST (Nie et al.| [2023)) if the branch for the
shuffled masked series is removed and its corresponding decoder is replaced with a linear head.
However, ShuffleMTM is fundamentally different from PatchTST, as ShuffleMTM captures both
cross-time and cross-channel dependencies through simple masked series shuffling and the use of
Siamese encoders, while PatchTST focuses solely on cross-time dependencies within each chan-
nel. TimeSiam aims to enhance time-dependent representation learning, while ShuffleMTM ex-
pands CI’s limited focus on temporal dependency—a limitation shared by TimeSiam—to learning
cross-channel dependence. Additionally, TimeSiam employs complex time-difference embeddings,
whereas ShuffleMTM has a simpler architecture that does not require any additional embedding.

Under review as a conference paper at ICLR 2025

Models Self-supervised Supervised
ShuffleMTM TimeSiam PITS PatchTST SimMTM iTransformer Crossformer CrossGNN MTGNN PatchTST (sup) Dlinear
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 [0376 0397 0379 0402 0377 0395 0379 0399 0.367 0.389 [[0386 0.405 0.391 0418 0389 0399 0515 0517 0392 0.407 0.390 0.404
= 192 | 0420 0425 0425 0431 0430 0425 0427 0424 0423 || 0443 0437 0450 0453 0441 0430 0.553 0.522 0445 0.434 0451 0.446
E 336 | 0456 0446 0451 0478 0470 0446 0473 0456 | 0489 0460 0.526 0503 0484 0452 0612 0577 0483 0451 0498 0474
2720 | 0474 0471 0478 0.499 0482 0466 0494 0493 | 0.508 0494 0.643 0593 0483 0472 0.609 0597 0477 0469 0511 0.505
Avg | 0432 0435 0441 0446 0439 0435 0440 0440 || 0457 0449 0.503 0492 0449 0438 0572 0553 0449 0440 0463 0457
9 | 0.288 0338 0343 0289 0299 0346 0299 0347 || 0301 0351 0.683 0562 0295 0345 0354 0454 0299 0346 0378 0413
o192 | 0368 039 0393 0374 0382 0398 0383 0398 | 0379 0399 0.824 0628 0383 0400 0457 0464 0382 0398 0447 0452
E 336 | 0412 0426 0428 0415 0427 0433 0420 0430 || 0422 0432 0966 0701 0427 0440 0515 0540 0427 0433 0515 0497
2720 | 0.421 0441 0443 0423 0438 0452 0425 0444 | 0435 0450 1395 0853 0436 0453 0532 0576 0438 0452 0688 0.593
Avg | 0372 0402 0375 0387 0407 0382 0405 | 0.384 0408 0.967 0686 0385 0410 0465 0509 0387 0407 0507 0489
% | 0.317 0350 0332 0318 0356 0327 0365 || 0343 0377 0360 0395 0345 0372 0379 0446 0321 0350 0346 0372
T 192 | 0361 0383 0.366 0356 0380 0368 0389 || 0381 0304 039 0410 0379 0388 0470 0428 0362 0382 0383 0.393
£ 336 | 039 0403 0396 0406 0385 0403 0396 0409 || 0419 0419 0452 0456 0410 0408 0473 0430 0393 0403 0415 0416
5 720 | 0446 0457 0441 0444 0439 0452 0440 || 0490 0458 0.542 0516 0469 0441 0553 0479 0453 0437 0475 0454
Avg | 0.379 0388 0399 0376 0395 0386 0401 | 0.408 0412 0436 0444 0401 0402 0469 0446 0382 0395 0405 0.409
9% | 0.175 0.077 0261 0.176 0.262 0.186 0276 || 0.184 0260 0269 0353 0.179 0259 0203 0299 0.175 0260 0.188 0252
2192 | 0.240 0244 0304 0242 0306 0253 0317 || 0252 0313 0379 0432 0243 0302 0265 0328 0245 0304 0269 0343
E 336 | 029 0304 0342 0304 0346 0317 0356 || 0315 0352 0520 0535 0304 0342 0365 0374 0307 0343 0351 0400
S 720 | 0.399 0400 0397 0406 0405 0417 0412 || 0412 0406 1453 0875 0405 0399 0461 0459 0406 0401 0492 0.484
Avg | 0.278 0281 0326 0282 0330 0293 0340 || 0291 0335 0.655 0549 0283 0326 0324 0365 0284 0327 0325 0377
o 06 |0.082 0084 0200 0085 0203 0087 0208 || 0.087 0207 0420 0453 0084 0200 0.102 0228 0085 0205 0088 0218
2192 | 0173 0176 0297 0182 0302 0180 0303 || 0.179 0302 0531 0554 0.77 0296 0267 0335 0.76 0297 0176 0315
£ 33 | 0324 0340 0421 0331 0416 0330 0417 || 0335 0420 0886 0732 0340 0418 0393 0457 0344 0424 0313 0427
g 720|083 0855 0.696 0860 0700 0852 0696 || 0.853 0697 1571 1016 1017 0761 1.09 0811 0904 0716 0839 0.695
Ave | 0.353 0364 0404 0367 0405 0362 0406 || 0.364 0407 0854 0689 0405 0419 0463 0458 0378 0411 0354 0414
9% | 0.I68 0.084 0223 0.170 0212 0.170 0216 [0.175 0215 0.158 0230 0.180 0250 0230 0320 0.175 0219 0.190 0.260
5 1920215 0229 0262 0215 0253 0216 0255 || 0225 0258 0206 0298 0227 0302 0263 0322 0225 0259 0237 0294
3 336 | 0271 0283 0300 0273 0294 0271 0294 || 0281 0299 0272 0335 0282 0342 0354 0396 0278 0298 0283 0332
= 720 | 0.348 0.357 0349 0348 (0.346 0.343 || 0.359 0350 0398 0386 0360 0399 0409 0371 0.351 0.347 0.347 0.383
Avg | 0.250 0.263 0.284 0252 0276 0.251 0.277 || 0.260 0.281 0.259 0312 0262 0326 0.314 0.355 0.258 0.281 0.267 0.317
z 96 | 0.161 0.187 0269 0.174 0258 0.198 0.291 0.148 0240 0226 0.308 0.199 0279 0217 0318 0.166 0.252 0.195 0278
] 192 | 0.170 0.190 0274 0.183 0267 0200 0293 || 0.164 0.256 0.276 0.339 0.198 0.281 0.238 0.352 0.174 0.260 0.194 0.280
L; 336 | 0.186 0206 0.289 0.198 0283 0215 0308 || 0.179 0.272 0.357 0.393 0.213 0.296 0.260 0.348 0.190 0.277 0.207 0.296
£ 720 | 0.228 0247 0322 0238 0316 0258 0340 || 0211 0300 0406 0422 0253 0329 0290 0369 0231 0312 0243 0329
2 Ave | 086 0208 0289 0.198 0281 0218 0308 || 0.176 0267 0316 0366 0216 0296 0251 0347 0190 0275 0210 0.296
% 0555 0349 0475 0307 0542 0342 || 0393 0268 0549 0311 0.657 0390 0.660 0437 0445 0283 0649 0.397
g 12 0536 0339 0481 0308 0530 0334 | 0413 0277 0565 0315 0.608 0370 0.649 0438 0453 0285 0599 0371
5 336 0546 0341 0491 0309 0541 0338 || 0.424 0283 0580 0323 0617 0373 0.653 0472 0468 0291 0606 0374
& 720 3 0582 0359 0524 0328 0578 0355 || 0.457 0300 0589 0319 0.659 0390 0.639 0437 0501 0310 0646 0.396
Avg | 0.449 0555 0347 0493 0313 0548 0342 || 0422 0282 0571 0317 0.635 0381 0.650 0446 0467 0292 0625 0.385

Table 1: In-domain forecasting. All models are both pre-trained and fine-tuned on the same dataset.
The best results are in bold, and the second-best results are underlined.

Models | ShuffeMTM TimeSiam PITS PatchTST SimMTM Dataset Model | Accuracy Precision Recall Fl score
Metrics | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE ?b“fﬂSéMTM gggg g;gg ggz 2322
medSiam A 13 D 7.3
ETThi— ETTh2 | 0.375 0400 0374 0401 0376 0406 0382 0407
ETTh2 + ETThl | 0434 0435 0444 0450 0442 0437 0445 0.446 AD PITS 76.90 8285 7690 7656
ETThl - ETTml | 0.380 0393 0395 0404 0387 0395 0383 0.398 PatchTST 62.65 65.57 62.65 61.07
ETTh2 - ETTml | 0381 0394 0399 0411 0.387 0396 0456 0428 SimMTM 66.98 7503 69.67 6556
ETTm2 — ETTml | 0378 0396 0395 0404 0.387 0396 0396 0402 COMET 91.11 9239 89.89 92.10
ETTm2 — ETThI | 0437 0433 0434 0441 0439 0443 0457 0452 — = == =
Weather — ETTh1 0441 0438 0443 0439 0440 0426 0435 ShuffleMTM 91.58 91.82 86.91 88.90
Weather — ETTm1 0.395 0387 0403 0387 0396 0385 0.399 TimeSiam 90.09 92.24 83.17 83.32
PTB PITS 87.57 90.16 84.06 81.79
. . PatchTST 90.36 90.51 88.84 86.98
Table 2: Cross-domain forecasting. All models are SimMTM 8449 83.99 7564 7828
. COMET 87.37 87.38 81.13 83.03
pre-trained on source dataset and fine-tuned on target

dataset. Table 3: In-domain classification

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and evaluation metrics. We evaluate the performance of ShuffleMTM on two downstream
tasks: time series forecasting and classification. We follow the standard self-supervised framework,
where the model is pre-trained with unlabeled data and fine-tuned on the same data with labels. We
also consider in-domain and cross-domain transfer, as well as limited labeled data scenarios in some
experiments. We use mean squared error (MSE) and mean absolute error (MAE) for forecasting,
and accuracy, precision, recall, and F1 score for classification. We report the average performance
over five runs for each experiment. More implementation details are provided in Appendix [A]

4.2 TIME SERIES FORECASTING

Datasets and baselines. We conduct extensive experiments on eight real-world benchmarks follow-
ing [Wu et al,| (2021)), including four ETT datasets (ETTh1l, ETTh2, ETTml1, ETTm2), Exchange,
Weather, Electricity, and Traffic. It is worth noting that all datasets are multivariate time series,
some of which have a large number of channels, such as 321 for Electricity and 862 for Traffic.
For the baselines, we consider channel-independent MTM methods, SimMTM (Dong et al.| 2024b),
PatchTST (Nie et al., 2023), PITS (Lee et al., 2024), and TimeSiam (Dong et al., |2024a). We
choose PatchTST-backbone TimeSiam for the comparison over CI MTM method. We also compare
with four state-of-the-art channel-dependent forecasting methods, iTransformer (Liu et al., 2024b),
Crossformer (Zhang & Yan, 2023)), CrossGNN (Huang et al.,|2023)), and MTGNN (Wu et al., [2020)

Under review as a conference paper at ICLR 2025

AD PTB
Accuracy Precision Recall F1score Accuracy Precision Recall FI score

ShuffleMTM 96.38 96.33 96.38 96.34 90.64 90.43 85.94 87.70
TimeSiam 91.25 81.84 90.67 91.03 91.24 94.03 84.60 87.92
PITS 75.82 78.67 77.36 75.69 87.29 90.59 78.11 81.66
PatchTST 78.67 82.02 80.36 78.53 85.74 91.02 74.71 78.44
SimMTM 70.55 7391 72.29 70.16 85.09 84.43 76.82 79.36
COMET 92.55 92.49 92.73 92.50 87.46 88.89 82.30 84.46

ShuffleMTM 93.75 93.79 93.60 93.67 89.11 89.55 82.82 85.21
TimeSiam 93.35 93.52 93.06 93.24 88.50 92.95 79.44 83.34

Fraction Models

20%

10% PITS 75.37 81.49 75.37 75.10 83.28 85.52 83.28 73.91
PatchTST 68.41 74.15 68.41 67.92 86.80 89.15 83.38 80.56

SimMTM 68.23 76.44 70.90 66.22 85.58 84.49 78.05 80.32

COMET 92.06 92.07 91.92 91.96 87.75 86.68 82.07 83.48
ShuffleMTM 91.17 91.41 91.79 91.15 88.15 90.41 79.94 83.27
TimeSiam 83.35 84.61 82.39 82.70 82.60 89.02 69.14 72.25

5% PITS 71.93 78.59 74.37 71.23 85.72 88.06 75.92 79.28
PatchTST 85.36 83.23 82.37 80.91 80.77 88.64 65.71 67.96

SimMTM 68.27 75.47 70.81 66.80 84.09 84.02 74.64 71.37

COMET 90.50 91.84 89.90 90.20 89.08 89.57 82.63 85.21

Table 4: Limited labeled data classification

and two CI forecasting methods, supervised PatchTST (Nie et al., [2023)) and DLinear (Zeng et al.,
2023). We follow the experimental settings and baseline results in TimeSiam, iTransformer and
CrossGNN, with a default look-back window L = 96 and a forecast horizon {96, 192, 336, 720}.

In-domain forecasting. As shown in Table ShuffleMTM exhibits superior performance com-
pared to both self-supervised pre-training and supervised forecasting baselines, achieving the best
or second-best results in 72 out of 80 forecasting scenarios. Notably, ShuffleMTM outperforms CI
MTM baselines, demonstrating significantly improved performance on the Traffic dataset, which
contains the largest number of channels among the benchmarks. Although ShuffileMTM achieves
the second-best performance on the Electricity and Traffic datasets, following iTransformer, a state-
of-the-art forecasting method, the results emphasize the importance of cross-channel dependence in
MTS forecasting with a large number of channels.

Cross-domain forecasting. We investigate the robustness of the pre-trained model to mismatched
data distributions that were not encountered during pre-training. Table|12| presents multiple transfer
scenarios to demonstrate its effectiveness in the cross-domain forecasting setting. We compare
ShuffleMTM with CI MTM baselines, as channel independence allows the pre-trained model to be
transferred to target datasets with an arbitrary number of variables: Weather — ETTh1 and ETTm].
The results indicate that ShuffleMTM consistently outperforms all baselines in most scenarios.

4.3 TIME SERIES CLASSIFICATION

Datasets and baselines. We select two classification datasets in the medical domain covering two
mainstream signals, electroencephalography (EEG) and electrocardiogram (ECG): AD (Escudero
et al |2006) and PTB (Goldberger et al.l[2000). These datasets have multiple channels, 16 for AD
and 15 for PTB. For baselines, we compare with CI MTM methods, TimeSiam, PITS, PatchTST,
and SImMTM. COMET (Wang et al.| 2024) is also included in baselines to verify the classification
performance is comparable with the most recent self-supervised model in the medical domain.

In-domain classification. Table [3| demonstrates that the proposed ShuffleMTM outperforms self-
supervised baseline methods in classification task. As channels in bioelectrical signals represent
the different views of the same physical activity, leveraging spatial information between channels is
significant for learning biosignal representations (Kiyasseh et al.,|[2021)). This observation justifies
the superior performance of ShuffleMTM compared to CI MTM baselines. Moreover, ShufleMTM
exhibits better performance than COMET, which exploits meta information in medical domain in
self-supervised pre-training, such as trial or patient IDs. These results illustrates the effectiveness of
ShuffleMTM in capturing cross-channel relationships, even when meta information is not available.

5 ABLATION STUDIES

Fine-tuning to limited labeled data. We investigate the effectiveness of the representation under
limited labeled training data for classification. We utilize 20%, 10%, and 5% of the labeled training
data during the fine-tuning stage. As shown in Table 4] ShuffleMTM outperforms the baselines in

Under review as a conference paper at ICLR 2025

ETTh1 ETTh2 Weather

—+— ShuffleMTM
0.49 TimeSiam
—v— PITS

—+— PatohTST
—e— SImMTM

0.432 0.433 0.372

Original
Original

0.433

Mask
Mask

Rec. target
Shuffle
Shuffle
MSE

o o

'S S

& s
\
\ \

0.43 96 192 336
0 0.1 0.2 0.4 Look-back window (L)

Missing rate

Original Shuffle Original Shuffle
CA query CA query

Figure 3: Reconstruction tar- Figure 4: Robustness to miss- Figure 5: Look-back window
get ing data

label-scarce settings. Notably, ShuffleMTM achieves state-of-the-art performance on the AD dataset
across the 20%, 10%, and 5% scenarios. For the PTB dataset, ShuffleMTM performs comparably
to TimeSiam. Meanwhile, COMET shows consistent performance even in the 5% scenario, as pre-
training with meta information provides pseudo-label knowledge.

Reconstruction target We study the effect of the reconstruction target and the choice of query in
the cross-attention of the decoder. We consider six variations of ShuffleMTM, involving two choices
of query—original masked series and shuffled masked series—and three reconstruction targets: the
original time series, the shuffled time series which is used as the input in the Siamese encoders, and
only the masked patches. In Figure [3] all variations show solid performance, with our setting (i.e.,
reconstructing the original time series using the original masked series as the query) performing
the best. This analysis indicates that integrating original and shuffled views of masked series rep-
resentations is crucial for forecasting performance owing to the integration of spatial and temporal
information in MTS, irrespective of the reconstruction target or query choice.

Robustness to missing data To demonstrate model robustness to the missing data, we randomly
remove a portion of timestamps from the train and test datasets, and the model predicts the original
values in the test dataset. As shown in Figure [d ShuffleMTM shows the lowest MSE performance
in various missing rate, which suggests that the pre-training architecture effectively leverages cross-
channel dependence even in the presence of missing data. These results demonstrate the superior
robustness of ShuffleMTM in the data corruption.

Varying look-back window We investigate the effectiveness of Shuf- s o
fleMTM for time series forecasting in longer look-back windows {96, ‘| . -~
192, 336, 512}. The less a model’s performance degrades at the missing

data, the more robust it is considered. We demonstrate in Figure |§| that

our ShuffleMTM consistently reduces the MSE error as the look-back

0.41

0.375
0.35

0.265

window increases and achieves the best performance compared to other %z ——t——t
CI MTM methods in all look-back windows. This result confirms the ef- U bachlengm
fectiveness of ShuffleMTM to learn from increased look-back window. Figure 6: Patch length
Hyperparameter sensitivity. We study the effect of mask ratio and

patch length, which are the key hyperparameters in masked modeling os = B
and patch-based Transformer encoder. We vary the patch lengths {6, oo™+

8, 12, 16, 24} and mask ratios in {0.2, 0.4, 0.6, 0.8}. As shown in Zow
Figures[7]and[6] ShuffleMTM is robust to the patch lengths. While Shuf- o)™ 77
fleMTM is robust to masking ratios in small-channel datasets, their im- L S D G— e 6
pact is more pronounced on high-channel datasets, such as Electricity. °*%zes e 08
When the masking ratio is low, the proportion of self-supervision is in-])
sufficient, resulting in poor forecasting performance. Conversely, as the ~ Figure 7: Mask ratio
masking ratio increases, the number of potential shuffled candidate loca-

tions decreases. As a result, the diversity of patch replacements diminishes, degrading forecasting
performance. Therefore, an appropriate masking ratio is critical for forecasting performance on
high-channel datasets.

Under review as a conference paper at ICLR 2025

ETThl ‘Weather

=1 Shu m MTM
‘l (=R

|II||||I
bl ’
N .!!!!!!'!Huullll

= shu m MTM
==

? = Pthv\l
3 PatchtSTshutfled

3 Pa chm
=1 PatchtSTshuffled

s
| Z100
: &
i 7

| || ‘
||||||u., \|,| il

i |’|\|\!!t-., ol el ||||IIIII|||||||||.....

Cosine slmllarlty Cosine slml.laruy

Dataset ShuffleMTM TimeSiam PatchTST PatchTST-shuffled
ETThl 0.907 (£0.065) 0.817 (£0.106) 0.720 (£0.075) 0.862 (£0.087)
Weather 0927 (£0.120) 0.649 (£0.115) 0.852 (+0.073) 0.500 (+0.200)

Pairwise dis f channel embeddings

Figure 8: Cross-channel dependence analysis. (Left) Distributions of similarities between the at-
tention map of shuffled patched series and its patch-correlation matrix on the ETTh1 and Weather
datasets. (Right) A case visualization of cross-channel correlations of raw time series and pairwise
distances of the learned channel embeddings of ShuffleMTM on the Traffic dataset.

6 MODEL ANALYSIS

6.1 CROSS-CHANNEL DEPENDENCE ANALYSIS

To validate ShuffleMTM’s capacity to capture cross-channel dependence in a channel-independent
encoding, we conduct two experiments, focusing on both patch-level and channel-level dependence.

Patch-level dependence. We perform a similarity analysis on the shuffled patched series. Specif-
ically, we compute the cosine similarity between the self-attention map and the correlation coeffi-
cients of patches, derived from the randomly shuffled patched series across channels. A Transformer
encoder that effectively learns the dependencies of input patches should yield attention scores con-
sistent with the correlation structure [2024b). We compare ShuffleMTM with patch-based
CI MTM methods, PatchTST and TimeSiam. Additionally, we evaluate PatchTST pre-trained to
reconstruct the original time series from shuffled masked series, referred to as PatchTST-shuffled.

As shown in Figure[8] ShuffleMTM achieves a higher cosine similarity between the attention scores
of shuffled patched series and their correlation matrix compared to other models. This finding sug-
gests that pre-training with shuffled masked series effectively captures cross-channel dependence in
the channel-independent encoding. Moreover, PatchTST-shuffled demonstrate lower average simi-
larities and higher variances in both datasets than ShuffleMTM. This result suggests that processing
shuffled masked series in a single-branch, channel-independent encoding is insufficient for learning
cross-channel dependencies. These analyses validate the use of Siamese networks to better capture
such dependencies.

Channel-level dependence. While ShuffleMTM processes each univariate time series in MTS in-
dependently, its embedding space captures the the cross-channel correlations present in the raw time
series. To illustrate this channel-wise dependence, we present a case visualization on the correlation
coefficients of channels in the raw time series and the pairwise distances of channel embeddings on
the Traffic dataset, as shown in Figure[8] Max pooling is applied to extract channel embeddings from
a series of patch embeddings, a technique commonly used in time series self-supervised methods
(Nie et al} 2023} [Dong et al.| [2024b; [Lee et all, [2024)). The results show that the pairwise distances
between the learned channel embeddings closely align with the correlations between channels in the
raw time series. These findings confirm that pre-training with shuffled series captures the dependent
structure of channels in the raw time series.

6.2 CAPACITY-ROBUSTNESS ANALYSIS.

Analysis from revealed that the CI forecasting models have lower capacity but
better robustness than the channel-dependent forecasting models. As ShuffleMTM combines the
advantages of both channel-independent and channel-dependent models, we expect ShuffleMTM
enhances forecasting capacity and robustness compared to CI models. Thus, we conduct a capacity-

Under review as a conference paper at ICLR 2025

ETTh1 ETTh2 ETTm1 ETTm2
W PatchTST 0.6 05%B0sa W PatchTST 045 W PatchTST W PatchTST
0475 . ShuffleMTM = ShuffleMTM . ShuffleMTM - ShuffleMTM
“
S

0.450- uuqo‘
—t
>

125
0.075 0066

,,,,,,

0.3¢ i — 0318937
® @
030z 03060367 503 oau g 030 0275 72
s o 27 o H
02 5. =il S0, |]
00i50051

0.050 ooz oo
0031 0.05

&

0.025

oo
0.000- 0.0 0.00 0.00
Train error Test error Gen error W diff Train error_Test error Gen error W diff Train error Test error Gen error W diff Train error Test error Gen error W diff

Exchange Weather Electricity - Traffic

06 0.24 05
= PatchTST . = PatchTST = PatchTST = PatchTST
= ShuffleMTM = ShuffleMTM 0.22 = ShuffleMT™ 0.50 = ShuffleMTM

035703 . 043 “ oo
035 0.20 T
@ @ @ 0196 17 0.18¢ #0.40
gow £ foimm IH mm E
5. = 3 3 S0
. 0086 0.04: 030 0.2620.260

010
0.02 0.05

0.00 0.0 0.00 0.00
‘Train error Test error Gen error W diff Train error Test error Gen error W diff Train error Test error Gen error W diff Train error Test error Gen error W diff

Figure 9: Capacity-robustness analysis. Train and test errors are capacity measures and Generaliza-
tion error and W difference are robustness measures. The lower values indicate the higher capacity
or robustness. ShuffleMTM achieves lower values on 12 out of 16 capacity measures and 11 out of
16 robustness measures across eight forecasting benchmarks.

robustness analysis based on the measures proposed in (2024). Train error and test error
measure the capacity, and generalization error and W difference measure the robustness of forecast-
ing models. The lower values indicate the better capacity and robustness. For a fair comparison,
we compare with PatchTST, a CI MTM that can be derived from ShuffleMTM. Since the measures
relate to absolute forecasting performance, we set the model and training configurations for both
models equally. The formulation and detailed experimental setup is explained in Appendix [C]

As shown in Figure [0} ShuffleMTM consistently demonstrates greater capacity and robustness than
PatchTST, achieving lower error values on 12 out of 16 capacity measures and 11 out of 16 ro-
bustness measures across eight forecasting benchmarks. While CI methods trade capacity for ro-
bust prediction, ShuffleMTM attains both by incorporating cross-channel information in a channel-
independent encoding. Notably, ShuffleMTM achieves the strengths of both CI and channel-
dependent approaches, despite not being explicitly pre-trained to enhance capacity and robustness.
These analyses confirm the superior forecasting performance of ShuffleMTM compared to CI MTM
methods.

In summary, capturing cross-channel dependence is crucial for MTS modeling, yet it is not addressed
by existing MTM methods. ShuffleMTM is the first MTM framework to capture cross-channel de-
pendence within the CI strategy, combining the advantages of temporal modeling from CI models
and cross-channel modeling from channel-dependent models. We confirm that ShuffleMTM cap-
tures both fine-grained and coarse-grained dependencies across channels within the CI strategy (see
Figure[8), enhancing both forecasting capacity and robustness—achieved by channel-dependent and
CI forecasting models, respectively. Through ablations and analyses, we demonstrate that the shuf-
fling method, Siamese encoders, and cross-attention decoder are crucial for extending the CI MTM
task to model both cross-time and cross-channel dependencies effectively.

7 CONCLUSION

This paper proposes ShuffleMTM, a simple pre-training framework for masked modeling of multi-
variate time series. Unlike previous works that primarily focus on enhancing temporal modeling ca-
pacity within each channel, ShuffleMTM simultaneously captures both cross-time and cross-channel
dependencies through its proposed masked series shuffling and Siamese encoders. Experimentally,
ShuffleMTM demonstrates superior performance in time series forecasting and classification tasks
compared to state-of-the-art masked modeling methods, across in-domain, cross-domain, and label-
scarce settings. This work highlights the effectiveness of incorporating cross-channel dependencies
during pre-training, paving the way for various future studies. For example, we aim to develop
fine-tuning methods applicable to channel-independent encoders, further enhancing adaptability to
diverse cross-channel patterns during fine-tuning and inference. Additionally, we plan to extend our
approach to time series foundation models, which are crucial for capturing cross-time and cross-
channel dependencies necessary for time series forecasting tasks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Séckinger, and Roopak Shah. Signature verifi-
cation using a” siamese” time delay neural network. Advances in neural information processing
systems, 6, 1993.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,

pp. 1597-1607. PMLR, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jiaxiang Dong, Haixu Wu, Yuxuan Wang, Yun-Zhong Qiu, Li Zhang, Jianmin Wang, and Mingsheng
Long. Timesiam: A pre-training framework for siamese time-series modeling. In Forty-first
International Conference on Machine Learning, 2024a.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
A simple pre-training framework for masked time-series modeling. Advances in Neural Informa-
tion Processing Systems, 36, 2024b.

J Escudero, Daniel Abésolo, Roberto Hornero, Pedro Espino, and Miguel Lépez. Analysis of elec-
troencephalograms in alzheimer’s disease patients with multiscale entropy. Physiological mea-
surement, 27(11):1091, 2006.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215-e220, 2000.

Agrim Gupta, Jiajun Wu, Jia Deng, and Fei-Fei Li. Siamese masked autoencoders. Advances in
Neural Information Processing Systems, 36:40676—40693, 2023.

Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the
channel independent strategy for multivariate time series forecasting. IEEE Transactions on
Knowledge and Data Engineering, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36:46885-46902, 2023.

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606—
5615. PMLR, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In SIGIR, 2018.

Seunghan Lee, Taeyoung Park, and Kibok Lee. Learning to embed time series patches indepen-
dently. In The Twelfth International Conference on Learning Representations, 2024.

Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, and Doyen
Sahoo. Unitst: Effectively modeling inter-series and intra-series dependencies for multivariate
time series forecasting. arXiv preprint arXiv:2406.04975, 2024a.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2024b.

11

Under review as a conference paper at ICLR 2025

Yeongyeon Na, Minje Park, Yunwon Tae, and Sunghoon Joo. Guiding masked representation learn-
ing to capture spatio-temporal relationship of electrocardiogram. In The Twelfth International
Conference on Learning Representations, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

PeMS. Traffic Dataset. http://pems.dot.ca.gov/.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

UCI. UCI Electricity Load Time Series Dataset. https://archive.ics.uci.edu/ml/
datasets/ElectricityLoadDiagrams20112014.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Track-
ing emerges by colorizing videos. In Proceedings of the European conference on computer vision
(ECCV), pp. 391408, 2018.

Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang. Contrast everything: A hierarchical con-
trastive framework for medical time-series. Advances in Neural Information Processing Systems,
36, 2024.

Wetterstation. Weather Dataset. https://www.bgc—jena.mpg.de/wetter/.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419-22430, 2021.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753-763, 2020.

Jingyun Xiao, Ran Liu, and Eva L Dyer. Gaformer: Enhancing timeseries transformers through
group-aware embeddings. In The Twelfth International Conference on Learning Representations,
2024.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. In The
Twelfth International Conference on Learning Representations, 2024.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980-8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series fore-
casting: Learning from leading indicators. In The Twelfth International Conference on Learning
Representations, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

Eric Zivot and Jiahui Wang. Vector autoregressive models for multivariate time series. Modeling
financial time series with S-PLUS®, pp. 385-429, 2006.

12

http://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/

Under review as a conference paper at ICLR 2025

A DATASET DESCRIPTION

We perform extensive experiments using 10 well-established datasets, targeting two primary tasks
in time series analysis: forecasting and classification. These datasets span a broad spectrum of
application domains, encompassing various signal types, channel dimensions, time series lengths,
and data scales. This variety allows us to assess the generalizability of the proposed approach to
complex real-world datasets.

A.1 TIME SERIES FORECASTING

We evaluate the forecasting performance using seven datasets: ETT (Zhou et al.| [2021), Weather
(Wetterstation), Electricity (UCI), Traffic (PeMS), and Exchange (Lai et al| [2018). The ETT
datasets, consisting of two hourly and two quarter-hourly datasets, contain two years of oil tem-
perature and power load data from electricity transformers. The Weather dataset records 21 meteo-
rological variables every 10 minutes. The Electricity dataset contains hourly electricity consumption
data for 321 clients. The Traffic dataset tracks hourly road occupancy from 862 sensors across San
Francisco Bay Area freeways. Lastly, the Exchange dataset records daily exchange rates for eight
countries. For the experimental setup, we follow the standard setting from [Wu et al.|(2021)), which
splits datasets into training, validation, and test sets in chronological order. The splitting ratios are
set at 6:2:2 for ETT datasets and 7:1:2 for the other datasets. For the all forecasting experiments, we
fix the look-back horizon as L = 96 for a fair comparison. A detailed description of each dataset is
summarized in Table

Datasets Channels Time steps Information = Frequency
ETT (h1,h2) 7 17420 Electricity Hourly
ETT (m1,m2) 7 69680 Electricity 15 Mins
Exchange 8 7588 Exchange rate Daily
Weather 21 52696 Weather 10 Mins
Electricity 321 26304 Electricity Hourly
Traffic 862 17544 Transportation Hourly

Table 5: Dataset description for time series forecasting.

A.2 TIME SERIES CLASSIFICATION

We utilize two representative datasets within the medical domain: AD (Escudero et al., 2006),
and PTB (Goldberger et al. |2000). The AD dataset consists of 5967 EEG recordings from 12
Alzheimer’s patients and 11 healthy individuals, with each trial spanning 5 seconds across 16 chan-
nels at a sampling rate of 256Hz. The data is standardized and divided into nine overlapping 1-
second segments. A binary label based on whether the patient has Alzheimer’s disease is assigned
to each sample. In the PTB dataset, 62370 ECG recordings from 198 patients (comprising Myocar-
dial infarction cases and healthy controls) are captured across 15 channels at 1000Hz. The signals
are down-sampled to 250Hz, normalized, and divided into heartbeat segments based on R-peak in-
tervals. For the benchmark selection, we exclude the classification datasets with a single channel,
which do not have interactions across channels. We follow the pre-processing procedure and eval-
uation setup described in Wang et al.| (2024), which splits training, validation, and test sets in a
patient-independent way. The detailed descriptions of datasets are summarized in Table[6]

B IMPLEMENTATION DETAILS

B.1 BASELINES IMPLEMENTATION

Time series forecasting For the forecasting task, we compare our proposed ShuffleMTM to ten
state-of-the-art baselines, including four self-supervised pre-training methods and six supervised

13

Under review as a conference paper at ICLR 2025

Datasets Channels Length Classes Information Frequency
AD 16 256 2 EEG 256 Hz
PTB 15 300 2 ECG 1000 Hz

Table 6: Dataset description for time series classification.

methods. We implemented the baselines using their official implementations and followed the con-
figurations from the original papers as closely as possible. For datasets not included in the original
papers, we explored various configurations by adjusting key hyperparameters and reported the best
performance. We conducted the experiments five times and report the average performance.

Time series classification The baselines for the classification task include five state-of-the-art MTM
methods: COMET (Wang et al} 2024), SimMTM (Dong et al) 2024b), PITS (Lee et al.| [2024),
PatchTST (Nie et al., [2023), and TimeSiam (Dong et al., 2024a). To ensure a fair comparison, we
implemented their official code and hyperparameters from the original papers wherever possible. In
cases where the optimal configuration was not provided, we conducted a hyperparameter search for
key parameters and reported the best results.

Specifically, for SImMTM, which was not validated on the AD and PTB datasets in the original
papers, we adjusted the encoder’s hidden dimensions {64, 128}. For PITS, we similarly searched
for the best hidden dimension {128, 256 } and patch length {8, 16} on the AD dataset and {16, 30}
on the PTB dataset. For PatchTST, which was not validated for classification tasks, we adopted the
evaluation protocol of PITS. Although TimeSiam originally uses temporal convolutional networks as
the encoder for classification, we utilized the PatchTST encoder to demonstrate improvements over
the CI MTM baselines. We adjusted the hidden dimensions of the PatchTST-backbone TimeSiam
{128, 256} and patch length {8, 16} on the AD dataset and {16, 30} on the PTB dataset. Lastly, we
implemented the official code of COMET. We conducted the experiment five times and report the
average performance.

B.2 MODEL CONFIGURATION

ShuffleMTM includes two main sets of model hyperparameters: patch length and the Transformer
encoder hyperparameters. Depending on the task and the size of the datasets (i.e., small, medium,
and large), we pre-define the set of model hyperparameters and determine the best configuration on
a pre-defined validation dataset. The candidate sets of model hyperparameters are summarized in
Table[7

. Architecture
Task Size Dataset - - -
Patch length (P) | encoder depth | decoder depth | Number of heads | Hidden dim. (d,,) FFW dim.
ETThl
Small | ETTh2 {16, 32} {32, 64}
Exchange
ETTml
F sti 6,8 3 1 8,16
Orecating | N edium | ETTm2 (6.8 8. 16} {64, 128} {64, 128}
Weather
Large Electricity 256 512
Traffic
Classification AD (32, 64} 3 1 {8, 16} {64, 128} {64,128}
PTB {15, 30} {64,128,256} | {128,256, 512}

Table 7: Model configuration for Forecasting and Classification tasks.

B.3 TRAINING CONFIGURATION

In self-supervised pre-training, we set the pre-training epochs to 100 and search for the pre-training
learning rate in {le-4, Se-4} for forecasting and {5e-4, le-3} for classification. We also explore
the mask ratio depending on the task: 0.4 for forecasting and {0.4, 0.8} for classification. During
fine-tuning, we adopt the freeze-and-fine-tune strategy. In this strategy, we apply linear probing
for n epochs to update the downstream head while keeping the backbone frozen. Subsequently,
we perform full fine-tuning of the entire network for 2n epochs. This two-step fine-tuning has

14

Under review as a conference paper at ICLR 2025

been shown to be effective in [Nie et al.| (2023)) and [Lee et al. (2024). For the classification, we
aggregate patch representations by max-pooling over patches in each channel to generate the global
representation of the sample. The candidate sets of training hyperparameters are summarized in
Table[8]

. Pre-training Fine-tuning
Task Size Dataset - - - - - -
Mask ratio | Learning rate | Batch size | Epochs | Learning rate | Loss function | Batch size | Epochs (LP/FT)
ETThl
Small | ETTh2
“ .
m
Forecasting 4 le-4, Se-4 10 -4 L2 10/2
orecasting Medium | ETTm2 0 {le-d, Se-4} 0 s 0720
Weather
Large Electricity) 3
Traffic
e AD 0.4
Classification - {5¢-4, 1e-3} 256 100 {5¢-4, 1e-3} | Cross-Entropy 128 {20/40,30/60}
PTB {0.4,0.8}

Table 8: Training configuration for forecasting and classification tasks. Epochs (LP / FT) indicates
epochs for linear probing and end-to-end fine-tuning.

C CAPACITY-ROBUSTNESS ANALYSIS

C.1 DEFINITION OF MEASURES

Han et al|(2024) proposes four measures, with two evaluating capacity and two evaluating robust-
ness of a linear model. We extend these measures to a neural network forecaster. We denote the
training and test sets for forecasting as (X (), Y (")) and (X (*¢) Y (*¢)) respectively, and the neu-
ral network forecaster as fy, parametrized by 6. The training and test sets can be decomposed into
univariate time series if the forecaster adopts the channel-independent strategy. We compute the
following measures to evaluate the model’s performance:

Train Error (Incapacity): The train error is defined as:
LD = || fyen (X7 = Y003,
where
00" = argming||fo(X) — Y |)2,
is the optimal parameter for the training data. Training error measures the capacity com-
puted on the training set.
Test Error (Incapacity): The test error is defined as:
LY = | fpeor (X9 = YOI,
where
01 = argming|| fo (X)) — Y| I3,
is the optimal parameter for the test data. Test error indicates the best error a forecaster can
achieve on the test data, which measures the capacity computed on the test set.
Generalization Error (Non-robustness): The generalization error is defined as:

L9 = || foen (X)) = YU 3,

It is the performance measure on the benchmark evaluation, which represents the test set
errors of a forecaster that achieves the lowest training error.

W Difference (Non-robustness): The W difference is computed as:
Diffy = || four (XU9) = foue (X)) |7

It computes the mean squared error between best-train-error forecaster prediction and best-
test-error forecaster prediction on the test dataset, where each forecaster is trained in cal-
culating train and test erors.

For all measures, the lower value indicates the greater capacity and robustness.

15

Under review as a conference paper at ICLR 2025

C.2 EXPERIMENTAL SETUP

To demonstrate effectiveness over CI models, we compare with PatchTST. PatchTST can be re-
garded as a single-branch version of ShuffleMTM, as described in Section 3.4, and both models
share the same encoder architecture. Therefore, we select PatchTST for comparison. To exclude the
effects of different pre-training tasks, we unify the pre-training task for both models: reconstruct-
ing the original time series. Since the measures relate to absolute forecasting performance, we set
the model and training configurations equally for both models. We pre-train each model for 100
epochs, then optimize the encoder to obtain #(*") and 6(*¢) through 10 epochs of linear probing and
20 epochs of end-to-end fine-tuning, as conducted in the main experiment.

D CLASSIFICATION EMBEDDING VISUALIZATION

To visualize the effectiveness of ShuffleMTM in the classification task, we present a case visualiza-
tion of the learned embeddings on the AD dataset. To represent the embeddings more intuitively,
we use UMAP, a dimensionality reduction method, with 80 neighbors and a minimum distance of 1.
For comparison, we use TimeSiam, which has shown the best classification performance among all
MTM baselines. Additionally, we compute the average pairwise Euclidean distance in the UMAP
embedding space between the negative (healthy) and positive (Alzheimer’s) classes. As shown in
Figure [T0] ShuffleMTM embeddings are more clustered within each class. The average pairwise
distance between classes for ShuffleMTM is also greater than for TimeSiam, indicating better class
separability.

ShuffleMTM Embeddings TimeSiam Embeddings
e Negative Class s Negative Class A,
12 L . . s A g
s Positive Class 121 4 Positive Class - TN
aras sl L,
a,A S "W
;A:“‘?AM paadatfe o8
M afhad 4t T ;ﬁ -
" Lk A whaaa s,
10 et h Rsed Ay L
at L e AR Ve
~ - Asu ~ a ’: " AhE) At
g “‘AAA A A g yw.l Yy - A A
S PWE e S L Yo - Wk SR
Z £ -] Wk 284 0
g £ at g abhan ath,
E Akt i g . [WY e
H A5 £ o LA L L
a A8’ i I I Y
o VY AL o e Sap W a s
= LAl i aah s g LW TN
2 - A Mak e T
=) 6 o A 2 L 0y A
A 4s 44 aa
A 2 4 N
Lh K 2 6 B
a8ia. AL M
P
n Mean of Pairwise Distances: 14.73 “hég“ ’AA f‘
DYWL SN
:‘A & 4 Mean of Pairwise Distances: 9.15
=75 =5.0 -2.5 0.0 25 5.0 7.5 10.0 125 o 2 4 6 8 10 12 14
UMAP Dimension 1 UMAP Dimension 1

Figure 10: Comparison of learned embeddings from ShuffleMTM and TimeSiam on the AD Dataset.
(Left) Visualization for ShuffleMTM. (Right) Visualization for TimeSiam. We calculate the mean
Euclidean distance between pairwise samples from the two classes to assess class separability. Com-
paring the figures and distances, ShuffleMTM shows a larger gap between classes than TimeSiam.

E SIMULATION EXPERIMENT

E.1 SYNTHETIC DATASETS

We conduct simulation experiments to examine the cross-channel dependence that ShuffleMTM
captures. We generate two synthetic datasets with different cross-channel dependencies. As illus-
trated in Figure [TT] the first synthetic dataset consists of three channels, each of which exhibits
lagged structures relative to the others. We generate the first channel as sequence of length-16
patches, each representing a sinusoidal function with a unique frequency. Then, the second and
third channels are derived by shifting the first channel by one-patch and two-patches lengths, re-
spectively. From this simulation, this dataset naturally exhibits apparent patch-level dependencies
between channels due to the lagged relationship, which are prevalent in real-world multivariate time
series (Zhao & Shen|, [2024). As the attention values of Transformers for multivariate time series
forecasting tend to segment, i.e., close data points have similar attention weights, it is important to
capture patch-level dependencies both within and across channels (Zhang & Yan| 2023).

16

Under review as a conference paper at ICLR 2025

A shared sine waveform across the entire sequence

P=16

N\
Channel 1 po L Pz P sl Rev=2l| WENT Channel 1 py,y P21 P31 Pay st PN-21 PN-11 | PNa
Channel 2 py—y P P2 Ps PN=s[| Py-z | PN-1 Channel 2. Py P22 P32 Pa2 © PN-22 PN-12 | PNz
Channel3 pyy v Pr P2 Pues Paea | Phe2 chamnet 3 [pia| PRI (e [- [oaa [PNE [
t t
Synthetic data 1 Synthetic data 2

Figure 11: Cross-channel dependency structure of two synthetic datasets. The first synthetic dataset
exhibits patch-level dependencies across channels with the lagged structure, while the channels in
the second synthetic dataset share long-term temporal dependencies.

Dataset Pred_len ShuffleMTM PatchTST Dataset Pred_len ShuffileMTM ShuffieMTM w/o shuffle
MSE MAE MSE MAE MSE MAE MSE MAE
32 1.023 0.896 1.030 0.895 32 1.023 0.896 1.034 0.899

Synthetic 1 48 1.024 0.897 1.037 0.901 Synthetic 1 48 1.024 0.897 1.034 0.899
96 1.026 0.898 1.033 0.901 96 1.026 0.898 1.033 0.898

192 1.026 0.899 1.031 0.901 192 1.026 0.899 1.029 0.897

32 0292 0477 0.284 0.470 32 0.292 0.477 0.293 0.479

Synthetic 2 48 0.292 0477 0.288 0.474 Synthetic 2 48 0.292 0.477 0.293 0.479
96 0294 0479 0292 0478 96 0.294 0.479 0.295 0.479

192 0296 0.480 0.294 0.479 192 0.296 0.480 0.296 0.480

Table 9: Comparison between ShufleMTM Table 10: Comparison between ShuffleMTM and
and PatchTST on two synthetic datasets. the ShuffleMTM without the shuffled view on two
synthetic datasets.

The second synthetic dataset also consists of three channels, all of which share the same long-term
trend. First, we randomly generate three sequences of length-16 patches of sinusoidal function with
distinct frequencies, ensuring no overlaps of local patterns between patches. Next, we generate
a low-frequency sinusoidal waveform spanning the whole time series length as a long-term trend.
Then, we add each sequence of length-16 patches to the long-term trend to get three channels that
share the same trend. In this synthetic dataset, each time step in one channel is dependent on the
previous time step as it has a long-term trend but is not dependent on current time step’s information
in other channels as it does not share the local sinusoidal patterns.

E.2 COMPARISON WITH CHANNEL-INDEPENDENT MTM

We evaluate the forecasting performance of ShuffleMTM and PatchTST on two synthetic datasets
exhibiting different cross-channel dependencies. Table 0] presents the forecasting performance of
ShuffleMTM and PatchTST on two synthetic datasets. We used the same model configuration for
both models to ensure a fair comparison. Both models are evaluated in forecasting scenarios with
prediction lengths of {32, 64, 96, 192} and a fixed input length of 96, with the patch length set to
16. The results indicate that ShufleMTM consistently outperforms PatchTST across all prediction
lengths on the first dataset, demonstrating its ability to capture patch-level dependencies between
channels with lagged structures. This analysis confirms that ShuffleMTM can capture fine-grained
cross-channel dependencies. However, ShuffleMTM exhibits in Table [I0] that greater forecasting
errors than PatchTST on the second dataset. Since each channel in the second dataset contains long-
term trends and lacks local dependencies on other channels, ShuffleMTM is less effective for short-
term forecasting. However, as prediction lengths increase, the performance difference between the
two models decreases. As the channels share the same long-term context, ShuffleMTM effectively
captures the long-term dependence, resulting in enhanced performance in long-term forecasting.

In summary, ShuffleMTM effectively captures fine-grained patch-level dependencies between chan-
nels such as lagged dependencies, as shown in the analysis on the first synthetic dataset. In time
series that shares global temporal patterns, ShuffleMTM is ineffective in short-term forecasting, if
each channel is not dependent on the others in a local context. However, ShuffleMTM becomes
effective in long-term forecasting on this data if the channels share the long-term context.

E.3 COMPARISON WITH THE SHUFFLEMTM WITHOUT THE SHUFFLED VIEW

We evaluate the performance of ShuffleMTM on these synthetic datasets after removing the shuf-
fled view and using the original view as the query, key, and value in the decoder. This variant of

17

Under review as a conference paper at ICLR 2025

ShuffleMTM in fact reduces to PatchTST with a self-attention decoder, which originally utilizes the
original masked series and decodes the representation with a linear layer. Comparing this variant
with ShuffleMTM demonstrates the effectiveness of utilizing the shuffled masked series for pre-
training channel-independent MTM. We denote this model variant as ShuffleMTM w/o shuffle.

Table [T0] presents the forecasting performance of ShuffleMTM and its variant without the shuffled
view on these two synthetic datasets. ShuffleMTM outperformed its variant across both datasets,
with a larger performance gap observed in the first dataset than in the second. These experiments
suggest that the shuffling method enables the channel-independent encoder to capture fine-grained
dependencies between channels. However, the shuffling method is less effective on datasets with
weak local dependencies compared to those with strong local dependencies.

F FULL EXPERIMENTAL RESULTS

Due to space constraints, we present the full experiments for time series forecasting and classifi-
cation, including mean and standard deviations under five random seeds, for both in-domain and
cross-domain scenarios.

18

Under review as a conference paper at ICLR 2025

QJe SINSsal 1S9q-puodas Ay} pue

‘paurpropun

‘PIOq Ul 9Ie S}[NSAI JS9q A, JOsejep SWes ay) uo paun}-ouy pue pauten-aid yjoq are sjpow [[y SunsesIo) urewop-uy 11| d[qeL,

000719790 (@00F01E0 0FILEr0 O00TI6E90 GU00TI06E0 (G0 0TI6590 (@00TIGIE 0 (F000FI6850 o0 0T ILSH0 00 0FIRLS 0 GO0 0TIPZS 0 (E000TI68E 0 0001208 0 000710080 (#0007IE8T0 | 0CL
(100019090 (L000F) 1670 0RITLY0 (O000FIEE0 (O00TIELED (S0DFILI90 (000F)ETEQ (6000F)08E0 (1000F)pTH0 @000F) [$50 Qo00R)[r0 (000 [HEQ (000'0F)887'0 (10007 1§g") (2000 TSFO | 966 5
(10007)665°0 (L000F)GRTO (I00FIEGHQ (0000FIRERQ (0000F)6H9)) (r00F)809°0 (000TIGTEY (S000FIE9S) (1000F)ET0 @000F)0ES 0 0T [8Y) (F0DFIGEED (1000F)787°0 (000)Pz EOVDIEFD | 6l 2
00670 (1000F)6b9'0 (£000T)ERT0 (H00FIGHYD (0000F)[£p0 (0000%)099'0 (r000F)£690 (<000F)[1£0 (L000F)6tS0 :_5 05)897°0 (10007)g6€70 :5 0EITHE0 E0oRTEC) (000T)L0F0 (G000 (@00Rlape) (Go00Issen (000Rgic (0o [ep'0 (1000PI0IZ0 (@00t FEFD | 96 °
0OTIECE D (0000TIEPT0 (000TIZIE 0 (00T €20 (0006960 (0000FI06T0 (1000F)6Z€0 (H000TIEST0 (G000FIZgh 0 @I00TI90p0 (0007)00g") @000 [1Z0 || (0007)0pe0 (10007860 (I000FI9[€'0 (100071860 (1000F)gge' 0 (10007)Lp0 (10007)80E 0 (000FI9¢T0 @000F)0I€0 (@n0FIgezo | 0oL B
009670 (10007)L070 (1000F)L,T'0 (1000F)061°0 (0000F)8pE'0 (0000F)097'0 (1000719670 (1000FIEIT’0 (900°0F)€6€0 (S000TILGED (000F)ZLg') (1000F)6LT0 || (1000F)g0£0 (1000F)G1Z0 (1000F)g8T'0 (1000718610 (0000F)68T'0 (100°07)90°0 (0000FIPLT0 (0000F)L81°0 (1000F)pg0 (10009810 | 966 &
00F)08C'0 (1000F)p610 (100070970 (000F)pLI'0 (0000F)ZSE') (0000FIRET'0 (00007 180 (0000F)R61°0 (S00°0FI6EC) (T00FIQLT’0 (1000F)9s'0 (1000F)p9T°0 || (1000F)g6z'0 10001000 (@000F)L9T0 (2000FIE]I0 (1000F)pLz’0 (100°0F)061°0 (0000F)ISTO (0000F)L1'0 (0000F)ZST0 (0000F)OLT0 | T61 2
00FIRLT0 (0000F)G610 (0000F)ZeT’0 (0000719910 (0000FIRIE0 (0000F)LI0 (1000F)6Lz0 (1000F)g61°0 (100°0FI80€0 (FTO0FIOZT'0 :é 0TIOPT'0_ (00007810 || (10007) 1670 (1000F)g61'0 (@000TI8ST0 (£000FIp 10 (1000F)6970 (1000F)/81°0 (0000FITHT0 (0000 9T (1000F)gpg'0 (0000F)T9T0 | 96 2
@OOTLPED (00TILYEQ @00 60 (00007160570 @000F)66€°0 (000719860 (600 07IR65 0 00 0rI9pe) (1 (00 07I8pE 0 (1000F)6pE0 (10 @00 0T 1975 0 (000TIEPED (00TIBPED | 02
(0000718670 (000FHpSEQ (£000FITHEQ (0007)GEE0 @00PTLTO ﬁ (000P) LT (1 @00F)gLT0 (000F)00g0 (10007670 (000¥)E6T0 (1000PILTO | 95E &
9._ 0F)LET0 (0000F)6ST0 (O000¥)g9T0 (000F)Z0E0 (@00T)LTT0 (£000FI86T0 (0100F)907) ﬁ (1000F)5770 (1000F)917°0 (1 (1000%)G170 (000F)79z (10 @000F)LT0 (1000F)gST0 (000DTITO | 6l B
00076610 (1000F)61Z°0 (©000F)6ZEQ (000F)0ET0 @000F)66T0 (F00nT)0810 (1000F)0ET0 (5000F)gST0 (1000F)5/10 (1000F)L1°0 (1 (10005)0£1°0_(0000F)ggz0 (10 (100095170 (000F) 170 (1000DF9T0 | 96 3
0075690 :5 0TI6E8 0 (00UTIQILO (100TIH060 (0000TI 180 (0000TI060'T (L100FI[9L0 (FO0TILIOT (G000FI9I0 T (00T LS| :g TFIL690 (L000TIESRO) ag 0719690 (000TIZSR0 (000TI00L0 (RI00TI6O80 (00019690 (GI00TISER0 (L000TIZ0L0 (000712890 (01007)EE8'0 | 02L&
00T LTH0 (£10°07 GOUOTIPTHO EI0FppE) (000F)LGH) (000TIEGED (S00OTIRIK) (FI00FIOPED (6000FIZEL (010079880 (1000I0TH0 (e000FIGEED || (1000F)LIp0 (1000FI0EE) (S000FDIED @I00F L) (000 [gh) (HU0FOpE) (000TI6IH0 (000TIpEE) (G000 [Ip) G000PRTED | 96€ &
00FISIE0 (£000FI9LI0 (@00TIIGT0 (£000FI9LI'0 00007970 (100019620 E00FILLI0 (010°0F)pGE0 (1200P) €60 (1000IZ080 (1000F)6LI0 || 100060870 (1000F)081°0 (G000FIZ0E0 (H000F)ZRI0 (H000PLGTO (G000FOLIQ (c00r0FIp0s'0 @0n0FIg8I0 (1000719620 (1000FELI0 | 261 &
00170 (10007)880°0 (000F)G07’0 (90007)880°0 (00007820 (0000F)Z01°0 (1000710070 (1000F)p80°0 (000F)gch’0 (@000F)egy’0 (1000F)L07’0 (10007),80°0 || (10007)807°0 (10007),80°0 (r000F)g0z’0 (10007)680°0 (@000F)00C0 (£000F)p0z’0_ (20007)gR0'0 (10007)g61°0 _ (000F)z80'0 | 96 E
[Ear=T=n) :3 0FIZ6F0 @00D0F0 (E0005)I900 (00005650 (0000 [950) (E000F)66€10 (@000TIS0P0 (FO00FIS/80 DELOTIESH] (@000FI90p 0 (@00 0FIZIH0 23 0FITIF0 GO0OFILIFO (00FIS0F0 (2000FI90F0 (1000F)L6E) (00070070 (1000FIBGED (000FI00F0 (@00FIBGED (200 0FI66E0 | 0TL pmy
0040 @OOPIEPED (00000 (0000FpLE) (0000FIG9E) (CO0OFITHED (0000FIHOE0 (6000F)GEC) (200 0FI0ZS0 000F)SIE0 000 L1 (1 (000F)p0E0) @ODDTHED (000Pp0g0 (1000P)TpE) (1000DTOE0 (10008)gpE0 (1000306670 | 9FE =
FIEPE0 :; 0316070 @0UP0L0 @00TIGHT0 (0000FISTED (000T)G9T0 (2000FIZogT) (1000FIEHT0 (S000F)Zgr) (@00FI6LED (1000F)7670 (1000F)ET0 (e 00FIZHT0 (000F)H0E0 000FIE0E) (0000F)THTO (1000120870 (100008T0 | 261 T
FIZ8T0_ (r000F)8810 (1000F)00T0 (10007810 0F)6620 _(0000F)g0z0 (1000%)6ST0 (000F)6 10 (00FIECE) (S100F)697°0 (10001)p81'0 (10001)981"0 (@ (10007)971°0 _(10009) 1970 (1000%) 197’0 (000F)ILT) _ (1000%)6Sg0 (1000)SLT0 | 96
00TpSp0 @00TISLy) (000TIER0 (G00TIESH0 (0000TI6L0 (000TIESS) (1000T) b0 @00 0T)6950 (F100TI9IS) (6100TIZps) (10007)85H0 (@000TI06H 0 :g TROPF0 OOTITER) @00P6Er) EO00TIpR) (0007 [pp) (@0UTILGH) (1000P8Er0 GO00ppF) (1000FISER) @OOTIORFO | 0CL
@00TI9Ip0 (10007)STp0 (1000F)E0K0 (@000TIEEE0 (0000FIOEFD (000T)ELp0 (1000FIR0p0 (20000140 (01007I96°0 (1100FIZSH0 (10007)61°0 (100076140 || @000T)60p'0 (10007)96¢'0 (@000TIEOFD (£0007)gge'0 (1000719050 (@0007I966°0 (1000FIEOF0 (10007)I8E0 (00007)Z0p0 @000TI06€0 | 956 =
@UOTIEGE) (1000FIEGE) (1000TITYE) (GO0OTITYED (0000FISTH) (0000FIOLK) (1000FISYE) (2000F)6LED (E000TIQIY) (E000FI06E0 (1000Tp6ET) (G000 [8E) || (000T)68E0 (000TIRYE) (1000TIORE) (B000TIOSE) (1000THE (2000FI99E) (1000FIERE) 1000PIEED (1000ITGED (20009(9€°0 | Tl T
(1000F)ZL£10 _(00007)9pg70(1000F)6660 (10007)[Z€°0 (0000F)9pp'0 (0000F)6LE) (£000FIZLEQ (5000T)Ghe0 (H000TISEE0 (9000F)09€0 (1000F)L4€°0 (c000F)gpe) || (F000F)GOE0 (£000F)Lge0 (5000T)9g"0 (000FIRIEQ (1000F)€960 (@000FIZee'0 (1000F)6SE'0 (1000F)LIE0 (000FIZSE0 (000T)L1°0 | 96 =
LI00PEes0 (RE007)889°0 (1000F)ZSH0 (1000F)8ep) (0000F)9L50 (000077650 (F000FIESH) (P00 0FI9Er) (G100F)ES80 (S50 07566 | (00 0T)0SH0 2000F)SEp0 || (10005 ppy0 (1000F)Ggp 0 (S000FIZsH 0 (0007)8ch 0 (S000FIEhy 0 (0005)€gh 0 (1000F)Eph0 (10005200 (10005 [0 (10005 IZ4°0 | 02L
(SI00PL6F0 (G00F)GIC0 (000FEEP) (1000F)LZp 0 (0000F)0ps0 (000F)GIS0 (L000F)Opy0 (9000F)[gp0 (F100F)[0L 0 (0500F)996'0 (1000F)Zep'0 (1000F)Zgh 0 || (1000F)0gp0 (1000F)0gp'0 (L000FIEEH) (100F)gp'0 (1000FI9TH0 (£000F)G[H0 (1000FI8TH0 (@00 0HFIH0 (10005940 (0000F)ZIH0 | 966 m
(8000)ZH0 :5 OF) L0 (0000F)86E°0 (1000F)ZREQ (0000F)p9p' 0 (0000F)LGp) (H000FIQ0E0 (Z000F)EREQ (910°0F)979)0 (0F00F)pT0 (0000F)66E0 (0000F)6LEQ || (2000FI6E0 (2000FIERE) (O00FIZEED (€000FIZRED (F000FIEOED (000FHpLEQ (s000F0LE0 (10007)06£°0 (10005)89°0 | T61 3
(L 0PEIF 0 00F)8LE°0 (0000F)9pE') (1000F)662°0 (0000F)Gp'0 (0000F)p6e"0 (1000F)SpE'Q (1000F)G67°0 (0100F)7960 (7E00F)gg90 (1000F)16g0 (000F) 100 || (1000F)1p€'0 (1000F)667°0 (S000F)9pg'0 (2000F)667°0 (1000F)REE0 (100051680 (2000F) 1670 (1000F)8€"0 (10007)887°0 | 96 ™
(@000 0 000TI[150 (100076950 (@000TILLY0 (0000TIL6G0 (0006090 (F000TIZLy 0 (F00TIE]p0 LI00TIEES) (@O0OTIEP0 (0007 p6p'0 (00TIR0S0 || (F000T)g6r0 (P000TIpeH 0 (@000T)99p10 (000FIg8y0 (O100TISLp 0 (G00T)6610 (000TI8LY0 (I00TISLE0 (000FITZF0 (0100FpLp 0
00PpLp0 (1007Ig6r0 (1000F)ISH0 (@00TIEY0 (0000F)LLG0 (000TIZIO0 (£000FIZSH0 (1000F)pgp0 (R000TIE0S) (010°0F)9Zg0 (20007)09p'0 (1000F)68H0 || (10007)9gp0 (£000FIELy0 (@000TI9pp0 (000TIFFFO (£000TIgLp0 (C000TISHO (@00TIGSF0 (1000FI9pp0 (2000980
OUOTIOpp0 (60007)[Sp0 (1000F)pEp0 (1000TISpY0 (0000F)ZgG0 (000TIEES) (@000FI0E0 (2000F) [pp0 (S000FIEGH) (<000F)0SH0 (0000T)Lep’0 (1000F)Epp) || (10007)ggp'g (1000F)pgy0 @00 gp0 (10007)sgp0 (1000FITF0 (@00 07)0Er0 ¢v0 (000TISTR0 (10007)STF0 (10007)0TE0
(G00T)pOp0 (20007)06E°0 (C000T)L0p0 (E000TIZ6E0 (0000FILIC0 (0000TIGIS0 (1000T)66ET0 (000068610 (@000TIgIp0 (1000T) 660 (10007)G0p'0 (1000T)98¢0 || (1000T)68E"0 (1000T)L9€70 (1000T)66E10 (2000T)6LE0 (1000TISHEQ (1000T)LL€°0 (1000TIZ0p0 (1000T)6LEQ (1000F)L66°0 (000FIOLED
AV N YN EN AYIN SN AVIN HSIN AV SN AV BT AV SN AV N AYIN SN VI SN AVIN HSIN
teounq (dns) JS1y1Ed NNOLW NNDSS01) D 1 IWLNWIS LSLued SLId wergowity, WLINPHS
pasiazadng pasiasadnspg

19

Under review as a conference paper at ICLR 2025

Models ‘ ShuffleMTM TimeSiam PITS PatchTST SimMTM
Metrics ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETThl— ETTh2 0.375(+0.001) 0.400(+0.001) 0.374(+0.002) 0.401(+0.004) 0.376(+0.002) 0.401(+0.002) 0.381(%0.003) 0.406(+0.002) 0.382(+0.003) 0.407(+0.002)
ETTh2 — ETThl 0.434(+0.001) 0.435(+0.001) 0.444(+0.003) 0.450(x0.001) 0.442(+0.001) 0.436(+0.001) 0.438(+0.003) 0.437(+0.001) 0.445(+0.002) 0.446(+0.001)
ETThl — ETTml | 0.380(+0.001) 0.393(=0.001) 0.395(=0.001) 0.404(x0.001) 0.387(x0.001) 0.398(x0.001) 0.386(x0.002) 0.395(+0.001) 0.383(+0.003) 0.398(=0.003)
ETTh2 — ETTml | 0.381(+0.001) 0.394(z0.001) 0.399(z0.002) 0.411(x0.001) 0.387(x0.001) 0.398(x0.001) 0.385(x0.001) 0.396(+0.001) 0.456(+0.017) 0.428(+0.007)
ETTm2 — ETTml | 0.378(+0.001) 0.396(+0.002) 0.395(+0.004) 0.404(+0.002) 0.387(0.002) 0.398(+0.001) 0.379(+0.004) 0.396(0.002) 0.396(+0.004) 0.402(:£0.003)
ETTm2 — ETThl | 0.437(+0.003) 0.433(+0.003) 0.434(+0.005) 0.441(+0.003) 0.439(+0.002) 0.437(+0.001) 0.443(+0.007) 0.443(+0.003) 0.457(+0.001) 0.452(+0.001)
‘Weather — ETTh1 | 0.436(+0.004) 0.441(+0.003) 0.438(=0.004) 0.443(+0.006) 0.439(+0.002) 0.433(+0.001) 0.441(x0.003) 0.440(+0.002) 0.426(+0.004) 0.435(£0.003)
‘Weather — ETTm1 | 0.378(+0.001) 0.395(+0.001) 0.387(+0.003) 0.403(+0.001) 0.387(+0.001) 0.398(+0.001) 0.380(z0.001) 0.396(+0.001) 0.385(+0.003) 0.399(+0.001)

Table 12: Cross-domain forecasting. All models are pre-trained on source dataset and fine-tuned on
target dataset.

Dataset Model | Accuracy Precision Recall F1 score
ShuffleMTM | 93.93(+1.14) 93.82(+1.51) 94.17(x1.24) 93.90(+0.98)
TimeSiam 89.69(+2.61) 89.73(+2.69) 89.51(x2.52) 59.55(+2.63)

AD PITS 76.90(+6.28) 82.85(+3.37) 76.90(+6.28) 76.56(+6.62)
PatchTST 62.65(£12.09) 65.57(+13.08) 62.65(+12.09) 61.07(£13.16)
SimMTM 66.98(+6.43) 75.03(£1.30) 69.67(£5.48) 65.56(+8.08)
COMET 91.11(+3.16) 92.39(+2.19) 89.89(+4.08) 92.10(+5.23)
ShuffleMTM | 91.58(+1.58) 91.82(+2.25) 86.91(+2.22) 88.90(+2.36)
TimeSiam 90.09(+0.28) 92.24(+0.81) 83.17(x1.12) 83.32(+0.65)

PTB PITS 87.57(+1.25) 90.16(+1.94) 84.06(+4.26) 81.79(+2.25)
PatchTST 90.36(+2.50) 90.51(+2.64) 88.84(+5.68) 86.98(+3.55)
SimMTM 84.49(+0.91) 83.99(+1.45) 75.64(+1.16) 78.28(+1.29)
COMET 87.37(+1.40) 87.38(x2.77) 81.13(+x3.67) 83.03(+2.33)

Table 13: In-domain classification. All models are both pre-trained and fine-tuned on the same

dataset.
Fraction Models AD PTB
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
ShuffleMTM 96.38(+1.20) 96.33(+1.18) 96.38(+0.89) 96.34(+1.39) 90.64(+2.25) 90.43(+3.23) 85.94(+3.45) 87.70(+3.12)
TimeSiam 91.25(+1.99) 81.84(+1.56) 90.67(+2.26) 91.03(+2.09) 91.24(=0.69) 94.03(+0.71) 84.60(+1.24) 87.92(+1.06)
20% PITS 75.82(+2.87) 78.67(x2.48) 77.36(+2.66) 75.69(+2.98) 87.29(=0.53) 90.59(+1.39) 78.11(x+1.76) 81.66(+1.31)
PatchTST 78.67(+6.50) 82.02(+5.73) 80.36(+6.26) 78.53(+6.60) 85.74(x1.55) 91.02(+0.61) T4.T1(+2.97) 78.44(+3.10)
SimMTM 70.55(+7.26) 73.91(+4.99) 72.29(x6.52) 70.16(x7.75) 85.09(x1.20) 84.43(+1.97) 76.82(+1.49) 79.36(+1.65)
COMET 92.55(+1.88) 92.49(+1.96) 92.73(+1.57) 92.50(+1.86) 87.46(+3.25) 88.89(+4.98) 82.30(+7.90) 84.46(+7.30)
ShuffleMTM 93.75(+1.31) 93.79(+1.56) 93.60(+1.28) 93.67(+1.19) 89.11(+1.31) 89.55(+0.32) 82.82(+3.05) 85.21(+2.23)
TimeSiam 93.35(+1.49) 93.52(+1.34) 93.06(+1.65) 93.24(+1.54) 88.50(x0.22) 92.95(+0.36) 79.44(+0.30) 83.34(+0.33)
10% PITS 75.37(+2.43) 81.49(+1.76) 75.37(+2.43) 75.10(x2.57) 83.28(+3.78) 85.52(+0.62) 83.28(+0.38) 73.91(+0.99)
PatchTST 68.41(+2.55) 74.15(+0.52) 68.41(+2.55) 67.92(+3.05) 86.80(x1.23) 89.15(+1.38) 83.38(+6.59) 80.56(+1.97)
SimMTM 68.23(+13.47) 76.44(+6.68) 70.90(+12.05) 66.22(+16.08) 85.58(x+2.15) 84.49(+2.54) 78.05(+3.50) 80.32(+3.39)
COMET 92.06(+2.02) 92.07(+2.26) 91.92(+1.84) 91.96(+2.01) 87.75(=3.76) 86.68(+2.23) 82.07(+7.97) 83.48(+6.55)
ShufleMTM 91.17(+1.14) 91.41(+1.51) 91.79(x1.24) 91.15(+0.98) 88.15(+1.58) 90.41(+2.25) 79.94(+2.22) 83.27(+2.36)
TimeSiam 83.35(+3.19) 84.61(+2.64) 82.39(+3.74) 82.70(+3.63) 82.60(x1.05) 89.02(+1.34) 69.14(+1.73) 72.25(+2.08)
59 PITS 71.93(+5.37) 78.59(x3.40) 74.37(+4.4) 71.23(+5.96) 85.72(+0.65) 88.06(+1.28) 75.92(+0.80) 79.28(+0.93)
PatchTST 85.36(+6.18) 83.23(+1.84) 82.37(x1.58) 80.91(+1.46) 80.77(x1.41) 88.64(x1.12) 65.71(+2.55) 67.96(+3.38)
SimMTM 68.27(+9.64) 75.47(+3.94) 70.81(28.48) 66.80(+11.79) 84.09(x0.84) 84.02(x0.72) T4.64(+1.99) 77.37(£1.78)
COMET 90.50(+2.34) 91.84(+1.84) 89.90(+2.84) 90.20(+2.57) 89.08(=0.41) 89.57(+0.41) 82.63(+0.75) 85.21(+0.64)

Table 14: Limited labeled data classification.

20

	Introduction
	Related works
	ShuffleMTM
	Masked Series Shuffling
	Cross-view Representation Learning
	Self-supervised Pre-training
	Fine-tuning to Downstream tasks
	Relations with Previous Works

	Experiments
	Experimental Settings
	Time Series Forecasting
	Time Series Classification

	Ablation Studies
	Model Analysis
	Cross-Channel Dependence Analysis
	Capacity-Robustness Analysis.

	Conclusion
	Dataset Description
	Time Series Forecasting
	Time Series Classification

	Implementation Details
	Baselines Implementation
	Model Configuration
	Training Configuration

	Capacity-Robustness Analysis
	Definition of Measures
	Experimental Setup

	Classification Embedding Visualization
	Simulation Experiment
	Synthetic Datasets
	Comparison with Channel-Independent MTM
	Comparison with the ShuffleMTM without the Shuffled view

	Full experimental results

