
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS THE GENERATION OF
STRUCTURED SCIENTIFIC VECTOR GRAPHICS
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the challenge of automatically visualizing scientific explanations.
While prior work has explored large language model (LLM)-based vector graphic
generation, existing approaches often overlook structural correctness, a key re-
quirement for valid scientific diagrams. To achieve structurally correct genera-
tion, we make three key contributions. First, we introduce SSVG-Bench, a novel
benchmark for evaluating the generation of Structured Scientific Vector Graphics.
Unlike conventional visual similarity metrics, SSVG-Bench employs task-specific
structural analysis for accurate evaluation, and it supports three vector formats:
TikZ, SVG, and EPS. Second, we conduct an extensive benchmarking and analy-
sis, revealing key findings such as the crucial role of LLM reasoning in ensuring
structural validity. Third, we propose LLM-Oriented Orchestration Prompting
(LOOP), a new prompting method that leverages LLMs’ reasoning potential by
combining familiar subtasks. Experiments demonstrate substantial improvements
over existing prompting techniques, suggesting promising directions for scientific
diagram generation. We will release our code and benchmark upon acceptance.

1 INTRODUCTION

In this paper, we address the challenge of automatically visualizing scientific explanations. Because
scientific explanations are often abstract and complex, they can be difficult to grasp from text alone.
To promote intuitive understanding, visualization is widely used in contexts such as science text-
books and research papers. These observations suggest that automated visualization could have a
significant impact.

Recent research on scientific diagram generation has investigated vector graphics generation with
large language models (LLMs) (Belouadi et al., 2024a;b; Zhang et al., 2025; Belouadi et al., 2025).
As vector graphics encode visual content in structured text form, they can be directly produced by
LLMs. Given that LLMs are capable of capturing scientific concepts in depth and encoding complex
constraints, they are particularly promising for this task.

However, existing methods have overlooked a crucial aspect of scientific diagrams: structural cor-
rectness. To illustrate its importance, we present a physics scenario in Figure 1. Here, the visu-
alization must strictly satisfy structural constraints: the object should remain in contact with the
inclined plane, and three arrows must be shown, one vertical to the ground, one perpendicular to the
plane, and one parallel to the plane. An existing method, namely a fine-tuned LLM for generating
vector code (Belouadi et al., 2025), fails to meet these constraints. Although it prioritizes visual
plausibility, the lack of structural enforcement ultimately leads to invalid scientific diagrams.

Towards the generation of scientific vector graphics with structural correctness, we make three main
contributions. Our first contribution is a new benchmark for the generation of Structured Scien-
tific Vector Graphics, named SSVG-Bench. It targets two foundational domains: plane geometry
and molecular structure. The plane geometry task involves generating geometric figures from tex-
tual descriptions of theorems or construction methods, while the molecular structure task requires
correctly generating a molecule’s structure from its IUPAC name, which encodes structural infor-
mation. These domains are representative of broader applications: the ability to generate plane
geometry structures is fundamental for physics illustrations, engineering diagrams, and architec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

An object on an inclined plane experiences
three forces: the gravitational force mg
acting vertically downward, the normal
force of magnitude mgcos(theta) acting
perpendicular to the plane, and a static
friction force of magnitude mgsin(theta)
acting up the plane, parallel to its surface.

Textual explanation Output by TikZero+

�Fg

�Fn

�Fs

θ

1

Expected output

mg

mg cosθ mg sinθ

θ

Figure 1: An example highlighting the importance of structural correctness: the object should remain
in contact with the inclined plane, and three arrows must be shown, one vertical to the ground, one
perpendicular to the plane, and one parallel to the plane. TikZero+ (Belouadi et al., 2025), a fine-
tuned LLM for generating vector code, does not meet these structural constraints.

tural blueprints, while generating molecular structures requires correctly producing graph structures,
which are important in various fields such as algorithm flowcharts, circuit designs, and biological
pathways. The most significant feature of SSVG-Bench is its evaluation method. Conventional
visual similarity metrics are insufficient for assessing structural correctness, as even minor visual
changes can cause structural inconsistencies. To address this, we provide task-specific Python scripts
that analyze the structure of the generated outputs, enabling accurate evaluation of structural correct-
ness. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which allows
us to examine performance across formats.

Our second contribution is a comprehensive benchmarking and analysis of existing models using
SSVG-Bench, which yields several key findings. First, LLLs fine-tuned on existing vector graphic
generation datasets to produce vector code rarely generate structurally valid vector graphics. Second,
we show that the reasoning capabilities of LLMs are essential for generating structurally correct
vector graphics. Finally, although prior work has mainly focused on the TikZ format, our results
demonstrate that the SVG format is better suited for LLM reasoning.

As our third contribution, we propose a new prompting technique, LLM-Oriented Orchestration
Prompting (LOOP), to further enhance the reasoning capabilities of LLMs. Recent LLMs are ex-
plicitly trained to perform step-by-step reasoning and can solve complex tasks, but it has been re-
ported that they struggle with tasks not encountered during training (Shojaee et al., 2025; Malek
et al., 2025). Since LLMs are not explicitly trained to generate vector graphics from scientific expla-
nations, they cannot fully utilize their reasoning potential when the task is presented in its original
form. To fully leverage their reasoning abilities, we design a prompt that explicitly guides LLMs
to perform LLM-friendly subtasks such as information extraction and relationship extraction, which
enables them to generate vector graphics with correct structure. Our experiments demonstrate that
LOOP achieves substantially better performance than existing prompting methods.

Our contributions can be summarized as follows.

• Dataset: We introduce SSVG-Bench, a new benchmark for structured scientific vector graphics
generation, including scripts that verify structural correctness.

• Benchmarking and analysis: Our analysis shows that previous fine-tuned models cannot pro-
duce structurally correct graphics, that LLM reasoning capabilities are essential for ensuring
structural correctness, and that the SVG format is well-suited for such reasoning.

• Method: We propose LOOP, a new prompting method that enhances LLM reasoning by solving
LLM-friendly sub-problems step by step.

2 RELATED WORKS

Scientific vector graphic generation benchmarks. Vector graphics are gaining attention as an
image format well-suited for LLMs, as they are represented in text and can be directly input or
output by LLMs without requiring a vision adapter. Several benchmarks have been developed for
general vector graphics generation, such as SVGEditBench (Nishina & Matsui, 2024), SVG Tax-
onomy (Xu & Wall, 2024), and VGBench (Zou et al., 2024). Additionally, several benchmarks for
visualizing scientific data have been developed, such as MatPlotBench (Yang et al., 2024), Pandas-
PlotBench (Galimzyanov et al., 2025), and ChartMimic (Yang et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of previous benchmarks with our SSVG-Bench.

Benchmark Scientific?# Evaluation
data Evaluation method Vector format

SVGEditBench No 1,366 Visual similarity SVG
SVG Taxonomy No 400 Exact match SVG
VGBench No 5,845 Visual similarity TikZ, SVG, Graphviz

DaTikZ v1 Yes 1,000 Visual/code similarity, Human evaluation TikZ
DaTikZ v2 Yes 1,000 Visual/code similarity, Human evaluation TikZ
DaTikZ v3 Yes 1,000 Visual/code similarity, Human evaluation TikZ
ScImage Yes 404 Human evaluation TikZ
DiagramGenBench Yes 470 Visual/code similarity, Human evaluation TikZ, DOT
SSVG-Bench (ours) Yes 1,230 Structural analysis scripts TikZ, SVG, EPS

Motivated by this trend, some benchmarks have also been created specifically for scientific vector
graphics generation. DaTikZ v1 (Belouadi et al., 2024a) collects TikZ code and corresponding
captions from sources such as arXiv papers. DaTikZ v2 (Belouadi et al., 2024b) collects pairs
of hand-drawn sketches and TikZ code to evaluate the performance of sketch-to-TikZ conversion.
DaTikZ v3 (Belouadi et al., 2025) further extends DaTikZ v1 and v2. ScImage (Zhang et al., 2025)
employs synthetic data to analyze scientific vector generation in terms of attributes, numbers, and
spatial dimensions. DiagramGenBenchmark (Wei et al., 2025) provides diagram structures in TikZ
as well as graph structures in the DOT language.

However, these benchmarks generally do not focus on the structural correctness of the generated
graphics. We present a comparison of these benchmarks with our SSVG-Bench in Table 15. The
most significant feature of SSVG-Bench is its evaluation method. Visual similarity-based and code
similarity-based metrics are insufficient for determining whether the structure of a generated graphic
truly reflects the intended structure. Human evaluations, while informative, are not scalable and are
subject to variability and inconsistency across evaluators. As a result, it is difficult to increase the
number of models evaluated or to use diverse experimental conditions. To address these issues, we
provide task-specific Python scripts that analyze the structure of the generated output and determine
its correctness. Our evaluation framework offers precise, objective, and consistent assessments of
performance. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which
allows us to examine performance across formats.

Scientific vector graphic generation methods. Based on the benchmarks, several scientific vector
graphic generation methods have been proposed. AutomaTikZ (Belouadi et al., 2024a) is designed
for TikZ generation by fine-tuning Llama (Touvron et al., 2023) to output TikZ code from captions.
It leverages CLIP features (Radford et al., 2021), derived from captions, to further improve visual
alignment. DeTikZify (Belouadi et al., 2024b) converts hand-drawn sketches into TikZ code by
combining a vision encoder (SigLIP (Zhai et al., 2023)) with an LLM such as Llama. TikZero (Be-
louadi et al., 2025) addresses the scarcity of paired caption-TikZ data by leveraging readily available
captioned raster images for training. DiagramAgent (Wei et al., 2025) enables the creation of com-
plex diagrams by coordinating multiple agents. Despite their innovations, these models are primarily
trained to predict output code and are not designed to guarantee structural correctness.

LLM prompting methods. The reasoning capabilities of LLMs can be elicited through effective
prompting. Seminal work on Chain-of-Thought (CoT) demonstrated that allowing models to gen-
erate intermediate reasoning steps dramatically improves multi-step reasoning (Wei et al., 2022).
Follow-ups revealed that simply appending “Let’s think step by step” can unlock zero-shot rea-
soning (Kojima et al., 2022), and that sampling multiple reasoning paths and selecting the most
consistent answer (“self-consistency”) further boosts accuracy (Wang et al., 2023b). Beyond linear
reasoning, researchers decomposed problems via least-to-most prompting (Zhou et al., 2023), intro-
duced plan-first then execute strategies such as Plan-and-Solve (Wang et al., 2023a), and proposed
Step-Back prompting, which encourages the model to abstract away from the immediate problem
and reason at a higher conceptual level before providing a solution (Zheng et al., 2024). In this
paper, we introduce a novel prompting method designed for scientific vector graphic generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Plane geometry

Molecular structure

To state the theorem, suppose that
ABCD and AB'C'D' are two squares
with common vertex A. Let E and G
be the midpoints of B'D and D'B
respectively, and let F and H be the
centers of the two squares. Then the
theorem states that the quadrilateral
EFGH is a square as well.

The Apollonius point of a triangle is
defined as follows. Let △ABC be any
given triangle. Let the excircles of △
ABC opposite to the vertices A, B, C
be EA, EB, EC respectively. Let E be
the circle which touches the three
excircles EA, EB, EC such that the
three excircles are within E. Let A',
B', C' be the points of contact of the
circle E with the three excircles. The
lines AA', BB', CC' are concurrent.
The point of concurrence is the
Apollonius point of △ABC.

The exterior angle bisector in A
intersects the extended side BC in E,
the exter ior angle bisector in B
intersects the extended side AC in D
and the exterior angle bisector in C
intersects the extended side AB in F.

The three points of intersect ion
between the exterior angle bisectors
and the extended triangle sides D, E,
F are collinear, that is they lie on a
common line.

the molecular structure of the
compound with the IUPAC name
4-butyl-2,6-dimethylmorpholine

the molecular structure of the
compound with the IUPAC name

6-methoxy-4-methyl-5-phenyl
methoxyquinolin-8-amine

the molecular structure of the
compound with the IUPAC name

4-[[2,4-diamino-5-[(4-carboxyphenyl)
diazenyl]phenyl]diazenyl]benzoic acid

A
B

C

D

E

F

A

B C
A

B

HF
C

D

B'

D'

E

G

C'

Vector
graphic

Input
text

Vector
graphic

Input
text

Figure 2: Examples in SSVG-Bench.1

3 SSVG-BENCH

To evaluate whether LLMs can generate vector graphics with structural correctness, we introduce
SSVG-Bench. SSVG-Bench covers two key topics: 1) plane geometry and 2) molecular structure.
For each topic, we also develop an automatic evaluation framework. Figure 2 presents some ex-
amples, and Table 2 summarizes respective statistics. We provide a detailed explanation of these
components in the following sections.

3.1 PLANE GEOMETRY

Table 2: Statistics of SSVG-Bench. The num-
ber of elements is counted based on the SVG.

Plane geometry
Total number of input texts 110
Average number of elements per vector graphic

- line 3.96
- circle 2.77
- ellipse 0.03
- polygon 1.65
- polyline 0.01

Molecular structure
Total number of input texts 300
Average number of elements per vector graphic

- line 32.45
- circle 30.38

This task involves generating visualizations of
plane geometric figures from textual descriptions,
translating explanations of theorems or construc-
tions into precise visual representations. To suc-
ceed, LLMs must accurately interpret spatial re-
lationships such as “intersection”, “tangent”, and
“perpendicular”, as well as uniquely determined
constructions like “angle bisectors” and “excir-
cles.” This task can evaluate visualization capa-
bilities that are important in a variety of applica-
tions, including physics illustrations, engineering
diagrams, and architectural blueprints.

1The input texts and vector graphics are from (Wikipedia contributors, 2025b;f; 2024; Kmhkmh, 2019a;
2015; Krishnachandranvn, 2012; National Center for Biotechnology Information, 2025f;l;g)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The segment AB is bisected
by drawing intersecting
circles of equal radius r >
1/2|AB|, whose centers are
the endpoints of the segment.
The line determined by the
points of intersection of the
two circles is the perpen-
d icu lar b isec tor o f the
segment.

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Gemini 2.0 Flash

B

A

·

·

Incorrect

DeepSeek-R1

Correct

Ground-truth

B

A

B

A

Figure 3: An example of the automatic evaluation results for Pattern 2 in the plane geometry
visualization task, where the correct object is not uniquely determined. Our Python-based automatic
evaluation framework checks whether the radius of each circle is greater than half the length of
segment AB, enabling appropriate assessment.2

the molecular structure of the
compound with the IUPAC name
tellurophene-2-carboxylic acid

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Claude Opus 4.1

Incorrect

GPT-5

Correct

Ground-truth

Figure 4: An example of the automatic evaluation results in the molecular structure visualization
task. Correctness can be determined based on graph analysis, even when the images differ signifi-
cantly in visual appearance.3

We curated a dataset by collecting paired textual descriptions and corresponding images related to
plane geometry from Wikipedia. All images used are freely available for modification and redis-
tribution. Most of them are in SVG, a vector graphic format. We cleaned the images using Adobe
Illustrator by removing elements unrelated to the text. When only raster images were available, we
manually recreated the visuals in vector format. In total, we compiled 110 text-vector graphic pairs.

The automatic evaluation falls into two distinct patterns. In Pattern 1, the correct output can be
uniquely determined. We provide some parts of the vector graphics as input to the LLM. As shown
in Figure 2, the elements depicted in black are given as input, and the LLM is expected to generate
the red elements. These red elements are uniquely determined by the black elements. We devel-
oped a Python script to analyze the vector data and assess correctness by checking whether the red
components are present in the LLM’s output.

In Pattern 2, the correct output cannot be uniquely determined, even when the black elements are
provided. For example, in the case illustrated in Figure 3, any circle with a radius greater than half
the length of the given line segment is considered acceptable. For such cases, we implemented case-
specific Python logic to evaluate correctness based on the textual input, allowing for variation in
valid outputs. In Figure 3, the output of Gemini 2.0 Flash is judged as incorrect because the radius
of the circle is shorter than half the length of segment AB. Although the output of DeepSeek-R1
differs from the predefined ground-truth radius, it is judged as correct since their circle radii exceed
half the length of segment AB. We carefully read each text and manually categorized them into
Pattern 1 and Pattern 2. There are 94 cases belonging to Pattern 1 and 16 cases belonging to Pattern
2.

For simplicity, we exclude text layout from the evaluation process.

3.2 MOLECULAR STRUCTURE

In this task, the input is an IUPAC name that describes the molecular structure, and the goal is to
generate the corresponding molecular structure. The IUPAC name encodes the structural informa-

2The input text and the ground-truth are from (Wikipedia contributors, 2025c) and (Ag2gaeh, 2021).
3The molecular structure data is from (National Center for Biotechnology Information, 2025p).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tion of a molecule, and by interpreting it, the molecular structure can be reconstructed. For example,
the IUPAC name shown on the left side of Figure 2 is “4-butyl-2,6-dimethylmorpholine,” which
indicates that a butyl group is attached to the nitrogen atom at the 4-position (shown in blue) of
the morpholine ring (a six-membered ring), and that methyl groups are attached at the 2- and 6-
positions. In this way, the molecular structure can be accurately restored from the IUPAC name. It
is essential to correctly identify the types and numbers of atoms involved, with particular importance
placed on the graph structure formed by atomic bonds. This task can evaluate the graph structure vi-
sualization capabilities of LLMs, which are important in various fields such as algorithm flowcharts,
circuit design, and biological pathways.

We obtained pairs of IUPAC names and molecular structures from PubChem4. The structural data
is stored in JSON format, and we developed a Python script to convert this information into vec-
tor graphics automatically. Using this script, we generated ground-truth data. We collected 300
molecules in total, with 50 examples each for molecules with fewer than 20 elements (atoms plus
bonds), 21-40, 41-60, 61-80, 81-100, and more than 100 elements.

To enable automatic evaluation, we implemented a Python-based evaluation tool. The generated
vector graphic is converted into a molecular graph, where nodes represent atoms and edges represent
bonds. We then check for “graph isomorphism” between the generated structure and the ground-
truth to automatically assess correctness. Graph isomorphism refers to the problem of determining
whether two graphs are structurally identical, meaning their nodes and edges can be matched one-to-
one while preserving connectivity. We use the NetworkX library to solve this problem. To simplify
the task, we do not consider bond order. We present an example of automatic evaluation results
in Figure 4. Although the output of GPT-5 appears visually different from the ground-truth, it is
considered correct based on graph-theoretic equivalence.

3.3 MULTIPLE VECTOR FORMATS

There are various types of vector graphic formats. To analyze performance differences across for-
mats, we use three types: TikZ, SVG, and EPS. For the plane geometry task, since the vector graph-
ics collected from Wikipedia are in SVG format, we developed Python scripts to automatically con-
vert SVG to TikZ and EPS, thereby generating ground-truth data. For the molecular structure task,
we generate vector graphics in each format directly from molecular structure data stored in JSON
files, using custom Python scripts to automate the process. When evaluating LLMs, we add instruc-
tions to the prompt to generate output in a specific format. This approach allows us to explore which
vector format is most suitable for LLMs. If the syntax is incorrect, it will result in a compilation
error (for TikZ and EPS) or a parsing error (for SVG). In such cases, the output is considered incor-
rect. Therefore, LLMs must strictly adhere to the syntax of each format. Our SSVG-Bench dataset
consists of two tasks and three vector formats, comprising a total of 1,230 text-vector graphic pairs.

4 BENCHMARKING AND ANALYSIS

Using SSVG-Bench, we evaluate whether recent models can generate structurally correct vector
graphics. Our experiments utilize two fine-tuned models: AutomaTikZ (Belouadi et al., 2024a)
and TikZero+ (Belouadi et al., 2025). As these models are trained to generate TikZ, we evaluate
them exclusively on TikZ. We also evaluate recent general-purpose LLMs, including DeepSeek-V3,
R1, V3.1 (DeepSeek, 2025), Claude Opus 4.1 (Anthropic, 2025), Gemini 2.0 Flash, 2.5 Flash, 2.5
Pro (Google, 2025), o4-mini, GPT-4.1, and GPT-5 (OpenAI, 2025). The detailed prompts used
for evaluation are provided in the Appendix. The overall performance is shown in Table 4, with a
detailed analysis provided below.

Limitations of fine-tuned models. Our benchmarking with SSVG-Bench reveals that models fine-
tuned to generate TikZ code (AutomaTikZ and TikZero+) seldom produce structurally valid outputs.
This highlights a limitation: simply training to predict TikZ code from captions is insufficient to
generate correct scientific figures.

4https://pubchem.ncbi.nlm.nih.gov/

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Accuracies on SSVG-Bench (%). The fill colors correspond to the values.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Fine-tuned models
AutomaTikZ 0.0 - - 0.0 - - 0.0
TikZero+ 0.9 - - 0.0 - - 0.2

Non-reasoning models
DeepSeek-V3 10.0 5.5 7.3 5.3 3.3 3.0 4.9
DeepSeek-V3.1 11.8 6.4 9.1 6.3 3.7 3.3 5.7
Claude Opus 4.1 14.5 12.7 20.9 24.3 26.0 16.0 20.5
Gemini 2.0 Flash 7.3 5.5 1.8 6.0 3.7 0.7 3.8
Gemini 2.5 Flash 12.7 9.1 5.5 22.7 11.3 14.3 14.2
GPT-4.1 10.9 10.0 14.5 19.0 15.0 13.7 14.8
GPT-5 Chat 12.7 10.0 7.3 16.0 14.3 11.0 12.8

Reasoning models
DeepSeek-R1 28.2 40.9 39.1 18.3 20.0 19.7 23.8
DeepSeek-V3.1 reasoning 23.6 39.1 27.3 31.0 7.3 20.7 22.4
Claude Opus 4.1 thinking 20.0 23.6 17.3 26.7 27.7 23.3 24.4
Gemini 2.5 Flash reasoning 30.0 55.5 41.8 32.0 39.3 34.7 37.2
Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
o4-mini 48.2 62.7 55.5 33.3 42.7 39.0 42.9
GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0

Table 5: Comparison of averages for models with reasoning enabled vs. disabled. DeepSeek-V3.1,
Claude Opus 4.1, Gemini 2.5 Flash, and GPT-5 are considered.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Reasoning disabled 13.0 9.5 10.7 17.3 13.8 11.2 13.3
Reasoning enabled 32.0 48.4 38.2 35.5 32.5 32.1 35.0

Importance of reasoning. To evaluate the effectiveness of reasoning, we consider models where
reasoning can be toggled on and off, and we report results for both configurations in Table 4. The
models compared are as follows: DeepSeek-V3.1 vs. DeepSeek-V3.1 reasoning, Claude Opus 4.1
vs. Claude Opus 4.1 thinking, Gemini 2.5 Flash vs. Gemini 2.5 Flash reasoning, and GPT-5 Chat
vs. GPT-5. Table 5 compares the averages of models with reasoning disabled and enabled. Enabling
reasoning significantly improves performance. These results demonstrate that enabling reasoning
plays a crucial role in generating structured vector graphics.

Table 3: Google search hits for format-specific keywords (Novem-
ber 2025).

TikZ SVG EPS

Keyword “tikzpicture” “</svg>” “showpage” and “moveto”
Hits 272K 524M 20.7K

Impact of vector format.
Focusing on the two best-
performing models, Gemini
2.5 Pro and GPT-5, we ob-
serve that their performance
on SVG is the highest, sur-
passing their performance on
TikZ and EPS. This represents a novel finding, as prior benchmarks have primarily focused on TikZ.
One possible explanation is the scale of resources used for training. Existing research (Zhu et al.,
2024) has demonstrated that the reasoning capabilities of LLMs tend to be weaker in low-resource
languages (e.g., Bengali or Thai) compared to high-resource languages (e.g., English). Similarly,
it is possible that LLMs are not well-suited for reasoning with TikZ and EPS, because they may
be considered “low-resource languages.” To test this hypothesis, it would be necessary to examine
the training data, but the datasets used to train Gemini 2.5 Pro and GPT-5 remain unspecified. We
instead query Google with format-specific keywords and record the number of hits, since much of
the training data for LLMs is derived from internet sources. Table 3 presents the number of hits

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 6: Comparison between our LOOP and other zero-shot prompting methods.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
w/ Zero-shot CoT 39.1 66.4 61.8 47.7 63.0 58.7 56.3
w/ Plan-and-Solve 39.1 69.1 66.4 41.3 58.7 55.0 53.4
w/ Step-Back 33.6 64.5 59.1 40.7 54.3 56.3 51.0
w/ LOOP (ours) 65.5 80.9 62.7 47.7 64.7 67.7 62.6

GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0
w/ Zero-shot CoT 58.2 80.0 75.5 53.0 52.0 49.3 56.7
w/ Plan-and-Solve 61.8 77.3 70.9 52.3 50.3 50.7 56.2
w/ Step-Back 55.5 75.5 72.7 50.7 51.7 48.3 55.0
w/ LOOP (ours) 70.0 80.0 77.3 55.0 57.3 54.3 61.0

obtained from searches using format-specific keywords. Compared to TikZ and EPS, SVG yielded
a much higher number of hits, suggesting that SVG constitutes a high-resource format.

5 LLM-ORIENTED ORCHESTRATION PROMPTING (LOOP)

Through our analysis, we find that LLM reasoning plays a crucial role. Building on this finding, we
propose a method to enhance their reasoning capabilities. Previous research has shown that carefully
crafted prompts can significantly improve LLM reasoning, even in zero-shot settings. For instance,
zero-shot CoT prompting (Kojima et al., 2022), which simply instructs the model with “Let’s think
step by step,” has been shown to improve performance. In this work, we introduce a novel zero-shot
prompting method, termed LOOP. While recent LLMs are explicitly trained for step-by-step reason-
ing and can solve complex tasks, their performance often degrades on tasks outside their training
distribution (Shojaee et al., 2025; Malek et al., 2025). Because LLMs are not inherently trained
to generate vector graphics from scientific explanations, their reasoning potential remains under-
utilized. The core idea of LOOP is to instruct LLMs to generate vector graphics by orchestrating
LLM-familiar tasks. Specifically, we use the following tasks: 1) information extraction, 2) relation-
ship extraction, 3) mathematical reasoning, and 4) code generation. The first three tasks provide the
information necessary for visualization, while the final task produces the vector graphics. Informa-
tion and relationship extraction are long-standing tasks in the field of natural language processing,
whereas mathematical reasoning and code generation are areas where recent LLMs have made sig-
nificant progress. By orchestrating these familiar tasks, LOOP aims to accelerate and enhance LLM
reasoning capabilities.

Specifically, for the plane geometry visual task, we use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the necessary
elements. 2. Relationship extraction: describe their relationships. 3. Mathematical reasoning:
compute the attributes of each element so that they satisfy those relationships. 4. Code generation:
generate the TikZ.”

For the molecular structure visualization task, we exclude mathematical reasoning, as it is not nec-
essary. We use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the functional
groups and substituents present in the IUPAC name. 2. Relationship extraction: describe how these
groups are connected. 3. Code generation: generate the TikZ.”

The word “TikZ” is replaced with the target vector format.

5.1 EVALUATION

We evaluate the performance of LOOP by applying it to the two best-performing models: Gemini
2.5 Pro and GPT-5. For comparison, we use the following three zero-shot prompting techniques:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Output
vector

graphic
(SVG)

Gemini 2.5 Pro

Incorrect

Gemini 2.5 Pro
w/ LOOP

Correct

Ground-truth

Let O be a circle of radius R.
Let O_1, O_2, O_3, O_4 be (in
that order) four non-intersecting
circles that l ie inside O and
tangent to it. Denote by t_{ij} the
length of the exterior common
bitangent of the circles O_i, O_j.
Then:t_{12} \cdot t_{34}+t_{14}
\cdot t_{23}=t_{13}\cdot t_{24}.

Input
text

Output
vector

graphic
(SVG)

GPT-5

Incorrect

GPT-5 w/ LOOP

Correct

Ground-truth
(Pattern 2)

In geometry, the six circles
theorem relates to a chain of six
circles together with a triangle,
such that each circle is tangent
to two sides of the triangle and
also to the preceding circle in
the chain. The chain closes, in
the sense that the sixth circle is
always tangent to the first circle.

Input
text

Figure 5: Examples demonstrating improvements from our prompting method on the plane geom-
etry SVG generation task. In the bottom example, since there are two possible exterior common
bitangents for each pair of circles, either line is considered correct.5

Output
vector

graphic
(SVG)

the molecular structure of the
compound with the IUPAC name
(6-chloro-4-methyl-2-oxochrome
n-7-yl) (2R)-2-[(4-methylphenyl)
sulfonylamino]pentanoate

Input
text

Output
vector

graphic
(SVG)

GPT-5 GPT-5 w/ LOOP Ground-truth

the molecular structure of the
compound with the IUPAC name
3-[[4-(4-methylphenyl)piperazin
-1 -y l]me thy l] -5 - [(2 -methy l
quinazolin-4-yl)oxymethyl]-1,3,4-o
xadiazole-2-thione

Input
text

Gemini 2.5 Pro
w/ LOOP

Correct

Gemini 2.5 Pro

Incorrect

Ground-truth

CorrectIncorrect

Figure 6: Examples demonstrating improvements from our prompting method on the molecular
structure SVG generation task.6

• Zero-shot CoT Prompting (Kojima et al., 2022): “Let’s think step by step.”

• Plan-and-Solve Prompting (Wang et al., 2023a): “Let’s first understand the problem and devise
a plan to solve the problem. Then, let’s carry out the plan and solve the problem step by step.”

• Step-Back Prompting (Zheng et al., 2024): “Let’s think step by step, following this workflow: 1.
Step back and pose higher-level, abstract questions. 2. Answer those questions. 3. Generate the
TikZ.”

The results are shown in Table 6. While some methods degrade performance, the proposed method
provides the highest performance gain. This result clearly demonstrates that the proposed method
can efficiently leverage the potential of LLMs.

We present examples in Figures 5 and 6 showing that LOOP enables the generation of structurally
correct vector graphics. Without LOOP, LLMs fail to accurately produce complex structures. LOOP
encourages deeper reasoning, which leads to the generation of structurally correct vector graphics.

5The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2022; 2025e; Roc-
chini, 2010; Kmhkmh, 2018).

6The molecular structure data is from (National Center for Biotechnology Information, 2025j;o).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this paper, we tackled the problem of scientific vector graphics generation using LLMs. Specifi-
cally, aiming for structurally correct vector graphics generation, we made three contributions. First,
we introduced a new benchmark that assesses the structural correctness of generated graphics using
structural analysis scripts. Second, we conducted a comprehensive benchmarking study and pro-
vided detailed analyses based on this benchmark. Third, we proposed a novel prompting technique
that accelerates LLM inference and significantly improves performance.

REFERENCES

Ag2gaeh. Construction of a perpendicular line segment bisector. https://commons.
wikimedia.org/wiki/File:Mittelsenkr-ab-konstr-e.svg, 2021. Licensed
under CC BY-SA 4.0; modified by the authors.

Anthropic. Models overview, 2025. https://docs.claude.com/en/docs/
about-claude/models/overview.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. Automatikz: Text-guided synthesis of scien-
tific vector graphics with tikz. In International Conference on Learning Representations (ICLR),
2024a.

Jonas Belouadi, Simone Ponzetto, and Steffen Eger. Detikzify: Synthesizing graphics programs
for scientific figures and sketches with tikz. Advances in Neural Information Processing Systems
(NeurIPS), 37:85074–85108, 2024b.

Jonas Belouadi, Eddy Ilg, Margret Keuper, Hideki Tanaka, Masao Utiyama, Raj Dabre, Steffen
Eger, and Simone Paolo Ponzetto. Tikzero: Zero-shot text-guided graphics program synthesis. In
IEEE/CVF International Conference on Computer Vision (ICCV), 2025.

Braindrain0000. Graphic representing medial triangles gfdl. https://commons.wikimedia.
org/wiki/File:Medial_Triangle.svg, 2006. Licensed under CC BY/SA 3.0; modi-
fied by the authors.

DeepSeek. Models & pricing, 2025. https://api-docs.deepseek.com/quick_start/
pricing.

Timur Galimzyanov, Sergey Titov, Yaroslav Golubev, and Egor Bogomolov. Drawing pandas: A
benchmark for llms in generating plotting code. In IEEE/ACM International Conference on Min-
ing Software Repositories (MSR), pp. 503–507, 2025.

Google. Gemini models, 2025. https://ai.google.dev/gemini-api/docs/models.

Gustavb. Butterfly theorem. https://commons.wikimedia.org/wiki/File:
Butterfly_theorem.svg, 2006. Licensed under CC BY/SA 3.0; modified by the authors.

Inductiveload. Diagram to shown the construction of the incenter (blue, i), the incircle (blue), the ex-
centres (orange, ja,jb,jc and the excircles (orange). https://commons.wikimedia.org/
wiki/File:Incircle_and_Excircles.svg, 2007a. Released into the public domain
under CC0 1.0; modified by the authors.

Inductiveload. Extouch triangle and nagel point.svg — diagram of the extouch triangle and nagel
point illustrating splitters in a triangle. https://commons.wikimedia.org/wiki/
File:Extouch_Triangle_and_Nagel_Point.svg, 2007b. Released into the public
domain under CC0 1.0; modified by the authors.

Inductiveload. Diagram to shown the construction of the intouch, or contact, triangle (red) and the
gergonne point (green) of a triangle (black). the blue circle is the incircle, and the blue point, i, is
the incentre of the original triangle. https://commons.wikimedia.org/wiki/File:
Intouch_Triangle_and_Gergonne_Point.svg, 2007c. Released into the public do-
main under CC0 1.0; modified by the authors.

10

https://commons.wikimedia.org/wiki/File:Mittelsenkr-ab-konstr-e.svg
https://commons.wikimedia.org/wiki/File:Mittelsenkr-ab-konstr-e.svg
https://docs.claude.com/en/docs/about-claude/models/overview
https://docs.claude.com/en/docs/about-claude/models/overview
https://commons.wikimedia.org/wiki/File:Medial_Triangle.svg
https://commons.wikimedia.org/wiki/File:Medial_Triangle.svg
https://api-docs.deepseek.com/quick_start/pricing
https://api-docs.deepseek.com/quick_start/pricing
https://ai.google.dev/gemini-api/docs/models
https://commons.wikimedia.org/wiki/File:Butterfly_theorem.svg
https://commons.wikimedia.org/wiki/File:Butterfly_theorem.svg
https://commons.wikimedia.org/wiki/File:Incircle_and_Excircles.svg
https://commons.wikimedia.org/wiki/File:Incircle_and_Excircles.svg
https://commons.wikimedia.org/wiki/File:Extouch_Triangle_and_Nagel_Point.svg
https://commons.wikimedia.org/wiki/File:Extouch_Triangle_and_Nagel_Point.svg
https://commons.wikimedia.org/wiki/File:Intouch_Triangle_and_Gergonne_Point.svg
https://commons.wikimedia.org/wiki/File:Intouch_Triangle_and_Gergonne_Point.svg

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ixnay. An animated gif of the construction of a bisection (with ruler and compass). https://en.
wikipedia.org/wiki/File:Bisection_construction.gif, 2007. Released into
the public domain under CC0 1.0; modified by the authors.

Kmhkmh. hadwiger-finsler theorem about squares. https://commons.wikimedia.org/
wiki/File:Hadwiger_finsler_theorem.svg, 2015. Licensed under CC BY 4.0;
modified by the authors.

Kmhkmh. Antiparallel symmedian.svg — diagram showing symmedian and antiparallel segments.
https://commons.wikimedia.org/wiki/File:Lemoine_punkt.svg, 2016. Li-
censed under CC BY 4.0; modified by the authors.

Kmhkmh. Casey new1a.svg. https://commons.wikimedia.org/wiki/File:Casey_
new1a.svg, 2018. Licensed under CC BY 4.0; modified by the authors.

Kmhkmh. exterior angle bisectors of a triange. https://commons.wikimedia.org/wiki/
File:Aussenwinkelhalbierende2.svg, 2019a. Licensed under CC BY 4.0; modified
by the authors.

Kmhkmh. tangential triangle of reference triangle. https://commons.wikimedia.org/
wiki/File:Tangential_triangle.svg, 2019b. Licensed under CC BY 4.0; modified
by the authors.

Kmhkmh. Japanese theorem for cyclic quadrilaterals (correct version) — diagram.
https://commons.wikimedia.org/wiki/File:Japanese_theorem_2_
correct_version_a.svg, 2024. Licensed under CC BY 4.0; modified by the authors.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems
(NeurIPS), 35:22199–22213, 2022.

Krishnachandranvn. The construction of the apollonius point. https://commons.
wikimedia.org/wiki/File:Apollonius_point.svg, 2012. Released into the pub-
lic domain under CC0 1.0; modified by the authors.

Alan Malek, Jiawei Ge, Nevena Lazic, Chi Jin, András György, and Csaba Szepesvári. Frontier llms
still struggle with simple reasoning tasks. arXiv preprint arXiv:2507.07313, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for
CID 100329, 2,5-dihydroxy-3,6-bis[1-(2-methylbut-3-en-2-yl)indol-3-yl]cyclohexa-2,5-diene-
1,4-dione, 2025a. URL https://pubchem.ncbi.nlm.nih.gov/compound/100329.
Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for
CID 179317, N-[5-chloro-4-(trifluoromethyl)-1,3-thiazol-2-yl]-N-(trideuteriomethyl)-3,5-
bis(trifluoromethyl)benzamide, 2025b. URL https://pubchem.ncbi.nlm.nih.gov/
compound/179317. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 21011,
4-chloro-1-methyl-5-nitroimidazole, 2025c. URL https://pubchem.ncbi.nlm.nih.
gov/compound/21011. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID
23521, N-heptylacridin-9-amine, 2025d. URL https://pubchem.ncbi.nlm.nih.gov/
compound/23521. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID
243518, 3-bromobut-3-en-2-amine, 2025e. URL https://pubchem.ncbi.nlm.nih.
gov/compound/243518. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 251192,
4-Butyl-2,6-dimethylmorpholine, 2025f. URL https://pubchem.ncbi.nlm.nih.gov/
compound/251192. Retrieved September 10, 2025.

11

https://en.wikipedia.org/wiki/File:Bisection_construction.gif
https://en.wikipedia.org/wiki/File:Bisection_construction.gif
https://commons.wikimedia.org/wiki/File:Hadwiger_finsler_theorem.svg
https://commons.wikimedia.org/wiki/File:Hadwiger_finsler_theorem.svg
https://commons.wikimedia.org/wiki/File:Lemoine_punkt.svg
https://commons.wikimedia.org/wiki/File:Casey_new1a.svg
https://commons.wikimedia.org/wiki/File:Casey_new1a.svg
https://commons.wikimedia.org/wiki/File:Aussenwinkelhalbierende2.svg
https://commons.wikimedia.org/wiki/File:Aussenwinkelhalbierende2.svg
https://commons.wikimedia.org/wiki/File:Tangential_triangle.svg
https://commons.wikimedia.org/wiki/File:Tangential_triangle.svg
https://commons.wikimedia.org/wiki/File:Japanese_theorem_2_correct_version_a.svg
https://commons.wikimedia.org/wiki/File:Japanese_theorem_2_correct_version_a.svg
https://commons.wikimedia.org/wiki/File:Apollonius_point.svg
https://commons.wikimedia.org/wiki/File:Apollonius_point.svg
https://pubchem.ncbi.nlm.nih.gov/compound/100329
https://pubchem.ncbi.nlm.nih.gov/compound/179317
https://pubchem.ncbi.nlm.nih.gov/compound/179317
https://pubchem.ncbi.nlm.nih.gov/compound/21011
https://pubchem.ncbi.nlm.nih.gov/compound/21011
https://pubchem.ncbi.nlm.nih.gov/compound/23521
https://pubchem.ncbi.nlm.nih.gov/compound/23521
https://pubchem.ncbi.nlm.nih.gov/compound/243518
https://pubchem.ncbi.nlm.nih.gov/compound/243518
https://pubchem.ncbi.nlm.nih.gov/compound/251192
https://pubchem.ncbi.nlm.nih.gov/compound/251192

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

National Center for Biotechnology Information. PubChem Compound Summary for CID 257753,
4-[[2,4-diamino-5-[(4-carboxyphenyl)diazenyl]phenyl]diazenyl]benzoic acid, 2025g. URL
https://pubchem.ncbi.nlm.nih.gov/compound/257753. Retrieved September
10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for
CID 272448, methyl 4-[3-acetamido-4,5-diacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-1-(2,4-
dinitrophenyl)pyrrolidine-2-carboxylate, 2025h. URL https://pubchem.ncbi.nlm.
nih.gov/compound/272448. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID
319843, ethyl 3-iminobutanoate, 2025i. URL https://pubchem.ncbi.nlm.nih.gov/
compound/319843. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID
57105, 3-[[4-(4-methylphenyl)piperazin-1-yl]methyl]-5-[(2-methylquinazolin-4-yl)oxymethyl]-
1,3,4-oxadiazole-2-thione, 2025j. URL https://pubchem.ncbi.nlm.nih.gov/
compound/57105. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 574024,
5-ethylcyclopentene-1-carboxylic acid, 2025k. URL https://pubchem.ncbi.nlm.nih.
gov/compound/574024. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 609005,
6-methoxy-4-methyl-5-phenylmethoxyquinolin-8-amine, 2025l. URL https://pubchem.
ncbi.nlm.nih.gov/compound/609005. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID
70260, 1,2,5-trimethylpyrrole, 2025m. URL https://pubchem.ncbi.nlm.nih.gov/
compound/70260. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 784953,
N-(2-methylsulfinylethyl)acetamide, 2025n. URL https://pubchem.ncbi.nlm.nih.
gov/compound/784953. Retrieved September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 982106,
(6-chloro-4-methyl-2-oxochromen-7-yl) (2R)-2-[(4-methylphenyl)sulfonylamino]pentanoate,
2025o. URL https://pubchem.ncbi.nlm.nih.gov/compound/982106. Retrieved
September 10, 2025.

National Center for Biotechnology Information. PubChem Compound Summary for CID 141986,
2-Tellurophenecarboxylic acid, 2025p. URL https://pubchem.ncbi.nlm.nih.gov/
compound/141986. Retrieved September 10, 2025.

Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assess-
ment of llm’s svg editing capabilities. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 8142–8147, 2024.

OpenAI. Models, 2025. https://platform.openai.com/docs/models.

PegasusRoe. image for projection formula in trigonometry. https://commons.wikimedia.
org/wiki/File:Projection_formula_(3).png, 2007. Released into the public do-
main under CC0 1.0; modified by the authors.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), pp. 8748–8763, 2021.

Claudio Rocchini. Isogonal conjugate.svg — illustration of isogonal conjugacy in a tri-
angle. https://commons.wikimedia.org/wiki/File:Isogonal_Conjugate.
svg, 2008. Licensed under CC BY 3.0; modified by the authors.

12

https://pubchem.ncbi.nlm.nih.gov/compound/257753
https://pubchem.ncbi.nlm.nih.gov/compound/272448
https://pubchem.ncbi.nlm.nih.gov/compound/272448
https://pubchem.ncbi.nlm.nih.gov/compound/319843
https://pubchem.ncbi.nlm.nih.gov/compound/319843
https://pubchem.ncbi.nlm.nih.gov/compound/57105
https://pubchem.ncbi.nlm.nih.gov/compound/57105
https://pubchem.ncbi.nlm.nih.gov/compound/574024
https://pubchem.ncbi.nlm.nih.gov/compound/574024
https://pubchem.ncbi.nlm.nih.gov/compound/609005
https://pubchem.ncbi.nlm.nih.gov/compound/609005
https://pubchem.ncbi.nlm.nih.gov/compound/70260
https://pubchem.ncbi.nlm.nih.gov/compound/70260
https://pubchem.ncbi.nlm.nih.gov/compound/784953
https://pubchem.ncbi.nlm.nih.gov/compound/784953
https://pubchem.ncbi.nlm.nih.gov/compound/982106
https://pubchem.ncbi.nlm.nih.gov/compound/141986
https://pubchem.ncbi.nlm.nih.gov/compound/141986
https://platform.openai.com/docs/models
https://commons.wikimedia.org/wiki/File:Projection_formula_(3).png
https://commons.wikimedia.org/wiki/File:Projection_formula_(3).png
https://commons.wikimedia.org/wiki/File:Isogonal_Conjugate.svg
https://commons.wikimedia.org/wiki/File:Isogonal_Conjugate.svg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Claudio Rocchini. Six circles theorem: examples of some configuration. https://commons.
wikimedia.org/wiki/File:Six_circles_theorem.svg, 2010. Licensed under CC
BY/SA 3.0; modified by the authors.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2609–
2634, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In International Conference on Learning Representations (ICLR), 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems (NeurIPS), 35:24824–24837, 2022.

Jingxuan Wei, Cheng Tan, Qi Chen, Gaowei Wu, Siyuan Li, Zhangyang Gao, Linzhuang Sun, Bihui
Yu, and Ruifeng Guo. From words to structured visuals: A benchmark and framework for text-
to-diagram generation and editing. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13315–13325, 2025.

Wikipedia contributors. Six circles theorem. https://en.wikipedia.org/wiki/Six_
circles_theorem, 2022. [Online; accessed 10-September-2025; licensed under CC BY/SA
4.0].

Wikipedia contributors. Apollonius point. https://en.wikipedia.org/wiki/
Apollonius_point, 2024. [Online; accessed 10-September-2025; licensed under CC BY-
/SA 4.0].

Wikipedia contributors. Altitude (triangle). https://en.wikipedia.org/wiki/
Altitude_(triangle), 2025a. [Online; accessed 10-September-2025; licensed under CC
BY/SA 4.0].

Wikipedia contributors. Angle bisector theorem. https://en.wikipedia.org/wiki/
Angle_bisector_theorem, 2025b. [Online; accessed 10-September-2025; licensed under
CC BY/SA 4.0].

Wikipedia contributors. Bisection. https://en.wikipedia.org/wiki/Bisection,
2025c. [Online; accessed 10-September-2025; licensed under CC BY/SA 4.0].

Wikipedia contributors. Butterfly theorem. https://en.wikipedia.org/wiki/
Butterfly_theorem, 2025d. [Online; accessed 10-September-2025; licensed under CC BY-
/SA 4.0].

Wikipedia contributors. Casey’s theorem. https://en.wikipedia.org/wiki/Casey%
27s_theorem, 2025e. [Online; accessed 10-September-2025; licensed under CC BY/SA 4.0].

Wikipedia contributors. Finsler-hadwiger theorem. https://en.wikipedia.org/wiki/
Finsler%E2%80%93Hadwiger_theorem, 2025f. [Online; accessed 10-September-2025;
licensed under CC BY/SA 4.0].

Wikipedia contributors. Incircle and excircles. https://en.wikipedia.org/wiki/
Incircle_and_excircles, 2025g. [Online; accessed 10-September-2025; licensed under
CC BY/SA 4.0].

13

https://commons.wikimedia.org/wiki/File:Six_circles_theorem.svg
https://commons.wikimedia.org/wiki/File:Six_circles_theorem.svg
https://en.wikipedia.org/wiki/Six_circles_theorem
https://en.wikipedia.org/wiki/Six_circles_theorem
https://en.wikipedia.org/wiki/Apollonius_point
https://en.wikipedia.org/wiki/Apollonius_point
https://en.wikipedia.org/wiki/Altitude_(triangle)
https://en.wikipedia.org/wiki/Altitude_(triangle)
https://en.wikipedia.org/wiki/Angle_bisector_theorem
https://en.wikipedia.org/wiki/Angle_bisector_theorem
https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Butterfly_theorem
https://en.wikipedia.org/wiki/Butterfly_theorem
https://en.wikipedia.org/wiki/Casey%27s_theorem
https://en.wikipedia.org/wiki/Casey%27s_theorem
https://en.wikipedia.org/wiki/Finsler%E2%80%93Hadwiger_theorem
https://en.wikipedia.org/wiki/Finsler%E2%80%93Hadwiger_theorem
https://en.wikipedia.org/wiki/Incircle_and_excircles
https://en.wikipedia.org/wiki/Incircle_and_excircles

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wikipedia contributors. Isogonal conjugate. https://en.wikipedia.org/wiki/
Isogonal_conjugate, 2025h. [Online; accessed 10-September-2025; licensed under CC
BY/SA 4.0].

Wikipedia contributors. Japanese theorem for cyclic quadrilaterals. https://en.wikipedia.
org/wiki/Japanese_theorem_for_cyclic_quadrilaterals, 2025i. [Online; ac-
cessed 10-September-2025; licensed under CC BY/SA 4.0].

Wikipedia contributors. Medial triangle. https://en.wikipedia.org/wiki/Medial_
triangle, 2025j. [Online; accessed 10-September-2025; licensed under CC BY/SA 4.0].

Wikipedia contributors. Splitter (geometry). https://en.wikipedia.org/wiki/
Splitter_%28geometry%29, 2025k. [Online; accessed 10-September-2025; licensed under
CC BY/SA 4.0].

Wikipedia contributors. Symmedian. https://en.wikipedia.org/wiki/Symmedian,
2025l. [Online; accessed 10-September-2025; licensed under CC BY/SA 4.0].

Wikipedia contributors. Tangential triangle. https://en.wikipedia.org/wiki/
Tangential_triangle, 2025m. [Online; accessed 10-September-2025; licensed under CC
BY/SA 4.0].

Zhongzheng Xu and Emily Wall. Exploring the capability of llms in performing low-level visual
analytic tasks on svg data visualizations. In IEEE Visualization and Visual Analytics (VIS), pp.
126–130, 2024.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran XU, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
via chart-to-code generation. In International Conference on Learning Representations (ICLR),
2025.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. In Findings of the Association for Computational Linguistics (ACL),
pp. 11789–11804, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In IEEE/CVF International Conference on Computer Vision (ICCV), pp.
11975–11986, 2023.

Leixin Zhang, Steffen Eger, Yinjie Cheng, Weihe Zhai, Jonas Belouadi, Christoph Leiter, Si-
mone Paolo Ponzetto, Fahimeh Moafian, and Zhixue Zhao. Scimage: How good are multimodal
large language models at scientific text-to-image generation? In International Conference on
Learning Representations (ICLR), 2025.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
In International Conference on Learning Representations (ICLR), 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In International Conference on Learning Representations
(ICLR), 2023.

Wenhao Zhu, Shujian Huang, Fei Yuan, Shuaijie She, Jiajun Chen, and Alexandra Birch. Question
translation training for better multilingual reasoning. In Findings of the Association for Compu-
tational Linguistics (ACL), pp. 8411–8423, 2024.

Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. Vgbench: A comprehensive benchmark
of vector graphics understanding and generation for large language models. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 3647–3659, 2024.

14

https://en.wikipedia.org/wiki/Isogonal_conjugate
https://en.wikipedia.org/wiki/Isogonal_conjugate
https://en.wikipedia.org/wiki/Japanese_theorem_for_cyclic_quadrilaterals
https://en.wikipedia.org/wiki/Japanese_theorem_for_cyclic_quadrilaterals
https://en.wikipedia.org/wiki/Medial_triangle
https://en.wikipedia.org/wiki/Medial_triangle
https://en.wikipedia.org/wiki/Splitter_%28geometry%29
https://en.wikipedia.org/wiki/Splitter_%28geometry%29
https://en.wikipedia.org/wiki/Symmedian
https://en.wikipedia.org/wiki/Tangential_triangle
https://en.wikipedia.org/wiki/Tangential_triangle

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT when writing our paper, for translation purposes.

B DETAILED PROMPTS USED IN OUR EXPERIMENTS

Figures 7, 8, and 9 show examples of prompts used in the plane geometry task. The
[Explanation] section represents the textual description, while the [TikZ], [SVG], and
[EPS] sections represent the input elements (the black elements in Figure 2).

Figures 10, 11, and 12 show examples of prompts used in the molecular structure task. We first
provide the IUPAC name, followed by a set of instructions. In particular, we include color specifi-
cations so that the types of atoms can be identified by their color. We also present an example using
chlorobenzene, which is a relatively simple molecule.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.
[TikZ]\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
\draw (38.23,-264.41) -- (65.98,-195.89) -- (32.16,-166.40) -- cycle;
\node at (23.54,-167.59) {A};
\node at (70.26,-197.89) {B};
\node at (28.79,-270.30) {C};
\end{tikzpicture}
\end{document}
Please visualize the explanation by adding elements to the TikZ
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the TikZ.
– Do not use any animations.

Figure 7: An example prompt from the TikZ generation task on plane geometry.

[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.
[SVG]<svg xmlns="http://www.w3.org/2000/svg"
xmlns:ev="http://www.w3.org/2001/xml-events" version="1.1"
viewBox="0 0 300 300">
<style>
.input_object {
 fill: none;
 stroke: black;
 stroke-width: 1;
}
.input_text {
 fill: black;
 stroke: none;
 font-size: 12px;
}
.output_object {
 fill: none;
 stroke: red;
 stroke-width: 1;
}
.output_text {
 fill: red;
 stroke: none;
 font-size: 12px;
}
</style>
<polygon class="input_object" points="38.23232323232324
264.4065656565657 65.9848484848485 195.8901515151515
32.15909090909092 166.40151515151516"/>
<text class="input_text" x="23.541666666666668"
y="167.58838383838383">A</text>
<text class="input_text" x="70.2588383838384"
y="197.89141414141415">B</text>
<text class="input_text" x="28.787878787878793"
y="270.30303030303037">C</text>
</svg>
Please visualize the explanation by adding elements to the SVG
diagram.
- Assign class="output_text" to any added text elements, and
class="output_object" to all other added elements.
- Do not modify any elements that are originally present in the SVG.
– Do not use any animations.

Figure 8: An example prompt from the SVG generation task on plane geometry.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

[Explanation]The exterior angle bisector in A intersects the extended
side BC in E, the exterior angle bisector in B intersects the extended
side AC in D and the exterior angle bisector in C intersects the
extended side AB in F.

The three points of intersection between the exterior angle bisectors
and the extended triangle sides D, E, F are collinear, that is they lie on
a common line.
[EPS]%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 300 300
1 setlinewidth
0 0 0 setrgbcolor
newpath
38.23232323232324 35.593434343434296 moveto
65.9848484848485 104.1098484848485 lineto
32.15909090909092 133.59848484848484 lineto
closepath
stroke
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
23.541666666666668 132.41161616161617 moveto
(A) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
70.2588383838384 102.10858585858585 moveto
(B) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
28.787878787878793 29.69696969696963 moveto
(C) show
showpage
Please visualize the explanation by adding elements to the EPS
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the EPS.
– Do not use any animations.

Figure 9: An example prompt from the EPS generation task on plane geometry.

Please create a TikZ file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F:
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br:
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5,
Os: #838C8C, U: #00CCD5

As a reference, an example TikZ visualization of the compound
chlorobenzene is provided below.
\documentclass[tikz]{standalone}
\definecolor{274A4A}{HTML}{274A4A}
\definecolor{2AD52A}{HTML}{2AD52A}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
 \draw[line width=1pt] (20.00,6.22) -- (28.66,1.22);
 \draw[line width=1pt] (45.98,1.22) -- (45.98,-8.78);
 \draw[line width=1pt] (45.98,1.22) -- (37.32,6.22);
 \draw[line width=1pt] (45.98,-8.78) -- (37.32,-13.78);
 \draw[line width=1pt] (37.32,6.22) -- (28.66,1.22);
 \draw[line width=1pt] (37.32,-13.78) -- (28.66,-8.78);
 \draw[line width=1pt] (28.66,1.22) -- (28.66,-8.78);
 \filldraw[fill=2AD52A, draw=none] (20.00,6.22) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (45.98,1.22) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (45.98,-8.78) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (37.32,6.22) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (37.32,-13.78) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (28.66,1.22) circle (1.5pt);
 \filldraw[fill=274A4A, draw=none] (28.66,-8.78) circle (1.5pt);
\end{tikzpicture}
\end{document}

Figure 10: An example prompt from the TikZ generation task on molecular structure.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Please create an SVG file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F:
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br:
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5,
Os: #838C8C, U: #00CCD5

As a reference, an example SVG visualization of the compound
chlorobenzene is provided below.
<svg xmlns="http://www.w3.org/2000/svg" viewBox="10 -29.976
67.479 59.646">
<line x1="20" y1="6.223999999999999" x2="28.66" y2="1.224"
stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="1.224"
x2="45.980999999999995" y2="-8.776" stroke="black"
stroke-width="1" />
<line x1="45.980999999999995" y1="1.224" x2="37.32"
y2="6.223999999999999" stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="-8.776" x2="37.32" y2="-13.776"
stroke="black" stroke-width="1" />
<line x1="37.32" y1="6.223999999999999" x2="28.66" y2="1.224"
stroke="black" stroke-width="1" />
<line x1="37.32" y1="-13.776" x2="28.66" y2="-8.776" stroke="black"
stroke-width="1" />
<line x1="28.66" y1="1.224" x2="28.66" y2="-8.776" stroke="black"
stroke-width="1" />
<circle cx="20" cy="6.223999999999999" r="1.5" fill="#2AD52A" />
<circle cx="45.980999999999995" cy="1.224" r="1.5" fill="#274A4A"
/>
<circle cx="45.980999999999995" cy="-8.776" r="1.5" fill="#274A4A"
/>
<circle cx="37.32" cy="6.223999999999999" r="1.5" fill="#274A4A" />
<circle cx="37.32" cy="-13.776" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="1.224" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="-8.776" r="1.5" fill="#274A4A" />
</svg>

Figure 11: An example prompt from the SVG generation task on molecular structure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Please create an EPS file that visualizes the molecular structure of the
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine.
Represent each atom as a circle, using colors to indicate atom types.
The color mapping for each atom type is provided below, although not
all listed types may be present in the molecule. Omit hydrogen atoms
from the visualization. Depict bonds between atoms as lines, using a
single line for each bond regardless of bond order.

H: [0.39, 0.55, 0.55], B: [0.16, 0.84, 0.16], C: [0.15, 0.29, 0.29], N: [0.0,
0.0, 1.0], O: [1.0, 0.0, 0.0], F: [0.84, 0.13, 0.57], Si: [0.84, 0.62, 0.07],
P: [0.84, 0.53, 0.0], S: [0.84, 0.84, 0.0], Cl: [0.16, 0.84, 0.16], Br: [0.84,
0.53, 0.22], Te: [0.84, 0.8, 0.45], I: [1.0, 0.0, 1.0], Eu: [0.0, 0.8, 0.84],
Lu: [0.0, 0.8, 0.84], Os: [0.51, 0.55, 0.55], U: [0.0, 0.8, 0.84]

As a reference, an example EPS visualization of the compound
chlorobenzene is provided below.
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 10 -29 77 29
%%Creator: EPS Generator
%%EndComments

1 setlinewidth
0 0 0 setrgbcolor

newpath
20 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
45.980999999999995 1.224 moveto
37.32 6.223999999999999 lineto
stroke

newpath
37.32 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
28.66 1.224 moveto
28.66 -8.776 lineto
stroke

newpath
28.66 -8.776 moveto
37.32 -13.776 lineto
stroke

newpath
37.32 -13.776 moveto
45.980999999999995 -8.776 lineto
stroke

newpath
45.980999999999995 -8.776 moveto
45.980999999999995 1.224 lineto
stroke

0.16 0.84 0.16 setrgbcolor
newpath
20 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 -8.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 -13.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 -8.776 1.5 0 360 arc
closepath
fill

showpage

Figure 12: An example prompt from the EPS generation task on molecular structure.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C LIMITATIONS OF OUR AUTOMATIC EVALUATION FRAMEWORK

Our automatic evaluation framework for the plane geometry visualization task assesses whether the
necessary elements are present in the output, but it does not penalize the inclusion of unnecessary
elements. In the example shown in Figure 13, the output from Gemini 2.5 Flash reasoning includes
an irrelevant straight line, yet it is still considered correct. We do not penalize unnecessary elements
because it is often non-trivial to determine whether an additional element is truly unnecessary. For
instance, the output from Gemini 2.5 Flash reasoning in Figure 13 includes circles not anticipated in
the ground-truth, but these represent intersections and the circle center, and they do not hinder the
explanation.

Because in practical scenarios it is usually easier for humans to remove unnecessary elements than to
create necessary ones from scratch, we do not currently view this limitation as a major issue. How-
ever, enabling the framework to identify and evaluate such extraneous content remains an important
direction for future work.

Output
vector

graphic
(SVG)

Gemini 2.5 Flash reasoning Ground-truth

Correct

In geometry, the tangential
triangle of a reference triangle
(other than a right triangle) is the
triangle whose sides are on the
tangent lines to the reference
triangle's circumcircle at the
reference triangle's vertices.

Input
text

Figure 13: An example judged correct despite an unrelated line.7

7The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025m; Kmhkmh,
2019b).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXAMPLES OF GENERATED VECTOR GRAPHICS

D.1 EXAMPLES GENERATED BY FINE-TUNED MODELS

Figure 14 shows examples generated by two fine-tuned models, AutomaTikZ (Belouadi et al.,
2024a) and TikZero+ (Belouadi et al., 2025). The top example is the only case where TikZero+
produces a structurally correct vector graphic. However, in all other cases, the models fail to gen-
erate structurally correct vector graphics. In the plane geometry task, they cannot follow simple
instructions such as “Set the color of any added elements to red” or “Do not modify any elements
that are originally present in the TikZ.” In the molecular structure task, the models generate entirely
invalid vector graphics. These results reveal the limitations of fine-tuned models.

�Fg

�Fn

�Fs

θ

1

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect Incorrect

TikZero+ Ground-truthThe center of an excircle is the
intersection of the internal bisector
of one angle and the external
bisectors of the other two. Every
triangle has three excircle centers.

Input
text

In Eucl idean geometry, the
medial t r iangle or midpoint
triangle of a triangle △ABC is
the triangle with vertices at the
midpoints of the triangle's sides
AB, AC, BC.

Input
text

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect

TikZero+

Correct

Ground-truth
A

B

C

A

B

C

A B

C

a

bc

M

Output
vector

graphic
(TikZ)

AutomaTikZ TikZero+ Ground-truththe molecular structure of the
compound with the IUPAC name
N-(2-methylsulfinylethyl)acetamide

Input
text

the molecular structure of the
compound with the IUPAC name
5-ethylcyclopentene-1-carboxylic
acid

Input
text

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect

TikZero+ Ground-truth

CHH
CC
N
OHH

Incorrect

Incorrect Incorrect

C O C O

C C O

n n– acetamide

Figure 14: Examples generated by fine-tuned models.8

8The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025j;g;
Braindrain0000, 2006; Inductiveload, 2007a). The molecular structure data is from (National Center for
Biotechnology Information, 2025k;n).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.2 IMPACT OF REASONING

We show in Figures 15 and 16 that enabling reasoning allows LLMs to output the correct structure.
Without reasoning, they struggle to generate even simple structures.

In geometry, an altitude of a
t r i ang le i s a l i ne segmen t
through a given vertex (called
apex) and perpendicular to a
line containing the side or edge
opposite the apex. The altitude
from A intersects the extended
base at D (a point outside the
triangle).

Input
text

Output
vector

graphic
(SVG)

DeepSeek-V3.1

Incorrect

DeepSeek-V3.1
reasoning

Correct

Ground-truth

The Gergonne t r iang le (o f
\triangle ABC) is defined by the
three touchpoints of the incircle
o n t h e t h r e e s i d e s . T h e
t o u c h p o i n t o p p o s i t e A i s
denoted T_A, etc.The three
lines A{T_A}, B{T_B}, and C
{T_C} intersect in a single point
cal led the Gergonne point ,
denoted as G_e.

Input
text

Output
vector

graphic
(SVG)

Claude Opus 4.1

Incorrect

Claude Opus 4.1
thinking

Correct

Ground-truth

Correct

T o b i s e c t a n a n g l e w i t h
straightedge and compass, one
draws a circle whose center is
the vertex. The circle meets the
angle at two points: one on
each leg. Using each of these
points as a center, draw two
circles of the same size. The
intersection of the circles (two
points) determines a line that is
the angle bisector.

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Flash Ground-truth
(Pattern 2)

The but te r f l y theorem is a
classical result in Euclidean
geometry, which can be stated
a s f o l l o w s : L e t M b e t h e
midpoint of a chord PQ of a
circle, through which two other
chords AB and CD are drawn;
AD and BC intersect chord PQ
at X and Y correspondingly.
Then M is the midpoint of XY.

Input
text

Output
vector

graphic
(SVG)

GPT-5 Chat

Incorrect

GPT-5

CorrectIncorrect

Ground-truth
(Pattern 2)

Gemini 2.5 Flash
 reasoning

P

Q

M

A

B

C

D

X
Y

Figure 15: Examples where enabling reasoning allows LLMs to generate the correct structure in the
plane geometry SVG geneartion task.9

9The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025a;g;c;d; Pega-
susRoe, 2007; Inductiveload, 2007c; Ixnay, 2007; Gustavb, 2006).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the molecular structure of the
compound with the IUPAC name
1,2,5-trimethylpyrrole

Input
text

Output
vector

graphic
(SVG)

DeepSeek-V3.1

Incorrect

DeepSeek-V3.1
reasoning

Correct

Ground-truth

the molecular structure of the
compound with the IUPAC name
4-chloro-1-methyl-5-nitroimidazole

Input
text

Output
vector

graphic
(SVG)

Claude Opus 4.1

Incorrect

Claude Opus 4.1
thinking

Correct

Ground-truth

Correct

the molecular structure of the
compound with the IUPAC name
3-bromobut-3-en-2-amine

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Flash Ground-truth

the molecular structure of the
compound with the IUPAC name
ethyl 3-iminobutanoate

Input
text

Output
vector

graphic
(SVG)

GPT-5 Chat

Incorrect

GPT-5

CorrectIncorrect

Ground-truth

Gemini 2.5 Flash
 reasoning

Figure 16: Examples where enabling reasoning allows LLMs to generate the correct structure in the
molecular structure SVG geneartion task.10

10The molecular structure data is from (National Center for Biotechnology Information, 2025m;c;e;i).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.3 IMPACT OF FORMAT

Figures 17 and 18 present examples where LLMs produce correct structures in SVG format but fail
in TikZ and EPS formats. Although the input text is identical, the results clearly vary depending on
the output format.

Let X be any triangle center of
△ABC. Draw the lines AX, BX,
CX and their reflections in the
internal bisectors of the angles
a t t h e v e r t i c e s A , B , C
respectively. The reflected lines
are concurrent and the point of
concurrence is the isogonal
conjugate Y of X.

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Pro
(TikZ)

Incorrect

Gemini 2.5 Pro
(SVG)

Correct

Ground-truth

Specifically, let □ABCD be an
arbitrary cyclic quadrilateral and
le t M1, M2, M3, M4 be the
incenters of the triangles △
ABD, △ABC, △BCD, △ACD.
Then the quadrilateral formed
b y M 1 , M 2 , M 3 , M 4 i s a
rectangle.

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Pro
(EPS)

Incorrect

Gemini 2.5 Pro
(SVG)

Correct

Ground-truth

Correct

In geometry, symmedians are
three particular lines associated
with every triangle. They are
constructed by taking a median
of the triangle (a line connecting
a vertex with the midpoint of the
opposite side), and reflecting
the line over the corresponding
angle bisector (the line through
the same vertex that divides the
angle there in half).

Input
text

Output
vector

graphic
(SVG)

GPT-5 (TikZ) Ground-truth

In Euclidean geometry, a splitter
is a line segment through one of
the vertices of a triangle (that is,
a cev ian) tha t b i sec ts the
perimeter of the triangle. The
opposite endpoint of a splitter to
the chosen triangle vertex lies at
the point on the triangle's side
where one of the excircles of the
triangle is tangent to that side.
Each triangle has three splitters,
one through each vertex.

Input
text

Output
vector

graphic
(SVG)

GPT-5 (EPS)

Incorrect

GPT-5 (SVG)

CorrectIncorrect

Ground-truth

GPT-5 (SVG)

A

B

C

D

M1

M2

M3
M4

Y

Figure 17: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the plane geometry task.11

11The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025h;i;l;k; Roc-
chini, 2008; Kmhkmh, 2024; 2016; Inductiveload, 2007b).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

the molecular structure of the
compound with the IUPAC name
N-heptylacridin-9-amine

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Pro
(TikZ)

Incorrect

Gemini 2.5 Pro
(SVG)

Correct

Ground-truth

the molecular structure of the
compound with the IUPAC name
methyl 4-[3-acetamido-4,5-
diacetyloxy-6-(acetyloxymethyl)
oxan-2-yl]oxy-1-(2,4-dinitrophenyl)
pyrrolidine-2-carboxylate

Input
text

Output
vector

graphic
(SVG)

Gemini 2.5 Pro
(EPS)

Incorrect

Gemini 2.5 Pro
(SVG)

Correct

Ground-truth

Correct

the molecular structure of the
compound with the IUPAC name
N-[5-chloro-4-(trifluoromethyl)
-1,3-thiazol-2-yl]-N-(trideuterio
methyl)-3,5-bis(trifluoromethyl)
benzamide

Input
text

Output
vector

graphic
(SVG)

GPT-5 (TikZ) Ground-truth

the molecular structure of the
compound with the IUPAC name
2,5-dihydroxy-3,6-bis[1-
(2-methylbut-3-en-2-yl)indol-3-yl]
cyclohexa-2,5-diene-1,4-dione

Input
text

Output
vector

graphic
(SVG)

GPT-5 (EPS)

Incorrect

GPT-5 (SVG)

CorrectIncorrect

Ground-truth

GPT-5 (SVG)

Figure 18: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the molecular structure task.12

12The molecular structure data is from (National Center for Biotechnology Information, 2025d;h;b;a).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.4 COMPARISON OF ZERO-SHOT PROMPTING METHODS

We present results obtained by applying zero-shot prompting methods to Gemini 2.5 Pro in Figures
19, 20, 21, and 22. When using methods other than Zero-shot CoT, Gemini 2.5 Pro produces an
explanation prior to generating vector graphics, and we include that explanation as well. In the case
of Plan-and-Solve prompting, the output explanation “C3 will also be in corner B, tangent to C2” is
incorrect, revealing that Gemini 2.5 Pro fails to capture the relationships. In the case of Step-Back
prompting, the output explanation reveals that Gemini 2.5 Pro captures the necessary elements and
relationships, but overlooks the importance of mathematical reasoning. In contrast, by applying
our LOOP, Gemini 2.5 Pro captures the necessary elements and relationships and recognizes the
importance of mathematical reasoning, enabling it to generate structurally correct vector graphics.

In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle
is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense
that the sixth circle is always tangent to the first circle.

(There is no output explanation.)

Input
text

Output
explanation

Ground-
truth

Output
vector

graphic
(SVG)

Gemini 2.5 Pro w/ Zero-shot CoT

Incorrect

Input text and ground-truth

Figure 19: Example output generated by applying Zero-shot CoT prompting to Gemini 2.5 Pro.13

13The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2022; Rocchini,
2010).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

An explanation of the six circles theorem has been provided, and it needs to be visualized by adding elements to
the given SVG.

Plan:
1. **Deconstruct the Theorem**: The theorem describes a chain of six circles (C1 to C6) associated with a
triangle.
 * There are three pairs of circles, with each pair nestled into one corner of the triangle.
 * Circles in the same corner are tangent to each other and to the two adjacent sides of the triangle.
 * The chain follows a sequence around the triangle's vertices: A -> B -> C -> A.
 * Let's say the given circle, C1, is in corner A.
 * The next circle, C2, will be in corner B and tangent to C1.
 * C3 will also be in corner B, tangent to C2.
 * C4 will be in corner C, tangent to C3.
 * C5 will also be in corner C, tangent to C4.
 * C6 will be in corner A, tangent to C5.
 * The theorem's conclusion is that C6 will also be tangent to the first circle, C1, thus closing the chain.

2. **Analyze the Input SVG**:
 * We have a triangle. Let's label its vertices A (top), B (bottom-left), and C (bottom-right).
 * We have one circle, which we will label C1. It is located in corner A.

3. **Add Visual Elements**:
 * Add the remaining five circles (C2, C3, C4, C5, C6) with the class `output_object`.
 * Place them according to the theorem's rules, ensuring they appear tangent to the correct triangle sides and
preceding circles. The positions and radii will be estimated to create a visually plausible representation of the
theorem.
 * C1 and C6 will be in corner A.
 * C2 and C3 will be in corner B.
 * C4 and C5 will be in corner C.
 * The crucial part is to draw the chain such that C6, which is tangent to C5, is also tangent to C1.
 * Add text labels "C1" through "C6" for each circle, assigning them the class `output_text`.

Execution:
The following SVG code adds the five circles and six labels to illustrate the theorem. The positions and sizes of
the new circles have been chosen to create a clear and accurate visual representation of the tangency
relationships described.

Output
explanation

Output
vector

graphic
(SVG)

Incorrect

Gemini 2.5 Pro w/ Plan-and-Solve

Figure 20: Example output generated by applying Plan-and-Solve prompting to Gemini 2.5 Pro.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

An explanation of the six circles theorem has been provided. This theorem describes a closed chain of six
circles, where each circle is tangent to two sides of a triangle and the preceding circle in the chain. The provided
SVG shows the triangle and the first circle of such a chain.

To visualize the theorem, we will add the remaining five circles to complete the chain.

1. **Circle C1:** The initial circle is provided, located in the top corner of the triangle.
2. **Circle C2:** We add the second circle, C2, in the bottom-right corner, making it tangent to the two sides of
the triangle at that corner and also to circle C1.
3. **Circle C3:** The third circle, C3, is placed in the bottom-left corner, tangent to the two sides there and to
circle C2.
4. **Circle C4:** The fourth circle, C4, is placed back in the top corner. It is tangent to the same two sides as C1,
and also to circle C3.
5. **Circle C5:** The fifth circle, C5, is placed in the bottom-right corner, tangent to the sides and to circle C4.
6. **Circle C6:** The sixth and final circle, C6, is placed in the bottom-left corner, tangent to the sides and to
circle C5.

The remarkable property of the theorem is that this chain always closes perfectly: circle C6 will not only be
tangent to C5 but will also be tangent to the very first circle, C1, completing the loop. The visualization below
illustrates this closed chain.

Output
explanation

Output
vector

graphic
(SVG)

Gemini 2.5 Pro w/ Step-Back

Incorrect

Figure 21: Example output generated by applying Step-Back prompting to Gemini 2.5 Pro.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

An elegant theorem in geometry, the six circles theorem, describes a fascinating property of a chain of circles
within a triangle. Starting with a circle tangent to two sides of the triangle, a sequence of five more circles is
constructed. Each new circle is tangent to two sides of the triangle and to the previous circle in the chain. The
remarkable result is that this chain always forms a closed loop, with the sixth circle being perfectly tangent to the
first one.

This visualization completes the chain described by the theorem, starting from the single provided circle.

1. **Information extraction**: The core components are a triangle and a chain of six circles. The initial SVG
provides the triangle and the first circle (let's call it C1). C1 is tangent to two sides of the triangle at one vertex.
The goal is to construct the remaining five circles, C2 through C6, following the theorem's rules.
2. **Relationship extraction**: The chain proceeds sequentially around the vertices of the triangle.
 * C1 is tangent to sides AB and AC (at vertex A).
 * C2 must be tangent to sides AC and BC (at vertex C) and also to C1.
 * C3 must be tangent to sides BC and AB (at vertex B) and also to C2.
 * C4 must be tangent to sides AB and AC (at vertex A) and also to C3.
 * C5 must be tangent to sides AC and BC (at vertex C) and also to C4.
 * C6 must be tangent to sides BC and AB (at vertex B) and also to C5.
 The theorem guarantees that the resulting C6 will also be tangent to the starting circle, C1.
3. **Mathematical reasoning**: The center of any circle tangent to two sides of the triangle must lie on the angle
bisector of the corresponding vertex. The condition that the new circle must also be tangent to the previous circle
provides a second constraint. Combining these two conditions leads to a solvable quadratic equation for the
position of the new circle's center along the angle bisector. This process is applied iteratively to find the center
and radius of each subsequent circle in the chain (C2, C3, C4, C5, and C6). The final calculation confirms the
theorem: the distance between the centers of C6 and C1 is indeed equal to the sum of their radii, proving their
tangency.
4. **Code generation**: Based on the calculated centers and radii, five `<circle>` elements are added to the
SVG to represent C2 through C6. Additionally, `<text>` elements are added to label each circle from C1 to C6,
clarifying the sequence of the chain.

Output
explanation

Output
vector

graphic
(SVG)

Correct

Gemini 2.5 Pro w/ LOOP (ours)

Figure 22: Example output generated by applying our LOOP to Gemini 2.5 Pro.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTS

E.1 COMPLEMENTARY AUTOMATIC METRICS

Our evaluation in the main paper relies solely on a single binary metric (Accuracy), which provides
an overly coarse assessment because near-misses and completely incorrect outputs are both scored
as 0. To address this limitation, we employ additional evaluation metrics. Following TikZero+ (Be-
louadi et al., 2025), we use five image- and code-similarity metrics: DreamSim (DSim), Kernel
Inception Distance (KID), CLIPScore (CLIP), CrystalBLEU (cBLEU), and Extended Edit Dis-
tance (EED). We additionally use Coverage as an extra metric, which considers an output correct
if it contains the required elements, regardless of their spatial arrangement. As a comprehensive
evaluation, we compute an Average score, defined as the mean of all metrics after applying min-
max normalization. When applying min-max normalization, we normalize indicators where higher
values are better such that the minimum becomes 0 and the maximum becomes 100. For indica-
tors where lower values are better, we normalize them such that the minimum becomes 100 and the
maximum becomes 0. We present these metrics in Tables 7, 8, 9, 10, 11, and 12.

Focusing on the Average scores, we consistently observe that (1) reasoning models outperform
non-reasoning models, and (2) our proposed LOOP improves the performance in most cases.

E.2 ADDITIONAL MODELS

To demonstrate the versatility of our LOOP, we apply it to two additional reasoning models
(DeepSeek-V3.2 Reasoning and Claude Opus 4.1 Thinking) and two additional non-reasoning mod-
els (Gemini 2.5 Flash and GPT-5 Chat). The results are shown in Tables 7, 8, 9, 10, 11, and 12. Our
LOOP achieves improved performance in many cases, clearly demonstrating its robustness.

E.3 IMPACT OF RESAMPLING ON FINE-TUNED MODELS

The impact of resampling is considered a possible reason for the low performance of the fine-tuned
models. In our experiments, we evaluate each model using only a single generation attempt, and
any outputs that resulted in compilation errors are considered incorrect. This evaluation procedure
is applied uniformly across all models. However, the fine-tuned models are expected to be used
under the assumption that resampling continues until no compilation errors occur. To investigate the
impact of resampling, we allow up to 10 resampling attempts for each sample until a compilable
output is obtained. As shown in Tables 7 and 10, resampling improves performance, and notably,
TikZero+ achieves performance comparable to non-reasoning models.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 7: Complementary metrics for plane geometry TikZ generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Fine-tuned models
AutomaTikZ 0.0 36.0 109.4 3.2 1.1 63.5 3.6 17.3
TikZero+ 0.9 49.0 55.5 13.5 5.6 51.4 12.7 32.6
AutomaTikZ resampling 0.0 56.4 12.5 16.1 1.2 61.1 13.6 33.7
DeTikZify resampling 0.9 67.1 5.8 27.2 7.4 49.6 30.0 46.7

Non-reasoning models
DeepSeek-V3 10.0 56.1 42.4 28.3 11.4 44.0 42.7 48.4
DeepSeek-V3.1 11.8 53.8 49.6 23.8 10.1 45.2 41.8 45.9
Claude Opus 4.1 14.5 60.8 31.4 32.6 9.5 46.1 51.8 51.8
Gemini 2.0 Flash 7.3 71.1 9.9 39.9 19.4 37.4 50.0 62.5
Gemini 2.5 Flash non-reasoning 12.7 48.4 70.7 17.7 6.9 50.7 30.0 37.5
GPT-4.1 10.9 50.9 54.3 25.0 8.3 47.5 39.1 43.1
GPT-5 Chat 12.7 54.9 48.6 28.1 11.4 44.1 38.2 47.5

Rasoning models
DeepSeek-R1 28.2 74.6 7.6 39.9 21.5 33.8 54.5 69.6
DeepSeek-V3.1 reasoning 23.6 63.5 29.5 31.6 11.3 40.8 40.9 54.4
Claude Opus 4.1 thinking 20.0 66.9 18.8 43.8 12.4 41.8 64.5 61.4
Gemini 2.5 Flash reasoning 30.0 55.7 49.6 25.2 8.5 47.8 44.5 48.7
Gemini 2.5 Pro 50.0 67.1 25.0 34.5 9.7 43.3 56.4 61.6
o4-mini 48.2 74.9 7.7 46.5 17.4 37.4 70.0 73.7
GPT-5 54.5 69.7 13.3 44.4 9.3 43.4 66.4 66.9

Prompting
Gemini 2.5 Pro 50.0 67.1 25.0 34.5 9.7 43.3 56.4 61.6

w/ Zero-shot CoT 39.1 64.3 28.5 37.4 9.8 43.7 52.7 58.8
w/ Plan-and-Solve 39.1 60.7 37.3 28.2 9.1 45.9 48.2 54.1
w/ Step-Back 33.6 57.2 45.3 28.6 8.1 47.0 42.7 50.3
w/ LOOP (ours) 65.5 77.4 6.4 47.1 14.7 38.1 67.3 75.6

GPT-5 54.5 69.7 13.3 44.4 9.3 43.4 66.4 66.9
w/ Zero-shot CoT 58.2 72.5 12.4 44.0 10.1 43.3 66.4 68.6
w/ Plan-and-Solve 61.8 74.0 8.1 49.5 11.6 41.4 71.8 72.9
w/ Step-Back 55.5 70.0 13.8 41.7 9.6 43.5 68.2 67.0
w/ LOOP (ours) 70.0 80.6 3.1 52.3 13.4 39.0 82.7 79.7

Gemini 2.5 Flash non-reasoning 12.7 48.4 70.7 17.7 6.9 50.7 30.0 37.5
w/ LOOP (ours) 33.6 72.3 11.4 38.6 11.4 42.6 60.9 63.3

GPT-5 Chat 12.7 54.9 48.6 28.1 11.4 44.1 38.2 47.5
w/ LOOP (ours) 15.5 66.8 15.0 47.2 13.5 40.8 58.2 61.3

DeepSeek-V3.2 reasoning 14.5 63.6 26.8 32.8 11.9 42.1 43.6 53.6
w/ LOOP (ours) 22.7 70.9 12.1 37.6 16.0 36.7 61.8 64.7

Claude Opus 4.1 thinking 20.0 66.9 18.8 43.8 12.4 41.8 64.5 61.4
w/ LOOP (ours) 32.7 84.5 0.2 58.3 19.8 34.5 87.3 80.2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 8: Complementary metrics for plane geometry SVG generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 5.5 80.8 3.5 68.2 21.9 32.8 89.1 77.9
DeepSeek-V3.1 6.4 81.1 2.4 68.5 21.0 33.6 86.4 77.2
Claude Opus 4.1 12.7 81.8 3.4 74.8 15.0 37.1 96.4 77.2
Gemini 2.0 Flash 5.5 83.1 1.5 59.7 26.9 29.8 79.1 78.7
Gemini 2.5 Flash non-reasoning 9.1 86.5 1.0 61.4 22.7 31.4 84.5 78.7
GPT-4.1 10.0 82.9 4.1 73.2 16.9 38.5 87.3 75.9
GPT-5 Chat 10.0 82.9 4.0 74.6 21.2 33.5 81.8 78.7

Rasoning models
DeepSeek-R1 40.9 84.1 0.9 59.2 22.9 30.8 62.7 80.4
DeepSeek-V3.1 reasoning 39.1 83.1 1.1 65.2 20.8 32.4 63.6 79.7
Claude Opus 4.1 thinking 23.6 81.6 3.8 77.8 14.5 36.9 97.3 79.5
Gemini 2.5 Flash reasoning 55.5 87.8 0.7 65.2 19.7 36.1 84.5 85.4
Gemini 2.5 Pro 62.7 88.4 0.7 72.5 20.7 31.8 90.0 90.3
o4-mini 62.7 88.7 1.5 64.0 20.6 32.9 80.9 87.1
GPT-5 75.5 83.5 4.4 76.3 17.4 35.5 94.5 90.1

Prompting
Gemini 2.5 Pro 62.7 88.4 0.7 72.5 20.7 31.8 90.0 90.3

w/ Zero-shot CoT 66.4 81.4 2.3 64.6 17.7 33.2 90.0 86.1
w/ Plan-and-Solve 69.1 83.9 1.3 69.0 17.8 32.5 91.8 88.4
w/ Step-Back 64.5 81.7 2.4 66.3 17.0 33.4 91.8 86.0
w/ LOOP (ours) 80.9 84.6 1.1 62.6 19.2 31.6 93.6 90.6

GPT-5 75.5 83.5 4.4 76.3 17.4 35.5 94.5 90.1
w/ Zero-shot CoT 80.0 84.6 3.9 74.4 16.0 36.3 96.4 90.2
w/ Plan-and-Solve 77.3 82.1 5.6 76.7 15.0 37.4 95.5 88.6
w/ Step-Back 75.5 82.9 4.7 75.3 16.6 35.8 94.5 89.3
w/ LOOP (ours) 80.0 84.8 3.0 74.3 17.2 35.3 94.5 90.9

Gemini 2.5 Flash non-reasoning 9.1 86.5 1.0 61.4 22.7 31.4 84.5 78.7
w/ LOOP (ours) 45.5 86.7 0.8 64.8 21.1 33.6 67.3 82.0

GPT-5 Chat 10.0 82.9 4.0 74.6 21.2 33.5 81.8 78.7
w/ LOOP (ours) 21.8 83.7 3.5 73.4 18.9 34.5 86.4 80.0

DeepSeek-V3.2 reasoning 25.5 84.1 1.3 63.3 25.0 31.3 73.6 81.0
w/ LOOP (ours) 48.2 87.1 0.8 55.0 27.5 28.8 68.2 85.2

Claude Opus 4.1 thinking 23.6 81.6 3.8 77.8 14.5 36.9 97.3 79.5
w/ LOOP (ours) 30.9 83.3 2.1 71.5 15.0 36.1 96.4 80.4

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 9: Complementary metrics for plane geometry EPS generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 7.3 65.7 19.0 37.5 12.9 40.9 50.9 56.2
DeepSeek-V3.1 9.1 66.9 16.9 35.5 8.6 43.8 55.5 54.4
Claude Opus 4.1 20.9 80.8 2.1 54.1 10.1 43.4 84.5 69.1
Gemini 2.0 Flash 1.8 63.4 23.1 34.2 19.3 36.6 43.6 56.9
Gemini 2.5 Flash non-reasoning 5.5 60.4 29.3 29.9 11.3 44.0 39.1 49.3
GPT-4.1 14.5 69.2 11.8 44.9 13.1 46.3 62.7 60.8
GPT-5 Chat 7.3 72.5 7.6 45.9 16.6 39.7 60.9 63.7

Rasoning models
DeepSeek-R1 39.1 85.2 1.7 45.9 18.4 32.7 59.1 74.6
DeepSeek-V3.1 reasoning 27.3 77.5 4.4 38.4 14.0 36.0 51.8 65.3
Claude Opus 4.1 thinking 17.3 81.6 1.5 58.2 17.7 38.7 79.1 73.6
Gemini 2.5 Flash reasoning 41.8 79.9 2.8 48.3 14.7 45.8 65.5 70.5
Gemini 2.5 Pro 56.4 83.4 0.7 51.2 17.2 38.2 76.4 79.1
o4-mini 55.5 86.1 0.3 52.9 19.6 35.9 76.4 81.5
GPT-5 66.4 87.0 -0.6 57.6 19.3 37.9 78.2 84.2

Prompting
Gemini 2.5 Pro 56.4 83.4 0.7 51.2 17.2 38.2 76.4 79.1

w/ Zero-shot CoT 61.8 86.6 -0.4 53.9 17.1 39.5 78.2 81.2
w/ Plan-and-Solve 66.4 84.3 0.8 52.9 17.3 38.4 75.5 81.2
w/ Step-Back 59.1 84.1 0.1 50.1 16.2 39.0 73.6 78.5
w/ LOOP (ours) 62.7 85.9 -0.3 50.2 18.4 36.1 74.5 81.4

GPT-5 66.4 87.0 -0.6 57.6 19.3 37.9 78.2 84.2
w/ Zero-shot CoT 75.5 87.6 -0.8 56.2 18.6 38.5 80.0 85.5
w/ Plan-and-Solve 70.9 86.2 -0.3 56.9 15.2 42.1 85.5 82.8
w/ Step-Back 72.7 88.4 -0.6 57.4 18.1 38.7 82.7 85.5
w/ LOOP (ours) 77.3 89.4 0.0 59.1 19.9 37.6 86.4 88.5

Gemini 2.5 Flash non-reasoning 5.5 60.4 29.3 29.9 11.3 44.0 39.1 49.3
w/ LOOP (ours) 34.5 67.8 15.8 35.4 14.3 40.2 51.8 62.3

GPT-5 Chat 7.3 72.5 7.6 45.9 16.6 39.7 60.9 63.7
w/ LOOP (ours) 24.5 81.7 1.9 51.7 16.3 37.3 73.6 72.4

DeepSeek-V3.2 reasoning 18.2 79.8 4.3 44.5 15.5 38.7 65.5 67.5
w/ LOOP (ours) 17.3 78.9 3.6 46.3 17.5 35.7 56.4 67.8

Claude Opus 4.1 thinking 17.3 81.6 1.5 58.2 17.7 38.7 79.1 73.6
w/ LOOP (ours) 22.7 86.8 1.4 60.3 19.8 36.2 88.2 78.9

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 10: Complementary metrics for molecular structure TikZ generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Fine-tuned models
AutomaTikZ 0.0 24.0 177.3 0.00 0.00 96.8 0.0 0.7
TikZero+ 0.0 26.1 155.5 0.00 0.00 69.9 0.0 8.5
AutomaTikZ resampling 0.0 27.7 122.7 0.06 0.00 90.8 0.0 7.1
DeTikZify resampling 0.0 43.4 34.8 0.12 0.01 54.3 0.7 25.2

Non-reasoning models
DeepSeek-V3 5.3 72.9 15.9 3.70 0.49 39.0 15.3 40.08
DeepSeek-V3.1 6.3 75.4 12.5 4.91 0.61 38.2 19.0 42.04
Claude Opus 4.1 24.3 80.9 6.0 8.26 0.69 38.7 52.0 52.27
Gemini 2.0 Flash 6.0 68.9 13.0 5.14 0.31 51.3 18.7 37.68
Gemini 2.5 Flash non-reasoning 22.7 64.4 21.5 3.25 0.25 53.9 34.3 40.38
GPT-4.1 19.0 71.6 18.1 3.14 0.34 44.6 33.7 43.41
GPT-5 Chat 16.0 66.0 19.9 1.88 0.06 51.1 24.7 38.47

Rasoning models
DeepSeek-R1 18.3 69.9 16.5 2.64 0.29 44.2 25.7 41.82
DeepSeek-V3.1 reasoning 31.0 71.0 12.8 3.14 0.54 39.5 46.3 48.85
Claude Opus 4.1 thinking 26.7 83.6 4.5 8.97 0.71 37.1 54.7 54.27
Gemini 2.5 Flash reasoning 32.0 60.0 31.3 3.06 0.15 53.1 38.7 41.03
Gemini 2.5 Pro 41.3 78.6 8.1 5.39 0.62 34.4 72.3 57.96
o4-mini 33.3 69.5 15.4 4.39 0.28 41.1 43.7 48.09
GPT-5 52.3 71.3 13.6 3.01 0.81 42.7 74.7 56.20

Prompting
Gemini 2.5 Pro 41.3 78.6 8.1 5.39 0.62 34.4 72.3 57.96

w/ Zero-shot CoT 47.7 79.7 6.8 5.13 0.77 33.7 70.3 59.32
w/ Plan-and-Solve 41.3 77.6 8.2 4.63 0.63 33.8 70.3 57.44
w/ Step-Back 40.7 79.4 6.3 5.56 0.68 33.3 65.7 57.49
w/ LOOP (ours) 47.7 80.2 6.3 7.03 0.68 33.5 71.0 59.90

GPT-5 52.3 71.3 13.6 3.01 0.81 42.7 74.7 56.20
w/ Zero-shot CoT 53.0 70.0 14.8 2.79 0.76 42.4 73.7 55.82
w/ Plan-and-Solve 52.3 71.5 13.4 3.03 0.70 39.6 73.3 56.66
w/ Step-Back 50.7 70.8 13.7 3.05 0.69 41.5 72.3 55.67
w/ LOOP (ours) 55.0 76.7 9.4 4.72 0.78 36.7 79.3 60.40

Gemini 2.5 Flash non-reasoning 22.7 64.4 21.5 3.25 0.25 53.9 34.3 40.38
w/ LOOP (ours) 21.3 60.5 25.4 4.19 0.16 56.2 26.0 37.44

GPT-5 Chat 16.0 66.0 19.9 1.88 0.06 51.1 24.7 38.47
w/ LOOP (ours) 19.0 69.7 17.0 2.61 0.13 48.5 22.3 40.38

DeepSeek-V3.2 reasoning 14.0 70.0 14.6 3.65 0.66 40.5 28.3 42.78
w/ LOOP (ours) 16.0 75.2 10.4 4.76 0.75 38.3 33.7 46.06

Claude Opus 4.1 thinking 26.7 83.6 4.5 8.97 0.71 37.1 54.7 54.27
w/ LOOP (ours) 30.7 83.7 4.9 9.43 0.70 37.0 54.7 55.05

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 11: Complementary metrics for molecular structure SVG generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 3.3 20.77 171.88 11.09 0.47 45.71 10.00 15.5
DeepSeek-V3.1 3.7 22.79 161.72 11.75 0.33 49.49 24.84 18.3
Claude Opus 4.1 26.0 30.04 152.34 7.81 0.58 48.64 66.00 30.1
Gemini 2.0 Flash 3.7 39.08 96.48 4.47 0.53 47.65 22.36 25.7
Gemini 2.5 Flash non-reasoning 11.3 39.68 103.13 3.70 0.44 56.45 27.16 25.3
GPT-4.1 15.0 28.96 145.31 5.55 0.40 48.00 24.67 22.0
GPT-5 Chat 14.3 30.30 146.09 3.20 0.35 48.81 23.00 21.3

Rasoning models
DeepSeek-R1 20.0 27.48 143.75 4.48 0.52 47.01 29.67 23.5
DeepSeek-V3.1 reasoning 7.3 22.73 164.84 9.79 0.49 48.47 31.89 19.6
Claude Opus 4.1 thinking 27.7 30.34 153.13 6.75 0.68 44.91 62.33 30.5
Gemini 2.5 Flash reasoning 39.3 51.54 66.80 2.81 0.37 52.59 45.63 38.9
Gemini 2.5 Pro 63.3 36.66 125.78 6.78 0.53 42.48 73.09 42.3
o4-mini 42.7 28.43 155.47 6.09 0.38 46.60 56.62 31.1
GPT-5 55.7 37.97 121.09 4.07 0.60 51.98 76.00 39.6

Prompting
Gemini 2.5 Pro 63.3 36.66 125.78 6.78 0.53 42.48 73.09 42.3

w/ Zero-shot CoT 63.0 36.85 122.66 5.81 0.61 42.61 72.85 42.3
w/ Plan-and-Solve 58.7 35.59 125.00 5.61 0.57 42.44 70.53 40.8
w/ Step-Back 54.3 41.46 104.69 4.55 0.52 42.99 64.69 41.6
w/ LOOP (ours) 64.7 33.94 135.94 7.98 0.65 42.53 75.33 41.8

GPT-5 55.7 37.97 121.09 4.07 0.60 51.98 76.00 39.6
w/ Zero-shot CoT 52.0 42.00 107.03 3.26 0.45 54.45 75.00 40.0
w/ Plan-and-Solve 50.3 41.66 107.81 3.75 0.53 52.63 72.00 39.6
w/ Step-Back 51.7 37.52 122.66 4.29 0.54 51.40 74.33 38.5
w/ LOOP (ours) 57.3 31.55 150.78 5.12 0.59 47.66 81.00 38.0

Gemini 2.5 Flash non-reasoning 11.3 39.68 103.13 3.70 0.44 56.45 27.16 25.3
w/ LOOP (ours) 30.0 46.39 82.81 3.21 0.34 57.12 39.68 33.1

GPT-5 Chat 14.3 30.30 146.09 3.20 0.35 48.81 23.00 21.3
w/ LOOP (ours) 19.7 27.16 159.38 5.27 0.59 45.16 28.00 22.5

DeepSeek-V3.2 reasoning 10.7 27.40 142.97 7.41 0.68 49.65 25.00 21.3
w/ LOOP (ours) 27.7 28.11 146.09 7.01 0.74 47.89 38.00 26.5

Claude Opus 4.1 thinking 27.7 30.34 153.13 6.75 0.68 44.91 62.33 30.5
w/ LOOP (ours) 27.0 27.25 166.41 7.64 0.82 45.15 59.00 28.3

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 12: Complementary metrics for molecular structure EPS generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 3.0 61.38 31.25 2.61 0.03 49.28 9.33 32.6
DeepSeek-V3.1 3.3 64.77 24.90 1.77 0.03 49.10 13.33 34.3
Claude Opus 4.1 16.0 77.47 11.13 5.14 0.07 49.79 58.33 47.4
Gemini 2.0 Flash 0.7 29.54 140.63 0.03 0.01 56.48 0.67 13.5
Gemini 2.5 Flash non-reasoning 14.3 58.86 34.57 2.23 0.04 57.81 31.33 35.1
GPT-4.1 13.7 66.67 22.75 3.33 0.05 51.73 24.33 38.1
GPT-5 Chat 11.0 52.22 49.80 0.46 0.01 54.50 16.00 30.1

Rasoning models
DeepSeek-R1 19.7 67.07 24.22 1.34 0.05 48.31 27.33 39.9
DeepSeek-V3.1 reasoning 20.7 65.49 22.66 1.48 0.04 49.62 33.00 40.4
Claude Opus 4.1 thinking 23.3 84.57 6.74 7.93 0.11 47.26 54.00 50.9
Gemini 2.5 Flash reasoning 34.7 57.88 38.67 2.63 0.03 54.74 43.33 40.7
Gemini 2.5 Pro 57.3 79.00 3.98 9.83 0.08 45.14 76.67 60.1
o4-mini 39.0 71.66 14.84 4.94 0.04 49.13 51.67 49.1
GPT-5 49.7 69.79 18.26 3.13 0.05 57.29 73.33 51.4

Prompting
Gemini 2.5 Pro 57.3 79.00 3.98 9.83 0.08 45.14 76.67 60.1

w/ Zero-shot CoT 58.7 79.59 3.91 8.83 0.10 45.61 79.33 60.6
w/ Plan-and-Solve 55.0 79.22 3.88 9.25 0.07 45.44 76.00 59.5
w/ Step-Back 56.3 77.40 4.83 7.94 0.07 45.62 73.67 58.6
w/ LOOP (ours) 67.7 80.65 3.81 9.14 0.09 44.97 79.67 62.7

GPT-5 49.7 69.79 18.26 3.13 0.05 57.29 73.33 51.4
w/ Zero-shot CoT 49.3 69.82 17.19 3.57 0.05 56.81 70.00 51.1
w/ Plan-and-Solve 50.7 70.57 15.92 4.05 0.04 55.41 70.33 52.1
w/ Step-Back 48.3 68.53 20.31 3.12 0.04 56.33 68.67 50.3
w/ LOOP (ours) 54.3 76.43 9.67 4.73 0.07 50.75 79.00 56.8

Gemini 2.5 Flash non-reasoning 14.3 58.86 34.57 2.23 0.04 57.81 31.33 35.1
w/ LOOP (ours) 22.3 54.08 46.48 2.50 0.04 59.45 34.33 34.8

GPT-5 Chat 11.0 52.22 49.80 0.46 0.01 54.50 16.00 30.1
w/ LOOP (ours) 18.7 70.96 20.70 2.19 0.06 48.52 22.33 40.2

DeepSeek-V3.2 reasoning 6.7 68.01 19.24 1.86 0.04 51.89 18.67 36.2
w/ LOOP (ours) 9.0 73.88 14.65 3.59 0.08 51.96 23.33 39.3

Claude Opus 4.1 thinking 23.3 84.57 6.74 7.93 0.11 47.26 54.00 50.9
w/ LOOP (ours) 22.3 83.46 6.59 7.45 0.10 47.23 51.67 50.1

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E.4 EVALUATION ON THE DATIKZ V3 DATASET

We evaluate the robustness of the proposed LOOP using the DaTikZ v3 dataset. The same prompt
from the plane geometry task is employed. For comparison, we also include the fine-tuned models
in the evaluation. Because DaTikZ v3 publishes only a subset of its test set, the fine-tuned models
are re-evaluated. The results are shown in Figure 13. LOOP improves performance even on DaTikZ
v3, demonstrating its robustness.

Table 13: Evaluation on the DaTikZ v3 Dataset.

Model DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Average↑
AutomaTikZ resampling 46.2 26.4 10.4 1.4 58.4 20.3
TikZero+ resampling 47.1 22.1 10.0 2.5 59.1 40.6

Gemini 2.5 Pro 46.6 14.2 28.4 1.7 60.7 30.7
w/ LOOP (ours) 50.8 8.3 36.8 1.9 59.1 70.9

GPT-5 53.1 6.1 42.3 2.2 59.5 84.7
w/ LOOP (ours 53.5 6.1 39.5 2.5 59.6 87.5

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E.5 ABLATIONS ON LOOP

To identify the contribution of each component of LOOP to the overall performance, we perform
an ablation study. The target task is plane geometry SVG generation using Gemini 2.5 Pro. The
experiments are performed under the following three settings.

• w/o information extraction: “Let’s think step by step, following this workflow: 1. Re-
lationship extraction: describe the relationships among the elements. 2. Mathematical
reasoning: compute the attributes of each element so that they satisfy those relationships.
3. Code generation: generate the TikZ.”

• w/o relationship extraction: “Let’s think step by step, following this workflow: 1. Informa-
tion extraction: describe the necessary elements. 2. Mathematical reasoning: compute the
attributes of each element. 3. Code generation: generate the TikZ.”

• w/o mathematical reasoning: “Let’s think step by step, following this workflow: 1. Infor-
mation extraction: describe the necessary elements. 2. Relationship extraction: describe
their relationships. 3. Code generation: generate the TikZ.”

• w/o code generation: “Let’s think step by step, following this workflow: 1. Information
extraction: describe the necessary elements. 2. Relationship extraction: describe their
relationships. 3. Mathematical reasoning: compute the attributes of each element so that
they satisfy those relationships.”

We show the results of applying these prompts in Figure 14. The original prompt achieves the best
performance, clearly demonstrating that each component contributes to the improvement.

Table 14: The performance of Gemini 2.5 Pro with different prompts in the plane-geometry SVG
generation task.

Method Accuracy
LOOP 80.9
w/o information extraction 72.7
w/o relationship extraction 72.7
w/o mathematical reasoning 70.0
w/o code generation 72.7

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F DETAILS OF THE EVALUATION CODE

We describe below the evaluation code used in our SSVG-Bench, specifically for the SVG format.
For TikZ and EPS, since we first compile them to PDF and then convert them to SVG using the
pdf2svg command before processing, the code is nearly identical to that used for SVG.

F.1 PLANE GEOMETRY

F.1.1 PARSING CODE

We first present the parsing code for extracting straight lines, circles, and ellipses from vector data
(in this case, SVG), as shown in Figures 23, 24, 25, 26, and 27. This enables subsequent structural
analysis.

Overview. The code uses Python’s built-in XML parser (xml.etree.ElementTree) to traverse
the SVG document tree. For selected shapes, it extracts the coordinates of geometric primitives in a
uniform form:

• Line-like shapes are decomposed into straight line segments of the form
((x1, y1), (x2, y2)).

• Circles are returned as ((cx, cy), r).
• Ellipses are represented as ((cx, cy), R1, R2, θ), where R1, R2 are the principal semi-axes

(radii) and θ is the rotation of the major axis from the x-axis.

All extracted data can optionally be filtered by CSS class.

Extracting Line Segments. The function parse segments() scans the SVG tree and detects
elements whose geometry can be expressed as connected straight lines:

• <line> elements directly provide two endpoints.
• <polygon> and <polyline> elements contain a sequence of vertex coordinates, where

each consecutive pair defines a segment (polygons also include the closing edge).
• <rect> elements are decomposed into four boundary segments.
• <path> elements are partially supported for straight motions (M, L). Each L instruction

yields a segment from the previous position.

For all these shapes, the function returns a list of straight-line segments.

Extracting Circles. The function parse circles() searches for <circle> elements and
extracts their center (cx, cy) and radius r. When a filter is specified, only circles matching the
given CSS class are processed.

Extracting Ellipses with Affine Transforms. The function parse ellipses() identifies
<ellipse> elements as well as transformed <circle> elements. It supports general SVG affine
transformations including: matrix, translate, rotate, scale, skewX, skewY. The trans-
formation is processed as follows:

1. Construct the affine matrix from the SVG transform attribute.
2. Apply the affine transformation to the ellipse center.
3. Decompose the linear part of the affine transform applied to the ellipse radii. The principal

radii R1, R2 and orientation θ are obtained from eigenvalue analysis of the matrix AAT .

Result. The function parse svg file() loads the SVG data, calls the three extraction routines,
and returns: segs, circs, ells, where:

• segs : list of line segments (x1, y1), (x2, y2).
• circs : list of circles ((cx, cy), r).
• ells : list of ellipses ((cx, cy), R1, R2, θ).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import re
5 import math
6 import xml.etree.ElementTree as ET
7
8
9 def tag(elem):

10 """Return the tag name without namespace."""
11 return elem.tag.split('}')[-1]
12
13
14 def parse_segments(root, filter_class=None):
15 """
16 Decompose line, polygon, polyline, path, and rect elements into line segments.
17 If filter_class is specified, only elements that have that class attribute are used.
18 Returns: [((x1, y1), (x2, y2)), ...]
19 """
20 segs = []
21
22 def ok_class(elem):
23 if filter_class is None:
24 return True
25 return filter_class in elem.get('class', '').split()
26
27 for elem in root.iter():
28 t = tag(elem)
29
30 def safe_float(value):
31 try:
32 return float(value)
33 except (TypeError, ValueError):
34 return 0.0
35
36 if t == 'line' and ok_class(elem):
37 x1 = safe_float(elem.get('x1', 0))
38 y1 = safe_float(elem.get('y1', 0))
39 x2 = safe_float(elem.get('x2', 0))
40 y2 = safe_float(elem.get('y2', 0))
41 segs.append(((x1, y1), (x2, y2)))
42
43 elif t == 'polygon' and ok_class(elem):
44 pts = re.split(r'[,\s]+', elem.get('points', '').strip())
45 coords = [float(v) for v in pts if v]
46 pts_list = list(zip(coords[0::2], coords[1::2]))
47 for i in range(len(pts_list)):
48 segs.append((pts_list[i], pts_list[(i + 1) % len(pts_list)]))
49
50 elif t == 'polyline' and ok_class(elem):
51 pts = re.split(r'[,\s]+', elem.get('points', '').strip())
52 coords = [float(v) for v in pts if v]
53 pts_list = list(zip(coords[0::2], coords[1::2]))
54 for i in range(len(pts_list) - 1):
55 segs.append((pts_list[i], pts_list[i + 1]))
56
57 elif t == 'path' and ok_class(elem):
58 d = elem.get('d', '')
59 tokens = re.findall(r'[ML]|[-+]?\d*\.?\d+(?:\.\d+)?', d)
60 cur = None
61 i = 0
62 while i < len(tokens):
63 tok = tokens[i]
64 if tok == 'M':
65 cur = (float(tokens[i + 1]), float(tokens[i + 2]))

Figure 23: SVG parsing code (1/5).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import re
5 import math
6 import xml.etree.ElementTree as ET
7
8
9 def tag(elem):

10 """Return the tag name without namespace."""
11 return elem.tag.split('}')[-1]
12
13
14 def parse_segments(root, filter_class=None):
15 """
16 Decompose line, polygon, polyline, path, and rect elements into line segments.
17 If filter_class is specified, only elements that have that class attribute are used.
18 Returns: [((x1, y1), (x2, y2)), ...]
19 """
20 segs = []
21
22 def ok_class(elem):
23 if filter_class is None:
24 return True
25 return filter_class in elem.get('class', '').split()
26
27 for elem in root.iter():
28 t = tag(elem)
29
30 def safe_float(value):
31 try:
32 return float(value)
33 except (TypeError, ValueError):
34 return 0.0
35
36 if t == 'line' and ok_class(elem):
37 x1 = safe_float(elem.get('x1', 0))
38 y1 = safe_float(elem.get('y1', 0))
39 x2 = safe_float(elem.get('x2', 0))
40 y2 = safe_float(elem.get('y2', 0))
41 segs.append(((x1, y1), (x2, y2)))
42
43 elif t == 'polygon' and ok_class(elem):
44 pts = re.split(r'[,\s]+', elem.get('points', '').strip())
45 coords = [float(v) for v in pts if v]
46 pts_list = list(zip(coords[0::2], coords[1::2]))
47 for i in range(len(pts_list)):
48 segs.append((pts_list[i], pts_list[(i + 1) % len(pts_list)]))
49
50 elif t == 'polyline' and ok_class(elem):
51 pts = re.split(r'[,\s]+', elem.get('points', '').strip())
52 coords = [float(v) for v in pts if v]
53 pts_list = list(zip(coords[0::2], coords[1::2]))
54 for i in range(len(pts_list) - 1):
55 segs.append((pts_list[i], pts_list[i + 1]))
56
57 elif t == 'path' and ok_class(elem):
58 d = elem.get('d', '')
59 tokens = re.findall(r'[ML]|[-+]?\d*\.?\d+(?:\.\d+)?', d)
60 cur = None
61 i = 0
62 while i < len(tokens):
63 tok = tokens[i]
64 if tok == 'M':
65 cur = (float(tokens[i + 1]), float(tokens[i + 2]))

66 i += 3
67 elif tok == 'L' and cur is not None:
68 nxt = (float(tokens[i + 1]), float(tokens[i + 2]))
69 segs.append((cur, nxt))
70 cur = nxt
71 i += 3
72 else:
73 i += 1
74
75 elif t == 'rect' and ok_class(elem):
76 x = float(elem.get('x', '0'))
77 y = float(elem.get('y', '0'))
78 w = float(elem.get('width', '0'))
79 h = float(elem.get('height', '0'))
80 p1 = (x, y)
81 p2 = (x + w, y)
82 p3 = (x + w, y + h)
83 p4 = (x, y + h)
84 segs.extend([(p1, p2), (p2, p3), (p3, p4), (p4, p1)])
85
86 return segs
87
88
89 def parse_circles(root, filter_class=None):
90 """
91 Extract circle elements. If filter_class is specified, filter by that class.
92 Returns: [((cx, cy), r), ...]
93 """
94 circs = []
95 for elem in root.iter():
96 if tag(elem) == 'circle':
97 cls = elem.get('class', '').split()
98 if filter_class is None or filter_class in cls:
99 cx = float(elem.get('cx', 0))

100 cy = float(elem.get('cy', 0))
101 r = float(elem.get('r', 0))
102 circs.append(((cx, cy), r))
103 return circs
104
105
106 def parse_ellipses(root, filter_class=None):
107 """
108 Extract ellipse elements. Supports translate / rotate / scale / matrix in the transform attribute.
109 Returns: [((cx, cy), rx, ry, angle_deg), ...]
110 - angle_deg: angle in degrees, counter-clockwise from the x-axis
111 - Even with non-uniform scale or arbitrary matrices, approximates major/minor axis lengths and

orientation.
112 """
113 ellipses = []
114 # Tokenizer for transform attribute
115 t_re = re.compile(r'(matrix|translate|rotate|scale|skewX|skewY)\s*\(([^)]+)\)', re.I)
116
117 def mult(A, B):
118 """3x3 matrix multiplication A @ B."""
119 return [
120 [
121 A[0][0] * B[0][0] + A[0][1] * B[1][0] + A[0][2] * B[2][0],
122 A[0][0] * B[0][1] + A[0][1] * B[1][1] + A[0][2] * B[2][1],
123 A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2] * B[2][2],
124],
125 [
126 A[1][0] * B[0][0] + A[1][1] * B[1][0] + A[1][2] * B[2][0],
127 A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1],
128 A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2] * B[2][2],
129],
130 [0, 0, 1],
131]

Figure 24: SVG parsing code (2/5).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

66 i += 3
67 elif tok == 'L' and cur is not None:
68 nxt = (float(tokens[i + 1]), float(tokens[i + 2]))
69 segs.append((cur, nxt))
70 cur = nxt
71 i += 3
72 else:
73 i += 1
74
75 elif t == 'rect' and ok_class(elem):
76 x = float(elem.get('x', '0'))
77 y = float(elem.get('y', '0'))
78 w = float(elem.get('width', '0'))
79 h = float(elem.get('height', '0'))
80 p1 = (x, y)
81 p2 = (x + w, y)
82 p3 = (x + w, y + h)
83 p4 = (x, y + h)
84 segs.extend([(p1, p2), (p2, p3), (p3, p4), (p4, p1)])
85
86 return segs
87
88
89 def parse_circles(root, filter_class=None):
90 """
91 Extract circle elements. If filter_class is specified, filter by that class.
92 Returns: [((cx, cy), r), ...]
93 """
94 circs = []
95 for elem in root.iter():
96 if tag(elem) == 'circle':
97 cls = elem.get('class', '').split()
98 if filter_class is None or filter_class in cls:
99 cx = float(elem.get('cx', 0))

100 cy = float(elem.get('cy', 0))
101 r = float(elem.get('r', 0))
102 circs.append(((cx, cy), r))
103 return circs
104
105
106 def parse_ellipses(root, filter_class=None):
107 """
108 Extract ellipse elements. Supports translate / rotate / scale / matrix in the transform attribute.
109 Returns: [((cx, cy), rx, ry, angle_deg), ...]
110 - angle_deg: angle in degrees, counter-clockwise from the x-axis
111 - Even with non-uniform scale or arbitrary matrices, approximates major/minor axis lengths and

orientation.
112 """
113 ellipses = []
114 # Tokenizer for transform attribute
115 t_re = re.compile(r'(matrix|translate|rotate|scale|skewX|skewY)\s*\(([^)]+)\)', re.I)
116
117 def mult(A, B):
118 """3x3 matrix multiplication A @ B."""
119 return [
120 [
121 A[0][0] * B[0][0] + A[0][1] * B[1][0] + A[0][2] * B[2][0],
122 A[0][0] * B[0][1] + A[0][1] * B[1][1] + A[0][2] * B[2][1],
123 A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2] * B[2][2],
124],
125 [
126 A[1][0] * B[0][0] + A[1][1] * B[1][0] + A[1][2] * B[2][0],
127 A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1],
128 A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2] * B[2][2],
129],
130 [0, 0, 1],
131]

132
133 def mat_translate(tx, ty=0.0):
134 return [[1, 0, tx], [0, 1, ty], [0, 0, 1]]
135
136 def mat_rotate(angle_deg, cx=0.0, cy=0.0):
137 a = math.radians(angle_deg)
138 c = math.cos(a)
139 s = math.sin(a)
140 # Affine transform including rotation around center (cx, cy)
141 return mult(
142 mult(mat_translate(cx, cy), [[c, -s, 0], [s, c, 0], [0, 0, 1]]),
143 mat_translate(-cx, -cy),
144)
145
146 def mat_scale(sx, sy=None):
147 if sy is None:
148 sy = sx
149 return [[sx, 0, 0], [0, sy, 0], [0, 0, 1]]
150
151 def mat_skewx(a_deg):
152 t = math.tan(math.radians(a_deg))
153 # Note: SVG skewX corresponds to x' = x + tan(ax) * y
154 return [[1, math.tan(0), 0], [t, 1, 0], [0, 0, 1]]
155
156 def mat_skewy(a_deg):
157 t = math.tan(math.radians(a_deg))
158 # Note: SVG skewY corresponds to y' = y + tan(ay) * x
159 return [[1, t, 0], [math.tan(0), 1, 0], [0, 0, 1]]
160
161 def mat_matrix(a, b, c, d, e, f):
162 # SVG: [x', y'] = [a c e; b d f; 0 0 1] [x, y, 1]^T
163 return [[a, c, e], [b, d, f], [0, 0, 1]]
164
165 def parse_transform(txt):
166 """Compose transform string from left to right (SVG applies transforms in that order)."""
167 M = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
168 for m in t_re.finditer(txt or ''):
169 name = m.group(1).lower()
170 parts = [float(v) for v in re.split(r'[,\s]+', m.group(2).strip()) if v]
171 if name == 'matrix' and len(parts) == 6:
172 Mi = mat_matrix(*parts)
173 elif name == 'translate':
174 Mi = mat_translate(parts[0], parts[1] if len(parts) > 1 else 0.0)
175 elif name == 'rotate':
176 if len(parts) >= 3:
177 Mi = mat_rotate(parts[0], parts[1], parts[2])
178 else:
179 Mi = mat_rotate(parts[0])
180 elif name == 'scale':
181 Mi = mat_scale(parts[0], parts[1] if len(parts) > 1 else None)
182 elif name == 'skewx':
183 Mi = mat_skewx(parts[0])
184 elif name == 'skewy':
185 Mi = mat_skewy(parts[0])
186 else:
187 continue
188 M = mult(M, Mi)
189 return M
190
191 def apply_affine(M, x, y):
192 """Apply 3x3 affine matrix to point (x, y)."""
193 return (
194 M[0][0] * x + M[0][1] * y + M[0][2],
195 M[1][0] * x + M[1][1] * y + M[1][2],
196)
197
198 def decompose_axes(Mlin, rx, ry):

Figure 25: SVG parsing code (3/5).

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

132
133 def mat_translate(tx, ty=0.0):
134 return [[1, 0, tx], [0, 1, ty], [0, 0, 1]]
135
136 def mat_rotate(angle_deg, cx=0.0, cy=0.0):
137 a = math.radians(angle_deg)
138 c = math.cos(a)
139 s = math.sin(a)
140 # Affine transform including rotation around center (cx, cy)
141 return mult(
142 mult(mat_translate(cx, cy), [[c, -s, 0], [s, c, 0], [0, 0, 1]]),
143 mat_translate(-cx, -cy),
144)
145
146 def mat_scale(sx, sy=None):
147 if sy is None:
148 sy = sx
149 return [[sx, 0, 0], [0, sy, 0], [0, 0, 1]]
150
151 def mat_skewx(a_deg):
152 t = math.tan(math.radians(a_deg))
153 # Note: SVG skewX corresponds to x' = x + tan(ax) * y
154 return [[1, math.tan(0), 0], [t, 1, 0], [0, 0, 1]]
155
156 def mat_skewy(a_deg):
157 t = math.tan(math.radians(a_deg))
158 # Note: SVG skewY corresponds to y' = y + tan(ay) * x
159 return [[1, t, 0], [math.tan(0), 1, 0], [0, 0, 1]]
160
161 def mat_matrix(a, b, c, d, e, f):
162 # SVG: [x', y'] = [a c e; b d f; 0 0 1] [x, y, 1]^T
163 return [[a, c, e], [b, d, f], [0, 0, 1]]
164
165 def parse_transform(txt):
166 """Compose transform string from left to right (SVG applies transforms in that order)."""
167 M = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
168 for m in t_re.finditer(txt or ''):
169 name = m.group(1).lower()
170 parts = [float(v) for v in re.split(r'[,\s]+', m.group(2).strip()) if v]
171 if name == 'matrix' and len(parts) == 6:
172 Mi = mat_matrix(*parts)
173 elif name == 'translate':
174 Mi = mat_translate(parts[0], parts[1] if len(parts) > 1 else 0.0)
175 elif name == 'rotate':
176 if len(parts) >= 3:
177 Mi = mat_rotate(parts[0], parts[1], parts[2])
178 else:
179 Mi = mat_rotate(parts[0])
180 elif name == 'scale':
181 Mi = mat_scale(parts[0], parts[1] if len(parts) > 1 else None)
182 elif name == 'skewx':
183 Mi = mat_skewx(parts[0])
184 elif name == 'skewy':
185 Mi = mat_skewy(parts[0])
186 else:
187 continue
188 M = mult(M, Mi)
189 return M
190
191 def apply_affine(M, x, y):
192 """Apply 3x3 affine matrix to point (x, y)."""
193 return (
194 M[0][0] * x + M[0][1] * y + M[0][2],
195 M[1][0] * x + M[1][1] * y + M[1][2],
196)
197
198 def decompose_axes(Mlin, rx, ry):

199 """
200 Linear part of ellipse transform: A = Mlin @ diag(rx, ry)
201 Major/minor axis lengths = sqrt(eigenvalues of A A^T),
202 orientation angle = angle of the principal eigenvector.
203 """
204 a, c = Mlin[0][0], Mlin[0][1]
205 b, d = Mlin[1][0], Mlin[1][1]
206 # A = [[a*rx, c*ry],
207 # [b*rx, d*ry]]
208 arx, cry = a * rx, c * ry
209 brx, dry = b * rx, d * ry
210 # B = A A^T = [[p, r], [r, q]]
211 p = arx * arx + cry * cry
212 q = brx * brx + dry * dry
213 r = arx * brx + cry * dry
214 # Eigenvalues (>= 0)
215 trace = p + q
216 diff = p - q
217 disc = math.hypot(diff, 2 * r) # sqrt(diff^2 + (2r)^2)
218 lam1 = 0.5 * (trace + disc) # larger eigenvalue
219 lam2 = 0.5 * (trace - disc) # smaller eigenvalue
220 # Radii (>= 0)
221 R1 = math.sqrt(max(lam1, 0.0))
222 R2 = math.sqrt(max(lam2, 0.0))
223 # Angle (orientation of major axis): 0.5 * atan2(2r, p - q)
224 angle = 0.5 * math.atan2(2 * r, diff) if (abs(r) + abs(diff)) > 0 else 0.0
225 return R1, R2, math.degrees(angle)
226
227 # --- Main loop ---
228 for elem in root.iter():
229 if tag(elem) == 'ellipse':
230 cls = elem.get('class', '').split()
231 if filter_class is not None and filter_class not in cls:
232 continue
233 cx = float(elem.get('cx', 0.0))
234 cy = float(elem.get('cy', 0.0))
235 rx = float(elem.get('rx', 0.0))
236 ry = float(elem.get('ry', 0.0))
237
238 # Compose transform matrix (3x3)
239 M = parse_transform(elem.get('transform', ''))
240
241 # Transformed center
242 cx_t, cy_t = apply_affine(M, cx, cy)
243
244 # Linear part (2x2)
245 Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
246
247 # Decompose radii and angle
248 if rx == 0.0 and ry == 0.0:
249 R1 = R2 = 0.0
250 angle_deg = 0.0
251 else:
252 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
253
254 ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
255
256 elif tag(elem) == 'circle' and elem.get('transform', '') != '':
257 cls = elem.get('class', '').split()
258 if filter_class is not None and filter_class not in cls:
259 continue
260 cx = float(elem.get('cx', 0.0))
261 cy = float(elem.get('cy', 0.0))
262 rx = float(elem.get('r', 0.0))
263 ry = float(elem.get('r', 0.0))
264
265 # Compose transform matrix (3x3)

Figure 26: SVG parsing code (4/5).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

199 """
200 Linear part of ellipse transform: A = Mlin @ diag(rx, ry)
201 Major/minor axis lengths = sqrt(eigenvalues of A A^T),
202 orientation angle = angle of the principal eigenvector.
203 """
204 a, c = Mlin[0][0], Mlin[0][1]
205 b, d = Mlin[1][0], Mlin[1][1]
206 # A = [[a*rx, c*ry],
207 # [b*rx, d*ry]]
208 arx, cry = a * rx, c * ry
209 brx, dry = b * rx, d * ry
210 # B = A A^T = [[p, r], [r, q]]
211 p = arx * arx + cry * cry
212 q = brx * brx + dry * dry
213 r = arx * brx + cry * dry
214 # Eigenvalues (>= 0)
215 trace = p + q
216 diff = p - q
217 disc = math.hypot(diff, 2 * r) # sqrt(diff^2 + (2r)^2)
218 lam1 = 0.5 * (trace + disc) # larger eigenvalue
219 lam2 = 0.5 * (trace - disc) # smaller eigenvalue
220 # Radii (>= 0)
221 R1 = math.sqrt(max(lam1, 0.0))
222 R2 = math.sqrt(max(lam2, 0.0))
223 # Angle (orientation of major axis): 0.5 * atan2(2r, p - q)
224 angle = 0.5 * math.atan2(2 * r, diff) if (abs(r) + abs(diff)) > 0 else 0.0
225 return R1, R2, math.degrees(angle)
226
227 # --- Main loop ---
228 for elem in root.iter():
229 if tag(elem) == 'ellipse':
230 cls = elem.get('class', '').split()
231 if filter_class is not None and filter_class not in cls:
232 continue
233 cx = float(elem.get('cx', 0.0))
234 cy = float(elem.get('cy', 0.0))
235 rx = float(elem.get('rx', 0.0))
236 ry = float(elem.get('ry', 0.0))
237
238 # Compose transform matrix (3x3)
239 M = parse_transform(elem.get('transform', ''))
240
241 # Transformed center
242 cx_t, cy_t = apply_affine(M, cx, cy)
243
244 # Linear part (2x2)
245 Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
246
247 # Decompose radii and angle
248 if rx == 0.0 and ry == 0.0:
249 R1 = R2 = 0.0
250 angle_deg = 0.0
251 else:
252 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
253
254 ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
255
256 elif tag(elem) == 'circle' and elem.get('transform', '') != '':
257 cls = elem.get('class', '').split()
258 if filter_class is not None and filter_class not in cls:
259 continue
260 cx = float(elem.get('cx', 0.0))
261 cy = float(elem.get('cy', 0.0))
262 rx = float(elem.get('r', 0.0))
263 ry = float(elem.get('r', 0.0))
264
265 # Compose transform matrix (3x3)

266 M = parse_transform(elem.get('transform', ''))
267
268 # Transformed center
269 cx_t, cy_t = apply_affine(M, cx, cy)
270
271 # Linear part (2x2)
272 Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
273
274 # Decompose radii and angle
275 if rx == 0.0 and ry == 0.0:
276 R1 = R2 = 0.0
277 angle_deg = 0.0
278 else:
279 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
280
281 ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
282 return ellipses
283
284
285 def parse_svg_file(path, filter_class=None):
286 root = ET.parse(path).getroot()
287 segs = parse_segments(root, filter_class)
288 circs = parse_circles(root, filter_class)
289 ells = parse_ellipses(root, filter_class)
290 return segs, circs, ells
291

Figure 27: SVG parsing code (5/5).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

F.1.2 EVALUATION CODE FOR PATTERN 1

We now present the evaluation code for Pattern 1, where the correct objects are not uniquely de-
termined. This code checks whether the SVG produced by the LLM correctly reproduces the
ground-truth primitives (straight segments, circles, and ellipses), as shown in Figures 28, 29, and
30. The core of this evaluation is implemented by the three functions match segments(),
match circles(), and match ellipses().

Overall Evaluation Procedure. Given two SVG files,

• ground truth: the reference SVG, and
• llm output: the SVG generated by the model,

the script first calls parse svg file() to extract:

• line segments gt segs, out segs,
• circles gt circs, out circs,
• ellipses gt ells, out ells.

The output segments are then augmented by merge collinear segments(), which attempts
to merge nearly collinear segments that share an endpoint, so that broken polylines can still match a
single ground-truth segment.

The evaluation is decomposed into three independent stages:

stage1 = match segments(gt segs,out segs),

stage2 = match circles(gt circs,out circs),

stage3 = match ellipses(gt ells,out ells).

If and only if all three stages succeed, the script prints "1"; otherwise it prints "0".

Step 1: Matching Line Segments. The function match segments(gt segs, out segs,
tol) verifies that every ground-truth segment is represented in the LLM output within a geometric
tolerance. Each segment is represented by its two endpoints:

gt segs = {(p1, p2)}, out segs = {(q1, q2)},
where p1, p2, q1, q2 ∈ R2 denote 2D coordinates.

• For each ground-truth segment (p1, p2), the function searches over all output segments
(q1, q2).

• The helper dist point to segment(pt, a, b) computes the Euclidean distance
from a point pt to the finite segment ab by projecting pt onto the segment and clamping
the projection parameter to [0, 1].

• A ground-truth segment is considered matched if there exists an output segment such that
both endpoints p1 and p2 are within distance tol of the segment q1q2:

dist(p1, q1q2) ≤ tol, dist(p2, q1q2) ≤ tol.

If all ground-truth segments find such a matching segment in out segs, the function returns True;
otherwise it returns False. This ensures that every reference straight line is geometrically repro-
duced in the LLM output.

Step 2: Matching Circles. The function match circles(gt circs, out circs,
tol center, tol r) checks that all ground-truth circles are present in the output with simi-
lar centers and radii. Each circle is represented as ((cx, cy), r), where c = (cx, cy) is the center and
r is the radius.

• The outer loop iterates over ground-truth circles (cgt, rgt). A working copy of output circles
is stored in unmatched so that once an output circle is assigned to a ground-truth circle,
it is removed and cannot be reused.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

• For each ground-truth circle, the function selects the output circle with the maximum
intersection-over-union (IoU), computed by circle iou(c1, r1, c2, r2). The
IoU is defined between the two disks D1, D2 as:

IoU(D1, D2) =
area(D1 ∩D2)

area(D1 ∪D2)
.

This IoU is used only to choose the best candidate in unmatched.

• After selecting the circle with maximum IoU, the function checks strict geometric toler-
ances on center and radius:

∥cgt − cout∥ ≤ tol center, |rgt − rout| ≤ tol r.

If both conditions are satisfied, the output circle is removed from unmatched and the
ground-truth circle is deemed matched. Otherwise, the entire matching fails and the func-
tion returns False.

If all ground-truth circles are successfully matched in this way, match circles() returns True.
Thus, every reference circle must appear in the LLM output with nearly the same center and radius.

Step 3: Matching Ellipses. The function match ellipses(gt ells, out ells,
iou thresh) evaluates whether each ground-truth ellipse has a corresponding ellipse in the out-
put that overlaps sufficiently in area. An ellipse is represented as:

((cx, cy), Rx, Ry, θ),

where (cx, cy) is the center, Rx, Ry are the radii along the principal axes, and θ is the rotation angle.

• As in circle matching, a list unmatched stores the remaining output ellipses that have not
yet been assigned.

• For each ground-truth ellipse egt, the function searches for the output ellipse eout that max-
imizes the IoU, computed by ellipse iou(e1, e2).

Approximate IoU for Rotated Ellipses. The helper ellipse iou(e1, e2, samples) esti-
mates IoU by Monte Carlo sampling:

1. For each ellipse, an axis-aligned bounding box is computed that tightly encloses the rotated
ellipse.

2. A joint bounding box that covers both ellipses is obtained by taking the min/max of the two
boxes.

3. A number of random points (given by samples) are uniformly sampled in this joint
bounding box.

4. For each point, the function tests membership in each ellipse by transforming the point into
the ellipse-aligned coordinate system and checking

x2

R2
x

+
y2

R2
y

≤ 1.

5. From these samples, the areas of intersection and union are estimated, and the IoU is ap-
proximated as:

IoU(e1, e2) ≈
area(e1 ∩ e2)

area(e1 ∪ e2)
.

IoU-based Acceptance Criterion. Back in match ellipses(), after computing IoU values
between a ground-truth ellipse and all remaining output ellipses:

• The output ellipse with maximum IoU is selected as the candidate match.

• If this maximum IoU is greater than or equal to the threshold iou thresh (default 0.95),
the candidate is accepted and removed from unmatched.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

• Otherwise, the function returns False, indicating that no sufficiently overlapping ellipse
was found.

If every ground-truth ellipse is matched with IoU at least iou thresh, the function returns True.

Result. Combining the three matching functions, the script provides a binary evaluation:

• The LLM output is considered correct if and only if all ground-truth line segments, circles,
and ellipses are geometrically reproduced within the specified tolerances and IoU thresh-
olds.

• In that case, the program prints "1"; otherwise it prints "0".

This evaluation criterion enforces a strict structural fidelity of the generated SVG against the refer-
ence vector graphics.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import random

10 from parse_svg_file import parse_svg_file
11
12
13 def dist_point_to_segmen t(pt, a, b):
14 """Distance between point `pt` and segment `ab`"""
15 x, y = pt; x1, y1 = a; x2, y2 = b
16 dx, dy = x2-x1, y2-y1
17 if dx == 0 and dy == 0:
18 return math.hypot(x-x1, y-y1)
19 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
20 t = max(0.0, min(1.0, t))
21 proj = (x1 + t*dx, y1 + t*dy)
22 return math.hypot(x-proj[0], y-proj[1])
23
24
25 def match_segments(gt_segs, out_segs, tol=1e1):
26 """Check whether each segment in ground truth matches any segment in output"""
27 for p1, p2 in gt_segs:
28 ok = False
29 for q1, q2 in out_segs:
30 if dist_point_to_segmen t(p1, q1, q2) <= tol and \
31 dist_point_to_segmen t(p2, q1, q2) <= tol:
32 ok = True
33 break
34 if not ok:
35 return False
36 return True
37
38
39 def circle_iou(c1, r1, c2, r2):
40 """Calculate IoU (Intersection over Union) of two circles"""
41 d = math.hypot(c1[0]-c2[0], c1[1]-c2[1])
42 if d >= r1 + r2:
43 return 0.0
44 if d <= abs(r1 - r2):
45 return (min(r1, r2)**2) / (max(r1, r2)**2)
46 r1_sq, r2_sq = r1**2, r2**2
47 alpha = math.acos((d*d + r1_sq - r2_sq) / (2*d*r1))
48 beta = math.acos((d*d + r2_sq - r1_sq) / (2*d*r2))
49 inter = (r1_sq*alpha + r2_sq*beta -
50 0.5*math.sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2)))
51 union = math.pi*(r1_sq + r2_sq) - inter
52 return inter / union
53
54
55 def match_circles(gt_circs, out_circs, tol_center=1e1, tol_r=1e1):
56 """
57 Match each ground-truth circle by maximizing IoU and
58 filter by center distance and radius difference
59 """
60 unmatched = list(out_circs)
61 for c_gt, r_gt in gt_circs:
62 if not unmatched:
63 return False
64 # find best IoU
65 best_i, best_iou = 0, circle_iou(c_gt, r_gt, unmatched[0][0], unmatched[0][1])

Figure 28: Evaluation code for Pattern 1 (1/3).

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import random

10 from parse_svg_file import parse_svg_file
11
12
13 def dist_point_to_segmen t(pt, a, b):
14 """Distance between point `pt` and segment `ab`"""
15 x, y = pt; x1, y1 = a; x2, y2 = b
16 dx, dy = x2-x1, y2-y1
17 if dx == 0 and dy == 0:
18 return math.hypot(x-x1, y-y1)
19 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
20 t = max(0.0, min(1.0, t))
21 proj = (x1 + t*dx, y1 + t*dy)
22 return math.hypot(x-proj[0], y-proj[1])
23
24
25 def match_segments(gt_segs, out_segs, tol=1e1):
26 """Check whether each segment in ground truth matches any segment in output"""
27 for p1, p2 in gt_segs:
28 ok = False
29 for q1, q2 in out_segs:
30 if dist_point_to_segmen t(p1, q1, q2) <= tol and \
31 dist_point_to_segmen t(p2, q1, q2) <= tol:
32 ok = True
33 break
34 if not ok:
35 return False
36 return True
37
38
39 def circle_iou(c1, r1, c2, r2):
40 """Calculate IoU (Intersection over Union) of two circles"""
41 d = math.hypot(c1[0]-c2[0], c1[1]-c2[1])
42 if d >= r1 + r2:
43 return 0.0
44 if d <= abs(r1 - r2):
45 return (min(r1, r2)**2) / (max(r1, r2)**2)
46 r1_sq, r2_sq = r1**2, r2**2
47 alpha = math.acos((d*d + r1_sq - r2_sq) / (2*d*r1))
48 beta = math.acos((d*d + r2_sq - r1_sq) / (2*d*r2))
49 inter = (r1_sq*alpha + r2_sq*beta -
50 0.5*math.sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2)))
51 union = math.pi*(r1_sq + r2_sq) - inter
52 return inter / union
53
54
55 def match_circles(gt_circs, out_circs, tol_center=1e1, tol_r=1e1):
56 """
57 Match each ground-truth circle by maximizing IoU and
58 filter by center distance and radius difference
59 """
60 unmatched = list(out_circs)
61 for c_gt, r_gt in gt_circs:
62 if not unmatched:
63 return False
64 # find best IoU
65 best_i, best_iou = 0, circle_iou(c_gt, r_gt, unmatched[0][0], unmatched[0][1])

66 for i, (c_out, r_out) in enumerate(unmatched[1:], start=1):
67 iou = circle_iou(c_gt, r_gt, c_out, r_out)
68 if iou > best_iou:
69 best_iou, best_i = iou, i
70 c_out, r_out = unmatched[best_i]
71 dc = math.hypot(c_gt[0]-c_out[0], c_gt[1]-c_out[1])
72 if dc <= tol_center and abs(r_gt-r_out) <= tol_r:
73 unmatched.pop(best_i)
74 else:
75 return False
76 return True
77
78
79 def ellipse_iou(e1, e2, samples=2000):
80 """Compute approximate IoU for two rotated ellipses by Monte Carlo sampling"""
81 def inside(pt, ell):
82 (cx, cy), rx, ry, angle = ell
83 rad = math.radians(-angle)
84 cosA = math.cos(rad); sinA = math.sin(rad)
85 dx, dy = pt[0]-cx, pt[1]-cy
86 x = dx*cosA - dy*sinA
87 y = dx*sinA + dy*cosA
88 return x*x/(rx*rx) + y*y/(ry*ry) <= 1
89
90 def bbox(ell):
91 (cx, cy), rx, ry, angle = ell
92 rad = math.radians(angle)
93 cosA = math.cos(rad); sinA = math.sin(rad)
94 w = abs(rx*cosA) + abs(ry*sinA)
95 h = abs(rx*sinA) + abs(ry*cosA)
96 return (cx-w, cy-h, cx+w, cy+h)
97
98 b1 = bbox(e1); b2 = bbox(e2)
99 minx = min(b1[0], b2[0]); miny = min(b1[1], b2[1])

100 maxx = max(b1[2], b2[2]); maxy = max(b1[3], b2[3])
101 area_box = (maxx-minx)*(maxy-miny)
102 cnt1 = cnt2 = cnt_both = 0
103 for _ in range(samples):
104 x = random.uniform(minx, maxx)
105 y = random.uniform(miny, maxy)
106 in1 = inside((x, y), e1)
107 in2 = inside((x, y), e2)
108 if in1: cnt1 += 1
109 if in2: cnt2 += 1
110 if in1 and in2: cnt_both += 1
111 if cnt1+cnt2-cnt_both == 0:
112 return 0.0
113 area_inter = cnt_both/samples * area_box
114 area_union = (cnt1+cnt2-cnt_both)/samples * area_box
115 return area_inter / area_union
116
117
118 def match_ellipses(gt_ells, out_ells, iou_thresh=0.95):
119 """Match each ground-truth ellipse by maximizing IoU; pass if above threshold"""
120 unmatched = list(out_ells)
121 for gt in gt_ells:
122 if not unmatched:
123 return False
124 best_i, best_iou = 0, ellipse_iou(gt, unmatched[0])
125 for i, out in enumerate(unmatched[1:], start=1):
126 iou = ellipse_iou(gt, out)
127 if iou > best_iou:
128 best_iou, best_i = iou, i
129 if best_iou >= iou_thresh:
130 unmatched.pop(best_i)
131 else:
132 return False

Figure 29: Evaluation code for Pattern 1 (2/3).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

66 for i, (c_out, r_out) in enumerate(unmatched[1:], start=1):
67 iou = circle_iou(c_gt, r_gt, c_out, r_out)
68 if iou > best_iou:
69 best_iou, best_i = iou, i
70 c_out, r_out = unmatched[best_i]
71 dc = math.hypot(c_gt[0]-c_out[0], c_gt[1]-c_out[1])
72 if dc <= tol_center and abs(r_gt-r_out) <= tol_r:
73 unmatched.pop(best_i)
74 else:
75 return False
76 return True
77
78
79 def ellipse_iou(e1, e2, samples=2000):
80 """Compute approximate IoU for two rotated ellipses by Monte Carlo sampling"""
81 def inside(pt, ell):
82 (cx, cy), rx, ry, angle = ell
83 rad = math.radians(-angle)
84 cosA = math.cos(rad); sinA = math.sin(rad)
85 dx, dy = pt[0]-cx, pt[1]-cy
86 x = dx*cosA - dy*sinA
87 y = dx*sinA + dy*cosA
88 return x*x/(rx*rx) + y*y/(ry*ry) <= 1
89
90 def bbox(ell):
91 (cx, cy), rx, ry, angle = ell
92 rad = math.radians(angle)
93 cosA = math.cos(rad); sinA = math.sin(rad)
94 w = abs(rx*cosA) + abs(ry*sinA)
95 h = abs(rx*sinA) + abs(ry*cosA)
96 return (cx-w, cy-h, cx+w, cy+h)
97
98 b1 = bbox(e1); b2 = bbox(e2)
99 minx = min(b1[0], b2[0]); miny = min(b1[1], b2[1])

100 maxx = max(b1[2], b2[2]); maxy = max(b1[3], b2[3])
101 area_box = (maxx-minx)*(maxy-miny)
102 cnt1 = cnt2 = cnt_both = 0
103 for _ in range(samples):
104 x = random.uniform(minx, maxx)
105 y = random.uniform(miny, maxy)
106 in1 = inside((x, y), e1)
107 in2 = inside((x, y), e2)
108 if in1: cnt1 += 1
109 if in2: cnt2 += 1
110 if in1 and in2: cnt_both += 1
111 if cnt1+cnt2-cnt_both == 0:
112 return 0.0
113 area_inter = cnt_both/samples * area_box
114 area_union = (cnt1+cnt2-cnt_both)/samples * area_box
115 return area_inter / area_union
116
117
118 def match_ellipses(gt_ells, out_ells, iou_thresh=0.95):
119 """Match each ground-truth ellipse by maximizing IoU; pass if above threshold"""
120 unmatched = list(out_ells)
121 for gt in gt_ells:
122 if not unmatched:
123 return False
124 best_i, best_iou = 0, ellipse_iou(gt, unmatched[0])
125 for i, out in enumerate(unmatched[1:], start=1):
126 iou = ellipse_iou(gt, out)
127 if iou > best_iou:
128 best_iou, best_i = iou, i
129 if best_iou >= iou_thresh:
130 unmatched.pop(best_i)
131 else:
132 return False

133 return True
134
135
136 def merge_collinear_segm ents(segments, angle_tol=math.radians(5)):
137 """Merge segments that share an endpoint and are almost collinear"""
138 merged = []
139 thresh = -math.cos(angle_tol)
140 n = len(segments)
141 for i in range(n):
142 u, v = segments[i]
143 for j in range(i+1, n):
144 w, x = segments[j]
145 shared = None
146 if u == w:
147 shared, p1, p2 = u, v, x
148 elif u == x:
149 shared, p1, p2 = u, v, w
150 elif v == w:
151 shared, p1, p2 = v, u, x
152 elif v == x:
153 shared, p1, p2 = v, u, w
154 else:
155 continue
156 vec1 = (p1[0]-shared[0], p1[1]-shared[1])
157 vec2 = (p2[0]-shared[0], p2[1]-shared[1])
158 n1 = math.hypot(*vec1); n2 = math.hypot(*vec2)
159 if n1 == 0 or n2 == 0:
160 continue
161 cos_ang = (vec1[0]*vec2[0] + vec1[1]*vec2[1]) / (n1*n2)
162 if cos_ang <= thresh:
163 merged.append((p1, p2))
164 return merged
165
166
167 def main():
168 p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
169 p.add_argument('ground_truth', help="File path of ground-truth SVG")
170 p.add_argument('llm_output', help="File path of LLM-generated SVG")
171 args = p.parse_args()
172
173 try:
174 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='output_object')
175 out_segs, out_circs, out_ells = parse_svg_file(args.llm_output)
176 except Exception:
177 print("0")
178 sys.exit(0)
179 out_segs.extend(merge_collinear_segm ents(out_segs))
180
181 # Matching
182 stage1 = match_segments(gt_segs, out_segs)
183 stage2 = match_circles(gt_circs, out_circs)
184 stage3 = match_ellipses(gt_ells, out_ells)
185
186 print("1" if (stage1 and stage2 and stage3) else "0")
187
188 if __name__ == '__main__':
189 main()
190 Figure 30: Evaluation code for Pattern 1 (3/3).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

F.1.3 EVALUATION CODE FOR PATTERN 2

In Pattern 2, it is not possible to uniquely determine the correct objects. To address this, we im-
plemented case-specific Python logic that evaluates correctness based on textual input, allowing for
variations in valid outputs. As examples, we present the evaluation code for the case in Figure 3 and
for the bottom case in Figure 5.

The evaluation code corresponding to Figure 3 is shown in Figures 31 and 32.

Overall Evaluation Procedure. The script compares two SVG files:

• the ground-truth construction (annotated with the class input object), and
• the LLM-generated output (annotated with the class output object).

Both are parsed by parse svg file(), which returns:

(gt segs,gt circs,gt ells), (out segs,out circs,out ells)

for the input and output respectively. If parsing fails at any point, the script prints 0 and terminates,
indicating an incorrect solution.

Geometric Helper Functions. Two helper routines implement basic Euclidean geometry needed
for the evaluation:

• dist point to segment(pt, a, b): given a point pt and a segment with end-
points a and b, this function computes the shortest distance from pt to the segment. It
projects pt onto the supporting line of ab, clamps the projection parameter to the interval
[0, 1], and returns the Euclidean distance from pt to the resulting closest point.

• circle intersections(c1, r1, c2, r2): given two circles with centers c1, c2
and radii r1, r2, this function returns their intersection points. It first computes the center
distance d; if the circles are too far apart, nested, or numerically degenerate, it returns an
empty list. Otherwise, it computes the base point on the line between the centers and the
perpendicular offset, yielding either one point (tangency) or two intersection points.

Tolerance Parameters. Because the LLM-generated SVG may differ slightly due to numerical
precision or stylistic variation, the script uses small tolerances:

• tol center: allowed deviation when matching circle centers to line endpoints.
• tol r: allowed difference between radii.
• tol line: allowed distance when checking whether intersection points lie on a candidate

line segment.

These tolerances make the evaluation robust to minor floating-point noise.

Step 1: Extracting the Reference Segment. From the ground-truth data, the script takes the first
input segment:

(p1, p2) = gt segs[0].

This segment represents the original line in Figure 3 on which the construction is based. If no such
segment exists, the evaluation immediately fails.

Step 2: Matching Circles at the Endpoints. The first condition requires that the output contain
two circles whose centers coincide with the endpoints p1 and p2 of the input segment:

1. The script scans out circs to find a circle with center within tol center of p1. This
circle is stored as (c1, r1).

2. It then scans again to find a different circle with center within tol center of p2, stored
as (c2, r2).

If either endpoint does not have a corresponding circle center, the script prints 0 (incorrect).

Step 3: Checking the Radii. The second condition enforces both equality and sufficient size of the
radii:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

• The radii must be equal up to tolerance: |r1 − r2| ≤ tol r.
• Each radius must be strictly larger than half the length of the original segment:

r1 >
∥p2 − p1∥

2
− tol r.

Intuitively, this ensures that the two circles intersect in two distinct points above and below the
segment, as in the geometric construction. If either inequality is violated, the output is rejected.

Step 4: Computing Circle Intersections. The third condition uses the intersection points of the
two circles:

1. The script calls circle intersections(c1, r1, c2, r2) to compute the inter-
section points.

2. If fewer than two intersection points are found (no intersection or tangency), the configu-
ration cannot reproduce the intended construction, and the script outputs 0.

When two intersections exist, denote them by I1 and I2.

Step 5: Verifying a Line Through Both Intersections. Finally, the script checks whether the LLM
has drawn a line that passes through both intersection points:

• It iterates over each output segment (q1, q2) ∈ out segs.
• For each segment, it computes the distance from I1 and I2 to the segment using
dist point to segment.

• If both distances are within tol line, then (q1, q2) is considered to pass through both
circle intersections.

If such a segment is found, the configuration is deemed correct and the script prints 1. Otherwise, it
prints 0.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/Bisection.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 from parse_svg_file import parse_svg_file

10
11 # ----- Tolerances (adjust if necessary) -----
12 tol_center = 1e-1 # Tolerance for matching a circle center with a line endpoint
13 tol_r = 1e-1 # Tolerance for comparing radii
14 tol_line = 1e-1 # Tolerance for checking if intersection points lie on a line segment
15
16 def dist_point_to_segmen t(pt, a, b):
17 """
18 Return the distance between a point pt and a line segment ab.
19 """
20 x,y = pt
21 x1,y1 = a
22 x2,y2 = b
23 dx = x2 - x1
24 dy = y2 - y1
25 if dx==0 and dy==0:
26 return math.hypot(x-x1, y-y1)
27 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
28 t = max(0.0, min(1.0, t))
29 proj_x = x1 + t*dx
30 proj_y = y1 + t*dy
31 return math.hypot(x - proj_x, y - proj_y)
32
33 def circle_intersections (c1, r1, c2, r2, tol=1e-6):
34 """
35 Return the intersection points of two circles.
36 If the circles intersect at two points, return a list of length 2.
37 If they are tangent, return a list of length 1.
38 If they do not intersect, return an empty list.
39 """
40 x0,y0 = c1
41 x1,y1 = c2
42 dx = x1 - x0
43 dy = y1 - y0
44 d = math.hypot(dx,dy)
45 # Same center or too far apart
46 if d < tol or d > r1 + r2 + tol or d < abs(r1 - r2) - tol:
47 return []
48 # Distance a and height h of intersection
49 a = (r1*r1 - r2*r2 + d*d) / (2*d)
50 h2 = r1*r1 - a*a
51 if h2 < 0 and abs(h2) <= tol:
52 h = 0.0
53 elif h2 < 0:
54 return []
55 else:
56 h = math.sqrt(h2)
57 xm = x0 + a * dx / d
58 ym = y0 + a * dy / d
59 rx = -dy * (h / d)
60 ry = dx * (h / d)
61 p1 = (xm + rx, ym + ry)
62 p2 = (xm - rx, ym - ry)
63 return [p1] if h == 0 else [p1, p2]
64
65 Figure 31: Evaluation code for the case in Figure 3 (1/2).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/Bisection.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 from parse_svg_file import parse_svg_file

10
11 # ----- Tolerances (adjust if necessary) -----
12 tol_center = 1e-1 # Tolerance for matching a circle center with a line endpoint
13 tol_r = 1e-1 # Tolerance for comparing radii
14 tol_line = 1e-1 # Tolerance for checking if intersection points lie on a line segment
15
16 def dist_point_to_segmen t(pt, a, b):
17 """
18 Return the distance between a point pt and a line segment ab.
19 """
20 x,y = pt
21 x1,y1 = a
22 x2,y2 = b
23 dx = x2 - x1
24 dy = y2 - y1
25 if dx==0 and dy==0:
26 return math.hypot(x-x1, y-y1)
27 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
28 t = max(0.0, min(1.0, t))
29 proj_x = x1 + t*dx
30 proj_y = y1 + t*dy
31 return math.hypot(x - proj_x, y - proj_y)
32
33 def circle_intersections (c1, r1, c2, r2, tol=1e-6):
34 """
35 Return the intersection points of two circles.
36 If the circles intersect at two points, return a list of length 2.
37 If they are tangent, return a list of length 1.
38 If they do not intersect, return an empty list.
39 """
40 x0,y0 = c1
41 x1,y1 = c2
42 dx = x1 - x0
43 dy = y1 - y0
44 d = math.hypot(dx,dy)
45 # Same center or too far apart
46 if d < tol or d > r1 + r2 + tol or d < abs(r1 - r2) - tol:
47 return []
48 # Distance a and height h of intersection
49 a = (r1*r1 - r2*r2 + d*d) / (2*d)
50 h2 = r1*r1 - a*a
51 if h2 < 0 and abs(h2) <= tol:
52 h = 0.0
53 elif h2 < 0:
54 return []
55 else:
56 h = math.sqrt(h2)
57 xm = x0 + a * dx / d
58 ym = y0 + a * dy / d
59 rx = -dy * (h / d)
60 ry = dx * (h / d)
61 p1 = (xm + rx, ym + ry)
62 p2 = (xm - rx, ym - ry)
63 return [p1] if h == 0 else [p1, p2]
64
65

66 def main():
67 p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
68 p.add_argument('ground_truth', help="File path of correct SVG")
69 p.add_argument('llm_output', help="File path of SVG output from LLM")
70 args = p.parse_args()
71
72 try:
73 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')
74 out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object')
75 except Exception:
76 print("0")
77 sys.exit(0)
78
79 input_line = gt_segs[0]
80 if input_line is None:
81 print("0"); sys.exit(0)
82
83 p1, p2 = input_line
84
85 # Find circles that match p1 and p2
86 c1 = r1 = c2 = r2 = None
87
88 # ----- Condition 1: The output must contain exactly two circles whose centers match the endpoints

of the input segment -----
89 # Search for the circle centered at p1
90 for center, r in out_circs:
91 if math.hypot(center[0]-p1[0], center[1]-p1[1]) <= tol_center:
92 c1, r1 = center, r
93 break
94 if c1 is None:
95 print("0"); sys.exit(0)
96
97 # Search for the circle centered at p2 (make sure it's not the same one as c1)
98 for center, r in out_circs:
99 # Avoid matching the same circle by excluding identical centers
100 if (abs(center[0]-c1[0]) > tol_center or abs(center[1]-c1[1]) > tol_center) \
101 and math.hypot(center[0]-p2[0], center[1]-p2[1]) <= tol_center:
102 c2, r2 = center, r
103 break
104 if c2 is None:
105 print("0"); sys.exit(0)
106
107 # --- Condition 2: Radii must match and must be greater than half the segment length ---
108 line_len = math.hypot(p2[0]-p1[0], p2[1]-p1[1])
109 if abs(r1 - r2) > tol_r or r1 <= line_len/2 - tol_r:
110 print("0"); sys.exit(0)
111
112 # --- Condition 3: There must exist a line segment passing through the intersection points of the

circles ---
113 inters = circle_intersections (c1, r1, c2, r2, tol=tol_r)
114 if len(inters) < 2:
115 print("0"); sys.exit(0)
116
117 found_line = False
118 for q1, q2 in out_segs:
119 if dist_point_to_segmen t(inters[0], q1, q2) <= tol_line \
120 and dist_point_to_segmen t(inters[1], q1, q2) <= tol_line:
121 found_line = True
122 break
123
124 if not found_line:
125 print("0"); sys.exit(0)
126
127 # All conditions satisfied
128 print("1")
129
130 if __name__ == '__main__':
131 main()

Figure 32: Evaluation code for the case in Figure 3 (2/2).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

The evaluation code corresponding to the bottom case in Figure 5 is shown in Figures 33 and 34.

Overall Evaluation Procedure. The script evaluates whether an LLM–generated SVG correctly
draws the external tangents between four small circles found in a ground–truth SVG. It parses both
SVG files using parse svg file():

(gt segs,gt circs,gt ells), (out segs,out circs,out ells)

Only graphical items marked with the class names input object (ground truth) and
output object (LLM output) are retrieved. If parsing fails, the script immediately prints 0.

Geometric Helper Functions. Two main routines support the evaluation:

• dist point to segment(pt, a, b) computes the Euclidean distance from a point
pt to a segment with endpoints a, b. Using a projection onto line ab, the value is clamped
to the segment and the closest-point distance is returned.

• external tangents(c1, r1, c2, r2) returns pairs of tangent contact points be-
tween two circles with centers c1, c2 and radii r1, r2. If the distance between the centers is
too small (one circle inside another or touching internally), no external tangents exist and
an empty list is returned.

Tolerance Handling. A fixed distance tolerance

tol = 10

is used when determining whether a drawn segment approximates a target tangent. Small variations
due to SVG scaling or floating precision are therefore accepted.

Reference Circles in the Ground Truth. The script extracts all circles from the ground truth
drawing and sorts them by increasing radius. Only

the four circles with the smallest radii

are used as the construction targets. If fewer than five ground–truth circles exist, the problem is
considered invalid and the output score is 0.

Expected Geometry: External Tangents. For every pair among the four selected circles (six pairs
in total), the script computes the two possible external tangent segments:(

(p11, p12), (p21, p22)
)

Each tangent is a pair of points, one on each circle. At least one tangent for each circle pair must
appear in the LLM’s output as a drawn segment.

Matching Tangents in the LLM Output. For each correct tangent candidate (A,B), the script
checks whether any output segment (Q1, Q2) matches it using:

match segments() ⇐⇒
(
dist(A,Q1Q2) ≤ tol ∧ dist(B,Q1Q2) ≤ tol

)
.

If no output segment matches at least one tangent for a given circle pair, evaluation halts and returns
0.

Final Decision. If all six circle pairs have at least one tangent segment successfully approximated
by the LLM–generated SVG, the script prints: 1 otherwise it prints: 0.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/Casey%27s_theorem.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import itertools

10 from parse_svg_file import parse_svg_file
11
12
13 def dist_point_to_segmen t(pt, a, b):
14 x,y = pt; x1,y1 = a; x2,y2 = b
15 dx = x2 - x1; dy = y2 - y1
16 if dx==0 and dy==0:
17 return math.hypot(x-x1, y-y1)
18 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
19 t = max(0.0, min(1.0, t))
20 proj_x = x1 + t*dx; proj_y = y1 + t*dy
21 return math.hypot(x - proj_x, y - proj_y)
22
23
24 def match_segments(gt_segs, out_segs, tol=1e1):
25 """Check whether each segment in gt is contained in any segment in out"""
26 for (p1,p2) in gt_segs:
27 ok = False
28 for (q1,q2) in out_segs:
29 if dist_point_to_segmen t(p1, q1, q2) <= tol and dist_point_to_segmen t(p2, q1, q2) <= tol:
30 ok = True; break
31 if not ok:
32 return False
33 return True
34
35
36 def external_tangents(c1, r1, c2, r2):
37 """Return pairs of tangent points for the external common tangents of two circles"""
38 (x1,y1), (x2,y2) = c1, c2
39 dx = x2 - x1; dy = y2 - y1
40 d2 = dx*dx + dy*dy
41 if d2 <= (r1 - r2)**2:
42 return []
43 d = math.sqrt(d2)
44 a = (r1 - r2) / d
45 a = max(-1.0, min(1.0, a))
46 b = math.sqrt(max(0.0, 1 - a*a))
47 ux = dx / d; uy = dy / d
48 vx = -dy / d; vy = dx / d
49 n1 = (a*ux + b*vx, a*uy + b*vy)
50 n2 = (a*ux - b*vx, a*uy - b*vy)
51 p11 = (x1 + r1 * n1[0], y1 + r1 * n1[1])
52 p12 = (x2 + r2 * n1[0], y2 + r2 * n1[1])
53 p21 = (x1 + r1 * n2[0], y1 + r1 * n2[1])
54 p22 = (x2 + r2 * n2[0], y2 + r2 * n2[1])
55 return [(p11, p12), (p21, p22)]
56
57
58 def main():
59 p = argparse.ArgumentParser(description="SVG output evaluation script")
60 p.add_argument('ground_truth', help="Path to the ground truth SVG file")
61 p.add_argument('llm_output', help="Path to the LLM output SVG file")
62 args = p.parse_args()
63
64 try:
65 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')

Figure 33: Evaluation code for the bottom case in Figure 5 (1/2).

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/Casey%27s_theorem.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import itertools

10 from parse_svg_file import parse_svg_file
11
12
13 def dist_point_to_segmen t(pt, a, b):
14 x,y = pt; x1,y1 = a; x2,y2 = b
15 dx = x2 - x1; dy = y2 - y1
16 if dx==0 and dy==0:
17 return math.hypot(x-x1, y-y1)
18 t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
19 t = max(0.0, min(1.0, t))
20 proj_x = x1 + t*dx; proj_y = y1 + t*dy
21 return math.hypot(x - proj_x, y - proj_y)
22
23
24 def match_segments(gt_segs, out_segs, tol=1e1):
25 """Check whether each segment in gt is contained in any segment in out"""
26 for (p1,p2) in gt_segs:
27 ok = False
28 for (q1,q2) in out_segs:
29 if dist_point_to_segmen t(p1, q1, q2) <= tol and dist_point_to_segmen t(p2, q1, q2) <= tol:
30 ok = True; break
31 if not ok:
32 return False
33 return True
34
35
36 def external_tangents(c1, r1, c2, r2):
37 """Return pairs of tangent points for the external common tangents of two circles"""
38 (x1,y1), (x2,y2) = c1, c2
39 dx = x2 - x1; dy = y2 - y1
40 d2 = dx*dx + dy*dy
41 if d2 <= (r1 - r2)**2:
42 return []
43 d = math.sqrt(d2)
44 a = (r1 - r2) / d
45 a = max(-1.0, min(1.0, a))
46 b = math.sqrt(max(0.0, 1 - a*a))
47 ux = dx / d; uy = dy / d
48 vx = -dy / d; vy = dx / d
49 n1 = (a*ux + b*vx, a*uy + b*vy)
50 n2 = (a*ux - b*vx, a*uy - b*vy)
51 p11 = (x1 + r1 * n1[0], y1 + r1 * n1[1])
52 p12 = (x2 + r2 * n1[0], y2 + r2 * n1[1])
53 p21 = (x1 + r1 * n2[0], y1 + r1 * n2[1])
54 p22 = (x2 + r2 * n2[0], y2 + r2 * n2[1])
55 return [(p11, p12), (p21, p22)]
56
57
58 def main():
59 p = argparse.ArgumentParser(description="SVG output evaluation script")
60 p.add_argument('ground_truth', help="Path to the ground truth SVG file")
61 p.add_argument('llm_output', help="Path to the LLM output SVG file")
62 args = p.parse_args()
63
64 try:
65 gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')

66 out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object')
67 except Exception:
68 print("0")
69 sys.exit(0)
70
71 # Get circles from the ground truth and select the top 4 with the smallest radius
72 if len(gt_circs) < 5:
73 print("0"); sys.exit(0)
74 gt_circs_sorted = sorted(gt_circs, key=lambda x: x[1])[:4]
75
76 tol = 1e1
77 ok_all = True
78 for (c1, r1), (c2, r2) in itertools.combinations(gt_circs_sorted, 2):
79 tangents = external_tangents(c1, r1, c2, r2)
80 if not tangents:
81 ok_all = False; break
82 # It is OK if at least one of the two tangent pairs exists in the output
83 if not any(match_segments([seg], out_segs, tol) for seg in tangents):
84 ok_all = False; break
85
86 print("1" if ok_all else "0")
87
88 if __name__ == '__main__':
89 main()
90

Figure 34: Evaluation code for the bottom case in Figure 5 (2/2).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

F.2 MOLECULAR STRUCTURE

F.2.1 PARSING CODE

We present the parsing code for converting vector data into graphs representing molecular structures
as shown in Figure 35.

The parse svg file function reads an SVG file and constructs a network graph using
networkx. Nodes are extracted from <circle> elements, where each circle’s coordinates and
fill color are stored as node attributes. Line endpoints (<line> elements) are matched with the
nearest circle positions to determine which nodes are connected. When both endpoints correspond
to valid circles, an edge is created between the associated nodes. The function therefore produces
an undirected graph whose topology reproduces the molecular connectivity encoded in the SVG
drawing.

~/Desktop/experiment/svg_chem/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import math
5 import xml.etree.ElementTree as ET
6 import networkx as nx
7
8
9 def parse_svg_file(path, tol=1e-1):

10 """
11 A function that builds a graph structure from an SVG file.
12 Nodes are extracted from <circle> elements, and edges are extracted by associating
13 endpoints of <line> elements with those nodes.
14 """
15 root = ET.parse(path).getroot()
16
17 G = nx.Graph()
18 # Specify the SVG namespace
19 ns = {'svg': 'http://www.w3.org/2000/svg'}
20
21 circles = []
22 # Retrieve circle elements and register each node
23 for i, circle in enumerate(root.findall(".//svg:circle", ns)):
24 cx = float(circle.attrib['cx'])
25 cy = float(circle.attrib['cy'])
26 fill = circle.attrib.get('fill', '')
27 circles.append((cx, cy, fill, i))
28 G.add_node(i, fill=fill, pos=(cx, cy))
29
30 # Find the closest circle (node) to the given coordinates
31 def find_circle(x, y):
32 for cx, cy, fill, node_id in circles:
33 if math.hypot(cx - x, cy - y) < tol:
34 return node_id
35 return None
36
37 # Add edges based on line elements
38 for line in root.findall(".//svg:line", ns):
39 x1 = float(line.attrib['x1'])
40 y1 = float(line.attrib['y1'])
41 x2 = float(line.attrib['x2'])
42 y2 = float(line.attrib['y2'])
43 n1 = find_circle(x1, y1)
44 n2 = find_circle(x2, y2)
45 # Add edge only if both endpoints correspond to circles (nodes)
46 if n1 is not None and n2 is not None:
47 G.add_edge(n1, n2)
48 return G
49

Figure 35: SVG parsing code.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

F.2.2 EVALUATION CODE

The script in Figure 36 evaluates whether two SVG files represent the same molecular graph. It takes
two SVG file paths as input: a ground-truth structure and an SVG produced by a language model.
Both files are parsed into graphs using the previously defined parse svg file function.

After parsing, the script compares the two graphs using networkx.is isomorphic, where
nodes are matched based on their fill attribute, ensuring that atoms of the same type correspond
between graphs. If the two SVG-derived graphs are isomorphic under this constraint, the script out-
puts 1; otherwise, it outputs 0. This enables automated validation of molecular structure predictions
generated from vector graphics.

~/Desktop/experiment/svg_chem/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3
4 import argparse
5 import xml.etree.ElementTree as ET
6 from parse_svg_file import parse_svg_file
7 import networkx as nx
8
9

10 def main():
11 p = argparse.ArgumentParser(description="SVG output evaluation script")
12 p.add_argument('ground_truth', help="File path of the ground truth SVG")
13 p.add_argument('llm_output', help="File path of the LLM-generated SVG")
14 args = p.parse_args()
15
16 gt_G = parse_svg_file(args.ground_truth)
17 out_G = parse_svg_file(args.llm_output)
18
19 node_match = lambda n1, n2: n1['fill'] == n2['fill']
20
21 # Graph isomorphism check
22 iso = nx.is_isomorphic(gt_G, out_G, node_match=node_match)
23
24 print("1" if iso else "0")
25
26 if __name__ == '__main__':
27 main()
28 Figure 36: Evaluation code.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

G VALIDATION OF HUMAN-SYSTEM AGREEMENT

We verify the validity of our automated evaluation code by assessing how closely human evaluations
align with the code’s judgments. Two human evaluators judge whether LLM outputs are correct or
incorrect. One is a master’s student and the other is an undergraduate student. They both major in
engineering. They were not involved in our research and had no prior knowledge of the project. For
each description, we present a ground-truth vector graphic along with an LLM-generated output,
and ask them to evaluate its correctness. For the plane geometry task, we use all 110 instances.
For the molecular structure task, highly complex structures can increase the likelihood of errors by
human evaluators; therefore, we use a relatively simple set of 50 instances. We randomly select LLM
outputs so that the data labeled as correct and incorrect by our code are evenly balanced. Therefore,
the instances we used consist of 50% judged correct by our code and 50% judged incorrect. We
include all output formats: TikZ, SVG, and EPS.

Table 15 shows the percentage of agreement and Cohen’s Kappa scores between the human evalua-
tors and our code. These results demonstrate very high agreement rates, indicating the reliability of
our evaluation approach.

Table 15: The percentage of agreement and Cohen’s Kappa scores between the human evaluators
and our code.

Annotator 1 Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement 97.3% 95.5% 95.5% 98.0% 98.0% 98.0%

Cohen’s Kappa 0.946 0.909 0.909 0.960 0.960 0.960

Annotator 2 Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement 96.4% 99.1% 95.5% 98.0% 100.0% 96.0%

Cohen’s Kappa 0.927 0.982 0.909 0.960 1.000 0.920

60

	Introduction
	Related Works
	SSVG-Bench
	Plane Geometry
	Molecular Structure
	Multiple Vector Formats

	Benchmarking and Analysis
	LLM-Oriented Orchestration Prompting (LOOP)
	Evaluation

	Conclusion
	The Use of Large Language Models (LLMs)
	Detailed Prompts Used in Our Experiments
	Limitations of Our Automatic Evaluation Framework
	Additional Examples of Generated Vector Graphics
	Examples Generated by Fine-tuned Models
	Impact of Reasoning
	Impact of Format
	Comparison of Zero-shot Prompting Methods

	Additional Experiments
	Complementary Automatic Metrics
	Additional Models
	Impact of Resampling on Fine-tuned Models
	Evaluation on the DaTikZ v3 Dataset
	Ablations on LOOP

	Details of the Evaluation Code
	Plane Geometry
	Parsing code
	Evaluation Code for Pattern 1
	Evaluation Code for Pattern 2

	Molecular Structure
	Parsing code
	Evaluation Code

	Validation of Human-System Agreement

