
Optimising Factual Consistency in Summarisation via Preference Learning
from Multiple Imperfect Metrics

Anonymous ACL submission

Abstract
Recent work on language models often applies001
reinforcement learning with human-annotated002
preference data to enhance specific capabili-003
ties, such as generating informative summaries.004
However, such data often focuses on overall005
preferences and overlooks factuality. Since col-006
lecting new annotations is costly, we propose to007
use automatic factuality metrics to obtain factu-008
ality preference labels. While individual factu-009
ality metrics are limited, their combination can010
effectively capture diverse factual errors. We011
introduce an automated training pipeline that012
improves summarisation factuality via prefer-013
ence optimisation. For each source document,014
we generate lexically similar summary pairs015
by varying decoding strategies, ensuring the016
model learns from minor factual errors. To017
avoid human annotation, we derive preference018
labels from weak factuality metrics filtering out019
conflicting cases to improve reliability. This020
results in a high-quality preference dataset con-021
structed with only source documents. Experi-022
ments show consistent factuality gains across023
models, ranging from early encoder-decoder024
architectures to modern large language models,025
with smaller models reaching comparable fac-026
tuality to larger ones. Code and data will be027
released upon acceptance.028

1 Introduction029

Cutting-edge language models have demonstrated030

impressive capabilities in generating fluent and co-031

herent responses to a wide range of prompts. How-032

ever, maintaining faithfulness and factual consis-033

tency remains a persistent challenge, particularly034

in tasks like summarisation. Despite their surface035

plausibility, model-generated summaries often con-036

tain factual inconsistencies or hallucinated details.037

Recent research has tried to mitigate this issue by038

incorporating reinforcement learning (RL) to guide039

models towards more factually consistent outputs.040

A critical obstacle lies in designing effective re-041

ward signals that can reliably capture and quantify042

factuality. Many approaches (Gao et al., 2018; Roit 043

et al., 2023; Pasunuru and Bansal, 2018; Ye and 044

Simpson, 2023; Wan and Bansal, 2022) adopt auto- 045

matic evaluation metrics developed in earlier work 046

(Lin, 2004; Zhang et al., 2020; Laban et al., 2022) 047

as reward signals for RL. However, even state-of- 048

the-art metrics struggle with subtle inconsistencies 049

and may penalise factually accurate outputs (Tang 050

et al., 2023). Using a single metric as an RL signal, 051

as explored in prior work (Roit et al., 2023), is lim- 052

ited by the metric’s reliability. Although combin- 053

ing metrics can broaden error detection coverage 054

(Ye et al., 2024), existing RL methods often rely 055

on manual weighting of sub-rewards (Gao et al., 056

2018; Pasunuru and Bansal, 2018; Ye and Simpson, 057

2023), reintroducing reward design complexity. 058

Another alternative is Reinforcement Learn- 059

ing with Human Feedback (Ouyang et al., 2022, 060

RLHF), which uses human annotated preference 061

data. While this approach has seen success in align- 062

ing large language models (LLMs) with general 063

human values, its applicability to factuality is lim- 064

ited. Annotator biases, misunderstandings, and the 065

scarcity of factuality-focused datasets reduce its 066

effectiveness in this context (Hosking et al., 2024). 067

Creating high-quality factuality-focused preference 068

datasets is resource-intensive and requires exper- 069

tise, making scalability a significant concern. 070

To overcome these barriers, this paper proposes a 071

fully automated training pipeline that improves fac- 072

tual consistency in summarisation without relying 073

on human annotations or reference summaries. Our 074

method is model-driven, using the language model 075

itself to generate two summaries by either selecting 076

alternative candidate outputs from the same decod- 077

ing strategy or using different decoding strategies, 078

as illustrated in Figure 1. In contrast to previous 079

work (Choi et al., 2024), which paired diverse sam- 080

ples together, our approach ensures that summaries 081

in a pair are lexically similar. This lexical similarity 082

minimises confounding stylistic or structural differ- 083
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Summary1: Four individuals, including three 18 -year-olds and a 24-year-old, have been 
charged with hate crimes and aggravated kidnapping and battery in connection with the brutal 
beating of an 18-year-old white victim with schizophrenia and attention deficit disorder.

Summary2: Four Chicago suspects, including an 18 -year-old schizophrenia sufferer, have 
denying bail after their charges with multiple hate crimes and aggravated kidnapping in a 
horrific beating from which has raised an alarming and devastating $51,000 in aid through an 
open online

Candidate SummariesSource Model

Beam Search

Greedy Decoding

Summary1  ≻Summary2

Final Preference LabelFactuality Metrics + Conflict Filter

Figure 1: Our method only requires source documents to build a preference dataset.

ences, allowing the model to focus specifically on084

factual distinctions, which facilitates the factuality085

improvement on summaries.086

With the generated summary pairs, we use an087

ensemble of factuality metrics to score them and de-088

rive preference labels from the scores. To address089

the unreliability of any single metric, we include090

only those summary pairs for which all selected091

metrics agree along with preference learning. This092

agreement-based filter removes noisy and contra-093

dictory signals, enhancing the robustness of the094

preference signal and making the training process095

more reliable and scalable.096

By leveraging lexically similar summary pairs097

and agreement-based preference labels derived098

from multiple factuality metrics, our method en-099

ables more targeted factuality training than previ-100

ous RLHF or model-based approaches (Stiennon101

et al., 2020; Choi et al., 2024). Importantly, we102

demonstrate that this pipeline is effective across103

a diverse set of language models, spanning differ-104

ent architectures and capabilities, including BART105

(Lewis et al., 2020), GPT-J (Wang and Komat-106

suzaki, 2021), LLaMA (Grattafiori et al., 2024),107

and DeepSeek (DeepSeek-AI et al., 2025). Our108

method consistently improves factuality scores109

across these various models, showing strong gener-110

alisation beyond a single model family or scale. Re-111

markably, our method empowers older and smaller112

models, such as BART, to achieve factuality per-113

formance comparable to that of significantly larger114

and more recent models, effectively revitalising115

their potential to produce accurate summaries at116

lower computational cost.117

Our contributions are three folds:118

• We introduce a novel, fully automated training119

pipeline for improving factuality in summari-120

sation, which does not rely on human annota-121

tions or reference summaries.122

• We introduce an agreement-based approach123

to generate preference labels for fine-tuning.124

By leveraging multiple factuality metrics and125

using agreement-based filtering, we ensure 126

that only reliable signals are used in training. 127

• We show that lexically similar summary pairs 128

are more effective for enhancing factuality for 129

summarisers. 130

2 Related Work 131

2.1 Factuality Evaluation in Summarisation 132

Factuality has become one of the most critical prop- 133

erties to evaluate in recent language models. De- 134

pending on the methodologies applied, existing 135

factuality evaluation metrics can be broadly cate- 136

gorised into 3 types. 137

Similarity-based metrics Traditional similarity- 138

based metrics, such as ROUGE (Lin, 2004) and 139

BLEU (Papineni et al., 2002), assess the factuality 140

of a system summary by comparing it to a refer- 141

ence summary, using lexical overlap as a proxy 142

for similarity. Subsequent work like BERTScore 143

(Zhang et al., 2020) replaced exact word matching 144

with embedding-based cosine similarity to enhance 145

robustness for evaluation. More recent methods 146

improve factual consistency evaluation by using 147

sentence embedding similarity between the sum- 148

mary and the source document directly (Ye et al., 149

2024). These metrics are straightforward and some- 150

what interpretable, making them suitable for using 151

as reward signals in RL to avoid reward hacking. 152

Question Answering-based metrics This line of 153

work frames factuality evaluation as a reading com- 154

prehension task. Key phrases are extracted from 155

the summary, and questions are generated based on 156

their context. A question-answering model answers 157

these questions using the source document, then 158

checks whether the answers are consistent with 159

the summary (Durmus et al., 2020; Scialom et al., 160

2021; Fabbri et al., 2022). While this approach has 161

shown empirical effectiveness, it usually involves 162

multiple processing stages and models, making it 163

computationally expensive. 164
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Natural Language Inference-based metrics165

These methods assess whether the content of a166

summary can be inferred from the source docu-167

ment using natural language inference (NLI) mod-168

els. Early approaches that used entire documents169

and summaries as input to NLI models often under-170

performed. Recent methods have improved perfor-171

mance by segmenting the source document (Laban172

et al., 2022; Zha et al., 2023) or extracting rela-173

tional structures for inference (Goyal and Durrett,174

2020; Qiu et al., 2024). The final factuality score175

is computed by aggregating the inference results176

across text segments or extracted relation pairs.177

2.2 RL for Fine-tuning Language Models178

Reinforcement learning is often applied to fine-tune179

pre-trained language models, especially to improve180

capabilities that are difficult to formalise mathemat-181

ically. Early research introduced interactive or pref-182

erence learning to define reward functions in RL183

(Gao et al., 2018; Shapira et al., 2022). Other previ-184

ous studies used evaluation metrics as direct reward185

signals for training (Pasunuru and Bansal, 2018;186

Ye and Simpson, 2023), but these approaches often187

suffered from distribution shift and required care-188

ful reward design to prevent catastrophic forgetting189

and to combine multiple, sometimes contradictory,190

reward components.191

With the advent of LLMs, RL has been widely192

used with human feedback to enforce desirable193

properties such as safety, which are difficult to194

guarantee through supervised fine-tuning alone195

(Grattafiori et al., 2024). More recently, DeepSeek-196

R1 have demonstrated that RL can also facil-197

itate emergent capabilities, such as reasoning198

(DeepSeek-AI et al., 2025). However, this depends199

on sparse rule-based rewards that may be difficult200

to learn from. While the human feedback can tune201

the model for properties that are hard to define, the202

annotators make an overall judgment that might203

ignore factual errors (Hosking et al., 2024), leading204

to underperformance in terms of factuality (Wang205

et al., 2024; Augenstein et al., 2023).206

An alternative proposed by Choi et al. (2024)207

avoids the limitations and costs of human anno-208

tation by using rules to automatically label pairs209

of summaries. We suggest that this leads to noisy210

labels, and propose instead to use a combination211

of evaluation metrics that directly target factual212

consistency. Our experiments provide a thorough213

comparison of the two approaches.214

3 Methods 215

3.1 Summary Generation 216

Given a source document x, different decoding 217

strategies can lead to various outputs y. 218

Beam Search selects the top-k most likely par- 219

tial sequences at each timestep t, by extending 220

each of the k token sequences from the previous 221

timestep, y<t, with all possible tokens. Each se- 222

quence is scored by its log probability conditioned 223

on the source document x. The hyperparameter k 224

is known as the beam size. The output ybeam with 225

length L can be expressed as: 226

ybeam = argmax
y∈B

L∑
t=1

logP (yt|y<t,x) (1) 227

where B is the set of top-k candidate sequences 228

identified during decoding. 229

Greedy Decoding chooses the most likely token 230

at each timestep: 231

yt = argmax
yt

logP (yt|y<t,x) (2) 232

Random Sampling samples each token from 233

the vocabulary’s probability distribution at each 234

timestep. The distributions are derived from logits 235

using the softmax function: 236

yt ∼ softmax

(
LM(yt|y<t, x)

τ

)
(3) 237

where LM(·) denotes the logit output of each 238

timestep, and temperature τ controls the sampling 239

distribution. A higher τ increases diversity by 240

adding more variance to the outputs. 241

Recent LLMs often employ the sampling-based 242

decoding strategies to enhance output diversity 243

(Grattafiori et al., 2024; DeepSeek-AI et al., 2025). 244

Prior research has shown that beam search tends 245

to yield higher factuality scores compared to other 246

decoding strategies, especially random sampling 247

(Wan et al., 2023; Choi et al., 2024). In contrast, 248

greedy decoding generally produces outputs that 249

are lexically similar but less factually consistent 250

than beam search outputs, as it is biased toward 251

locally optimal token choices. 252

In this paper, we aim to train a model to avoid 253

generating highly probable but factually inconsis- 254

tent summaries. To do this, we can generate pairs 255

of summaries with minimal differences from the 256

same decoding strategy. For example, we can take 257
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the second most probable sequence produced by258

beam search as follows, where ybeam is the stan-259

dard beam search output from Equation 1.260

ybeam′ = argmax
y ̸=ybeam,y∈B

L∑
t=1

logP (yt|y<t, x) (4)261

This ensures that ybeam and ybeam′ differ only262

slightly, enabling the evaluation metrics to focus263

on factuality differences, rather than stylistic or264

structural variations that could bias the evaluation.265

3.2 Data Annotation266

In this subsection, we leverage multiple factuality267

metrics to score summaries generated in the previ-268

ous step. Prior research (Choi et al., 2024) used a269

heuristic to identify target summaries, rather than270

scoring each one, where beam search-generated271

summaries were always selected as the winning272

completions in preference learning. This intro-273

duces noise into the training data: it assumes that274

the higher average factuality score of beam search275

necessarily corresponds to more factual summaries276

individually, but it struggles when beam search and277

greedy decoding produce similar outputs, in which278

cases the greedy decoding could be more accurate.279

To address this issue, instead of over-trusting280

beam search-generated summaries, we use multiple281

weak factuality metrics to score the summaries and282

derive preference labels from them. Since scores283

from different metrics are not directly comparable,284

we convert these heterogeneous scores to binary285

preference labels so that they can be aggregated.286

Then we employ a conflict resolution strategy to287

filter out inconsistent preference labels. The anno-288

tation process works as follows:289

1. For each metric m, we obtain score Sm(y,x)290

for summary y given source x.291

2. For each pair of summaries (y1,y2) related292

to the same source document x, we obtain293

its binary preference label under the metric294

m, which can be written as Pm(y1,y2,x) =295

sign(Sm(y1,x)− Sm(y2,x))296

3. We apply a conflict resolver on Pmi(y1,y2,x)297

and only keep the data with consistent prefer-298

ence labels under all metrics mi.299

3.3 Training with DPO300

Using the preference data obtained from the previ-301

ous step, we apply Direct Preference Optimization302

(Rafailov et al., 2023, DPO) to train the language 303

models towards improved factuality. Compared to 304

RL, DPO directly optimises models without requir- 305

ing a separate reward model, reducing complexity 306

and improving training efficiency. Given summary 307

pairs with corresponding preference labels, DPO 308

adjusts the model parameters to increase the like- 309

lihood of generating the preferred summary. The 310

loss function of DPO can be written as: 311

L(θ) = E(x,y{w,l})[log σ(β(fθ(x,yw)− fθ(x,yl)))] 312

where σ is the sigmoid function, f is the log proba- 313

bility that the model assigns to a summary, θ rep- 314

resents the model parameters to optimise, β is a 315

temperature parameter, and y{w,l} denote the win- 316

ning and losing summaries in the pair, respectively. 317

4 Experiments 318

4.1 Experimental Setup and Implementations 319

4.1.1 Dataset and Evaluation Metrics 320

To ensure consistency with prior work (Choi et al., 321

2024), we evaluate our approach on the XSUM 322

(Narayan et al., 2018) and TL;DR (Völske et al., 323

2017) datasets. Both datasets require the summari- 324

sation of long articles or Reddit posts into single- 325

sentence summaries, posing challenges for the sum- 326

marisers to identify key information and assemble 327

it correctly. Table 1 presents the characteristics of 328

the two datasets. 329

Dataset Size Source
Length

Summary
Length

Compression
Rate

XSUM 204045(11334) 430(433) 23(23) 5.35%(5.31%)
TL;DR 116722(6553) 313(314) 31(31) 9.90%(9.87%)

Table 1: Characteristics of XSUM and TL;DR datasets.
Numbers in parentheses refer to the test split while other
numbers are for the train split. Length refers to the total
number of words in the text. Compression Ratio is
computed between source length and summary length.

We train the models using the dataset built upon 330

the train split and evaluate the trained language 331

models on the test split. For automatic factuality 332

evaluation, we utilise AlignScore (Zha et al., 2023), 333

a state-of-the-art metric, which also aligns our set- 334

tings with the evaluation setup in previous works 335

(Choi et al., 2024). To assess the overall quality of 336

summaries, we compute the ROUGE-L score (Lin, 337

2004) that reflects the overlap with the reference 338

summary. In addition, we employ ChatGPT to com- 339

pare our approach against the baselines as LLMs 340
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have shown promising results in directly evaluating341

generative tasks (Gekhman et al., 2023; Luo et al.,342

2023). We further analyse shifts in common types343

of factual consistency error types to understand the344

impact of our training pipeline, again using Chat-345

GPT to categorise mistakes.346

4.1.2 Language Model Selection347

Model Size Architecture Pre-release
Fine-tuning

Main
Ability

Fine-tuning
Scale

BART-large 406M Encoder-Decoder SFT Summarisation Full

GPT-J 6B Decoder SFT
Open-ended
Generation

Adapter

LLaMA-3.2 3B Decoder SFT+RL Instruction Adapter

DeepSeek-R1
(Distill-Qwen)

7B Decoder SFT+RL Reasoning Adapter

Table 2: Specifications of the selected language models.

To demonstrate the robustness of our method,348

we select a variety of language models with dif-349

ferent scales and capabilities. Model specifica-350

tions are listed in Table 2. We select BART-large351

(Lewis et al., 2020) to represent encoder-decoder352

models that were widely employed before the ad-353

vent of LLMs. We select GPT-J-6B (Wang and354

Komatsuzaki, 2021), LLaMA-3.2-3B (Grattafiori355

et al., 2024), and DeepSeek-R1-Distill-Qwen-7B356

(DeepSeek-AI et al., 2025) as they are representa-357

tive LLMs trained for different purposes. Due to358

their large sizes, we apply LoRA (Hu et al., 2021)359

and only train an adapter during fine-tuning.360

GPT-J is an alternative for GPT-3 (Brown et al.,361

2020) and was only tuned with SFT. It can perform362

specific tasks given a prompt but it is suggested to363

apply task-oriented SFT beforehand.364

LLaMA-3.2 utilised RL during its training pro-365

cess, specifically through RLHF, to enhance its366

alignment with human preferences and improve367

the quality of its responses.368

DeepSeek-R1 is a mixture-of-experts model with369

671B parameters, providing impressive reasoning370

ability on a wide range of tasks including math and371

coding. In this paper, we use its distilled model372

based on Qwen2.5 (Team, 2024) to balance the373

training efficiency and reasoning quality.374

For GPT-J, SFT is required before RL, so we375

only use a simple prompt as it will learn to sum-376

marise during SFT. For LLaMA and DeepSeek,377

we avoid fine-tuning them on specific tasks be-378

fore applying RL, simulating real-world conditions379

where they are provided only with task instructions.380

To maintain consistency across experiments, we 381

use the same generic summarisation prompt for 382

all LLMs. Details of the prompt are available in 383

Appendix B, along with the processing steps for 384

DeepSeek’s chain-of-thought output. 385

4.1.3 Decoding Strategies 386

As highlighted in prior studies (Holtzman et al., 387

2019; Choi et al., 2024), decoding strategies can 388

impact factuality. In this section, we explore how 389

decoding strategies influence factual accuracy and 390

select which to use in the consequent experiments. 391

Dataset Model AlignScore(↑)

BS#1 BS#2 RS#1 RS#2 Greedy

X
SU

M

BART 61.9 61.5 19.2 18.4 58.9
GPT-J 59.7 58.3 17.4 17.3 50.5

LLaMA 86.1 85.3 67.3 66.5 83.6
DeepSeek 82.5 82.4 60.2 59.6 80.5

T
L

;D
R BART 84.9 84.7 42.5 41.0 80.6

GPT-J 89.6 89.0 60.3 60.2 83.6
LLaMA 91.4 90.6 83.7 83.6 90.7

DeepSeek 89.1 88.9 75.6 75.8 87.9

Table 3: AlignScore of different decoding strategies.

From Table 3, we observe that the first candi- 392

date from beam search (BS#1) consistently outper- 393

forms other decoding strategies, including greedy 394

decoding and random sampling. The latter strate- 395

gies introduce excessive randomness or focus too 396

narrowly on local token probabilities, leading to 397

lower factuality. Therefore, in our experiments, we 398

primarily use beam search and greedy decoding, 399

as these strategies provide relatively high factual 400

accuracy while the mix of strategies allows us to 401

generate different summaries for the same source. 402

For final evaluation, we use the first beam search 403

output to ensure the highest factuality. 404

4.2 Factuality Scoring Metrics 405

Among the metrics mentioned in 2.1, we utilise 406

SBERTScore (Ye et al., 2024) and SummaC-Conv 407

(Laban et al., 2022), representing similarity-based 408

and NLI-based metrics respectively. These metrics, 409

while slightly less powerful than state-of-the-art al- 410

ternatives, are more computationally efficient. We 411

exclude QA-based metrics not only due to their 412

high computational cost, but also because they re- 413

quire a question generation model trained on the 414

same dataset, which is not available for Reddit 415

posts in TL;DR. 416

4.3 Baselines 417

We compare our proposed approach with three 418

baselines: supervised fine-tuning (SFT), reinforce- 419
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Model Strategy AlignScore ∆ ROUGE-L

BART

SFT 61.9 \ 36.4
MPO(BS#1,BS#2) 62.0 +0.1 33.5
MPO(BS#1,Greedy) 36.3 -25.6 21.4
Ours(BS#1,BS#2) 86.6 +24.7 33.9
Ours(BS#1,Greedy) 86.1 +24.2 30.5

GPT-J

SFT 59.7 \ 25.0
MPO(BS#1,BS#2) 53.5 -6.2 23.6
MPO(BS#1,Greedy) 44.2 -15.5 22.9
Ours(BS#1,BS#2) 70.9 +11.2 22.8
Ours(BS#1,Greedy) 75.8 +16.1 22.3

LLaMA

SFT 86.1 \ 19.2
MPO(BS#1,BS#2) 78.9 -7.2 18.2
MPO(BS#1,Greedy) 79.8 -6.3 18.8
Ours(BS#1,BS#2) 88.7 +2.6 18.3
Ours(BS#1,Greedy) 87.1 +1.0 18.7

DeepSeek

SFT 82.5 \ 14.8
MPO(BS#1,BS#2) 80.8 -1.7 15.4
MPO(BS#1,Greedy) 81.3 -1.2 12.5
Ours(BS#1,BS#2) 83.0 +0.5 13.7
Ours(BS#1,Greedy) 83.2 +0.7 14.0

Table 4: Comparison of our approach against SFT and
MPO on XSUM dataset. ∆ refers to the performance
difference over SFT results. The best results for each
model are highlighted in bold.

ment learning from human feedback (RLHF), and420

model-based preference optimisation (Choi et al.,421

2024, MPO). Both SFT and RLHF are common422

fine-tuning methods that rely on either golden ref-423

erences or human annotations. SFT trains on ref-424

erence summaries, while RLHF builds on the SFT425

checkpoint using human preference rankings to426

optimise via RL rather than direct supervision.427

We reuse the official RLHF checkpoint of GPT-428

J1. For the other models, we perform training using429

the pipelines from the TRL2 library, applied to the430

trl-lib/tldr-preference dataset3, which includes pref-431

erence labels based on overall human judgments432

that are not specifically focused on factuality.433

MPO (Choi et al., 2024) avoids the need to434

score summaries by assuming that beam search-435

generated summaries are more factually consistent436

than those generated by other decoding strategies.437

However, while beam-search generates more fac-438

tual summaries on average, individual summaries439

are not guaranteed to be the most factually con-440

sistent, leading to some mislabelled pairs. This441

resulted in huge performance degradation for MPO442

when applied to similar summary pairs in the orig-443

inal study. Our proposed method overcomes this444

by using multiple computationally efficient metrics445

1https://huggingface.co/CarperAI/openai_
summarize_tldr_ppo

2https://huggingface.co/docs/trl/main/en/ppo_
trainer

3https://huggingface.co/datasets/trl-lib/
tldr-preference

Model Strategy AlignScore ∆ ROUGE-L

BART

SFT 84.9 \ 25.8
RLHF 73.1 -11.8 22.6
MPO(BS#1,BS#2) 88.1 +3.2 24.2
MPO(BS#1,Greedy) 71.1 -2 20.4
Ours(BS#1,BS#2) 94.1 +9.2 23.0
Ours(BS#1,Greedy) 94.2 +9.3 22.4

GPT-J

SFT 89.6 \ 26.8
RLHF 81.5 -8.1 23.4
MPO(BS#1,BS#2) 92.3 +2.7 23.7
MPO(BS#1,Greedy) 84.7 -4.9 22.0
Ours(BS#1,BS#2) 93.7 +4.1 19.7
Ours(BS#1,Greedy) 93.8 +4.2 22.3

LLaMA

SFT 91.4 \ 15.6
RLHF 90.2 -1.2 18.3
MPO(BS#1,BS#2) 86.4 -5 15.4
MPO(BS#1,Greedy) 82.2 -9.2 14.7
Ours(BS#1,BS#2) 93.5 +2.1 15.1
Ours(BS#1,Greedy) 92.9 +1.5 15.3

DeepSeek

SFT 89.1 \ 15.8
MPO(BS#1,BS#2) 88.4 -0.7 14.9
MPO(BS#1,Greedy) 89.7 +0.6 15.1
Ours(BS#1,BS#2) 90.9 +1.8 15.1
Ours(BS#1,Greedy) 89.9 +0.8 16.5

Table 5: Comparison of our approach against SFT,
RLHF and MPO on TL;DR dataset. ∆ refers to the
performance difference over SFT results. The best re-
sults for each model are highlighted in bold.

to annotate generated summaries, allowing greater 446

resilience to input similarity and better utilization 447

of summaries from various decoding strategies. 448

4.4 Experimental Results 449

Tables 4 and 5 present a comparison of our ap- 450

proach with the baselines. We do not report RLHF 451

results for XSUM due to the lack of a human pref- 452

erence dataset, nor do we include DeepSeek RLHF 453

results for TL;DR, as we cannot learn a reward 454

model for it on a preference dataset without chain- 455

of-thought examples. 456

Our approach consistently outperforms all three 457

baselines, bringing positive effects to all models 458

across both datasets, and the largest improvements 459

across all models. RLHF and MPO sometimes 460

decreased AlignScore, specifically for LLaMA on 461

both datasets. We observe the degradation on MPO 462

when applied to similar summary pairs, as men- 463

tioned in the original MPO study (Choi et al., 2024), 464

so we compare our approach against the best MPO 465

setup with dissimilar pairs in Appendix A; our train- 466

ing pipeline still outperforms it. 467

In terms of the overall quality, we found a slight 468

trade-off between the factuality score and ROUGE- 469

L. ROUGE is computed between the generated 470

summary and the reference summary, which is di- 471

rectly used for SFT. Note that a previous study 472

(Maynez et al., 2020) has indicated that some hu- 473

man written reference summaries are hallucinated. 474
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Considering the large factuality improvement ob-475

tained from our approach, we think this trade-off is476

within the acceptable range.477

The results show that our approach is more ef-478

fective at improving summary factuality compared479

to RLHF on human-labelled datasets or MPO’s480

heuristic preference label generation, while not los-481

ing the overall quality comparing to the reference482

summaries used by SFT. This highlights the benefit483

of scoring summaries based on factuality metrics484

rather than relying on heuristic preferences.485

Across the four models, BART gained the largest486

improvement with a score increase of 24.7 on487

XSUM and 9.3 on TL;DR. It is worth noting that488

our training pipeline sealed the gap between BART489

and the LLMs and led to better post-training perfor-490

mance, making it possible to apply BART where491

computing resources are limited. The DeepSeek492

reasoning model received the least improvement,493

coming second last and last on XSUM and TL;DR494

respectively. We speculate that this is because our495

preference labels are only decided by the final sum-496

mary, so errors made in the thinking process gener-497

ated before it could be overlooked by the scoring498

metrics, resulting in a noisy training signal.499

4.5 Overall Quality Evaluation500

Dataset Model Baseline

SFT RLHF MPO

XSUM

BART 51.4 \ 52.0
GPT-J 44.2 \ 80.0

LLaMA 42.0 \ 54.0
DeepSeek 39.0 \ 52.4

TL;DR

BART 47.2 40.4 54.8
GPT-J 46.8 42.8 61.6

LLaMA 43.4 39.2 74.6
DeepSeek 40.8 \ 58.6

Table 6: The win rates of our approach against SFT,
RLHF, and MPO across 4 models and 2 datasets in
terms of overall quality of summaries.

To gain a better understanding of the overall qual-501

ity of the generated summaries, we use ChatGPT-502

4o-mini to evaluate them based on not just factual-503

ity, but also informativeness, coherence, and legibil-504

ity. We randomly selected 500 source documents505

from each dataset, applied different models to gen-506

erate summaries and asked ChatGPT to compare507

them in pairs. The full evaluation prompt can be508

found in Appendix B. We compared the summaries509

from our approach against those from the baselines510

(SFT, RLHF, and MPO). Some win rates against511

RLHF are not available due to the availability of512

the human preference dataset.513

Dataset Model
Pipeline
Decoding
Strategy

Pair
Similarity

Scoring Metric
SFT

ResultsSBERT SummaC
SBERT

+SummaC

SBERT
+SummaC
+Filter

X
SU

M

BART
(BS#1,BS#2) 0.940 71.4 79.7 78.5 86.6

61.9
(BS#1,Greedy) 0.826 75.0 81.7 79.9 86.1

GPT-J
(BS#1,BS#2) 0.973 60.0 54.1 71.7 70.9

59.7
(BS#1,Greedy) 0.773 68.2 73.9 70.0 75.8

LLaMA
(BS#1,BS#2) 0.938 85.0 86.5 87.5 88.7

86.1
(BS#1,Greedy) 0.889 85.5 84.3 86.3 87.1

DeepSeek
(BS#1,BS#2) 0.985 81.1 82.6 82.8 83.0

82.5
(BS#1,Greedy) 0.843 80.7 82.2 83.1 83.2

T
L

;D
R

BART
(BS#1,BS#2) 0.954 94.0 91.3 94.7 94.1

84.9
(BS#1,Greedy) 0.802 93.1 91.3 94.4 94.2

GPT-J
(BS#1,BS#2) 0.943 92.9 95.3 95.6 93.7

89.6
(BS#1,Greedy) 0.751 91.9 91.6 94.2 93.8

LLaMA
(BS#1,BS#2) 0.909 92.1 90.8 91.8 93.5

91.4
(BS#1,Greedy) 0.868 89.9 91.0 91.5 92.9

DeepSeek
(BS#1,BS#2) 0.972 88.7 85.6 89.2 90.9

89.1
(BS#1,Greedy) 0.735 89.5 88.8 89.3 89.9

Table 7: AlignScore of language models fine-tuned by
different training settings using our approach on the two
datasets. The best results are highlighted in bold.

Table 6 shows that our summaries were preferred 514

over MPO but less preferred than SFT summaries. 515

This is likely because SFT directly trains on human- 516

written reference summaries, while ours focus on 517

factuality, leading to potentially less fluency or in- 518

formativeness. RLHF summaries are also more pre- 519

ferred because they are originally trained to align 520

with human values, thus being more likely to be 521

selected by ChatGPT, which has also been trained 522

with the same purpose. However, previous discus- 523

sion has confirmed the competitive overall quality 524

of our summaries. Therefore, we asked ChatGPT 525

to output the selection reasons and found out that 526

the preferred summaries contained excessive de- 527

tails, while our summaries are more abstract and 528

discarded some of the unnecessary details to reduce 529

the risk of generating inconsistent content (Ap- 530

pendix C). This suggests a trade-off between fac- 531

tual consistency and summary style, which aligns 532

with previous findings (Hosking et al., 2024) that 533

overall judgements may neglect factuality. 534

5 Analysis 535

5.1 Ablation Study 536

We studied the effectiveness of each component in 537

our approach and present their influence in Table 538

7. Introducing a single factuality metric to score 539

the summary did not always lead to improvements. 540

For example, when only one metric was applied, 541

LLaMA and DeepSeek occasionally showed de- 542

creased factuality scores. However, when multiple 543

factuality metrics were applied, all models showed 544

improvement. Additionally, filtering out inconsis- 545

tent labels further enhanced performance, likely 546
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(a) Error frequency on XSUM.
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Figure 2: Error frequencies before and after training.

because contradicting labels may appear in differ-547

ent batches, thereby adding noise during training.548

5.2 Similarity of Summary Pairs549

We also examined the impact of similarity between550

paired summaries, as shown in Table 7. Sum-551

mary pairs generated by selecting alternative out-552

puts, i.e., (BS#1,BS#2), achieved higher similari-553

ties than pairs generated by varying the decoding554

strategy. Highly similar summary pairs may help555

the model focus on subtle factual consistency dif-556

ferences. However, the (BS#1,Greedy) strategy is557

competitive with (BS#1,BS#2) overall, suggesting558

that an average similarity ∼ 0.75 may be sufficient.559

Pipeline Decoding Strategy Pair Similarity AlignScore

SFT baseline - 61.9

(BS#1, BS#2) 94.0 86.6
(BS#1, Greedy) 82.6 86.1
(BS#1, Random) 34.9 72.0

Table 8: The effect of using temperature-based random
sampling decoding strategy to generate less similar can-
didate summaries to train BART on XSUM.

Taking BART as an example, we then further in-560

vestigated the effect of less similar summary pairs561

generated by beam search and temperature-based562

random sampling, as shown in Table 8. Less sim-563

ilar summary pairs went through the same prefer-564

ence label generation process. Fine-tuning with565

these labels still improved factuality but to a lesser566

degree than the similar pairs (BS#1,BS#2) and567

(BS#1,Greedy). We show the evaluation accuracy568

curve during training in Appendix D, which stayed569

level during training, implying that the model ben-570

efitted little from training on these data. Summary571

pairs generated by beam search and random sam-572

pling, which have a greater factuality gap (as shown573

in Table 3), were too straightforward for BART to574

learn from, resulting in minimal improvements.575

Therefore, we can conclude that both our similar 576

summary pair generation process contributes to the 577

final improvement of our approach. 578

5.3 Inconsistency Type Analysis 579

Finally, we employ ChatGPT to assess factual in- 580

consistencies in the summaries and analyse how 581

the frequency of factual errors changes before and 582

after training with our approach. 583

Similar to previous studies (Tang et al., 2023), 584

we defined five inconsistency types, namely Intrin- 585

sic, Extrinsic, Noun, Predicate, Quantifier. Along 586

with Correct summaries, we asked ChatGPT to 587

identify them according to a given definition and 588

count the frequency of each. The definition and 589

prompt can be found in Appendix B. 590

Figure 2 shows that the error frequencies of 591

Noun (Orange bars), Predicate (pink bars), and 592

Quantifier (yellow bars) mostly decreased. Con- 593

sequently, our approach achieved many more Cor- 594

rect summaries (blue bars) than SFT checkpoints, 595

demonstrating the effectiveness of our approach 596

across different models. 597

6 Conclusion 598

We introduce a novel automatic training pipeline 599

for improving the factual consistency of summaris- 600

ers. Our approach can be generalised over dif- 601

ferent model architectures and scales. It requires 602

only source documents, utilising multiple factuality 603

evaluation metrics to score the summary and obtain 604

labels for preference optimisation. The experimen- 605

tal results suggest that our approach outperforms 606

supervised and RLHF baselines and boosts the fac- 607

tuality performance of smaller models to a compa- 608

rable levels to LLMs, revealing the effectiveness of 609

preference learning over similar summary pairs. 610
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Limitations611

We only applied SBERTScore and SummaC to612

score the generated summaries in this paper. There613

are various other metrics available but we were614

not able to test them all. While were were able to615

demonstrate that it is possible to improve factual-616

ity using our chosen imperfect metrics, this could617

raise concerns about the generalisation ability of618

our approach to other automated scoring methods.619

On the other hand, we rely on AlignScore to evalu-620

ate our output. Although AlignScore is considered621

state-of-the-art for factuality evaluation for now, it622

is not perfect, so will still miss some factual errors623

in the summary.624

In overall quality evaluation, we found that our625

approach generated summaries that were less pre-626

ferred by ChatGPT when comparing to SFT/RLHF627

summaries. This reveals the challenge of how to628

fine-tune the summariser towards better factuality629

without trading off other qualities. It also high-630

lights the difficulty of judging the overall quality631

of summaries, where a human or LLM judge my632

put more weight on certain qualities (e.g., readabil-633

ity, brevity) at the expense of others (e.g., factual634

consistency). The trade-off between these quali-635

ties may need to be judged within the context of636

a specific application: how important it is that a637

summary is factually consistent versus stylistically638

compelling will depend on its use case.639
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A Results for MPO on Dissimilar Pairs1094

Figure 9 demonstrates the results of our approach1095

and MPO under the best setup individually. Our1096

methods significantly outperforms MPO.1097

Dataset Model MPO Ours

XSUM
BART 68.85 86.6
GPT-J 65.26 75.8

LLaMA 67.31 88.7

TL;DR GPT-J 91.61 93.8
LLaMA 85.33 93.5

Table 9: AlignScore comparison against the best results
for MPO, cited from Choi et al. (2024).

B Prompt for LLMs1098

B.1 Prompt for Summarisation Generation1099

We only prepare a simple prompt for GPT-J as it1100

needs SFT before applying RL, as shown in Figure1101

3. {doc} denotes the source document which will1102

be changed according to the data being processed.1103

It will learn to summarise the source document1104

into a single sentence during SFT, therefore it only1105

needs a template to ensure the model receives the1106

source document and generate summaries as com-1107

pletion.1108

Document: {doc}

Summary: 

Figure 3: Prompt for GPT-J.

Figure 4 presents the prompts we use to gener-1109

ate summaries using LLaMA on the two datasets.1110

SFT is not involved before we apply it to generate1111

summaries, therefore we provide a more detailed1112

instruction to specify our requirements.1113

For DeepSeek, we provide our requirements as1114

for LLaMA. Specifically, it requires a special token1115

<think> to trigger the thinking process, as shown1116

in Figure 5. Following the prompt, it generates a1117

chain-of-thought that ends with <\think> before1118

You are a useful AI assistant that helps people to summarize news documents. 
Summarize the given document into a single sentence:

Document: {doc}

Summary: 

(a) Prompt for XSUM.

You are a useful AI assistant that helps people to summarize news documents. 
Summarize the given document into a single sentence:

Document: {doc}

Summary: 

(b) Prompt for TL;DR.

Figure 4: Prompt for LLaMA to generate summaries on
the two datasets.

generating the final output. Therefore, we truncate 1119

its output at <\think> and take all the following 1120

output as the final summary for the metrics to score. 1121

You are a useful AI assistant that helps people to summarize news articles. Think first 
and then summarize the given article into a single sentence.

Document: {doc}

<think>

(a) Prompt for XSUM.

You are a useful AI assistant that helps people to summarize news articles. Think first 
and then summarize the given article into a single sentence.

Document: {doc}

<think>

(b) Prompt for TL;DR.

Figure 5: Prompt for DeepSeek to generate summaries
on the two datasets.

B.2 Prompt for ChatGPT Evaluation 1122

We use a similar prompt in the previous work 1123

(Choi et al., 2024) for ChatGPT to compare two 1124

summaries, as described in Figure 6. {source}, 1125

{summary1}, {summary2} denote the source docu- 1126

ment and two candidate summaries. We found that 1127

ChatGPT-4o-mini tends to claim that both sum- 1128

maries are not good enough due to informativeness, 1129

therefore we relaxed the requirement and ask it to 1130

choose the most faithful summary if both are not 1131

good as we focus on factuality on this paper. 1132

As for inconsistency type analysis, we give the 1133

definition in the prompt first and then ask ChatGPT 1134

to judge the summary. The prompt is shown in 1135

Figure 7. {source} and {summary} represent the 1136

source document and the summary to analyse. 1137
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Which of the following summaries does a better job of summarizing the most 
important points in the given news article, without including unimportant or 
irrelevant details? A good summary is both precise and concise but not overly 
specific. If both summaries are not good, choose the one that are most faithful to the 
original post. 
Article: {source}
Summary A: {summary1}
Summary B: {summary2} 
FIRST provide a one-sentence comparison of the two summaries, explaining which 
you prefer and why. SECOND, on a new line, state only \"A\" or \"B\" to indicate 
your choice. Your response should use the format: 
Comparison: <one-sentence comparison and explanation> 
Preferred: <A or B> 

Figure 6: Prompt for ChatGPT win rate evaluation.

Here is the definition of common factual inconsistency types. 
Intrinsic Errors: The summary contains misinformation that is present in the original 
text. 
Extrinsic Errors: The summary contains information that is not present in the original 
text. 
Noun Errors: The summary misrepresents details from the source, such as dates, 
numbers, names, or events. 
Predicate Errors: The summary misrepresents the relationships between entities or 
events in the source. 
Quantifier Errors: The summary misrepresents the quantity entities or events in the 
source. 
Can the given summary be supported by the given article? Only consider the errors 
above. 
Article: {source}
Summary: {summary}
FIRST, identify whether the summary is correct. If the summary is correct, please say 
\"No errors\". THEN, identify the errors in the summary, reply only with the error 
types \"Intrinsic\", \"Extrinsic\", \"Noun\", \"Predicate\", \"Quantifier\". Your 
response should use the format: 
Error types: <a list of error types>

Figure 7: Prompt for ChatGPT inconsistency type anal-
ysis.

C ChatGPT Win Rate Reason Analysis1138

We print out the common words appeared in the1139

reasons for choosing SFT and RLHF summaries1140

over ours in Figure 8. The main reason for the1141

SFT and RLHF summaries being preferred is that1142

they carry more details, while ours reduced the1143

hallucination risk by generating less of the details.

Figure 8: Prompt for ChatGPT inconsistency type anal-
ysis.

1144

D Evaluation Accuracy Curve during1145

Training1146

Figure 9 shows how well the model learns to dis-1147

tinguish the chosen summary and the rejected sum-1148

mary in the pair. Ideally, the model learns to simu-1149

late the chosen summary while differs its behaviour1150
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Figure 9: Evaluation accuracies over pairwise labels
during DPO training for BART on XSUM.

from the rejected summary so that it gains better 1151

accuracies during training. 1152
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