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ABSTRACT

We address the challenge of automatically visualizing scientific explanations.
While prior work has explored large language model (LLM)-based vector graphic
generation, existing approaches often overlook structural correctness, a key re-
quirement for valid scientific diagrams. To achieve structurally correct genera-
tion, we make three key contributions. First, we introduce SSVG-Bench, a novel
benchmark for evaluating the generation of Structured Scientific Vector Graphics.
Unlike conventional visual similarity metrics, SSVG-Bench employs task-specific
structural analysis for accurate evaluation, and it supports three vector formats:
TikZ, SVG, and EPS. Second, we conduct an extensive benchmarking and analy-
sis, revealing key findings such as the crucial role of LLM reasoning in ensuring
structural validity. Third, we propose LLM-Oriented Orchestration Prompting
(LOOP), a new prompting method that leverages LLMs’ reasoning potential by
combining familiar subtasks. Experiments demonstrate substantial improvements
over existing prompting techniques, suggesting promising directions for scientific
diagram generation. We will release our code and benchmark upon acceptance.

1 INTRODUCTION

In this paper, we address the challenge of automatically visualizing scientific explanations. Because
scientific explanations are often abstract and complex, they can be difficult to grasp from text alone.
To promote intuitive understanding, visualization is widely used in contexts such as science text-
books and research papers. These observations suggest that automated visualization could have a
significant impact.

Recent research on scientific diagram generation has investigated vector graphics generation with
large language models (LLMs) (Belouadi et al., 2024a3b; |[Zhang et al., 2025} |Belouadi et al., [2025)).
As vector graphics encode visual content in structured text form, they can be directly produced by
LLMs. Given that LLMs are capable of capturing scientific concepts in depth and encoding complex
constraints, they are particularly promising for this task.

However, existing methods have overlooked a crucial aspect of scientific diagrams: structural cor-
rectness. To illustrate its importance, we present a physics scenario in Figure [T Here, the visu-
alization must strictly satisfy structural constraints: the object should remain in contact with the
inclined plane, and three arrows must be shown, one vertical to the ground, one perpendicular to the
plane, and one parallel to the plane. An existing method, namely a fine-tuned LLM for generating
vector code (Belouadi et al.| [2025), fails to meet these constraints. Although it prioritizes visual
plausibility, the lack of structural enforcement ultimately leads to invalid scientific diagrams.

Towards the generation of scientific vector graphics with structural correctness, we make three main
contributions. Our first contribution is a new benchmark for the generation of Structured Scien-
tific Vector Graphics, named SSVG-Bench. It targets two foundational domains: plane geometry
and molecular structure. The plane geometry task involves generating geometric figures from tex-
tual descriptions of theorems or construction methods, while the molecular structure task requires
correctly generating a molecule’s structure from its [UPAC name, which encodes structural infor-
mation. These domains are representative of broader applications: the ability to generate plane
geometry structures is fundamental for physics illustrations, engineering diagrams, and architec-
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Textual explanation Expected output Output by TikZero+

An object on an inclined plane experiences
three forces: the gravitational force mg
acting vertically downward, the normal
force of magnitude mgcos(theta) acting
perpendicular to the plane, and a static
friction force of magnitude mgsin(theta)
acting up the plane, parallel to its surface.

mg cost

Figure 1: An example highlighting the importance of structural correctness: the object should remain
in contact with the inclined plane, and three arrows must be shown, one vertical to the ground, one
perpendicular to the plane, and one parallel to the plane. TikZero+ (Belouadi et al.| |[2025), a fine-
tuned LLM for generating vector code, does not meet these structural constraints.

tural blueprints, while generating molecular structures requires correctly producing graph structures,
which are important in various fields such as algorithm flowcharts, circuit designs, and biological
pathways. The most significant feature of SSVG-Bench is its evaluation method. Conventional
visual similarity metrics are insufficient for assessing structural correctness, as even minor visual
changes can cause structural inconsistencies. To address this, we provide task-specific Python scripts
that analyze the structure of the generated outputs, enabling accurate evaluation of structural correct-
ness. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which allows
us to examine performance across formats.

Our second contribution is a comprehensive benchmarking and analysis of existing models using
SSVG-Bench, which yields several key findings. First, LLLs fine-tuned on existing vector graphic
generation datasets to produce vector code rarely generate structurally valid vector graphics. Second,
we show that the reasoning capabilities of LLMs are essential for generating structurally correct
vector graphics. Finally, although prior work has mainly focused on the TikZ format, our results
demonstrate that the SVG format is better suited for LLM reasoning.

As our third contribution, we propose a new prompting technique, LLM-Oriented Orchestration
Prompting (LOOP), to further enhance the reasoning capabilities of LLMs. Recent LLMs are ex-
plicitly trained to perform step-by-step reasoning and can solve complex tasks, but it has been re-
ported that they struggle with tasks not encountered during training (Shojaee et al.| 2025} Malek
et al.,|2025). Since LLMs are not explicitly trained to generate vector graphics from scientific expla-
nations, they cannot fully utilize their reasoning potential when the task is presented in its original
form. To fully leverage their reasoning abilities, we design a prompt that explicitly guides LLMs
to perform LLM-friendly subtasks such as information extraction and relationship extraction, which
enables them to generate vector graphics with correct structure. Our experiments demonstrate that
LOOQP achieves substantially better performance than existing prompting methods.

Our contributions can be summarized as follows.

 Dataset: We introduce SSVG-Bench, a new benchmark for structured scientific vector graphics
generation, including scripts that verify structural correctness.

* Benchmarking and analysis: Our analysis shows that previous fine-tuned models cannot pro-
duce structurally correct graphics, that LLM reasoning capabilities are essential for ensuring
structural correctness, and that the SVG format is well-suited for such reasoning.

* Method: We propose LOOP, a new prompting method that enhances LLM reasoning by solving
LLM-friendly sub-problems step by step.

2 RELATED WORKS

Scientific vector graphic generation benchmarks. Vector graphics are gaining attention as an
image format well-suited for LLMs, as they are represented in text and can be directly input or
output by LLMs without requiring a vision adapter. Several benchmarks have been developed for
general vector graphics generation, such as SVGEditBench (Nishina & Matsui, |2024), SVG Tax-
onomy (Xu & Wall, [2024), and VGBench (Zou et al., [2024). Additionally, several benchmarks for
visualizing scientific data have been developed, such as MatPlotBench (Yang et al.,|2024), Pandas-
PlotBench (Galimzyanov et al.,|2025)), and ChartMimic (Yang et al.| [2025)).
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Table 1: Comparison of previous benchmarks with our SSVG-Bench.

# Evaluation

Benchmark Scientific? data Evaluation method Vector format
SVGEditBench No 1,366 Visual similarity SVG

SVG Taxonomy No 400 Exact match SVG
VGBench No 5,845 Visual similarity TikZ, SVG, Graphviz
DaTikZ v1 Yes 1,000 Visual/code similarity, Human evaluation TikZ
DaTikZ v2 Yes 1,000  Visual/code similarity, Human evaluation TikZ
DaTikZ v3 Yes 1,000 Visual/code similarity, Human evaluation TikZ
Sclmage Yes 404 Human evaluation TikZ
DiagramGenBench Yes 470 Visual/code similarity, Human evaluation TikZ, DOT
SSVG-Bench (ours)  Yes 1,230 Structural analysis scripts TikZ, SVG, EPS

Motivated by this trend, some benchmarks have also been created specifically for scientific vector
graphics generation. DaTikZ vl (Belouad: et al.| 2024a)) collects TikZ code and corresponding
captions from sources such as arXiv papers. DaTikZ v2 (Belouadi et al.| [2024b)) collects pairs
of hand-drawn sketches and TikZ code to evaluate the performance of sketch-to-TikZ conversion.
DaTikZ v3 (Belouadi et al., | 2025)) further extends DaTikZ v1 and v2. ScImage (Zhang et al., [2025))
employs synthetic data to analyze scientific vector generation in terms of attributes, numbers, and
spatial dimensions. DiagramGenBenchmark (Wei et al., [2025) provides diagram structures in TikZ
as well as graph structures in the DOT language.

However, these benchmarks generally do not focus on the structural correctness of the generated
graphics. We present a comparison of these benchmarks with our SSVG-Bench in Table The
most significant feature of SSVG-Bench is its evaluation method. Visual similarity-based and code
similarity-based metrics are insufficient for determining whether the structure of a generated graphic
truly reflects the intended structure. Human evaluations, while informative, are not scalable and are
subject to variability and inconsistency across evaluators. As a result, it is difficult to increase the
number of models evaluated or to use diverse experimental conditions. To address these issues, we
provide task-specific Python scripts that analyze the structure of the generated output and determine
its correctness. Our evaluation framework offers precise, objective, and consistent assessments of
performance. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which
allows us to examine performance across formats.

Scientific vector graphic generation methods. Based on the benchmarks, several scientific vector
graphic generation methods have been proposed. AutomaTikZ (Belouadi et al.| 2024a)) is designed
for TikZ generation by fine-tuning Llama (Touvron et al.,|2023) to output TikZ code from captions.
It leverages CLIP features (Radford et al., [2021)), derived from captions, to further improve visual
alignment. DeTikZify (Belouadi et al., [2024b)) converts hand-drawn sketches into TikZ code by
combining a vision encoder (SigLIP (Zhai et al.}2023))) with an LLM such as Llama. TikZero (Be-
louadi et al.| 2025)) addresses the scarcity of paired caption-TikZ data by leveraging readily available
captioned raster images for training. DiagramAgent (Wei et al., 2025) enables the creation of com-
plex diagrams by coordinating multiple agents. Despite their innovations, these models are primarily
trained to predict output code and are not designed to guarantee structural correctness.

LLM prompting methods. The reasoning capabilities of LLMs can be elicited through effective
prompting. Seminal work on Chain-of-Thought (CoT) demonstrated that allowing models to gen-
erate intermediate reasoning steps dramatically improves multi-step reasoning (Wei et al., [2022).
Follow-ups revealed that simply appending “Let’s think step by step” can unlock zero-shot rea-
soning (Kojima et al., 2022), and that sampling multiple reasoning paths and selecting the most
consistent answer (“self-consistency”) further boosts accuracy (Wang et al., |2023b). Beyond linear
reasoning, researchers decomposed problems via least-to-most prompting (Zhou et al.,2023)), intro-
duced plan-first then execute strategies such as Plan-and-Solve (Wang et al., 2023a), and proposed
Step-Back prompting, which encourages the model to abstract away from the immediate problem
and reason at a higher conceptual level before providing a solution (Zheng et al. 2024). In this
paper, we introduce a novel prompting method designed for scientific vector graphic generation.
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Input The exterior angle bisector in A
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intersects the extended side BC in E,
the exterior angle bisector in B
intersects the extended side AC in D
and the exterior angle bisector in C
intersects the extended side AB in F.

The three points of intersection
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To state the theorem, suppose that
ABCD and AB'C'D' are two squares
with common vertex A. Let E and G
be the midpoints of B'D and D'B
respectively, and let F and H be the
centers of the two squares. Then the
theorem states that the quadrilateral
EFGH is a square as well.

R

N\

The Apollonius point of a triangle is
defined as follows. Let /AABC be any
given triangle. Let the excircles of /A
ABC opposite to the vertices A, B, C
be EA, EB, EC respectively. Let E be
the circle which touches the three
excircles EA, EB, EC such that the
three excircles are within E. Let A",

between the exterior angle bisectors
and the extended triangle sides D, E,
F are collinear, that is they lie on a
common line.

B', C' be the points of contact of the
circle E with the three excircles. The
lines AA', BB', CC' are concurrent.
The point of concurrence is the
Apollonius point of AABC.

Molecular structure

Vector
graphic
Input the molecular structure of the
text compound with the [IUPAC name

4-butyl-2,6-dimethylmorpholine

the molecular structure of the
compound with the [IUPAC name
6-methoxy-4-methyl-5-phenyl
methoxyquinolin-8-amine

the molecular structure of the
compound with the IUPAC name
4-[[2,4-diamino-5-[(4-carboxyphenyl)
diazenyl]phenyl]diazenyl]benzoic acid

Figure 2: Examples in SSVG-Bench.!

3 SSVG-BENCH

To evaluate whether LLMs can generate vector graphics with structural correctness, we introduce
SSVG-Bench. SSVG-Bench covers two key topics: 1) plane geometry and 2) molecular structure.
For each topic, we also develop an automatic evaluation framework. Figure 2] presents some ex-
amples, and Table [2] summarizes respective statistics. We provide a detailed explanation of these

components in the following sections.

3.1 PLANE GEOMETRY

This task involves generating visualizations of
plane geometric figures from textual descriptions,
translating explanations of theorems or construc-
tions into precise visual representations. To suc-
ceed, LLMs must accurately interpret spatial re-
lationships such as “intersection”, “tangent”, and
“perpendicular”, as well as uniquely determined
constructions like ‘“angle bisectors” and “excir-
cles.” This task can evaluate visualization capa-
bilities that are important in a variety of applica-
tions, including physics illustrations, engineering
diagrams, and architectural blueprints.

Table 2: Statistics of SSVG-Bench. The num-
ber of elements is counted based on the SVG.

Plane geometry
Total number of input texts 110
Average number of elements per vector graphic

- line 3.96

- circle 2.77

- ellipse 0.03

- polygon 1.65

- polyline 0.01
Molecular structure

Total number of input texts 300

Average number of elements per vector graphic
- line 32.45
- circle 30.38

!'The input texts and vector graphics are from (Wikipedia contributors} 20235bjf; 2024} |[Kmhkmbh), 2019a}
2015; |Krishnachandranvn, 2012} |National Center for Biotechnology Information} [2025flig)
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Input The segment AB is bisected Output Gemini 2.0 Flash DeepSeek-R1 Ground-truth
text by drawing intersecting vector N )

circles of equal radius r > graphic T \\\
1/2|AB|, whose centers are (TikZ) /* \
the endpoints of the segment. ( B /‘
The line determined by the \
points of intersection of the . \ — //
two circles is the perpen- Automa_mc
dicular bisector of the evaluation Incorrect Correct
segment. results

Figure 3: An example of the automatic evaluation results for Pattern 2 in the plane geometry
visualization task, where the correct object is not uniquely determined. Our Python-based automatic
evaluation framework checks whether the radius of each circle is greater than half the length of
segment AB, enabling appropriate assessment.”

Input the molecular structure of the  Output ~ Claude Opus 4.1 GPT-5 Ground-truth
text compound with the IUPAC name vector

tellurophene-2-carboxylic acid graphic
(TikZ)
Automatic

evaluation Incorrect Correct
results
Figure 4: An example of the automatic evaluation results in the molecular structure visualization
task. Correctness can be determined based on graph analysis, even when the images differ signifi-
cantly in visual appearance.’

We curated a dataset by collecting paired textual descriptions and corresponding images related to
plane geometry from Wikipedia. All images used are freely available for modification and redis-
tribution. Most of them are in SVG, a vector graphic format. We cleaned the images using Adobe
Iustrator by removing elements unrelated to the text. When only raster images were available, we
manually recreated the visuals in vector format. In total, we compiled 110 text-vector graphic pairs.

The automatic evaluation falls into two distinct patterns. In Pattern 1, the correct output can be
uniquely determined. We provide some parts of the vector graphics as input to the LLM. As shown
in Figure[2] the elements depicted in black are given as input, and the LLM is expected to generate
the red elements. These red elements are uniquely determined by the black elements. We devel-
oped a Python script to analyze the vector data and assess correctness by checking whether the red
components are present in the LLM’s output.

In Pattern 2, the correct output cannot be uniquely determined, even when the black elements are
provided. For example, in the case illustrated in Figure 3] any circle with a radius greater than half
the length of the given line segment is considered acceptable. For such cases, we implemented case-
specific Python logic to evaluate correctness based on the textual input, allowing for variation in
valid outputs. In Figure 3] the output of Gemini 2.0 Flash is judged as incorrect because the radius
of the circle is shorter than half the length of segment AB. Although the output of DeepSeek-R1
differs from the predefined ground-truth radius, it is judged as correct since their circle radii exceed
half the length of segment AB. We carefully read each text and manually categorized them into
Pattern 1 and Pattern 2. There are 94 cases belonging to Pattern 1 and 16 cases belonging to Pattern
2.

For simplicity, we exclude text layout from the evaluation process.
3.2 MOLECULAR STRUCTURE

In this task, the input is an [UPAC name that describes the molecular structure, and the goal is to
generate the corresponding molecular structure. The IUPAC name encodes the structural informa-

2The input text and the ground-truth are from (Wikipedia contributors} 2025¢) and (Ag2gaehl [2021).
3The molecular structure data is from (National Center for Biotechnology Information, 2025p).
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tion of a molecule, and by interpreting it, the molecular structure can be reconstructed. For example,
the [IUPAC name shown on the left side of Figure [2|is “4-butyl-2,6-dimethylmorpholine,” which
indicates that a butyl group is attached to the nitrogen atom at the 4-position (shown in blue) of
the morpholine ring (a six-membered ring), and that methyl groups are attached at the 2- and 6-
positions. In this way, the molecular structure can be accurately restored from the [UPAC name. It
is essential to correctly identify the types and numbers of atoms involved, with particular importance
placed on the graph structure formed by atomic bonds. This task can evaluate the graph structure vi-
sualization capabilities of LLMs, which are important in various fields such as algorithm flowcharts,
circuit design, and biological pathways.

We obtained pairs of TUPAC names and molecular structures from PubCheny’| The structural data
is stored in JSON format, and we developed a Python script to convert this information into vec-
tor graphics automatically. Using this script, we generated ground-truth data. We collected 300
molecules in total, with 50 examples each for molecules with fewer than 20 elements (atoms plus
bonds), 21-40, 41-60, 61-80, 81-100, and more than 100 elements.

To enable automatic evaluation, we implemented a Python-based evaluation tool. The generated
vector graphic is converted into a molecular graph, where nodes represent atoms and edges represent
bonds. We then check for “graph isomorphism” between the generated structure and the ground-
truth to automatically assess correctness. Graph isomorphism refers to the problem of determining
whether two graphs are structurally identical, meaning their nodes and edges can be matched one-to-
one while preserving connectivity. We use the NetworkX library to solve this problem. To simplify
the task, we do not consider bond order. We present an example of automatic evaluation results
in Figure 4| Although the output of GPT-5 appears visually different from the ground-truth, it is
considered correct based on graph-theoretic equivalence.

3.3 MULTIPLE VECTOR FORMATS

There are various types of vector graphic formats. To analyze performance differences across for-
mats, we use three types: TikZ, SVG, and EPS. For the plane geometry task, since the vector graph-
ics collected from Wikipedia are in SVG format, we developed Python scripts to automatically con-
vert SVG to TikZ and EPS, thereby generating ground-truth data. For the molecular structure task,
we generate vector graphics in each format directly from molecular structure data stored in JSON
files, using custom Python scripts to automate the process. When evaluating LLMs, we add instruc-
tions to the prompt to generate output in a specific format. This approach allows us to explore which
vector format is most suitable for LLMs. If the syntax is incorrect, it will result in a compilation
error (for TikZ and EPS) or a parsing error (for SVG). In such cases, the output is considered incor-
rect. Therefore, LLMs must strictly adhere to the syntax of each format. Our SSVG-Bench dataset
consists of two tasks and three vector formats, comprising a total of 1,230 text-vector graphic pairs.

4 BENCHMARKING AND ANALYSIS

Using SSVG-Bench, we evaluate whether recent models can generate structurally correct vector
graphics. Our experiments utilize two fine-tuned models: AutomaTikZ (Belouad: et al., [2024a)
and TikZero+ (Belouadi et al., [2025)). As these models are trained to generate TikZ, we evaluate
them exclusively on TikZ. We also evaluate recent general-purpose LLMs, including DeepSeek-V3,
R1, V3.1 (DeepSeek, 2025), Claude Opus 4.1 (Anthropic, [2025)), Gemini 2.0 Flash, 2.5 Flash, 2.5
Pro (Google, 2025), 04-mini, GPT-4.1, and GPT-5 (OpenAl, 2025). The detailed prompts used
for evaluation are provided in the Appendix. The overall performance is shown in Table f] with a
detailed analysis provided below.

Limitations of fine-tuned models. Our benchmarking with SSVG-Bench reveals that models fine-
tuned to generate TikZ code (AutomaTikZ and TikZero+) seldom produce structurally valid outputs.
This highlights a limitation: simply training to predict TikZ code from captions is insufficient to
generate correct scientific figures.

*https://pubchem.ncbi.nlm.nih.gov/
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Table 4: Accuracies on SSVG-Bench (%). The fill colors correspond to the values.

Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS

Model

Average

Fine-tuned models
AutomaTikZ
TikZero+

Non-reasoning models
DeepSeek-V3
DeepSeek-V3.1
Claude Opus 4.1
Gemini 2.0 Flash
Gemini 2.5 Flash
GPT-4.1

GPT-5 Chat

Reasoning models
DeepSeek-R1
DeepSeek-V3.1 reasoning
Claude Opus 4.1 thinking
Gemini 2.5 Flash reasoning 55.5

Gemini 2.5 Pro 627 564
04-mini 62.7 555
GPT-5 75.5 664 523 557 499

Table 5: Comparison of averages for models with reasoning enabled vs. disabled. DeepSeek-V3.1,
Claude Opus 4.1, Gemini 2.5 Flash, and GPT-5 are considered.

Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS

Model Average

Importance of reasoning. To evaluate the effectiveness of reasoning, we consider models where
reasoning can be toggled on and off, and we report results for both configurations in Table @ The
models compared are as follows: DeepSeek-V3.1 vs. DeepSeek-V3.1 reasoning, Claude Opus 4.1
vs. Claude Opus 4.1 thinking, Gemini 2.5 Flash vs. Gemini 2.5 Flash reasoning, and GPT-5 Chat
vs. GPT-5. Table[5]compares the averages of models with reasoning disabled and enabled. Enabling
reasoning significantly improves performance. These results demonstrate that enabling reasoning
plays a crucial role in generating structured vector graphics.

Reasoning disabled
Reasoning enabled 48.4

Impact of vector format. Table 3: Google search hits for format-specific keywords (Novem-
Focusing on the two best- ber 2025).

performing models, Gemini TikZ SVG EPS
2.5 Pro and GPT-5, we ob-
serve that their performance Keyword “tikzpicture” “</svg>" ‘“‘showpage” and “moveto”

on SVG is the highest, sur- # Hits 272K 524M 20.7K

passing their performance on

TikZ and EPS. This represents a novel finding, as prior benchmarks have primarily focused on TikZ.
One possible explanation is the scale of resources used for training. Existing research
[2024) has demonstrated that the reasoning capabilities of LLMs tend to be weaker in low-resource
languages (e.g., Bengali or Thai) compared to high-resource languages (e.g., English). Similarly,
it is possible that LLMs are not well-suited for reasoning with TikZ and EPS, because they may
be considered “low-resource languages.” To test this hypothesis, it would be necessary to examine
the training data, but the datasets used to train Gemini 2.5 Pro and GPT-5 remain unspecified. We
instead query Google with format-specific keywords and record the number of hits, since much of
the training data for LLMs is derived from internet sources. Table [3] presents the number of hits




Under review as a conference paper at ICLR 2026

Table 6: Comparison between our LOOP and other zero-shot prompting methods.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Gemini 2.5 Pro 500 62.7 564 413 633 573 54.6
w/ Zero-shot CoT 39.1 664 618 47.7 630 587 56.3
w/ Plan-and-Solve 39.1 69.1 66.4 413 58.7 550 53.4
w/ Step-Back 33.6 645 59.1 40.7 543 563 51.0
w/ LOOP (ours) 65.5 809 62.7 477 647 67.7 62.6

GPT-5 545 755 664 523 557 499 56.0
w/ Zero-shot CoT 582 80.0 755 53.0 52.0 493 56.7
w/ Plan-and-Solve 618 773 709 523 503 507 56.2
w/ Step-Back 555 755 727 50.7 517 483 55.0
w/ LOOP (ours) 70.0 80.0 773 55,0 573 543 61.0

obtained from searches using format-specific keywords. Compared to TikZ and EPS, SVG yielded
a much higher number of hits, suggesting that SVG constitutes a high-resource format.

5 LLM-ORIENTED ORCHESTRATION PROMPTING (LOOP)

Through our analysis, we find that LLM reasoning plays a crucial role. Building on this finding, we
propose a method to enhance their reasoning capabilities. Previous research has shown that carefully
crafted prompts can significantly improve LLM reasoning, even in zero-shot settings. For instance,
zero-shot CoT prompting (Kojima et al.| 2022), which simply instructs the model with “Let’s think
step by step,” has been shown to improve performance. In this work, we introduce a novel zero-shot
prompting method, termed LOOP. While recent LLMs are explicitly trained for step-by-step reason-
ing and can solve complex tasks, their performance often degrades on tasks outside their training
distribution (Shojaee et al.| 2025; Malek et al., [2025). Because LLMs are not inherently trained
to generate vector graphics from scientific explanations, their reasoning potential remains under-
utilized. The core idea of LOOP is to instruct LLMs to generate vector graphics by orchestrating
LLM-familiar tasks. Specifically, we use the following tasks: 1) information extraction, 2) relation-
ship extraction, 3) mathematical reasoning, and 4) code generation. The first three tasks provide the
information necessary for visualization, while the final task produces the vector graphics. Informa-
tion and relationship extraction are long-standing tasks in the field of natural language processing,
whereas mathematical reasoning and code generation are areas where recent LLMs have made sig-
nificant progress. By orchestrating these familiar tasks, LOOP aims to accelerate and enhance LLM
reasoning capabilities.

Specifically, for the plane geometry visual task, we use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the necessary
elements. 2. Relationship extraction: describe their relationships. 3. Mathematical reasoning:
compute the attributes of each element so that they satisfy those relationships. 4. Code generation:
generate the TikZ.”

For the molecular structure visualization task, we exclude mathematical reasoning, as it is not nec-
essary. We use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the functional
groups and substituents present in the IUPAC name. 2. Relationship extraction: describe how these
groups are connected. 3. Code generation: generate the TikZ.”

The word “TikZ” is replaced with the target vector format.
5.1 EVALUATION

We evaluate the performance of LOOP by applying it to the two best-performing models: Gemini
2.5 Pro and GPT-5. For comparison, we use the following three zero-shot prompting techniques:
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Input In geometry, the six circles  QOutput ~ Gemini 2.5 Pro Gemini 2.5 Pro Ground-truth
text theorem relates to a chain of six vector
circles together with a triangle, graphic
such that each circle is tangent (SVG)
to two sides of the triangle and
also to the preceding circle in
the chain. The chain closes, in
the sense that the sixth circle is
always tangent to the first circle.

Incorrect Correct

Input Let O be a circle of radius R.  Output GPT-5 GPT-5 w/ LOOP Ground-truth
text LetO_1,0_2, O_3, O_4 be (in vector (Pattern 2)

that order) four non-intersecting graphic
circles that lie inside O and (SVG)
tangent to it. Denote by t_{ij} the
length of the exterior common
bitangent of the circles O_i, O_j.
Then:t_{12} \cdot t_{34}+t_{14}
\cdot t_{23}=t_{13}\cdot t_{24}.

Incorrect

Figure 5: Examples demonstrating improvements from our prompting method on the plane geom-
etry SVG generation task. In the bottom example, since there are two possible exterior common
bitangents for each pair of circles, either line is considered correct.’

Input the molecular structure of the  Output ~ Gemini 2.5 Pro Gem1m 2 5 Pro Ground-truth
text compound with the IUPAC name vector
3-[[4-(4-methylphenyl)piperazin graphic
-1-yllmethyl]-5-[(2-methyl (SVG)
quinazolin-4-yl)oxymethyl]-1,3,4-0
xadiazole-2-thione
Incorrect Correct
Input the molecular structure of the  Output GPT-5 GPT-5 w/ LOOP Ground-truth

text compound with the IUPAC name vector
(6-chloro-4-methyl-2-oxochrome graphic \O\’
n-7-yl) (2R)-2-[(4-methylphenyl) (SVG) /

sulfonylamino]pentanoate 25 7

Incorrect Correct

Figure 6: Examples demonstrating improvements from our prompting method on the molecular
structure SVG generation task.’

* Zero-shot CoT Prompting (Kojima et al.l, 2022): “Let’s think step by step.”

* Plan-and-Solve Prompting (Wang et al., 20234): “Let’s first understand the problem and devise
a plan to solve the problem. Then, let’s carry out the plan and solve the problem step by step.”

* Step-Back Prompting (Zheng et all[2024): “Let’s think step by step, following this workflow: 1.
Step back and pose higher-level, abstract questions. 2. Answer those questions. 3. Generate the
TikZ.”

The results are shown in Table[6] While some methods degrade performance, the proposed method
provides the highest performance gain. This result clearly demonstrates that the proposed method
can efficiently leverage the potential of LLMs.

We present examples in Figures [5] and [6] showing that LOOP enables the generation of structurally
correct vector graphics. Without LOOP, LLMs fail to accurately produce complex structures. LOOP
encourages deeper reasoning, which leads to the generation of structurally correct vector graphics.

>The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2022} [2025¢} [Roc-|

[chinil 2010} [Kmhkmb], 2018).

°The molecular structure data is from (INatlonal Center for Biotechnology Informatlonl |2025]Ho[)




Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this paper, we tackled the problem of scientific vector graphics generation using LLMs. Specifi-
cally, aiming for structurally correct vector graphics generation, we made three contributions. First,
we introduced a new benchmark that assesses the structural correctness of generated graphics using
structural analysis scripts. Second, we conducted a comprehensive benchmarking study and pro-
vided detailed analyses based on this benchmark. Third, we proposed a novel prompting technique
that accelerates LLM inference and significantly improves performance.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT when writing our paper, for translation purposes.

B DETAILED PROMPTS USED IN OUR EXPERIMENTS

Figures Bl and [0 show examples of prompts used in the plane geometry task. The
[Explanation] section represents the textual description, while the [TikZ], [SVG], and
[EPS] sections represent the input elements (the black elements in Figure[2).

Figures [T0] [T1] and [I2] show examples of prompts used in the molecular structure task. We first
provide the ITUPAC name, followed by a set of instructions. In particular, we include color specifi-
cations so that the types of atoms can be identified by their color. We also present an example using
chlorobenzene, which is a relatively simple molecule.
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[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.

[TikZ]\documentclass{standalone}

\usepackage{tikz}

\begin{document}

\begin{tikzpicture}[x=1pt,y=1pt]

\draw (38.23,-264.41) -- (65.98,-195.89) -- (32.16,-166.40) -- cycle;
\node at (23.54,-167.59) {A};

\node at (70.26,-197.89) {B};

\node at (28.79,-270.30) {C};

\end({tikzpicture}

\end{document}

Please visualize the explanation by adding elements to the TikZ
diagram.

— Set the color of any added elements to red.

— Do not modify any elements that are originally present in the TikZ.
— Do not use any animations.

Figure 7: An example prompt from the TikZ generation task on plane geometry.

[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.
[SVG]<svg xmIns="http://www.w3.0rg/2000/svg"
xmins:ev="http://www.w3.0rg/2001/xml-events" version="1.1"
viewBox="0 0 300 300">
<style>
.input_object {

fill: none;

stroke: black;

stroke-width: 1;
}
.input_text {

fill: black;

stroke: none;

font-size: 12px;
}
.output_object {

fill: none;

stroke: red;

stroke-width: 1;
}
.output_text {

fill: red;

stroke: none;

font-size: 12px;
}
</style>
<polygon class="input_object" points="38.23232323232324
264.4065656565657 65.9848484848485 195.8901515151515
32.15909090909092 166.40151515151516"/>
<text class="input_text" x="23.541666666666668"
y="167.58838383838383">A</text>
<text class="input_text" x="70.2588383838384"
y="197.89141414141415">B</text>
<text class="input_text" x="28.787878787878793"
y="270.30303030303037">C</text>
</svg>
Please visualize the explanation by adding elements to the SVG
diagram.
- Assign class="output_text" to any added text elements, and
class="output_object" to all other added elements.
- Do not modify any elements that are originally present in the SVG.
— Do not use any animations.

Figure 8: An example prompt from the SVG generation task on plane geometry.
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[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.

[EPS]%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 0 0 300 300

1 setlinewidth

0 0 0 setrgbcolor

newpath

38.23232323232324 35.593434343434296 moveto
65.9848484848485 104.1098484848485 lineto
32.15909090909092 133.59848484848484 lineto

closepath

stroke

/Helvetica findfont 12 scalefont setfont

0 0 0 setrgbcolor

newpath

23.541666666666668 132.41161616161617 moveto

(A) show

/Helvetica findfont 12 scalefont setfont

0 0 0 setrgbcolor

newpath

70.2588383838384 102.10858585858585 moveto

(B) show

/Helvetica findfont 12 scalefont setfont

0 0 0 setrgbcolor

newpath

28.787878787878793 29.69696969696963 moveto

(C) show

showpage

Please visualize the explanation by adding elements to the EPS
diagram.

— Set the color of any added elements to red.

— Do not modify any elements that are originally present in the EPS.
— Do not use any animations.

Figure 9: An example prompt from the EPS generation task on plane geometry.

Please create a TikZ file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F:
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br:
#D58639, Te: #D5CD72, I: #FFOOFF, Eu: #00CCD5, Lu: #00CCD5,
Os: #838C8C, U: #00CCD5

As a reference, an example TikZ visualization of the compound
chlorobenzene is provided below.
\documentclassitikz]{standalone}
\definecolor{274A4A{HTMLK274A4A}
\definecolor{2AD52A}{HTML}2AD52A}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
\draw[line width=1pt] (20.00,6.22) -- (28.66,1.22);
\draw[line width=1pt] (45.98,1.22) -- (45.98,-8.78);
\draw[line width=1pt] (45.98,1.22) -- (37.32,6.22);
\draw[line width=1pt] (45.98,-8.78) -- (37.32,-13.78);
\draw[line width=1pt] (37.32,6.22) -- (28.66,1.22);
\draw[line width=1pt] (37.32,-13.78) -- (28.66,-8.78);
\draw[line width=1pt] (28.66,1.22) - (28.66,-8.78);
\filldraw([fill=2AD52A, draw=none] (20.00,6.22) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (45.98,1.22) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (45.98,-8.78) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (37.32,6.22) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (37.32,-13.78) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (28.66,1.22) circle (1.5pt);
\filldraw([fill=274A4A, draw=none] (28.66,-8.78) circle (1.5pt);
\end({tikzpicture}
\end{document}

Figure 10: An example prompt from the TikZ generation task on molecular structure.
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Please create an SVG file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F:
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br:
#D58639, Te: #D5CD72, I: #FFOOFF, Eu: #00CCD5, Lu: #00CCD5,
Os: #838C8C, U: #00CCD5

As a reference, an example SVG visualization of the compound
chlorobenzene is provided below.

<svg xmins="http://www.w3.0rg/2000/svg" viewBox="10 -29.976
67.479 59.646">

<line x1="20" y1="6.223999999999999" x2="28.66" y2="1.224"
stroke="black" stroke-width="1" />

<line x1="45.980999999999995" y1="1.224"
x2="45.980999999999995" y2="-8.776" stroke="black"
stroke-width="1" />

<line x1="45.980999999999995" y1="1.224" x2="37.32"
y2="6.223999999999999" stroke="black" stroke-width="1" />

<line x1="45.980999999999995" y1="-8.776" x2="37.32" y2="-13.776"
stroke="black" stroke-width="1" />

<line x1="37.32" y1="6.223999999999999" x2="28.66" y2="1.224"
stroke="black" stroke-width="1" />

<line x1="37.32" y1="-13.776" x2="28.66" y2="-8.776" stroke="black"
stroke-width="1" />

<line x1="28.66" y1="1.224" x2="28.66" y2="-8.776" stroke="black"
stroke-width="1" />

<circle cx="20" cy="6.223999999999999" r="1.5" fill="#2AD52A" />
<circle cx="45.980999999999995" cy="1.224" r="1.5" fill="#274A4A"
>

<circle cx="45.980999999999995" cy="-8.776" r="1.5" fill="#274A4A"
>

<circle cx="37.32" cy="6.223999999999999" r="1.5" fill="#274A4A" />
<circle cx="37.32" cy="-13.776" r="1.5" fill="#274A4A" />

<circle cx="28.66" cy="1.224" r="1.5" fill="#274A4A" />

<circle cx="28.66" cy="-8.776" r="1.5" fill="#274A4A" />

</svg>

Figure 11: An example prompt from the SVG generation task on molecular structure.
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Please create an EPS file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: [0.39, 0.55, 0.55], B: [0.16, 0.84, 0.16], C: [0.15, 0.29, 0.29], N: [0.0,
0.0, 1.0], ©: 1.0, 0.0, 0.0], F: [0.84, 0.13, 0.57], Si: [0.84, 0.62, 0.07],
P:[0.84, 0.53, 0.0], S: [0.84, 0.84, 0.0], Cl: [0.16, 0.84, 0.16], Br: [0.84,
0.53, 0.22], Te: [0.84, 0.8, 0.45], I: [1.0, 0.0, 1.0], Eu: [0.0, 0.8, 0.84],
Lu: [0.0, 0.8, 0.84], Os: [0.51, 0.55, 0.55], U: [0.0, 0.8, 0.84]

As a reference, an example EPS visualization of the compound
chlorobenzene is provided below.

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 10 -29 77 29

%%Creator: EPS Generator

%%EndComments

1 setlinewidth
0 0 0 setrgbcolor

newpath

20 6.223999999999999 moveto
28.66 1.224 lineto

stroke

newpath

45.980999999999995 1.224 moveto
37.32 6.223999999999999 lineto
stroke

newpath

37.32 6.223999999999999 moveto
28.66 1.224 lineto

stroke

newpath

28.66 1.224 moveto
28.66 -8.776 lineto
stroke

newpath

28.66 -8.776 moveto
37.32-13.776 lineto
stroke

newpath

37.32 -13.776 moveto
45.980999999999995 -8.776 lineto
stroke

newpath

45.980999999999995 -8.776 moveto
45.980999999999995 1.224 lineto
stroke

0.16 0.84 0.16 setrgbcolor

newpath

20 6.223999999999999 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor

newpath

45.980999999999995 1.224 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor

newpath

45.980999999999995 -8.776 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor

newpath

37.32 6.223999999999999 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor
newpath

37.32-13.776 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor
newpath

28.66 1.224 1.5 0 360 arc
closepath

fill

0.15 0.29 0.29 setrgbcolor
newpath

28.66 -8.776 1.5 0 360 arc
closepath

fill

showpage

Figure 12: An example prompt from the EPS generation task on molecular structure.
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C LIMITATIONS OF OUR AUTOMATIC EVALUATION FRAMEWORK

Our automatic evaluation framework for the plane geometry visualization task assesses whether the
necessary elements are present in the output, but it does not penalize the inclusion of unnecessary
elements. In the example shown in Figure[T3] the output from Gemini 2.5 Flash reasoning includes
an irrelevant straight line, yet it is still considered correct. We do not penalize unnecessary elements
because it is often non-trivial to determine whether an additional element is truly unnecessary. For
instance, the output from Gemini 2.5 Flash reasoning in Figure[T3]includes circles not anticipated in
the ground-truth, but these represent intersections and the circle center, and they do not hinder the
explanation.

Because in practical scenarios it is usually easier for humans to remove unnecessary elements than to
create necessary ones from scratch, we do not currently view this limitation as a major issue. How-
ever, enabling the framework to identify and evaluate such extraneous content remains an important
direction for future work.

Input In geometry, the tangential ~ Output Gemini 2.5 Flash reasoning Ground-truth
text triangle of a reference triangle vector ‘
(other than a right triangle) is the graphic
triangle whose sides are on the (SVG)
tangent lines to the reference
triangle's circumcircle at the
reference triangle's vertices.

B A lc

Correct

Figure 13: An example judged correct despite an unrelated line.”

"The input text and the ground-truth vector graphic are from (Wikipedia contributors} 2025m; [Kmhkmh|
2019b).

20



Under review as a conference paper at ICLR 2026

D ADDITIONAL EXAMPLES OF GENERATED VECTOR GRAPHICS

D.1 EXAMPLES GENERATED BY FINE-TUNED MODELS

Figure [T4] shows examples generated by two fine-tuned models, AutomaTikZ
and TikZero+ (Belouadi et al 2023). The top example is the only case where TikZero+
produces a structurally correct vector graphic. However, in all other cases, the models fail to gen-
erate structurally correct vector graphics. In the plane geometry task, they cannot follow simple
instructions such as “Set the color of any added elements to red” or “Do not modify any elements
that are originally present in the TikZ.” In the molecular structure task, the models generate entirely
invalid vector graphics. These results reveal the limitations of fine-tuned models.

Input In Euclidean geometry, the  Qutput AutomaTikZ TikZero+ Ground-truth
text medial triangle or midpoint vector
triangle of a triangle AABC is graphic
the triangle with vertices at the (TikZ)
midpoints of the triangle's sides
AB, AC, BC.
Incorrect Correct
Input The center of an excircle is the  Qutput AutomaTikZ TikZero+ Ground-truth

text intersection of the internal bisector  vector
of one angle and the external graphic
bisectors of the other two. Every (TikZ)

triangle has three excircle centers. %

Incorrect Incorrect

Input the molecular structure of the  Output AutomaTikZ TikZero+ Ground-truth
text compound with the IUPAC name vector
5-ethylcyclopentene-1-carboxylic graphic

acid (TikZ) . . . ‘
000

Incorrect Incorrect

Input the molecular structure of the ~ Qutput AutomaTikZ TikZero+ Ground-truth
text compound with the IUPAC name vector
N-(2-methylsulfinylethyl)acetamide graphic

(TikZ)

Incorrect Incorrect

Figure 14: Examples generated by fine-tuned models.®

8The input text and the ground-truth vector graphic are from (]Wikipedia contributorsl |2025ﬂjgt

Braindrain0000, 2006} 2007a). The molecular structure data is from (National Center for|
Biotechnology Information, [2025kin).
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D.2 IMPACT OF REASONING

We show in Figures[I3]and [I6] that enabling reasoning allows LLMs to output the correct structure.
Without reasoning, they struggle to generate even simple structures.

Input In geometry, an altitude of a  Output ~ DeepSeek-V3.1 DeepSeek-V3.1 Ground-truth
text triangle is a line segment vector reasoning
through a given vertex (called graphic
apex) and perpendicular to a (SVG)
line containing the side or edge
opposite the apex. The altitude
from A intersects the extended

A

base at D (a point outside the
triangle). & e{ ¢ e ¢
Incorrect Correct
Input The Gergonne triangle (of Output Claude Opus 4.1 Claude Opus 4.1 Ground-truth
text \triangle ABC) is defined by the  vector . R thinking X

three touchpoints of the incircle graphic
on the three sides. The (SVG)
touchpoint opposite A is

denoted T_A, etc.The three

lines A{T_A}, B{T_B}, and C

{T_C} intersect in a single point

called the Gergonne point,

denoted as G_e.

Incorrect Correct

Input To bisect an angle with  Output Gemini 2.5 Flash ~ Gemini 2.5 Flash Ground-truth
text straightedge and compass, one  vector reasoning (Pattern 2)

draws a circle whose center is graphic
the vertex. The circle meets the (SVG)
angle at two points: one on
each leg. Using each of these
points as a center, draw two
circles of the same size. The
intersection of the circles (two
points) determines a line that is
the angle bisector.

&

Incorrect Correct
Input The butterfly theorem is a  Qutput GPT-5 Chat GPT-5 Ground-truth
text classical result in Euclidean  vector (Pattern 2)
geometry, which can be stated graphic A c

as follows: Let M be the (SVG)
midpoint of a chord PQ of a

circle, through which two other

chords AB and CD are drawn;

AD and BC intersect chord PQ

at X and Y correspondingly.

Then M is the midpoint of XY.

A
Q
[ )
P P
5
Butterfly theorem: M is the midpoint of XY,

Incorrect Correct

Figure 15: Examples where enabling reasoning allows LLMs to generate the correct structure in the
plane geometry SVG geneartion task.’

°The input texts and the ground-truth vector graphics are from (Wikipedia contributors, |2025augugug|; |Pega-|
[susRoe 2007} [Inductiveload} 2007¢} [Ixnay} [2007; [Gustavb} [2006).
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Input the molecular structure of the  Output  DeepSeek-V3.1 DeepSeek-V3.1 Ground-truth
text compound with the IUPAC name vector reasoning
1,2,5-trimethylpyrrole graphic
o w
Incorrect Correct
Input the molecular structure of the  Output  Claude Opus 4.1 Claude Opus 4.1 Ground-truth
text compound with the IUPAC name vector thinking
4-chloro-1-methyl-5-nitroimidazole graphic
(SVG) : ?
Incorrect Correct
Input the molecular structure of the  Output Gemini 2.5 Flash ~ Gemini 2.5 Flash Ground-truth
text compound with the IUPAC name vector reasoning
3-bromobut-3-en-2-amine graphic
(SVG) { |
Incorrect Correct
Input the molecular structure of the  Output GPT-5 Chat GPT-5 Ground-truth

text compound with the IUPAC name vector

ethyl 3-iminobutanoate graphic
(SVG)

Incorrect Correct

Figure 16: Examples where enabling reasoning allows LLMs to generate the correct structure in the
molecular structure SVG geneartion task.'?

!0The molecular structure data is from (INational Center for Biotechnology Informationl |2025ch|;|e|;|i[).
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D.3

IMPACT OF FORMAT

Figures [T7]and [I§] present examples where LLMs produce correct structures in SVG format but fail
in TikZ and EPS formats. Although the input text is identical, the results clearly vary depending on
the output format.

Input Let X be any triangle center of  Qutput  Gemini 2.5 Pro Gemini 2.5 Pro Ground-truth
text A\ABC. Draw the lines AX, BX,  vector (TikZ) (SVG)
CX and their reflections in the graphic A A
internal bisectors of the angles (SVG)
at the vertices A, B,
respectively. The reflected lines
are concurrent and the point of |
concurrence is the isogonal )
conjugate Y of X. —— - & —c £ t
Incorrect Correct
Input Specifically, let tABCD be an  Qutput  Gemini 2.5 Pro Gemini 2.5 Pro Ground-truth
text arbitrary cyclic quadrilateral and  vector (EPS) (SVG)
let M1, M2, M3, M4 be the graphic

incenters of the triangles /A
ABD, AABC, ABCD, AACD.
Then the quadrilateral formed
by M1, M2, M3, M4 is a
rectangle.

(SVG)

Incorrect Correct

Input In geometry, symmedians are  Qutput GPT-5 (TikZ) GPT-5 (SVG) Ground-truth
text three particular lines associated vector
with every triangle. They are graphic
constructed by taking a median (SVG)
of the triangle (a line connecting
a vertex with the midpoint of the
opposite side), and reflecting
the line over the corresponding
angle bisector (the line through
the same vertex that divides the
angle there in half). Incorrect Correct
Input In Euclidean geometry, a splitter ~ Output GPT-5 (EPS) GPT-5 (SVG) Ground-truth
text is a line segment through one of  vyector -
the vertices of a triangle (that is, graphic / \\
a cevian) that bisects the (SVG) | B““““f

perimeter of the triangle. The
opposite endpoint of a splitter to
the chosen triangle vertex lies at
the point on the triangle's side
where one of the excircles of the
triangle is tangent to that side.
Each triangle has three splitters,
one through each vertex.

=

e

A-excircle

\/ N

Incorrect Correct

Figure 17: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the plane geometry task.'!

"The in

chinil 2008}

put texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025hfilikt [Roc-|

[Kmhkmh)} 2024t 2016t Inductiveloadl 2007b)).
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Input the molecular structure of the ~ Qutput Gemlnl 2 5 Pro Gemini 2.5 Pro Ground-truth
text compound with the IUPAC name vector (SVG)

N-heptylacridin-9-amine graphic
(SVG)
Incorrect Correct

Input the molecular structure of the  Qutput Germm 2 5 Pro Gemini 2.5 Pro Ground-truth
text compound with the IUPAC name vector (SVG)
methyl 4-[3-acetamido-4,5- graphic
diacetyloxy-6-(acetyloxymethyl) (SVG)
oxan-2-ylloxy-1-(2,4-dinitrophenyl)
pyrrolidine-2-carboxylate
Incorrect Correct
Input the molecular structure of the ~ Output GPT-5 (TikZ) GPT-5 (SVG) Ground-truth
text compound with the IUPAC name vector
N-[5-chloro-4-(trifluoromethyl) graphic
-1,3-thiazol-2-yl]-N-(trideuterio (SVG)
methyl)-3,5-bis(trifluoromethyl)
benzamide
Incorrect Correct
Input the molecular structure of the  Output GPT-5 (EPS) GPT-5 (SVG) Ground-truth
text compound with the IUPAC name vector
2,5-dihydroxy-3,6-bis[1- graphic
(2-methylbut-3-en-2-yl)indol-3-yl] (SVG)
cyclohexa-2,5-diene-1,4-dione j\/%
Incorrect Correct

Figure 18: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the molecular structure task.'?

12The molecular structure data is from (INational Center for Biotechnology Informationl |2025dHthHa[).
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D.4 COMPARISON OF ZERO-SHOT PROMPTING METHODS

We present results obtained by applying zero-shot prompting methods to Gemini 2.5 Pro in Figures
[19] 20| 21} and 22] When using methods other than Zero-shot CoT, Gemini 2.5 Pro produces an
explanation prior to generating vector graphics, and we include that explanation as well. In the case
of Plan-and-Solve prompting, the output explanation “C3 will also be in corner B, tangent to C2” is
incorrect, revealing that Gemini 2.5 Pro fails to capture the relationships. In the case of Step-Back
prompting, the output explanation reveals that Gemini 2.5 Pro captures the necessary elements and
relationships, but overlooks the importance of mathematical reasoning. In contrast, by applying
our LOOP, Gemini 2.5 Pro captures the necessary elements and relationships and recognizes the
importance of mathematical reasoning, enabling it to generate structurally correct vector graphics.

Input text and ground-truth

Input In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle
text is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense
that the sixth circle is always tangent to the first circle.

Ground-
truth

Gemini 2.5 Pro w/ Zero-shot CoT

Output (There is no output explanation.)
explanation

Output
vector
graphic
(SVG)

Incorrect

Figure 19: Example output generated by applying Zero-shot CoT prompting to Gemini 2.5 Pro.'?

3The input text and the ground-truth vector graphic are from (Wikipedia contributors} [2022; [Rocchinil

2010).
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Gemini 2.5 Pro w/ Plan-and-Solve

Output
explanation

An explanation of the six circles theorem has been provided, and it needs to be visualized by adding elements to
the given SVG.

### Plan:

1. **Deconstruct the Theorem**: The theorem describes a chain of six circles (C1 to C6) associated with a
triangle.

There are three pairs of circles, with each pair nestled into one corner of the triangle.

Circles in the same corner are tangent to each other and to the two adjacent sides of the triangle.
The chain follows a sequence around the triangle's vertices: A -> B -> C -> A.

* Let's say the given circle, C1, is in corner A.

The next circle, C2, will be in corner B and tangent to C1.

C3 will also be in corner B, tangent to C2.

* C4 will be in corner C, tangent to C3.

C5 will also be in corner C, tangent to C4.

C6 will be in corner A, tangent to C5.

The theorem's conclusion is that C6 will also be tangent to the first circle, C1, thus closing the chain.

2. **Analyze the Input SVG**:
* We have a triangle. Let's label its vertices A (top), B (bottom-left), and C (bottom-right).
* We have one circle, which we will label C1. It is located in corner A.

3. **Add Visual Elements**:

* Add the remaining five circles (C2, C3, C4, C5, C6) with the class “output_object’.

* Place them according to the theorem's rules, ensuring they appear tangent to the correct triangle sides and
preceding circles. The positions and radii will be estimated to create a visually plausible representation of the
theorem.

C1 and C6 will be in corner A.

* C2and C3 will be in corner B.

* C4 and C5 will be in corner C.

* The crucial part is to draw the chain such that C6, which is tangent to C5, is also tangent to C1.

* Add text labels "C1" through "C6" for each circle, assigning them the class “output_text".

### Execution:

The following SVG code adds the five circles and six labels to illustrate the theorem. The positions and sizes of
the new circles have been chosen to create a clear and accurate visual representation of the tangency
relationships described.

Output
vector
graphic
(SVG)
Incorrect
Figure 20: Example output generated by applying Plan-and-Solve prompting to Gemini 2.5 Pro.
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Gemini 2.5 Pro w/ Step-Back

Output
explanation

Output
vector
graphic
(SVG)

An explanation of the six circles theorem has been provided. This theorem describes a closed chain of six
circles, where each circle is tangent to two sides of a triangle and the preceding circle in the chain. The provided
SVG shows the triangle and the first circle of such a chain.

To visualize the theorem, we will add the remaining five circles to complete the chain.

1. **Circle C1:** The initial circle is provided, located in the top corner of the triangle.

2. **Circle C2:** We add the second circle, C2, in the bottom-right corner, making it tangent to the two sides of
the triangle at that corner and also to circle C1.

3. **Circle C3:** The third circle, C3, is placed in the bottom-left corner, tangent to the two sides there and to
circle C2.

4. **Circle C4:** The fourth circle, C4, is placed back in the top corner. It is tangent to the same two sides as C1,
and also to circle C3.

5. **Circle C5:** The fifth circle, C5, is placed in the bottom-right corner, tangent to the sides and to circle C4.

6. **Circle C6:** The sixth and final circle, C6, is placed in the bottom-left corner, tangent to the sides and to
circle C5.

The remarkable property of the theorem is that this chain always closes perfectly: circle C6 will not only be
tangent to C5 but will also be tangent to the very first circle, C1, completing the loop. The visualization below
illustrates this closed chain.

Incorrect

Figure 21: Example output generated by applying Step-Back prompting to Gemini 2.5 Pro.
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Gemini 2.5 Pro w/ LOOP (ours)

Output
explanation

Output
vector
graphic
(SVG)

An elegant theorem in geometry, the six circles theorem, describes a fascinating property of a chain of circles
within a triangle. Starting with a circle tangent to two sides of the triangle, a sequence of five more circles is
constructed. Each new circle is tangent to two sides of the triangle and to the previous circle in the chain. The
remarkable result is that this chain always forms a closed loop, with the sixth circle being perfectly tangent to the
first one.

This visualization completes the chain described by the theorem, starting from the single provided circle.

1. **Information extraction**: The core components are a triangle and a chain of six circles. The initial SVG
provides the triangle and the first circle (let's call it C1). C1 is tangent to two sides of the triangle at one vertex.
The goal is to construct the remaining five circles, C2 through C6, following the theorem's rules.
2. **Relationship extraction**: The chain proceeds sequentially around the vertices of the triangle.

* C1is tangent to sides AB and AC (at vertex A).

* C2 must be tangent to sides AC and BC (at vertex C) and also to C1.

* C3 must be tangent to sides BC and AB (at vertex B) and also to C2.

* C4 must be tangent to sides AB and AC (at vertex A) and also to C3.

* C5 must be tangent to sides AC and BC (at vertex C) and also to C4.

* C6 must be tangent to sides BC and AB (at vertex B) and also to C5.

The theorem guarantees that the resulting C6 will also be tangent to the starting circle, C1.
3. **Mathematical reasoning**: The center of any circle tangent to two sides of the triangle must lie on the angle
bisector of the corresponding vertex. The condition that the new circle must also be tangent to the previous circle
provides a second constraint. Combining these two conditions leads to a solvable quadratic equation for the
position of the new circle's center along the angle bisector. This process is applied iteratively to find the center
and radius of each subsequent circle in the chain (C2, C3, C4, C5, and C6). The final calculation confirms the
theorem: the distance between the centers of C6 and C1 is indeed equal to the sum of their radii, proving their
tangency.
4. **Code generation**: Based on the calculated centers and radii, five "<circle>" elements are added to the
SVG to represent C2 through C6. Additionally, “<text>" elements are added to label each circle from C1 to C6,
clarifying the sequence of the chain.

Correct

Figure 22: Example output generated by applying our LOOP to Gemini 2.5 Pro.
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E ADDITIONAL EXPERIMENTS

E.1 COMPLEMENTARY AUTOMATIC METRICS

Our evaluation in the main paper relies solely on a single binary metric (Accuracy), which provides
an overly coarse assessment because near-misses and completely incorrect outputs are both scored
as 0. To address this limitation, we employ additional evaluation metrics. Following TikZero+
louadi et al.| [2025)), we use five image- and code-similarity metrics: DreamSim (DSim), Kernel
Inception Distance (KID), CLIPScore (CLIP), CrystalBLEU (¢BLEU), and Extended Edit Dis-
tance (EED). We additionally use Coverage as an extra metric, which considers an output correct
if it contains the required elements, regardless of their spatial arrangement. As a comprehensive
evaluation, we compute an Average score, defined as the mean of all metrics after applying min-
max normalization. When applying min-max normalization, we normalize indicators where higher
values are better such that the minimum becomes 0 and the maximum becomes 100. For indica-
tors where lower values are better, we normalize them such that the minimum becomes 100 and the
maximum becomes 0. We present these metrics in Tables[7} 8] 0] [I0} [[T} and[T2]

Focusing on the Average scores, we consistently observe that (1) reasoning models outperform
non-reasoning models, and (2) our proposed LOOP improves the performance in most cases.

E.2 ADDITIONAL MODELS

To demonstrate the versatility of our LOOP, we apply it to two additional reasoning models
(DeepSeek-V3.2 Reasoning and Claude Opus 4.1 Thinking) and two additional non-reasoning mod-
els (Gemini 2.5 Flash and GPT-5 Chat). The results are shown in Tables|[7} [8] P} [L0] [[T] and[I2} Our
LOOP achieves improved performance in many cases, clearly demonstrating its robustness.

E.3 IMPACT OF RESAMPLING ON FINE-TUNED MODELS

The impact of resampling is considered a possible reason for the low performance of the fine-tuned
models. In our experiments, we evaluate each model using only a single generation attempt, and
any outputs that resulted in compilation errors are considered incorrect. This evaluation procedure
is applied uniformly across all models. However, the fine-tuned models are expected to be used
under the assumption that resampling continues until no compilation errors occur. To investigate the
impact of resampling, we allow up to 10 resampling attempts for each sample until a compilable
output is obtained. As shown in Tables [7] and resampling improves performance, and notably,
TikZero+ achieves performance comparable to non-reasoning models.
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Table 7: Complementary metrics for plane geometry TikZ generation.

Model Acct DSim{ KID| CLIP{ ¢cBLEUT EED| CoverageT Averagef

Fine-tuned models
AutomaTikZ

TikZero+
AutomaTikZ resampling 12.5
DeTikZity resampling 5.8

Non-reasoning models
DeepSeek-V3

DeepSeek-V3.1

Claude Opus 4.1

Gemini 2.0 Flash

Gemini 2.5 Flash non-reasoning
GPT-4.1

GPT-5 Chat

Rasoning models
DeepSeek-R1
DeepSeek-V3.1 reasoning
Claude Opus 4.1 thinking
Gemini 2.5 Flash reasoning

69.6

Gemini 2.5 Pro 25.0 433

o4-mini o 7.7 37.4

GPT-5 13.3 434 66.9

Prompting

Gemini 2.5 Pro 25.0 433
w/ Zero-shot CoT 28.5 43.7
w/ Plan-and-Solve 37.3 45.9
w/ Step-Back 453 47.0
w/ LOOP (ours) 655 774 64 38.1

GPT-5 13.3 434 66.9
w/ Zero-shot CoT 725 124 433 - 68.6
w/ Plan-and-Solve 61.8 740 8.1 414 71.8 72.9
w/ Step-Back 13.8 435 682 670
w/ LOOP (ours) 70.0 80.6 3.1 39.0 82.7 79.7

Gemini 2.5 Flash non-reasoning

w/ LOOP (ours) 42.6
GPT-5 Chat
w/ LOOP (ours) 15.0 40 8

DeepSeek-V3.2 reasoning

w/ LOOP (ours)

26.8
12.1

42.1
36.7

Claude Opus 4.1 thinking

w/ LOOP (ours)

188

.4.
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Table 8: Complementary metrics for plane geometry SVG generation.

Model Acc? DSimt KID| CLIP{ ¢BLEUT EED| Coverage! Average?!
Non-reasoning models
DeepSeek-V3 80.8 35 682 21.9 32.8 89.1 77.9
DeepSeek-V3.1 81.1 24 685 21.0 33.6 86.4 772
Claude Opus 4.1 81.8 34 748 150 @ 371 964 712
Gemini 2.0 Flash 83.1 15 @ 597 26.9 29.8 79.1 78.7
Gemini 2.5 Flash non-reasoning 865 1.0 614 22.7 31.4 84.5 78.7
GPT-4.1 829 41 732 16.9 38.5 87.3 75.9
GPT-5 Chat 829 40 746 21.2 335 81.8 78.7
Rasoning models
DeepSeek-R1 84.1 09 | 592 22.9 30.8 62.7 80.4
DeepSeek-V3.1 reasoning 83.1 1.1 652 20.8 324 63.6 79.7
Claude Opus 4.1 thinking 816 3.8 778 [ 145 369 973 79.5
Gemini 2.5 Flash reasoning 55.5 87.8 0.7 652 19.7 36.1 84.5 85.4
Gemini 2.5 Pro 62.7 884 0.7 725 20.7 31.8 90.0 90.3
04-mini 62.7 887 15 64.0 20.6 329 80.9 87.1
GPT-5 755 835 44 763 17.4 35.5 94.5 90.1
Prompting
Gemini 2.5 Pro 62.7 884 0.7 725 20.7 31.8 90.0 90.3
w/ Zero-shot CoT 664 814 23 64.6 17.7 332 90.0 86.1
w/ Plan-and-Solve 69.1 839 13 69.0 17.8 32.5 91.8 88.4
w/ Step-Back 645 81.7 24 663 17.0 334 91.8 86.0
w/ LOOP (ours) 809 846 1.1 62.6 19.2 31.6 93.6 90.6
GPT-5 755 835 44 763 17.4 35.5 94.5 90.1
w/ Zero-shot CoT 800 846 39 744 36.3 96.4 90.2
w/ Plan-and-Solve 773 821 56 767 - 37.4 95.5 88.6
w/ Step-Back 755 829 47 753 16.6 35.8 94.5 89.3
w/ LOOP (ours) 80.0 848 3.0 743 17.2 353 94.5 90.9
Gemini 2.5 Flash non-reasoning 86.5 1.0 614 22.7 31.4 84.5 78.7
w/ LOOP (ours) . 86.7 08 64.8 21.1 33.6 67.3 82.0
GPT-5 Chat 829 40 746 212 335 81.8 78.7
w/ LOOP (ours) . 837 35 734 18.9 34.5 86.4 80.0
DeepSeek-V3.2 reasoning [255) 841 13 633 250 313 736 81.0
w/ LOOP (ours) 482 87.1 0.8 | 55.0 27.5 28.8 68.2 85.2
Claude Opus 4.1 thinking 816 38 778 36.9 97.3 79.5
w/ LOOP (ours) . 833 21 715 - 36.1 96.4 80.4
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Table 9: Complementary metrics for plane geometry EPS generation.

Model

Acc? DSimt KID| CLIP{ ¢BLEUT EED| Coverage! Average?!

Non-reasoning models
DeepSeek-V3
DeepSeek-V3.1
Claude Opus 4.1
Gemini 2.0 Flash

Gemini 2.5 Flash non-reasoning

GPT-4.1
GPT-5 Chat

19.0
16.9
2.1

23.1
29.3
11.8
7.6

40.9
43.8
43.4
36.6
44.0
46.3
39.7

84.5 69.1

Rasoning models

DeepSeek-R1 852 1.7 32.7 74.6
DeepSeek-V3.1 reasoning 775 44 36.0 - _
Claude Opus 4.1 thinking 816 1.5 38.7 79.1 73.6
Gemini 2.5 Flash reasoning 799 28 458 655 705
Gemini 2.5 Pro 834 0.7 38.2 76.4 79.1
04-mini 86.1 0.3 359 76.4 81.5
GPT-5 664 870 -0.6 37.9 78.2 84.2
Prompting
Gemini 2.5 Pro 834 0.7 38.2 76.4 79.1
w/ Zero-shot CoT 61.8 866 -04 39.5 78.2 81.2
w/ Plan-and-Solve 664 843 0.8 38.4 75.5 81.2
w/ Step-Back 59.1 84.1 0.1 39.0 73.6 78.5
w/ LOOP (ours) 62.7 859 -03 36.1 74.5 81.4
GPT-5 664 870 -0.6 37.9 78.2 84.2
w/ Zero-shot CoT 755 876 -0.8 38.5 80.0 85.5
w/ Plan-and-Solve 709 862 -03 42.1 85.5 82.8
w/ Step-Back 72.7 884 -0.6 38.7 82.7 85.5
w/ LOOP (ours) 773 894 0.0 37.6 86.4 88.5
Gemini 2.5 Flash non-reasoning 29.3 44.0
GPT-5 Chat . 725 176 - 397 1 609 637
w/ LOOP (ours) 81.7 19 37.3 73.6 72.4
DeepSeek-V3.2 reasoning 79.8 43 38.7 67.5
T Loor (i H=:
Claude Opus 4.1 thinking 81.6 1.5 | 582 38.7 79.1 73.6
w/ LOOP (ours) . 86.8 1.4 « 60.3 - 36.2 88.2 78.9
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Table 10: Complementary metrics for molecular structure TikZ generation.

Model Acct DSim{ KID| CLIP{ ¢cBLEUT EED| Coverage?T Averagef

Fine-tuned models

AutomaTikZ

TikZero+

AutomaTikZ resampling

DeTikZity resampling 34.8

Non-reasoning models

DeepSeek-V3 15.9
DeepSeek-V3.1 12.5
Claude Opus 4.1 6.0
Gemini 2.0 Flash 13.0
Gemini 2.5 Flash non-reasoning 21.5
GPT-4.1 18.1

GPT-5 Chat 19.9

Rasoning models

DeepSeek-R1 16.5 6

DeepSeek-V3.1 reasoning 12.8

Claude Opus 4.1 thinking 4.5

Gemini 2.5 Flash reasoning 31.3

Gemini 2.5 Pro 78.6 8.1 344 72.3

o4-mini 69.5 154 411 437

GPT-5 713 13.6 42.7 74.7

Prompting

Gemini 2.5 Pro 786 8.1 344 72.3
w/ Zero-shot CoT 79.7 6.8 33.7 70.3
w/ Plan-and-Solve 776 82 33.8 70.3
w/ Step-Back 794 63 33.3 65.7
w/ LOOP (ours) 80.2 63 33.5 71.0

GPT-5 713 13.6 42.7 74.7
w/ Zero-shot CoT 70.0 14.8 42.4 73.7
w/ Plan-and-Solve 715 134 39.6 73.3
w/ Step-Back 70.8 13.7 41.5 72.3
w/ LOOP (ours) 55.0 76.7 9.4 36.7 79.3

Gemini 2.5 Flash non-reasoning 21.5

GPT-5 Chat 19.9 51.1
L0 o)  Ed O B

DeepSeek-V3.2 reasoning 70.0 14.6 40.5
w/ LOOP (ours) 752 104 38.3

Claude Opus 4.1 thinking 83.6 45 37.1
w/ LOOP (ours) 83.7 49

37.0
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Table 11: Complementary metrics for molecular structure SVG generation.

Model Acct DSimT KID| CLIPT ¢cBLEU?T EED] Coverage! Averaget
Non-reasoning models

DeepSeek-V3 45.71

DeepSeek-V3.1 49.49 -

Claude Opus 4.1 48.64  66.00

Gemini 2.0 Flash 47.65

Gemini 2.5 Flash non-reasoning

GPT-4.1
GPT-5 Chat

Rasoning models
DeepSeek-R1
DeepSeek-V3.1 reasoning
Claude Opus 4.1 thinking
Gemini 2.5 Flash reasoning

Gemini 2.5 Pro

04-mini

GPT-5 . 76.00
Prompting

Gemini 2.5 Pro 42.48 73.09

w/ Zero-shot CoT
w/ Plan-and-Solve

42.61  72.85
4244 7053

w/ Step-Back 42.99

w/ LOOP (ours) 4253 7533
GPT-5 76.00

w/ Zero-shot CoT 75.00

w/ Plan-and-Solve 72.00

w/ Step-Back 74.33

w/ LOOP (ours) 57.3 81.00
Gemini 2.5 Flash non-reasoning

w/ LOOP (ours)

GPT-5 Chat

48.81

w/ LOOP (ours) 45.16

DeepSeek-V3.2 reasoning 49.65

w/ LOOP (ours) 47.89
Claude Opus 4.1 thinking 4491
w/ LOOP (ours) 45.15




Under review as a conference paper at ICLR 2026

Table 12: Complementary metrics for molecular structure EPS generation.

Model

AcctT DSim?

KID| CLIPT ¢cBLEUT EED] Coverage? Average?l

Non-reasoning models
DeepSeek-V3

DeepSeek-V3.1

Claude Opus 4.1

Gemini 2.0 Flash

Gemini 2.5 Flash non-reasoning
GPT-4.1

GPT-5 Chat

34.57
22.75
49.80

Rasoning models

DeepSeek-R1 2422

DeepSeek-V3.1 reasoning 22.66

Claude Opus 4.1 thinking 84.57 6.74

Gemini 2.5 Flash reasoning 38.67

Gemini 2.5 Pro 3 79.00 3.98

04-mini 71.66 14.84

GPT-5 . 69.79 18.26 73.33

Prompting

Gemini 2.5 Pro 57.3 79.00 3.98 45.14  76.67
w/ Zero-shot CoT 58.7 79.59 3091 45.61 79.33
w/ Plan-and-Solve 55.0 79.22 3.88 4544  76.00
w/ Step-Back 56.3 77.40 4.83 45.62  73.67
w/ LOOP (ours) 67.7 80.65 3.81 4497  79.67

GPT-5 69.79 18.26 73.33
w/ Zero-shot CoT 69.82 17.19 70.00
w/ Plan-and-Solve 70.57 15.92 70.33
w/ Step-Back 68.53 20.31 68.67
w/ LOOP (ours) 7643  9.67 50.75  79.00

Gemini 2.5 Flash non-reasoning 34.57
w/ LOOP (ours) 46.48
GPT-5 Chat 49.80
w/ LOOP (ours) 70.96 20.70 48.52
DeepSeek-V3.2 reasoning 68.01 19.24
w/ LOOP (ours) 73.88 14.65
Claude Opus 4.1 thinking 84.57 6.74 47.26
w/ LOOP (ours) 83.46 6.59 47.23
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E.4 EVALUATION ON THE DATIKZ V3 DATASET

We evaluate the robustness of the proposed LOOP using the DaTikZ v3 dataset. The same prompt
from the plane geometry task is employed. For comparison, we also include the fine-tuned models
in the evaluation. Because DaTikZ v3 publishes only a subset of its test set, the fine-tuned models
are re-evaluated. The results are shown in Figure[T3] LOOP improves performance even on DaTikZ
v3, demonstrating its robustness.

Table 13: Evaluation on the DaTikZ v3 Dataset.

Model DSim?T KID| CLIPT ¢BLEUT EED| Average?

AutomaTikZ resampling 58.4

TikZero+ resampling 2.5 59.1

Gemini 2.5 Pro o307
w/ LOOP (ours) 8.3 36.8 59.1 70.9

GPT-5 53.1 6.1 423 2.2 84.7
w/ LOOP (ours 53.5 6.1 39.5 2.5 87.5
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E.5 ABLATIONS ON LOOP

To identify the contribution of each component of LOOP to the overall performance, we perform
an ablation study. The target task is plane geometry SVG generation using Gemini 2.5 Pro. The
experiments are performed under the following three settings.

e w/o information extraction: “Let’s think step by step, following this workflow: 1. Re-
lationship extraction: describe the relationships among the elements. 2. Mathematical
reasoning: compute the attributes of each element so that they satisfy those relationships.
3. Code generation: generate the TikZ.”

* w/o relationship extraction: “Let’s think step by step, following this workflow: 1. Informa-
tion extraction: describe the necessary elements. 2. Mathematical reasoning: compute the
attributes of each element. 3. Code generation: generate the TikZ.”

* w/o mathematical reasoning: “Let’s think step by step, following this workflow: 1. Infor-
mation extraction: describe the necessary elements. 2. Relationship extraction: describe
their relationships. 3. Code generation: generate the TikZ.”

* w/o code generation: “Let’s think step by step, following this workflow: 1. Information
extraction: describe the necessary elements. 2. Relationship extraction: describe their
relationships. 3. Mathematical reasoning: compute the attributes of each element so that
they satisfy those relationships.”

We show the results of applying these prompts in Figure [[4] The original prompt achieves the best

performance, clearly demonstrating that each component contributes to the improvement.

Table 14: The performance of Gemini 2.5 Pro with different prompts in the plane-geometry SVG
generation task.

Method Accuracy
LOOP 80.9
w/o information extraction 72.7
w/o relationship extraction 72.7
w/o mathematical reasoning 70.0
w/o code generation 72.7
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F DETAILS OF THE EVALUATION CODE

We describe below the evaluation code used in our SSVG-Bench, specifically for the SVG format.
For TikZ and EPS, since we first compile them to PDF and then convert them to SVG using the
pdf2svg command before processing, the code is nearly identical to that used for SVG.

F.1 PLANE GEOMETRY

F.1.1 PARSING CODE

We first present the parsing code for extracting straight lines, circles, and ellipses from vector data
(in this case, SVG), as shown in Figures 23] 24] 23] 26] and27] This enables subsequent structural
analysis.

Overview. The code uses Python’s built-in XML parser (xml .etree.Element Tree) to traverse
the SVG document tree. For selected shapes, it extracts the coordinates of geometric primitives in a
uniform form:

e Line-like shapes are decomposed into straight line segments of the form
((z1,91), (22, y2)).
* Circles are returned as ((cz, cy),r).

* Ellipses are represented as ((cz, cy), R1, Rz, 0), where Ry, Ry are the principal semi-axes
(radii) and @ is the rotation of the major axis from the x-axis.

All extracted data can optionally be filtered by CSS class.

Extracting Line Segments. The function parse_segments () scans the SVG tree and detects
elements whose geometry can be expressed as connected straight lines:

e <line> elements directly provide two endpoints.

e <polygon>and <polyline> elements contain a sequence of vertex coordinates, where
each consecutive pair defines a segment (polygons also include the closing edge).

e <rect> elements are decomposed into four boundary segments.

e <path> elements are partially supported for straight motions (M, L). Each L instruction
yields a segment from the previous position.

For all these shapes, the function returns a list of straight-line segments.

Extracting Circles. The function parse_circles () searches for <circle> elements and
extracts their center (cx,cy) and radius r. When a filter is specified, only circles matching the
given CSS class are processed.

Extracting Ellipses with Affine Transforms. The function parse_ellipses () identifies
<ellipse> elements as well as transformed <circle> elements. It supports general SVG affine
transformations including: matrix, translate, rotate, scale, skewX, skewY. The trans-
formation is processed as follows:

1. Construct the affine matrix from the SVG t ransform attribute.
2. Apply the affine transformation to the ellipse center.

3. Decompose the linear part of the affine transform applied to the ellipse radii. The principal
radii R1, R, and orientation @ are obtained from eigenvalue analysis of the matrix AA”.

Result. The function parse_svg_file () loads the SVG data, calls the three extraction routines,
and returns: segs, circs, ells, where:

* segs: list of line segments (x1,y1), (x2,y2).
* circs: listof circles ((cx,cy),r).
* ells: listof ellipses ((cx,cy), Ri, R2,0).
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1 #!/usr/bin/env python3

2 # —x— coding: utf-8 —x-—

3

4| import re

5| import math

6 import xml.etree.ElementTree as ET

7

8

9 def tag(elem):

10 """Return the tag name without namespace."""

11 return elem.tag.split('}')[-1]

12

13

14 def parse_segments(root, filter_class=None):

15 e

16 Decompose line, polygon, polyline, path, and rect elements into line segments.
17 If filter_class is specified, only elements that have that class attribute are used.
18 Returns: [ ((x1, y1), (x2, y2)), ... 1]

19 e

20 segs = []

21

22 def ok_class(elem):

23 if filter_class is None:

24 return True

25 return filter_class in elem.get('class', '').split()

26

27 for elem in root.iter():

28 t = tag(elem)

29

30 def safe_float(value):

31 try:

32 return float(value)

33 except (TypeError, ValueError):

34 return 0.0

35

36 if t == 'line' and ok_class(elem):

37 x1 = safe_float(elem.get('x1l"', 0))

38 yl = safe_float(elem.get('yl', 0))

39 x2 = safe_float(elem.get('x2", 0))

40 y2 = safe_float(elem.get('y2', 0))

41 segs.append(((x1, y1), (x2, y2)))

42

43 elif t == 'polygon' and ok_class(elem):

44 pts = re.split(r'[,\s]l+', elem.get('points', '').strip())
45 coords = [float(v) for v in pts if v]

46 pts_list = list(zip(coords[@::2], coords[1::2]))

47 for i in range(len(pts_list)):

48 segs.append( (pts_list[i], pts_list[(i + 1) % len(pts_list)]))
49

50 elif t == 'polyline' and ok_class(elem):

51 pts = re.split(r'[,\s]+', elem.get('points', '').strip())
52 coords = [float(v) for v in pts if v]

53 pts_list = list(zip(coords[0::2], coords([1::2]))

54 for i in range(len(pts_list) - 1):

55 segs.append( (pts_list[i], pts_list[i + 11))

56

57 elif t == 'path' and ok_class(elem):

58 d = elem.get('d", '')

59 tokens = re.findall(r'[ML] | [-+]?\d*\.?\d+(?:\.\d+)?"', d)
60 cur = None

61 i=0

62 while i < len(tokens):

63 tok = tokens[il

64 if tok == 'M':

65 cur = (float(tokens[i + 1]), float(tokens[i + 21))

Figure 23: SVG parsing code (1/5).
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66 i+=3

67 elif tok == 'L' and cur is not None:

68 nxt = (float(tokens[i + 1]1), float(tokens[i + 2]))

69 segs.append((cur, nxt))

70 cur = nxt

71 i+=3

72 else:

73 i+=1

74

75 elif t == 'rect' and ok_class(elem):

76 x = float(elem.get('x"', '0'))

77 y = float(elem.get('y', '0'))

78 w = float(elem.get('width', '0'))

79 h = float(elem.get('height', '0'))

80 pl = (x, y)

81 p2 = (x + w, y)

82 p3 = (x +w, y + h)

83 p4 = (x, y + h)

84 segs.extend([(p1, p2), (p2, p3), (p3, p4), (p4, pl)])

85

86 return segs

87

88

89| def parse_circles(root, filter_class=None):

90 e

91 Extract circle elements. If filter_class is specified, filter by that class.

92 Returns: [ ((cx, cy), r), ... ]

93 R

94 circs =[]

95 for elem in root.iter():

96 if tag(elem) == 'circle':

97 cls = elem.get('class', '').split()

98 if filter_class is None or filter_class in cls:

99 cx = float(elem.get('cx', 0))

100 cy = float(elem.get('cy', 0))

101 r = float(elem.get('r', 0))

102 circs.append(((cx, cy), r))

103 return circs

104

105

106 def parse_ellipses(root, filter_class=None):

107 e

108 Extract ellipse elements. Supports translate / rotate / scale / matrix in the transform attribute.

109 Returns: [ ((cx, cy), rx, ry, angle_deg), ... |

110 - angle_deg: angle in degrees, counter-clockwise from the x-axis

111 — Even with non-uniform scale or arbitrary matrices, approximates major/minor axis lengths and
orientation.

112 o

113 ellipses = []

114 # Tokenizer for transform attribute

115 t_re = re.compile(r'(matrix|translate|rotate|scale|skewX|skewY)\sx\(([*)]1+)\)"', re.I)

116

117 def mult(A, B):

118 """3x3 matrix multiplication A @ B."""

119 return [

120 [

121 Alo]l[e] x B[o][o] + A[@][1] * B[1]1[@] + A[e][2] * B[2][e],

122 Alo][0] x B[0][1] + A[@]l[1] * B[1]1[1] + Al[@]l[2] x B[2][1],

123 Alo][0] x B[o][2] + A[@]l[1] * B[1][2] + A[@]l[2] x B[2][2],

124 Iy

125 [

126 Al1]1le] * B[@][e] + A[1]1[1] * B[1][@] + A[1][2] x B[2][0],

127 Al1]1le] * B[@][1] + A[1]1[1] = B[1][1] + A[1][2] * B[2][1],

128 Al1]le] * B[@][2] + A[11[1] = B[1][2] + A[1][2] % B[2][2],

129 1,

130 [0, o, 1],

131 1

Figure 24: SVG parsing code (2/5).
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132

133 def mat_translate(tx, ty=0.0):

134 return [[1, 0, tx], [0, 1, tyl, [0, 0, 1]]

135

136 def mat_rotate(angle_deg, cx=0.0, cy=0.0):

137 a = math.radians(angle_deg)

138 ¢ = math.cos(a)

139 s = math.sin(a)

140 # Affine transform including rotation around center (cx, cy)
141 return mult(

142 mult(mat_translate(cx, cy), [[c, -s, 01, [s, ¢, 01, [0, o, 1]11),
143 mat_translate(-cx, -cy),

144 )

145

146 def mat_scale(sx, sy=None):

147 if sy is None:

148 sy = sx

149 return [[sx, 0, 0], [0, sy, o], [0, @, 1]]

150

151 def mat_skewx(a_deg):

152 t = math.tan(math.radians(a_deg))

153 # Note: SVG skewX corresponds to x' = x + tan(ax) * y
154 return [[1, math.tan(0), 01, [t, 1, @1, [0, 0, 1]]

155

156 def mat_skewy(a_deg):

157 t = math.tan(math.radians(a_deg))

158 # Note: SVG skewY corresponds to y' =y + tan(ay) % x
159 return [[1, t, 0], [math.tan(0), 1, 01, [0, @, 1]]

160

161 def mat_matrix(a, b, c, d, e, f):

162 # SVG: [x', y'l =lace; bdf; 001] [x, y, 11T

163 return [[a, ¢, el, [b, d, fI, [0, 0, 1]]

164

165 def parse_transform(txt):

166 """Compose transform string from left to right (SVG applies transforms in that order)."""
167 M=1I[I[1, o, o], [0, 1, 0], [0, 0, 1]]

168 for m in t_re.finditer(txt or ''):

169 name = m.group(1).lower()

170 parts = [float(v) for v in re.split(r'[,\s]l+', m.group(2).strip()) if v]
171 if name == 'matrix' and len(parts) == 6:

172 Mi = mat_matrix(xparts)

173 elif name == 'translate':

174 Mi = mat_translate(parts[0], parts[1] if len(parts) > 1 else 0.0)
175 elif name == 'rotate':

176 if len(parts) >= 3:

177 Mi = mat_rotate(parts([0], parts[1], parts([2])
178 else:

179 Mi = mat_rotate(parts[0])

180 elif name == 'scale':

181 Mi = mat_scale(parts[0], parts[1] if len(parts) > 1 else None)
182 elif name == 'skewx':

183 Mi = mat_skewx(parts[0])

184 elif name == 'skewy':

185 Mi = mat_skewy(parts[0])

186 else:

187 continue

188 M = mult(M, Mi)

189 return M

190

191 def apply_affine(M, x, y):

192 """Apply 3x3 affine matrix to point (x, y)."""

193 return (

194 M[@l[0] * x + M[@][1] * y + M[@]l[2],

195 M[1][0] * x + M[1][1] * y + M[1][2],

196 )

197

198 def decompose_axes(Mlin, rx, ry):

Figure 25: SVG parsing code (3/5).
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199 e

200 Linear part of ellipse transform: A = Mlin @ diag(rx, ry)
201 Major/minor axis lengths = sqrt(eigenvalues of A A"T),
202 orientation angle = angle of the principal eigenvector.
203 e

204 a, ¢ = Mlin[e] [0], Mlin[0] [1]

205 b, d = Mlin[1][@], Mlin[1][1]

206 # A = [[axrx, cxryl,

207 # [bxrx, dxryll

208 arx, cry = a *x rx, C * ry

209 brx, dry = b * rx, d * ry

210 #B=AAT= [lp, r], [r, qll

211 p = arx x arx + cry * cry

212 q = brx * brx + dry * dry

213 r = arx x brx + cry * dry

214 # Eigenvalues (>= 0)

215 trace = p + q

216 diff = p - q

217 disc = math.hypot(diff, 2 x r) # sqrt(diff*2 + (2r)"2)
218 laml = 0.5 * (trace + disc) # larger eigenvalue

219 lam2 = 0.5 * (trace - disc) # smaller eigenvalue

220 # Radii (>= 0)

221 R1 = math.sqrt(max(laml, 0.0))

222 R2 = math.sqrt(max(lam2, 0.0))

223 # Angle (orientation of major axis): 0.5 x atan2(2r, p - q)
224 angle = 0.5 x math.atan2(2 x r, diff) if (abs(r) + abs(diff)) > 0 else 0.0
225 return R1, R2, math.degrees(angle)

226

227 # ——— Main loop ——

228 for elem in root.iter():

229 if tag(elem) == 'ellipse':

230 cls = elem.get('class', '').split()

231 if filter_class is not None and filter_class not in cls:
232 continue

233 cx = float(elem.get('cx', 0.0))

234 cy = float(elem.get('cy', 0.0))

235 rx = float(elem.get('rx', 0.0))

236 ry = float(elem.get('ry', 0.0))

237

238 # Compose transform matrix (3x3)

239 M = parse_transform(elem.get('transform’, ''))

240

241 # Transformed center

242 cx_t, cy_t = apply_affine(M, cx, cy)

243

244 # Linear part (2x2)

245 Mlin = [[M[0][e], M[e]([1]], [M[1][e], M[1][1]]]

246

247 # Decompose radii and angle

248 if rx == 0.0 and ry == 0.0:

249 R1 = R2 = 0.0

250 angle_deg = 0.0

251 else:

252 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
253

254 ellipses.append(((cx_t, cy_t), Rl, R2, angle_deg))
255

256 elif tag(elem) == 'circle' and elem.get('transform', '') != '"':
257 cls = elem.get('class', '').split()

258 if filter_class is not None and filter_class not in cls:
259 continue

260 cx = float(elem.get('cx', 0.0))

261 cy = float(elem.get('cy', 0.0))

262 rx = float(elem.get('r', 0.0))

263 ry = float(elem.get('r', 0.0))

264

265 # Compose transform matrix (3x3)

Figure 26: SVG parsing code (4/5).
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266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

def

M = parse_transform(elem.get('transform’, ''))

# Transformed center
cx_t, cy_t = apply_affine(M, cx, cy)

# Linear part (2x2)
Mlin = [[M[0][0], M[0][111, [M[1][@], M[1][1]]]

# Decompose radii and angle
if rx == 0.0 and ry == 0.0:
R1 = R2 = 0.0
angle_deg = 0.0
else:

R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)

ellipses.append(((cx_t, cy_t), R1l, R2, angle_deg))

return ellipses

parse_svg_file(path, filter_class=None):
root = ET.parse(path).getroot()

segs = parse_segments(root, filter_class)
circs = parse_circles(root, filter_class)
ells = parse_ellipses(root, filter_class)
return segs, circs, ells

Figure 27: SVG parsing code (5/5).
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F.1.2 EVALUATION CODE FOR PATTERN 1

We now present the evaluation code for Pattern 1, where the correct objects are not uniquely de-
termined. This code checks whether the SVG produced by the LLM correctly reproduces the
ground-truth primitives (straight segments, circles, and ellipses), as shown in Figures 28] 29] and
30l The core of this evaluation is implemented by the three functions match_segments (),
match_circles(),andmatch_ellipses ().

Overall Evaluation Procedure. Given two SVG files,

e ground_truth: the reference SVG, and
* 11lm output: the SVG generated by the model,

the script first calls parse_svg_file () to extract:

* line segments gt _segs, out_segs,
e circles gt _circs, out_circs,

e ellipses gt _ells, out_ells.

The output segments are then augmented by merge_collinear_segments (), which attempts
to merge nearly collinear segments that share an endpoint, so that broken polylines can still match a
single ground-truth segment.

The evaluation is decomposed into three independent stages:

stagel = match_segments(gt_segs,out_segs),
stage2 = match_circles(gt_circs,out_circs),
stage3 =match_ellipses(gt_ells,out_ells).

If and only if all three stages succeed, the script prints "1 "; otherwise it prints "0".

Step 1: Matching Line Segments. The function match_segments (gt_segs, out_segs,
tol) verifies that every ground-truth segment is represented in the LLM output within a geometric
tolerance. Each segment is represented by its two endpoints:

gt_segs = {(p1,p2)}, out_segs ={(q1,¢)},

where p1, p2, q1, ¢2 € R? denote 2D coordinates.

¢ For each ground-truth segment (p1,p2), the function searches over all output segments
(ql ;42 ) .
e The helper dist_point_to_segment (pt, a, b) computes the Euclidean distance

from a point pt to the finite segment ab by projecting pt onto the segment and clamping
the projection parameter to [0, 1].

* A ground-truth segment is considered matched if there exists an output segment such that
both endpoints p; and py are within distance tol of the segment g ¢qa:

dist(p1,q1qz) < tol, dist(ps,Gigz) < tol.

If all ground-truth segments find such a matching segment in out _segs, the function returns True;
otherwise it returns False. This ensures that every reference straight line is geometrically repro-
duced in the LLM output.

Step 2: Matching Circles. The function match_circles (gt_circs, out_circs,
tol_center, tol.r) checks that all ground-truth circles are present in the output with simi-
lar centers and radii. Each circle is represented as ((cz, ¢ ), 7), where ¢ = (cg, ¢,/) is the center and
7 is the radius.

* The outer loop iterates over ground-truth circles (cg, 7). A Working copy of output circles

is stored in unmatched so that once an output circle is assigned to a ground-truth circle,
it is removed and cannot be reused.
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e For each ground-truth circle, the function selects the output circle with the maximum
intersection-over-union (IoU), computed by circle_iou(cl, rl, c2, r2). The
ToU is defined between the two disks Dy, D5 as:

area(D1 N Dy)

IoU(D1, D) = ————m—.
oU(Dr, Dz) area(D; U Dy)

This IoU is used only to choose the best candidate in unmatched.

» After selecting the circle with maximum IoU, the function checks strict geometric toler-
ances on center and radius:

|cet — cout|| < tol_center, |[rg — rou| < tol.r.

If both conditions are satisfied, the output circle is removed from unmatched and the
ground-truth circle is deemed matched. Otherwise, the entire matching fails and the func-
tion returns False.

If all ground-truth circles are successfully matched in this way, match_circles () returns True.
Thus, every reference circle must appear in the LLM output with nearly the same center and radius.

Step 3: Matching Ellipses. The function match ellipses(gt_ells, out_ells,
iou-thresh) evaluates whether each ground-truth ellipse has a corresponding ellipse in the out-
put that overlaps sufficiently in area. An ellipse is represented as:

((Cmv Cy)7Rxa Rya 0)7

where (¢, ¢) is the center, R,;, R, are the radii along the principal axes, and 6 is the rotation angle.

* Asin circle matching, a list unmat ched stores the remaining output ellipses that have not
yet been assigned.

* For each ground-truth ellipse ey, the function searches for the output ellipse eqy that max-
imizes the IoU, computed by el1lipse_iou(el, e2).

Approximate IoU for Rotated Ellipses. The helper ellipse_iou(el, e2, samples) esti-
mates IoU by Monte Carlo sampling:

1. For each ellipse, an axis-aligned bounding box is computed that tightly encloses the rotated
ellipse.

2. A joint bounding box that covers both ellipses is obtained by taking the min/max of the two
boxes.

3. A number of random points (given by samples) are uniformly sampled in this joint
bounding box.

4. For each point, the function tests membership in each ellipse by transforming the point into
the ellipse-aligned coordinate system and checking

2 2
Y
— + = <1
R2 R§
5. From these samples, the areas of intersection and union are estimated, and the IoU is ap-
proximated as:
area(e; Neg)
TIoU(ey,e0) ® ————==.
area(e; Ueg)

IoU-based Acceptance Criterion. Back in match_ellipses (), after computing IoU values
between a ground-truth ellipse and all remaining output ellipses:

* The output ellipse with maximum IoU is selected as the candidate match.

o If this maximum IoU is greater than or equal to the threshold i ou_thresh (default 0.95),
the candidate is accepted and removed from unmatched.
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* Otherwise, the function returns False, indicating that no sufficiently overlapping ellipse
was found.

If every ground-truth ellipse is matched with IoU at least 1 ou_thresh, the function returns True.

Result. Combining the three matching functions, the script provides a binary evaluation:

e The LLM output is considered correct if and only if all ground-truth line segments, circles,
and ellipses are geometrically reproduced within the specified tolerances and IoU thresh-
olds.

¢ In that case, the program prints "1 "; otherwise it prints "0".

This evaluation criterion enforces a strict structural fidelity of the generated SVG against the refer-
ence vector graphics.
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#!/usr/bin/env python3
# —k— coding: utf-8 —x—

import argparse

import xml.etree.ElementTree as ET

import re

import math

import sys

import random

from parse_svg_file import parse_svg_file

© 0N U A WN R

R R R
WN RS

def dist_point_to_segment(pt, a, b):

14 """Distance between point ‘pt’ and segment ‘ab"""

15 X, y =pt; x1, yl = a; x2, y2=5b

16 dx, dy = x2-x1, y2-yl

17 if dx == 0 and dy == 0:

18 return math.hypot(x-x1, y-y1)

19 t = ((x=x1)%dx + (y-yl)xdy) / (dxkdx + dyxdy)

20 t = max(0.0, min(1.0, t))

21 proj = (x1 + txdx, yl + txdy)

22 return math.hypot(x-proj[0], y-proj[1])

23

24

25| def match_segments(gt_segs, out_segs, tol=lel):

26 """Check whether each segment in ground truth matches any segment in output"""
27 for pl, p2 in gt_segs:

28 ok = False

29 for g1, g2 in out_segs:

30 if dist_point_to_segment(pl, ql, g2) <= tol and \
31 dist_point_to_segment(p2, g1, g2) <= tol:

32 ok = True

33 break

34 if not ok:

35 return False

36 return True

37

38

39 def circle_iou(cl, r1, c2, r2):

40 """Calculate IoU (Intersection over Union) of two circles"""
41 d = math.hypot(c1[@]-c2[0], c1[1]-c2[1]

42 if d >= r1 + r2:

43 return 0.0

44 if d <= abs(rl - r2):

45 return (min(rl, r2)*x2) / (max(rl, r2)%*2)

46 rl_sq, r2_sq = rlxk2, r2xk2

47 alpha = math.acos((dxd + rl_sq - r2_sq) / (2xdxrl))

48 beta = math.acos((dd + r2_sq - rl_sq) / (2xdxr2))

49 inter = (rl_sgxalpha + r2_sgxbeta —

50 0.5%math.sqrt((-d+ri1+r2)*(d+rl-r2)*(d-r1+r2)x(d+ril+r2)))
51 union = math.pix(rl_sq + r2_sq) - inter

52 return inter / union

53

54

55| def match_circles(gt_circs, out_circs, tol_center=1lel, tol_r=lel):
56 o

57 Match each ground-truth circle by maximizing IoU and

58 filter by center distance and radius difference

59 o

60 unmatched = list(out_circs)

61 for c_gt, r_gt in gt_circs:

62 if not unmatched:

63 return False

64 # find best IoU

65 best_i, best_iou = 0, circle_iou(c_gt, r_gt, unmatched[0][0], unmatched[0][1])

Figure 28: Evaluation code for Pattern 1 (1/3).
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66 for i, (c_out, r_out) in enumerate(unmatched[1:], start=1)
67 iou = circle_iou(c_gt, r_gt, c_out, r_out)
68 if iou > best_iou:

69 best_iou, best_i = iou, i

70 c_out, r_out = unmatched[best_i]

71 dc = math.hypot(c_gt[0]-c_out[@], c_gtl[1]-c_out[1]

72 if dc <= tol_center and abs(r_gt-r_out) <= tol_r:

73 unmatched. pop(best_i)

74 else:

75 return False

76 return True

77

78

79 def ellipse_iou(el, e2, samples=2000):

80 """Compute approximate IoU for two rotated ellipses by Monte Carlo sampling"""

81 def inside(pt, ell):

82 (cx, cy), rx, ry, angle = ell

83 rad = math.radians(-angle)

84 cosA = math.cos(rad); sinA = math.sin(rad)

85 dx, dy = pt[@]-cx, ptll]l-cy

86 X = dx*cosA — dyxsinA

87 y = dxxsinA + dy*cosA

88 return xxx/(rxkrx) + yxy/(ryxry) <= 1

89

90 def bbox(ell):

91 (cx, cy), rx, ry, angle = ell

92 rad = math.radians(angle)

93 cosA = math.cos(rad); sinA = math.sin(rad)

94 w = abs(rxxcosA) + abs(ryxsinA)

95 h = abs(rxxsinA) + abs(ryxcosA)

96 return (cx-w, cy-h, cx+w, cy+h)

97

98 bl = bbox(el); b2 = bbox(e2)

99 minx = min(b1[0], b2[@]); miny = min(b1[1], b2[1])
100 maxx = max(b1[2], b2[2]); maxy = max(b1[3], b2[3])
101 area_box = (maxx-minx)s*(maxy-miny)

102 cntl = cnt2 = cnt_both = 0

103 for _ in range(samples):

104 x = random.uniform(minx, maxx)

105 y = random.uniform(miny, maxy)

106 inl = inside((x, y), el)

107 in2 = inside((x, y), e2)

108 if inl: cntl += 1

109 if in2: cnt2 += 1

110 if inl and in2: cnt_both += 1

111 if cntl+cnt2-cnt_both == 0:

112 return 0.0

113 area_inter = cnt_both/samples * area_box

114 area_union = (cntl+cnt2-cnt_both)/samples * area_box
115 return area_inter / area_union

116

117

118 def match_ellipses(gt_ells, out_ells, iou_thresh=0.95):
119 """Match each ground-truth ellipse by maximizing IoU; pass if above threshold"""
120 unmatched = list(out_ells)

121 for gt in gt_ells:

122 if not unmatched:

123 return False

124 best_i, best_iou = 0, ellipse_iou(gt, unmatched([0])
125 for i, out in enumerate(unmatched[1:], start=1)
126 iou = ellipse_iou(gt, out)

127 if iou > best_iou:

128 best_iou, best_i = iou, i

129 if best_iou >= iou_thresh:

130 unmatched. pop(best_i)

131 else:

132 return False

Figure 29: Evaluation code for Pattern 1 (2/3).
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133 return True

134

135

136 def merge_collinear_segments(segments, angle_tol=math.radians(5)):

137 """"Merge segments that share an endpoint and are almost collinear"""
138 merged = []

139 thresh = -math.cos(angle_tol)

140 n = len(segments)

141 for i in range(n):

142 u, v = segments[i]

143 for j in range(i+l, n):

144 w, x = segments[j]

145 shared = None

146 if u == w:

147 shared, pl, p2 = u, v, X

148 elif u == x:

149 shared, pl, p2 =u, v, w

150 elif v == w:

151 shared, p1, p2 = v, u, x

152 elif v == x:

153 shared, p1l, p2 = v, u, w

154 else:

155 continue

156 vecl = (pl[@]-shared[0], pl[1]-shared[1]

157 vec2 = (p2[0]-shared[0], p2[1]-shared[1]

158 nl = math.hypot(*vecl); n2 = math.hypot(*vec2)

159 if nl == 0 or n2 ==

160 continue

161 cos_ang = (vecl[@]lxvec2[0] + vecl[1lxvec2[1]) / (nlxn2)

162 if cos_ang <= thresh:

163 merged.append((pl, p2))

164 return merged

165

166

167 def main():

168 p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
169 p.add_argument('ground_truth', help="File path of ground-truth SVG")
170 p.add_argument('llm_output', help="File path of LLM-generated SVG")
171 args = p.parse_args()

172

173 try:

174 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='output_object')
175 out_segs, out_circs, out_ells = parse_svg_file(args.llm_output)
176 except Exception:

177 print("e")

178 sys.exit(0)

179 out_segs.extend(merge_collinear_segments(out_segs))

180

181 # Matching

182 stagel = match_segments(gt_segs, out_segs)

183 stage2 = match_circles(gt_circs, out_circs)

184 stage3 = match_ellipses(gt_ells, out_ells)

185

186 print("1" if (stagel and stage2 and stage3) else "0")

187

188 if __name__ == '__main__':

189 main()

Figure 30: Evaluation code for Pattern 1 (3/3).
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F.1.3 EVALUATION CODE FOR PATTERN 2

In Pattern 2, it is not possible to uniquely determine the correct objects. To address this, we im-
plemented case-specific Python logic that evaluates correctness based on textual input, allowing for
variations in valid outputs. As examples, we present the evaluation code for the case in Figure[3|and
for the bottom case in Figure 5]

The evaluation code corresponding to Figure[3]is shown in Figures[31]and 32

Overall Evaluation Procedure. The script compares two SVG files:

e the ground-truth construction (annotated with the class input_object), and

 the LLM-generated output (annotated with the class output _object).

Both are parsed by parse_svg_file (), which returns:
(gt_segs,gt_circs,gt_ells), (out_segs,out_circs,out_ells)

for the input and output respectively. If parsing fails at any point, the script prints 0 and terminates,
indicating an incorrect solution.

Geometric Helper Functions. Two helper routines implement basic Euclidean geometry needed
for the evaluation:

* dist_point_to_segment (pt, a, b): given a point pt and a segment with end-
points a and b, this function computes the shortest distance from pt¢ to the segment. It
projects pt onto the supporting line of ab, clamps the projection parameter to the interval
[0, 1], and returns the Euclidean distance from pt to the resulting closest point.

e circle_intersections(cl, rl, c2, r2): giventwo circles with centers cq, co
and radii 71, r9, this function returns their intersection points. It first computes the center
distance d; if the circles are too far apart, nested, or numerically degenerate, it returns an
empty list. Otherwise, it computes the base point on the line between the centers and the
perpendicular offset, yielding either one point (tangency) or two intersection points.

Tolerance Parameters. Because the LLM-generated SVG may differ slightly due to numerical
precision or stylistic variation, the script uses small tolerances:

* tol_center: allowed deviation when matching circle centers to line endpoints.
e tol_r: allowed difference between radii.

* tol_line: allowed distance when checking whether intersection points lie on a candidate
line segment.

These tolerances make the evaluation robust to minor floating-point noise.

Step 1: Extracting the Reference Segment. From the ground-truth data, the script takes the first
input segment:

(p1,p2) = gt_segs[0].
This segment represents the original line in Figure 3 on which the construction is based. If no such
segment exists, the evaluation immediately fails.

Step 2: Matching Circles at the Endpoints. The first condition requires that the output contain
two circles whose centers coincide with the endpoints p; and ps of the input segment:
1. The script scans out _circs to find a circle with center within tol_center of p;. This
circle is stored as (c1,71).
2. It then scans again to find a different circle with center within tol_center of ps, stored
as (CQ, 7“2).
If either endpoint does not have a corresponding circle center, the script prints O (incorrect).

Step 3: Checking the Radii. The second condition enforces both equality and sufficient size of the
radii:
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* The radii must be equal up to tolerance: |r; — ro| < tol_r.
 Each radius must be strictly larger than half the length of the original segment:

o> lp2 — pal _

tol_r.
2

Intuitively, this ensures that the two circles intersect in two distinct points above and below the
segment, as in the geometric construction. If either inequality is violated, the output is rejected.

Step 4: Computing Circle Intersections. The third condition uses the intersection points of the
two circles:

1. The scriptcalls circle_intersections(cl, rl, c2, r2) tocompute the inter-
section points.

2. If fewer than two intersection points are found (no intersection or tangency), the configu-
ration cannot reproduce the intended construction, and the script outputs 0.

When two intersections exist, denote them by I; and I5.
Step 5: Verifying a Line Through Both Intersections. Finally, the script checks whether the LLM
has drawn a line that passes through both intersection points:

* It iterates over each output segment (¢1,¢2) € out_segs.

* For each segment, it computes the distance from I; and I to the segment using
dist_point_to_segment.

* If both distances are within tol_line, then (qi, g2) is considered to pass through both
circle intersections.

If such a segment is found, the configuration is deemed correct and the script prints 1. Otherwise, it
prints 0.

52



Under review as a conference paper at ICLR 2026

1 #!/usr/bin/env python3
2 # —x- coding: utf-8 —x—
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 dimport re
7 import math
8| import sys
9 from parse_svg_file import parse_svg_file
10
11 # ——— Tolerances (adjust if necessary) ————
12 tol_center = le-1 # Tolerance for matching a circle center with a line endpoint
13 tol_r = le-1 # Tolerance for comparing radii
14 tol_line = le-1 # Tolerance for checking if intersection points lie on a line segment
15
16 | def dist_point_to_segment(pt, a, b):
17 o
18 Return the distance between a point pt and a line segment ab.
19 R
20 X,y = pt
21 x1,yl = a
22 x2,y2 = b
23 dx = x2 - x1
24 dy = y2 -yl
25 if dx==0 and dy==0:
26 return math.hypot(x-x1, y-y1)
27 t = ((x=x1)*dx + (y-y1l)xdy) / (dxkdx + dyxdy)
28 t = max(0.0, min(1.0, t))
29 proj_x = x1 + tkdx
30 proj_y = yl + tkdy
31 return math.hypot(x - proj_x, y — proj_y)
32
33| def circle_intersections(cl, rl, c2, r2, tol=le-6):
34 R
35 Return the intersection points of two circles.
36 If the circles intersect at two points, return a list of length 2.
37 If they are tangent, return a list of length 1
38 If they do not intersect, return an empty list.
39 R
40 x0,y0 = cl
41 x1,yl = c2
42 dx = x1 - x0
43 dy = yl - y0
44 d = math.hypot(dx,dy)
45 # Same center or too far apart
46 if d < tolord > rl + r2 + tol or d < abs(rl - r2) - tol:
47 return []
48 # Distance a and height h of intersection
49 a = (rlxrl — r2*r2 + dxd) / (2x%d)
50 h2 = rlxrl - a*a
51 if h2 < 0 and abs(h2) <= tol:
52 h=10.0
53 elif h2 < 0:
54 return []
55 else:
56 h = math.sqrt(h2)
57 xm = x0 + a % dx / d
58 ym =y0 + a x dy / d
59 rx = -dy x (h / d)
60 ry = dx x (h / d)
61 pl = (xm + rx, ym + ry)
62 p2 = (xm - rx, ym - ry)
63 return [pl] if h == 0 else [pl, p2]

Figure 31: Evaluation code for the case in Figure 3] (1/2).
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def main():
p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
p.add_argument('ground_truth', help="File path of correct SVG")
p.add_argument('1llm_output', help="File path of SVG output from LLM")
args = p.parse_args()
try:
gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')
out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object")
except Exception:
print("e")
sys.exit(0)
input_line = gt_segs[0]
if input_line is None:
print("e"); sys.exit(e)
pl, p2 = input_line
# Find circles that match pl and p2
cl =rl =c2 = r2 = None
# ——— Condition 1: The output must contain exactly two circles whose centers match the endpoints

of the input segment ———
# Search for the circle centered at pl
for center, r in out_circs:
if math.hypot(center[0]-p1[0], center[1]-pl[1]) <= tol_center
cl, rl = center, r
break
if c1 is None:
print("e"); sys.exit(0)

# Search for the circle centered at p2 (make sure it's not the same one as c1)
for center, r in out_circs:
# Avoid matching the same circle by excluding identical centers
if (abs(center[@]-c1[0]) > tol_center or abs(center[1]-c1[1]) > tol_center) \
and math.hypot(center[0]-p2[0], center[1]-p2[1]) <= tol_center
c2, r2 = center, r
break
if c2 is None:
print("0"); sys.exit(0)

# ——— Condition 2: Radii must match and must be greater than half the segment length ——
line_len = math.hypot(p2[0]-p1[0], p2[1]-p1[1]
if abs(rl - r2) > tol_r or rl <= line_len/2 - tol_r:

print("e"); sys.exit(0)

# ——— Condition 3: There must exist a line segment passing through the intersection points of the
circles ——-
inters = circle_intersections(cl, r1, c2, r2, tol=tol_r)
if len(inters) < 2:
print("0"); sys.exit(0)

found_line = False
for g1, g2 in out_segs:
if dist_point_to_segment(inters[0], ql, g2) <= tol_line \
and dist_point_to_segment(inters[1], g1, g2) <= tol_line:
found_line = True
break

if not found_line:
print("0"); sys.exit(Q)

# ALl conditions satisfied
print(*1")

if __name__ == '__main__':

main()

Figure 32: Evaluation code for the case in Figure 3] (2/2).
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The evaluation code corresponding to the bottom case in Figure [3]is shown in Figures [33]and 34}

Overall Evaluation Procedure. The script evaluates whether an LLM-generated SVG correctly
draws the external tangents between four small circles found in a ground—truth SVG. It parses both
SVG files using parse_svg_file ():

(gt_segs,gt_circs,gt_ells), (out_segs,out_circs,out_ells)

Only graphical items marked with the class names input_object (ground truth) and
output_object (LLM output) are retrieved. If parsing fails, the script immediately prints O.

Geometric Helper Functions. Two main routines support the evaluation:
* dist_point_to_segment (pt, a, b) computesthe Euclidean distance from a point

pt to a segment with endpoints a, b. Using a projection onto line ab, the value is clamped
to the segment and the closest-point distance is returned.

* external_tangents(cl, rl, c2, r2) returns pairs of tangent contact points be-
tween two circles with centers ¢y, ¢ and radii r1, ro. If the distance between the centers is
too small (one circle inside another or touching internally), no external tangents exist and
an empty list is returned.

Tolerance Handling. A fixed distance tolerance
tol =10

is used when determining whether a drawn segment approximates a target tangent. Small variations
due to SVG scaling or floating precision are therefore accepted.

Reference Circles in the Ground Truth. The script extracts all circles from the ground truth
drawing and sorts them by increasing radius. Only

the four circles with the smallest radii

are used as the construction targets. If fewer than five ground-truth circles exist, the problem is
considered invalid and the output score is 0.

Expected Geometry: External Tangents. For every pair among the four selected circles (six pairs
in total), the script computes the two possible external tangent segments:

((Pu»]?u), (p217P22))

Each tangent is a pair of points, one on each circle. At least one tangent for each circle pair must
appear in the LLM’s output as a drawn segment.

Matching Tangents in the LLM Output. For each correct tangent candidate (A, B), the script
checks whether any output segment (@)1, ()2) matches it using:

match_segments () <= (dist(A,Qng) <tol A dist(B,Q1Q2) < tol).

If no output segment matches at least one tangent for a given circle pair, evaluation halts and returns
0.

Final Decision. If all six circle pairs have at least one tangent segment successfully approximated
by the LLM-generated SVG, the script prints: 1 otherwise it prints: 0.
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1 #!/usr/bin/env python3
2 # —- coding: utf-8 —*—
3
4| import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import itertools
10 from parse_svg_file import parse_svg_file
11
12
13 def dist_point_to_segment(pt, a, b):
14 x,y = pt; x1,yl = a; x2,y2 = b
15 dx = x2 = x1; dy = y2 -yl
16 if dx==0 and dy==0:
17 return math.hypot(x-x1, y-y1)
18 t = ((x=x1)*dx + (y-y1)*dy) / (dxkdx + dy*dy)
19 t = max(0.0, min(1.0, t))
20 proj_x = x1 + txdx; proj_y = yl + tkdy
21 return math.hypot(x - proj_x, y — proj_y)
22
23
24| def match_segments(gt_segs, out_segs, tol=lel):
25 """Check whether each segment in gt is contained in any segment in out"""
26 for (p1,p2) in gt_segs:
27 ok = False
28 for (q1,92) in out_segs:
29 if dist_point_to_segment(pl, ql, g2) <= tol and dist_point_to_segment(p2, ql, g2) <= tol:
30 ok = True; break
31 if not ok:
32 return False
33 return True
34
35
36 def external_tangents(cl, rl, c2, r2):
37 """Return pairs of tangent points for the external common tangents of two circles"""
38 (x1,y1), (x2,y2) = cl1, c2
39 dx = x2 - x1; dy = y2 - y1
40 d2 = dxkdx + dyxdy
41 if d2 <= (rl - r2)*x2:
42 return []
43 d = math.sqrt(d2)
44 a=(rl-r2)/d
45 a = max(-1.0, min(1.0, a))
46 b = math.sqrt(max(0.0, 1 - axa))
47 ux = dx / d; uy =dy / d
48 vx = -dy / d; vy =dx / d
49 nl = (axux + bkvx, akuy + bkvy)
50 n2 = (akux — bxvx, akuy - bxvy)
51 pll = (x1 + rl % nl[0], y1 + rl % n1[1])
52 pl2 = (x2 + r2 x n1[0], y2 + r2 x n1[1])
53 p21 = (x1 + r1 x n2[0], y1 + rl % n2[1])
54 p22 = (x2 + r2 x n2[0], y2 + r2 x n2[1])
55 return [(pll, p12), (p21, p22)
56
57
58 def main():
59 p = argparse.ArgumentParser(description="SVG output evaluation script")
60 p.add_argument('ground_truth', help="Path to the ground truth SVG file")
61 p.add_argument (' llm_output', help="Path to the LLM output SVG file")
62 args = p.parse_args()
63
64 try:
65 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')

Figure 33: Evaluation code for the bottom case in Figure 5] (1/2).
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66 out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object")
67 except Exception:

68 print("e")

69 sys.exit(0)

70

71 # Get circles from the ground truth and select the top 4 with the smallest radius
72 if len(gt_circs) < 5:

73 print("0"); sys.exit(0)

74 gt_circs_sorted = sorted(gt_circs, key=lambda x: x[1])[:4]

75

76 tol = lel

77 ok_all = True

78 for (c1, r1), (c2, r2) in itertools.combinations(gt_circs_sorted, 2):

79 tangents = external_tangents(cl, r1, c2, r2)

80 if not tangents:

81 ok_all = False; break

82 # It is OK if at least one of the two tangent pairs exists in the output
83 if not any(match_segments([seg]l, out_segs, tol) for seg in tangents):

84 ok_all = False; break

85

86 print("1" if ok_all else "0")

87

88 if __name__ == '__main__':

89 main()

Figure 34: Evaluation code for the bottom case in Figure [5](2/2).
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F.2 MOLECULAR STRUCTURE

F.2.1 PARSING CODE

We present the parsing code for converting vector data into graphs representing molecular structures
as shown in Figure 33]

The parse_svg_file function reads an SVG file and constructs a network graph using
networkx. Nodes are extracted from <circle> elements, where each circle’s coordinates and
fill color are stored as node attributes. Line endpoints (<1ine> elements) are matched with the
nearest circle positions to determine which nodes are connected. When both endpoints correspond
to valid circles, an edge is created between the associated nodes. The function therefore produces
an undirected graph whose topology reproduces the molecular connectivity encoded in the SVG
drawing.

1 #!/usr/bin/env python3

2 # —x- coding: utf-8 —x-—

3

4| import math

5 import xml.etree.ElementTree as ET

6 import networkx as nx

7

8

9 def parse_svg_file(path, tol=le-1):

10 e

11 A function that builds a graph structure from an SVG file.
12 Nodes are extracted from <circle> elements, and edges are extracted by associating
13 endpoints of <line> elements with those nodes.

14 o

15 root = ET.parse(path).getroot()

16

17 G = nx.Graph()

18 # Specify the SVG namespace

19 ns = {'svg': 'http://www.w3.0rg/2000/svg"'}

20

21 circles = []

22 # Retrieve circle elements and register each node

23 for i, circle in enumerate(root.findall(".//svg:circle", ns)):
24 cx = float(circle.attrib['cx'])

25 cy = float(circle.attrib['cy'])

26 fill = circle.attrib.get('fill', '")

27 circles.append((cx, cy, fill, i))

28 G.add_node(i, fill=fill, pos=(cx, cy))

29

30 # Find the closest circle (node) to the given coordinates
31 def find_circle(x, y):

32 for cx, cy, fill, node_id in circles:

33 if math.hypot(cx - x, cy - y) < tol:

34 return node_id

35 return None

36

37 # Add edges based on line elements

38 for line in root.findall(".//svg:line", ns):

39 x1 = float(line.attrib['x1'])

40 yl = float(line.attrib['y1'])

41 x2 = float(line.attrib['x2'])

42 y2 = float(line.attrib['y2'])

43 nl = find_circle(x1, y1)

44 n2 = find_circle(x2, y2)

45 # Add edge only if both endpoints correspond to circles (nodes)
46 if nl is not None and n2 is not None:

47 G.add_edge(nl, n2)

48 return G

Figure 35: SVG parsing code.
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F.2.2 EVALUATION CODE

The script in Figure[36]evaluates whether two SVG files represent the same molecular graph. It takes
two SVG file paths as input: a ground-truth structure and an SVG produced by a language model.

Both files are parsed into graphs using the previously defined parse_svg_file function.

After parsing, the script compares the two graphs using networkx.is_isomorphic, where
nodes are matched based on their £111 attribute, ensuring that atoms of the same type correspond
between graphs. If the two SVG-derived graphs are isomorphic under this constraint, the script out-
puts 1; otherwise, it outputs 0. This enables automated validation of molecular structure predictions

generated from vector graphics.
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27

#!/usr/bin/env python3
# —x- coding: utf-8 —x—

import argparse

import xml.etree.ElementTree as ET

from parse_svg_file import parse_svg_file
import networkx as nx

def main():
p = argparse.ArgumentParser(description="SVG output evaluation script")
p.add_argument('ground_truth', help="File path of the ground truth SVG")
p.add_argument('llm_output', help="File path of the LLM-generated SVG")
args = p.parse_args()

gt_G = parse_svg_file(args.ground_truth)
out_G = parse_svg_file(args.llm_output)

node_match = lambda n1, n2: n1['fill'] == n2['fill']

# Graph isomorphism check
iso = nx.is_isomorphic(gt_G, out_G, node_match=node_match)

print("1" if iso else "0")

if __name__ == '__main__':

main()

Figure 36: Evaluation code.
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G VALIDATION OF HUMAN-SYSTEM AGREEMENT

We verify the validity of our automated evaluation code by assessing how closely human evaluations
align with the code’s judgments. Two human evaluators judge whether LLM outputs are correct or
incorrect. One is a master’s student and the other is an undergraduate student. They both major in
engineering. They were not involved in our research and had no prior knowledge of the project. For
each description, we present a ground-truth vector graphic along with an LLM-generated output,
and ask them to evaluate its correctness. For the plane geometry task, we use all 110 instances.
For the molecular structure task, highly complex structures can increase the likelihood of errors by
human evaluators; therefore, we use a relatively simple set of 50 instances. We randomly select LLM
outputs so that the data labeled as correct and incorrect by our code are evenly balanced. Therefore,
the instances we used consist of 50% judged correct by our code and 50% judged incorrect. We
include all output formats: TikZ, SVG, and EPS.

Table [T5]shows the percentage of agreement and Cohen’s Kappa scores between the human evalua-
tors and our code. These results demonstrate very high agreement rates, indicating the reliability of
our evaluation approach.

Table 15: The percentage of agreement and Cohen’s Kappa scores between the human evaluators
and our code.

Plane geometry Molecular structure

Annotator 1

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement  97.3% 95.5% 95.5% 98.0% 98.0%  98.0%
Cohen’s Kappa 0.946 0909  0.909 0.960 0.960 0.960
Annotator 2 Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement  96.4%  99.1% 95.5% 98.0% 100.0% 96.0%
Cohen’s Kappa 0.927 0982  0.909 0.960 1.000 0.920
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