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ABSTRACT

We address the challenge of automatically visualizing scientific explanations.
While prior work has explored large language model (LLM)-based vector graphic
generation, existing approaches often overlook structural correctness, a key re-
quirement for valid scientific diagrams. To achieve structurally correct genera-
tion, we make three key contributions. First, we introduce SSVG-Bench, a novel
benchmark for evaluating the generation of Structured Scientific Vector Graphics.
Unlike conventional visual similarity metrics, SSVG-Bench employs task-specific
structural analysis for accurate evaluation, and it supports three vector formats:
TikZ, SVG, and EPS. Second, we conduct an extensive benchmarking and analy-
sis, revealing key findings such as the crucial role of LLM reasoning in ensuring
structural validity. Third, we propose LLM-Oriented Orchestration Prompting
(LOOP), a new prompting method that leverages LLMs’ reasoning potential by
combining familiar subtasks. Experiments demonstrate substantial improvements
over existing prompting techniques, suggesting promising directions for scientific
diagram generation. We will release our code and benchmark upon acceptance.

1 INTRODUCTION

In this paper, we address the challenge of automatically visualizing scientific explanations. Because
scientific explanations are often abstract and complex, they can be difficult to grasp from text alone.
To promote intuitive understanding, visualization is widely used in contexts such as science text-
books and research papers. These observations suggest that automated visualization could have a
significant impact.

Recent research on scientific diagram generation has investigated vector graphics generation with
large language models (LLMs) (Belouadi et al., 2024a;b; Zhang et al., 2025; Belouadi et al., 2025).
As vector graphics encode visual content in structured text form, they can be directly produced by
LLMs. Given that LLMs are capable of capturing scientific concepts in depth and encoding complex
constraints, they are particularly promising for this task.

However, existing methods have overlooked a crucial aspect of scientific diagrams: structural cor-
rectness. To illustrate its importance, we present a physics scenario in Figure 1. Here, the visu-
alization must strictly satisfy structural constraints: the object should remain in contact with the
inclined plane, and three arrows must be shown, one vertical to the ground, one perpendicular to the
plane, and one parallel to the plane. An existing method, namely a fine-tuned LLM for generating
vector code (Belouadi et al., 2025), fails to meet these constraints. Although it prioritizes visual
plausibility, the lack of structural enforcement ultimately leads to invalid scientific diagrams.

Towards the generation of scientific vector graphics with structural correctness, we make three main
contributions. Our first contribution is a new benchmark for the generation of Structured Scien-
tific Vector Graphics, named SSVG-Bench. It targets two foundational domains: plane geometry
and molecular structure. The plane geometry task involves generating geometric figures from tex-
tual descriptions of theorems or construction methods, while the molecular structure task requires
correctly generating a molecule’s structure from its IUPAC name, which encodes structural infor-
mation. These domains are representative of broader applications: the ability to generate plane
geometry structures is fundamental for physics illustrations, engineering diagrams, and architec-
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An object on an inclined plane experiences 
three forces: the gravitational force mg 
acting vertically downward, the normal 
force of magnitude mgcos(theta) acting 
perpendicular to the plane, and a static 
friction force of magnitude mgsin(theta) 
acting up the plane, parallel to its surface.

Textual explanation Output by TikZero+

�Fg

�Fn

�Fs

θ

1

Expected output

mg

mg cosθ mg sinθ

θ

Figure 1: An example highlighting the importance of structural correctness: the object should remain
in contact with the inclined plane, and three arrows must be shown, one vertical to the ground, one
perpendicular to the plane, and one parallel to the plane. TikZero+ (Belouadi et al., 2025), a fine-
tuned LLM for generating vector code, does not meet these structural constraints.

tural blueprints, while generating molecular structures requires correctly producing graph structures,
which are important in various fields such as algorithm flowcharts, circuit designs, and biological
pathways. The most significant feature of SSVG-Bench is its evaluation method. Conventional
visual similarity metrics are insufficient for assessing structural correctness, as even minor visual
changes can cause structural inconsistencies. To address this, we provide task-specific Python scripts
that analyze the structure of the generated outputs, enabling accurate evaluation of structural correct-
ness. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which allows
us to examine performance across formats.

Our second contribution is a comprehensive benchmarking and analysis of existing models using
SSVG-Bench, which yields several key findings. First, LLLs fine-tuned on existing vector graphic
generation datasets to produce vector code rarely generate structurally valid vector graphics. Second,
we show that the reasoning capabilities of LLMs are essential for generating structurally correct
vector graphics. Finally, although prior work has mainly focused on the TikZ format, our results
demonstrate that the SVG format is better suited for LLM reasoning.

As our third contribution, we propose a new prompting technique, LLM-Oriented Orchestration
Prompting (LOOP), to further enhance the reasoning capabilities of LLMs. Recent LLMs are ex-
plicitly trained to perform step-by-step reasoning and can solve complex tasks, but it has been re-
ported that they struggle with tasks not encountered during training (Shojaee et al., 2025; Malek
et al., 2025). Since LLMs are not explicitly trained to generate vector graphics from scientific expla-
nations, they cannot fully utilize their reasoning potential when the task is presented in its original
form. To fully leverage their reasoning abilities, we design a prompt that explicitly guides LLMs
to perform LLM-friendly subtasks such as information extraction and relationship extraction, which
enables them to generate vector graphics with correct structure. Our experiments demonstrate that
LOOP achieves substantially better performance than existing prompting methods.

Our contributions can be summarized as follows.

• Dataset: We introduce SSVG-Bench, a new benchmark for structured scientific vector graphics
generation, including scripts that verify structural correctness.

• Benchmarking and analysis: Our analysis shows that previous fine-tuned models cannot pro-
duce structurally correct graphics, that LLM reasoning capabilities are essential for ensuring
structural correctness, and that the SVG format is well-suited for such reasoning.

• Method: We propose LOOP, a new prompting method that enhances LLM reasoning by solving
LLM-friendly sub-problems step by step.

2 RELATED WORKS

Scientific vector graphic generation benchmarks. Vector graphics are gaining attention as an
image format well-suited for LLMs, as they are represented in text and can be directly input or output
by LLMs without requiring a vision adapter. Several benchmarks have been developed for general
vector graphics generation, such as SVGEditBench (Nishina & Matsui, 2024), SVG Taxonomy (Xu
& Wall, 2024), VGBench (Zou et al., 2024), and SGP-Bench (Qiu et al., 2025). Additionally, several
benchmarks for visualizing scientific data have been developed, such as MatPlotBench (Yang et al.,
2024), PandasPlotBench (Galimzyanov et al., 2025), and ChartMimic (Yang et al., 2025).
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Table 1: Comparison of previous benchmarks with our SSVG-Bench.

Benchmark # Evaluation data Evaluation method Vector format

DaTikZ v1 1,000 Visual and code similarity, Human evaluation TikZ
DaTikZ v2 1,000 Visual and code similarity, Human evaluation TikZ
DaTikZ v3 1,000 Visual and code similarity, Human evaluation TikZ
ScImage 404 Human evaluation TikZ
DiagramGenBenchmark 470 Visual and code similarity, Human evaluation TikZ, DOT
SSVG-Bench (ours) 1,230 Structural analysis scripts TikZ, SVG, EPS

Motivated by this trend, some benchmarks have also been created specifically for scientific vector
graphics generation. DaTikZ v1 (Belouadi et al., 2024a) collects TikZ code and corresponding
captions from sources such as arXiv papers. DaTikZ v2 (Belouadi et al., 2024b) collects pairs
of hand-drawn sketches and TikZ code to evaluate the performance of sketch-to-TikZ conversion.
DaTikZ v3 (Belouadi et al., 2025) further extends DaTikZ v1 and v2. ScImage (Zhang et al., 2025)
employs synthetic data to analyze scientific vector generation in terms of attributes, numbers, and
spatial dimensions. DiagramGenBenchmark (Wei et al., 2025) provides diagram structures in TikZ
as well as graph structures in the DOT language.

However, these benchmarks generally do not focus on the structural correctness of the generated
graphics. We present a comparison of these benchmarks with our SSVG-Bench in Table 1. The
most significant feature of SSVG-Bench is its evaluation method. Visual similarity-based and code
similarity-based metrics are insufficient for determining whether the structure of a generated graphic
truly reflects the intended structure. Human evaluations, while informative, are not scalable and
are subject to variability and inconsistency across evaluators. To address these issues, we provide
task-specific Python scripts that analyze the structure of the generated output and determine its
correctness. Our evaluation framework offers precise, objective, and consistent assessments of per-
formance. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which
allows us to examine performance across formats.

Scientific vector graphic generation methods. Based on the benchmarks, several scientific vector
graphic generation methods have been proposed. AutomaTikZ (Belouadi et al., 2024a) is designed
for TikZ generation by fine-tuning Llama (Touvron et al., 2023) to output TikZ code from captions.
It leverages CLIP features (Radford et al., 2021), derived from captions, to further improve visual
alignment. DeTikZify (Belouadi et al., 2024b) converts hand-drawn sketches into TikZ code by
combining a vision encoder (SigLIP (Zhai et al., 2023)) with an LLM such as Llama. TikZero (Be-
louadi et al., 2025) addresses the scarcity of paired caption-TikZ data by leveraging readily available
captioned raster images for training. DiagramAgent (Wei et al., 2025) enables the creation of com-
plex diagrams by coordinating multiple agents. Despite their innovations, these models are primarily
trained to predict output code and are not designed to guarantee structural correctness.

LLM prompting methods. The reasoning capabilities of LLMs can be elicited through effective
prompting. Seminal work on Chain-of-Thought (CoT) demonstrated that allowing models to gen-
erate intermediate reasoning steps dramatically improves multi-step reasoning (Wei et al., 2022).
Follow-ups revealed that simply appending “Let’s think step by step” can unlock zero-shot rea-
soning (Kojima et al., 2022), and that sampling multiple reasoning paths and selecting the most
consistent answer (“self-consistency”) further boosts accuracy (Wang et al., 2023b). Beyond linear
reasoning, researchers decomposed problems via least-to-most prompting (Zhou et al., 2023), intro-
duced plan-first then execute strategies such as Plan-and-Solve (Wang et al., 2023a), and proposed
Step-Back prompting, which encourages the model to abstract away from the immediate problem
and reason at a higher conceptual level before providing a solution (Zheng et al., 2024). In this
paper, we introduce a novel prompting method designed for scientific vector graphic generation.

3 SSVG-BENCH

To evaluate whether LLMs can generate vector graphics with structural correctness, we introduce
SSVG-Bench. SSVG-Bench covers two key topics: 1) plane geometry and 2) molecular structure.
For each topic, we also develop an automatic evaluation framework. Figure 2 presents some ex-
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Plane geometry

Molecular structure

To state the theorem, suppose that 
ABCD and AB'C'D' are two squares 
with common vertex A. Let E and G 
be the midpoints of B'D and D'B 
respectively, and let F and H be the 
centers of the two squares. Then the 
theorem states that the quadrilateral 
EFGH is a square as well.

The Apollonius point of a triangle is 
defined as follows. Let △ABC be any 
given triangle. Let the excircles of △
ABC opposite to the vertices A, B, C 
be EA, EB, EC respectively. Let E be 
the circle which touches the three 
excircles EA, EB, EC such that the 
three excircles are within E. Let A', 
B', C' be the points of contact of the 
circle E with the three excircles. The 
lines AA', BB', CC' are concurrent. 
The point of concurrence is the 
Apollonius point of △ABC.

The exterior angle bisector in A 
intersects the extended side BC in E, 
the exter ior angle bisector in B 
intersects the extended side AC in D 
and the exterior angle bisector in C 
intersects the extended side AB in F.

The three points of intersect ion 
between the exterior angle bisectors 
and the extended triangle sides D, E, 
F are collinear, that is they lie on a 
common line.

the molecular structure of the 
compound with the IUPAC name
4-butyl-2,6-dimethylmorpholine

the molecular structure of the 
compound with the IUPAC name 

6-methoxy-4-methyl-5-phenyl
methoxyquinolin-8-amine

the molecular structure of the 
compound with the IUPAC name

4-[[2,4-diamino-5-[(4-carboxyphenyl)
diazenyl]phenyl]diazenyl]benzoic acid

A
B

C

D

E

F

A

B C
A

B

HF
C

D

B'

D'

E

G

C'

Vector
graphic

Input
text

Vector
graphic

Input
text

Figure 2: Examples in SSVG-Bench.1

amples, and Table 2 summarizes respective statistics. We provide a detailed explanation of these
components in the following sections.

3.1 PLANE GEOMETRY Table 2: Statistics of SSVG-Bench. The num-
ber of elements is counted based on the SVG.

Plane geometry
Total number of input texts 110
Average number of elements per vector graphic

- line 3.96
- circle 2.77
- ellipse 0.03
- polygon 1.65
- polyline 0.01

Molecular structure
Total number of input texts 300
Average number of elements per vector graphic

- line 32.45
- circle 30.38

This task involves generating visualizations of
plane geometric figures from textual descriptions,
translating explanations of theorems or construc-
tions into precise visual representations. To suc-
ceed, LLMs must accurately interpret spatial re-
lationships such as “intersection”, “tangent”, and
“perpendicular”, as well as uniquely determined
constructions like “angle bisectors” and “excir-
cles.” This task can evaluate visualization capa-
bilities that are important in a variety of applica-
tions, including physics illustrations, engineering
diagrams, and architectural blueprints.

We curated a dataset by collecting paired textual
descriptions and corresponding images related to
plane geometry from Wikipedia. All images used are freely available for modification and redis-
tribution. Most of them are in SVG, a vector graphic format. We cleaned the images using Adobe
Illustrator by removing elements unrelated to the text. When only raster images were available, we
manually recreated the visuals in vector format. In total, we compiled 110 text-vector graphic pairs.

1The input texts and vector graphics are from (Wikipedia contributors, 2025b;f; 2024; Kmhkmh, 2019a;
2015; Krishnachandranvn, 2012; National Center for Biotechnology Information, 2025f;l;g)
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The segment AB is bisected 
by drawing intersecting 
circles of equal radius r > 
1/2|AB|, whose centers are 
the endpoints of the segment. 
The line determined by the 
points of intersection of the 
two circles is the perpen- 
d icu lar  b isec tor  o f  the 
segment.

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Gemini 2.0 Flash

B

A

·

·

Incorrect

DeepSeek-R1

Correct

Ground-truth

B

A

B

A

Figure 3: An example of the automatic evaluation results for Pattern 2 in the plane geometry
visualization task, where the correct object is not uniquely determined. Our Python-based automatic
evaluation framework checks whether the radius of each circle is greater than half the length of
segment AB, enabling appropriate assessment.2

the molecular structure of the 
compound with the IUPAC name 
tellurophene-2-carboxylic acid

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Claude Opus 4.1

Incorrect

GPT-5

Correct

Ground-truth

Figure 4: An example of the automatic evaluation results in the molecular structure visualization
task. Correctness can be determined based on graph analysis, even when the images differ signifi-
cantly in visual appearance.3

The automatic evaluation falls into two distinct patterns. In Pattern 1, the correct output can be
uniquely determined. We provide some parts of the vector graphics as input to the LLM. As shown
in Figure 2, the elements depicted in black are given as input, and the LLM is expected to generate
the red elements. These red elements are uniquely determined by the black elements. We devel-
oped a Python script to analyze the vector data and assess correctness by checking whether the red
components are present in the LLM’s output.

In Pattern 2, the correct output cannot be uniquely determined, even when the black elements are
provided. For example, in the case illustrated in Figure 3, any circle with a radius greater than half
the length of the given line segment is considered acceptable. For such cases, we implemented case-
specific Python logic to evaluate correctness based on the textual input, allowing for variation in
valid outputs. In Figure 3, the output of Gemini 2.0 Flash is judged as incorrect because the radius
of the circle is shorter than half the length of segment AB. Although the output of DeepSeek-R1
differs from the predefined ground-truth radius, it is judged as correct since their circle radii exceed
half the length of segment AB.

For simplicity, we exclude text layout from the evaluation process.

3.2 MOLECULAR STRUCTURE

In this task, the input is an IUPAC name that describes the molecular structure, and the goal is to
generate the corresponding molecular structure. The IUPAC name encodes the structural informa-
tion of a molecule, and by interpreting it, the molecular structure can be reconstructed. For example,
the IUPAC name shown on the left side of Figure 2 is “4-butyl-2,6-dimethylmorpholine,” which
indicates that a butyl group is attached to the nitrogen atom at the 4-position (shown in blue) of
the morpholine ring (a six-membered ring), and that methyl groups are attached at the 2- and 6-
positions. In this way, the molecular structure can be accurately restored from the IUPAC name. It
is essential to correctly identify the types and numbers of atoms involved, with particular importance
placed on the graph structure formed by atomic bonds. This task can evaluate the graph structure vi-

2The input text and the ground-truth are from (Wikipedia contributors, 2025c) and (Ag2gaeh, 2021).
3The molecular structure data is from (National Center for Biotechnology Information, 2025p).
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sualization capabilities of LLMs, which are important in various fields such as algorithm flowcharts,
circuit design, and biological pathways.

We obtained pairs of IUPAC names and molecular structures from PubChem4. The structural data
is stored in JSON format, and we developed a Python script to convert this information into vec-
tor graphics automatically. Using this script, we generated ground-truth data. We collected 300
molecules in total, with 50 examples each for molecules with fewer than 20 elements (atoms plus
bonds), 21-40, 41-60, 61-80, 81-100, and more than 100 elements.

To enable automatic evaluation, we implemented a Python-based evaluation tool. The generated
vector graphic is converted into a molecular graph, where nodes represent atoms and edges represent
bonds. We then check for “graph isomorphism” between the generated structure and the ground-
truth to automatically assess correctness. Graph isomorphism refers to the problem of determining
whether two graphs are structurally identical, meaning their nodes and edges can be matched one-to-
one while preserving connectivity. We use the NetworkX library to solve this problem. To simplify
the task, we do not consider bond order. We present an example of automatic evaluation results
in Figure 4. Although the output of GPT-5 appears visually different from the ground-truth, it is
considered correct based on graph-theoretic equivalence.

3.3 MULTIPLE VECTOR FORMATS

There are various types of vector graphic formats. To analyze performance differences across for-
mats, we use three types: TikZ, SVG, and EPS. For the plane geometry task, since the vector graph-
ics collected from Wikipedia are in SVG format, we developed Python scripts to automatically con-
vert SVG to TikZ and EPS, thereby generating ground-truth data. For the molecular structure task,
we generate vector graphics in each format directly from molecular structure data stored in JSON
files, using custom Python scripts to automate the process. When evaluating LLMs, we add instruc-
tions to the prompt to generate output in a specific format. This approach allows us to explore which
vector format is most suitable for LLMs. If the syntax is incorrect, it will result in a compilation
error (for TikZ and EPS) or a parsing error (for SVG). In such cases, the output is considered incor-
rect. Therefore, LLMs must strictly adhere to the syntax of each format. Our SSVG-Bench dataset
consists of two tasks and three vector formats, comprising a total of 1,230 text-vector graphic pairs.

4 BENCHMARKING AND ANALYSIS

Using SSVG-Bench, we evaluate whether recent models can generate structurally correct vector
graphics. Our experiments utilize two fine-tuned models: AutomaTikZ (Belouadi et al., 2024a)
and TikZero+ (Belouadi et al., 2025). As these models are trained to generate TikZ, we evaluate
them exclusively on TikZ. We also evaluate recent general-purpose LLMs, including DeepSeek-V3,
R1, V3.1 (DeepSeek, 2025), Claude Opus 4.1 (Anthropic, 2025), Gemini 2.0 Flash, 2.5 Flash, 2.5
Pro (Google, 2025), o4-mini, GPT-4.1, and GPT-5 (OpenAI, 2025). The detailed prompts used
for evaluation are provided in the Appendix. The overall performance is shown in Table 4, with a
detailed analysis provided below.

Limitations of fine-tuned models. Our benchmarking with SSVG-Bench reveals that models fine-
tuned to generate TikZ code (AutomaTikZ and TikZero+) seldom produce structurally valid outputs.
This highlights a limitation: simply training to predict TikZ code from captions is insufficient to
generate correct scientific figures.

Importance of reasoning. To evaluate the effectiveness of reasoning, we consider models where
reasoning can be toggled on and off, and we report results for both configurations in Table 4. The
models compared are as follows: DeepSeek-V3.1 vs. DeepSeek-V3.1 reasoning, Claude Opus 4.1
vs. Claude Opus 4.1 thinking, Gemini 2.5 Flash vs. Gemini 2.5 Flash reasoning, and GPT-5 Chat
vs. GPT-5. Table 5 compares the averages of models with reasoning disabled and enabled. Enabling
reasoning significantly improves performance. These results demonstrate that enabling reasoning
plays a crucial role in generating structured vector graphics.

4https://pubchem.ncbi.nlm.nih.gov/
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Table 4: Accuracies on SSVG-Bench (%). The fill colors correspond to the values.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Fine-tuned models
AutomaTikZ - 0.0 - - 0.0 - 0.0
TikZero+ - 0.9 - - 0.0 - 0.2

Non-reasoning models
DeepSeek-V3 10.0 5.5 7.3 5.3 3.3 3.0 4.9
DeepSeek-V3.1 11.8 6.4 9.1 6.3 3.7 3.3 5.7
Claude Opus 4.1 14.5 12.7 20.9 24.3 26.0 16.0 20.5
Gemini 2.0 Flash 7.3 5.5 1.8 6.0 3.7 0.7 3.8
Gemini 2.5 Flash 12.7 9.1 5.5 22.7 11.3 14.3 14.2
GPT-4.1 10.9 10.0 14.5 19.0 15.0 13.7 14.8
GPT-5 Chat 12.7 10.0 7.3 16.0 14.3 11.0 12.8

Reasoning models
DeepSeek-R1 28.2 40.9 39.1 18.3 20.0 19.7 23.8
DeepSeek-V3.1 reasoning 23.6 39.1 27.3 31.0 7.3 20.7 22.4
Claude Opus 4.1 thinking 20.0 23.6 17.3 26.7 27.7 23.3 24.4
Gemini 2.5 Flash reasoning 30.0 55.5 41.8 32.0 39.3 34.7 37.2
Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
o4-mini 48.2 62.7 55.5 33.3 42.7 39.0 42.9
GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0

Table 5: Comparison of averages for models with reasoning enabled vs. disabled. DeepSeek-V3.1,
Claude Opus 4.1, Gemini 2.5 Flash, and GPT-5 are considered.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Reasoning disabled 13.0 9.5 10.7 17.3 13.8 11.2 13.3
Reasoning enabled 32.0 48.4 38.2 35.5 32.5 32.1 35.0

Table 3: Google search hits for format-specific keywords (Septem-
ber 2025).

TikZ SVG EPS

Keyword “\documentclass[tikz]” “</svg>” “showpage” and “moveto”
# Hits 154K 422M 23.3K

Impact of vector format.
Focusing on the two best-
performing models, Gemini
2.5 Pro and GPT-5, we ob-
serve that their performance
on SVG is the highest, sur-
passing their performance on
TikZ and EPS. This represents a novel finding, as prior benchmarks have primarily focused on TikZ.
One possible explanation is the scale of resources used for training. Existing research (Zhu et al.,
2024) has demonstrated that the reasoning capabilities of LLMs tend to be weaker in low-resource
languages (e.g., Bengali or Thai) compared to high-resource languages (e.g., English). Similarly,
it is possible that LLMs are not well-suited for reasoning with TikZ and EPS, because they may
be considered “low-resource languages.” To test this hypothesis, it would be necessary to examine
the training data, but the datasets used to train Gemini 2.5 Pro and GPT-5 remain unspecified. We
instead query Google with format-specific keywords and record the number of hits, since much of
the training data for LLMs is derived from internet sources. Table 3 presents the number of hits
obtained from searches using format-specific keywords. Compared to TikZ and EPS, SVG yielded
a much higher number of hits, suggesting that SVG constitutes a high-resource format.

5 LLM-ORIENTED ORCHESTRATION PROMPTING (LOOP)

Through our analysis, we find that LLM reasoning plays a crucial role. Building on this finding, we
propose a method to enhance their reasoning capabilities. Previous research has shown that carefully
crafted prompts can significantly improve LLM reasoning, even in zero-shot settings. For instance,
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Table 6: Comparison between our LOOP and other zero-shot prompting methods.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
w/ Zero-shot CoT 39.1 66.4 61.8 47.7 63.0 58.7 56.3
w/ Plan-and-Solve 39.1 69.1 66.4 41.3 58.7 55.0 53.4
w/ Step-Back 33.6 64.5 59.1 40.7 54.3 56.3 51.0
w/ LOOP (ours) 65.5 80.9 62.7 47.7 64.7 67.7 62.6

GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0
w/ Zero-shot CoT 58.2 80.0 75.5 53.0 52.0 49.3 56.7
w/ Plan-and-Solve 61.8 77.3 70.9 52.3 50.3 50.7 56.2
w/ Step-Back 55.5 75.5 72.7 50.7 51.7 48.3 55.0
w/ LOOP (ours) 70.0 80.0 77.3 55.0 57.3 54.3 61.0

zero-shot CoT prompting (Kojima et al., 2022), which simply instructs the model with “Let’s think
step by step,” has been shown to improve performance. In this work, we introduce a novel zero-shot
prompting method, termed LOOP. While recent LLMs are explicitly trained for step-by-step reason-
ing and can solve complex tasks, their performance often degrades on tasks outside their training
distribution (Shojaee et al., 2025; Malek et al., 2025). Because LLMs are not inherently trained
to generate vector graphics from scientific explanations, their reasoning potential remains under-
utilized. The core idea of LOOP is to instruct LLMs to generate vector graphics by orchestrating
LLM-familiar tasks. Specifically, we use the following tasks: 1) information extraction, 2) relation-
ship extraction, 3) mathematical reasoning, and 4) code generation. The first three tasks provide the
information necessary for visualization, while the final task produces the vector graphics. Informa-
tion and relationship extraction are long-standing tasks in the field of natural language processing,
whereas mathematical reasoning and code generation are areas where recent LLMs have made sig-
nificant progress. By orchestrating these familiar tasks, LOOP aims to accelerate and enhance LLM
reasoning capabilities.

Specifically, for the plane geometry visual task, we use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the necessary
elements. 2. Relationship extraction: describe their relationships. 3. Mathematical reasoning:
compute the attributes of each element so that they satisfy those relationships. 4. Code generation:
generate the TikZ.”

For the molecular structure visualization task, we exclude mathematical reasoning, as it is not nec-
essary. We use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the functional
groups and substituents present in the IUPAC name. 2. Relationship extraction: describe how these
groups are connected. 3. Code generation: generate the TikZ.”

The word “TikZ” is replaced with the target vector format.

5.1 EVALUATION

We evaluate the performance of LOOP by applying it to the two best-performing models: Gemini
2.5 Pro and GPT-5. For comparison, we use the following three zero-shot prompting techniques:

• Zero-shot CoT Prompting (Kojima et al., 2022): “Let’s think step by step.”

• Plan-and-Solve Prompting (Wang et al., 2023a): “Let’s first understand the problem and devise
a plan to solve the problem. Then, let’s carry out the plan and solve the problem step by step.”

• Step-Back Prompting (Zheng et al., 2024): “Let’s think step by step, following this workflow: 1.
Step back and pose higher-level, abstract questions. 2. Answer those questions. 3. Generate the
TikZ.”
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Output
vector

graphic
(SVG)

Gemini 2.5 Pro

Incorrect

Gemini 2.5 Pro
w/ LOOP

Correct

Ground-truth

Let O be a circle of radius R. 
Let O_1, O_2, O_3, O_4 be (in 
that order) four non-intersecting 
circles that l ie inside O and 
tangent to it. Denote by t_{ij} the 
length of the exterior common 
bitangent of the circles O_i, O_j. 
Then:t_{12} \cdot t_{34}+t_{14} 
\cdot t_{23}=t_{13}\cdot t_{24}.

Input
text

Output
vector

graphic
(SVG)

GPT-5

Incorrect

GPT-5 w/ LOOP

Correct

Ground-truth
(Pattern 2)

In geometry, the six circles 
theorem relates to a chain of six 
circles together with a triangle, 
such that each circle is tangent 
to two sides of the triangle and 
also to the preceding circle in 
the chain. The chain closes, in 
the sense that the sixth circle is 
always tangent to the first circle.

Input
text

Figure 5: Examples demonstrating improvements from our prompting method on the plane geom-
etry SVG generation task. In the bottom example, since there are two possible exterior common
bitangents for each pair of circles, either line is considered correct.5

Output
vector

graphic
(SVG)

the molecular structure of the 
compound with the IUPAC name
(6-chloro-4-methyl-2-oxochrome
n-7-yl) (2R)-2-[(4-methylphenyl) 
sulfonylamino]pentanoate

Input
text

Output
vector

graphic
(SVG)

GPT-5 GPT-5 w/ LOOP Ground-truth

the molecular structure of the 
compound with the IUPAC name 
3-[[4-(4-methylphenyl)piperazin 
-1 -y l ]me thy l ] -5 - [ (2 -methy l 
quinazolin-4-yl)oxymethyl]-1,3,4-o
xadiazole-2-thione

Input
text

Gemini 2.5 Pro
w/ LOOP

Correct

Gemini 2.5 Pro

Incorrect

Ground-truth

CorrectIncorrect

Figure 6: Examples demonstrating improvements from our prompting method on the molecular
structure SVG generation task.6

The results are shown in Table 6. While some methods degrade performance, the proposed method
provides the highest performance gain. This result clearly demonstrates that the proposed method
can efficiently leverage the potential of LLMs.

We present examples in Figures 5 and 6 showing that LOOP enables the generation of structurally
correct vector graphics. Without LOOP, LLMs fail to accurately produce complex structures. LOOP
encourages deeper reasoning, which leads to the generation of structurally correct vector graphics.

6 CONCLUSION

In this paper, we tackled the problem of scientific vector graphics generation using LLMs. Specifi-
cally, aiming for structurally correct vector graphics generation, we made three contributions. First,
we introduced a new benchmark that assesses the structural correctness of generated graphics using
structural analysis scripts. Second, we conducted a comprehensive benchmarking study and pro-
vided detailed analyses based on this benchmark. Third, we proposed a novel prompting technique
that accelerates LLM inference and significantly improves performance.

5The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2022; 2025e; Roc-
chini, 2010; Kmhkmh, 2018).

6The molecular structure data is from (National Center for Biotechnology Information, 2025j;o).
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT when writing our paper, for translation purposes.

B DETAILED PROMPTS USED IN OUR EXPERIMENTS

Figures 7, 8, and 9 show examples of prompts used in the plane geometry task. We first present a
textual description, followed by input elements (the black elements in Figure 2).

Figures 10, 11, and 12 show examples of prompts used in the molecular structure task. We first
provide the IUPAC name, followed by a set of instructions. In particular, we include color specifi-
cations so that the types of atoms can be identified by their color. We also present an example using
chlorobenzene, which is a relatively simple molecule.
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[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[TikZ]\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
\draw (38.23,-264.41) -- (65.98,-195.89) -- (32.16,-166.40) -- cycle;
\node at (23.54,-167.59) {A};
\node at (70.26,-197.89) {B};
\node at (28.79,-270.30) {C};
\end{tikzpicture}
\end{document}
Please visualize the explanation by adding elements to the TikZ 
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the TikZ.
– Do not use any animations.

Figure 7: An example prompt from the TikZ generation task on plane geometry.

[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[SVG]<svg xmlns="http://www.w3.org/2000/svg" 
xmlns:ev="http://www.w3.org/2001/xml-events" version="1.1" 
viewBox="0 0 300 300">
<style>
.input_object {
  fill: none;
  stroke: black;
  stroke-width: 1;
}
.input_text {
  fill: black;
  stroke: none;
  font-size: 12px;
}
.output_object {
  fill: none;
  stroke: red;
  stroke-width: 1;
}
.output_text {
  fill: red;
  stroke: none;
  font-size: 12px;
}
</style>
<polygon class="input_object" points="38.23232323232324 
264.4065656565657 65.9848484848485 195.8901515151515 
32.15909090909092 166.40151515151516"/>
<text class="input_text" x="23.541666666666668" 
y="167.58838383838383">A</text>
<text class="input_text" x="70.2588383838384" 
y="197.89141414141415">B</text>
<text class="input_text" x="28.787878787878793" 
y="270.30303030303037">C</text>
</svg>
Please visualize the explanation by adding elements to the SVG 
diagram.
- Assign class="output_text" to any added text elements, and 
class="output_object" to all other added elements.
- Do not modify any elements that are originally present in the SVG.
– Do not use any animations.

Figure 8: An example prompt from the SVG generation task on plane geometry.
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[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[EPS]%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 300 300
1 setlinewidth
0 0 0 setrgbcolor
newpath
38.23232323232324 35.593434343434296 moveto
65.9848484848485 104.1098484848485 lineto
32.15909090909092 133.59848484848484 lineto
closepath
stroke
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
23.541666666666668 132.41161616161617 moveto
(A) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
70.2588383838384 102.10858585858585 moveto
(B) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
28.787878787878793 29.69696969696963 moveto
(C) show
showpage
Please visualize the explanation by adding elements to the EPS 
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the EPS.
– Do not use any animations.

Figure 9: An example prompt from the EPS generation task on plane geometry.

Please create a TikZ file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F: 
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br: 
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5, 
Os: #838C8C, U: #00CCD5

As a reference, an example TikZ visualization of the compound 
chlorobenzene is provided below.
\documentclass[tikz]{standalone}
\definecolor{274A4A}{HTML}{274A4A}
\definecolor{2AD52A}{HTML}{2AD52A}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
  \draw[line width=1pt] (20.00,6.22) -- (28.66,1.22);
  \draw[line width=1pt] (45.98,1.22) -- (45.98,-8.78);
  \draw[line width=1pt] (45.98,1.22) -- (37.32,6.22);
  \draw[line width=1pt] (45.98,-8.78) -- (37.32,-13.78);
  \draw[line width=1pt] (37.32,6.22) -- (28.66,1.22);
  \draw[line width=1pt] (37.32,-13.78) -- (28.66,-8.78);
  \draw[line width=1pt] (28.66,1.22) -- (28.66,-8.78);
  \filldraw[fill=2AD52A, draw=none] (20.00,6.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (45.98,1.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (45.98,-8.78) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (37.32,6.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (37.32,-13.78) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (28.66,1.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (28.66,-8.78) circle (1.5pt);
\end{tikzpicture}
\end{document}

Figure 10: An example prompt from the TikZ generation task on molecular structure.
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Please create an SVG file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F: 
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br: 
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5, 
Os: #838C8C, U: #00CCD5

As a reference, an example SVG visualization of the compound 
chlorobenzene is provided below.
<svg xmlns="http://www.w3.org/2000/svg" viewBox="10 -29.976 
67.479 59.646">
<line x1="20" y1="6.223999999999999" x2="28.66" y2="1.224" 
stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="1.224" 
x2="45.980999999999995" y2="-8.776" stroke="black" 
stroke-width="1" />
<line x1="45.980999999999995" y1="1.224" x2="37.32" 
y2="6.223999999999999" stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="-8.776" x2="37.32" y2="-13.776" 
stroke="black" stroke-width="1" />
<line x1="37.32" y1="6.223999999999999" x2="28.66" y2="1.224" 
stroke="black" stroke-width="1" />
<line x1="37.32" y1="-13.776" x2="28.66" y2="-8.776" stroke="black" 
stroke-width="1" />
<line x1="28.66" y1="1.224" x2="28.66" y2="-8.776" stroke="black" 
stroke-width="1" />
<circle cx="20" cy="6.223999999999999" r="1.5" fill="#2AD52A" />
<circle cx="45.980999999999995" cy="1.224" r="1.5" fill="#274A4A" 
/>
<circle cx="45.980999999999995" cy="-8.776" r="1.5" fill="#274A4A" 
/>
<circle cx="37.32" cy="6.223999999999999" r="1.5" fill="#274A4A" />
<circle cx="37.32" cy="-13.776" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="1.224" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="-8.776" r="1.5" fill="#274A4A" />
</svg>

Figure 11: An example prompt from the SVG generation task on molecular structure.
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Please create an EPS file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: [0.39, 0.55, 0.55], B: [0.16, 0.84, 0.16], C: [0.15, 0.29, 0.29], N: [0.0, 
0.0, 1.0], O: [1.0, 0.0, 0.0], F: [0.84, 0.13, 0.57], Si: [0.84, 0.62, 0.07], 
P: [0.84, 0.53, 0.0], S: [0.84, 0.84, 0.0], Cl: [0.16, 0.84, 0.16], Br: [0.84, 
0.53, 0.22], Te: [0.84, 0.8, 0.45], I: [1.0, 0.0, 1.0], Eu: [0.0, 0.8, 0.84], 
Lu: [0.0, 0.8, 0.84], Os: [0.51, 0.55, 0.55], U: [0.0, 0.8, 0.84]

As a reference, an example EPS visualization of the compound 
chlorobenzene is provided below.
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 10 -29 77 29
%%Creator: EPS Generator
%%EndComments

1 setlinewidth
0 0 0 setrgbcolor

newpath
20 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
45.980999999999995 1.224 moveto
37.32 6.223999999999999 lineto
stroke

newpath
37.32 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
28.66 1.224 moveto
28.66 -8.776 lineto
stroke

newpath
28.66 -8.776 moveto
37.32 -13.776 lineto
stroke

newpath
37.32 -13.776 moveto
45.980999999999995 -8.776 lineto
stroke

newpath
45.980999999999995 -8.776 moveto
45.980999999999995 1.224 lineto
stroke

0.16 0.84 0.16 setrgbcolor
newpath
20 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 -8.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 -13.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 -8.776 1.5 0 360 arc
closepath
fill

showpage

Figure 12: An example prompt from the EPS generation task on molecular structure.
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C LIMITATIONS OF OUR AUTOMATIC EVALUATION FRAMEWORK

Our automatic evaluation framework for the plane geometry visualization task assesses whether the
necessary elements are present in the output, but it does not penalize the inclusion of unnecessary
elements. In the example shown in Figure 13, the output from Gemini 2.5 Flash reasoning includes
an irrelevant straight line, yet it is still considered correct. We do not penalize unnecessary elements
because it is often non-trivial to determine whether an additional element is truly unnecessary. For
instance, the output from Gemini 2.5 Flash reasoning in Figure 13 includes circles not anticipated in
the ground-truth, but these represent intersections and the circle center, and they do not hinder the
explanation.

Because in practical scenarios it is usually easier for humans to remove unnecessary elements than to
create necessary ones from scratch, we do not currently view this limitation as a major issue. How-
ever, enabling the framework to identify and evaluate such extraneous content remains an important
direction for future work.

Output
vector

graphic
(SVG)

Gemini 2.5 Flash reasoning Ground-truth

Correct

In geometry, the tangential 
triangle of a reference triangle 
(other than a right triangle) is the 
triangle whose sides are on the 
tangent lines to the reference 
triangle's circumcircle at the 
reference triangle's vertices.

Input
text

Figure 13: An example judged correct despite an unrelated line.7

7The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025m; Kmhkmh,
2019b).
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D ADDITIONAL EXAMPLES OF GENERATED VECTOR GRAPHICS

D.1 EXAMPLES GENERATED BY FINE-TUNED MODELS

Figure 14 shows examples generated by two fine-tuned models, AutomaTikZ (Belouadi et al.,
2024a) and TikZero+ (Belouadi et al., 2025). The top example is the only case where TikZero+
produces a structurally correct vector graphic. However, in all other cases, the models fail to gen-
erate structurally correct vector graphics. In the plane geometry task, they cannot follow simple
instructions such as “Set the color of any added elements to red” or “Do not modify any elements
that are originally present in the TikZ.” In the molecular structure task, the models generate entirely
invalid vector graphics. These results reveal the limitations of fine-tuned models.

�Fg

�Fn

�Fs

θ

1

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect Incorrect

TikZero+ Ground-truthThe center of an excircle is the 
intersection of the internal bisector 
of one angle and the external 
bisectors of the other two. Every 
triangle has three excircle centers.

Input
text

In Eucl idean geometry,  the 
medial  t r iangle or midpoint 
triangle of a triangle △ABC is 
the triangle with vertices at the 
midpoints of the triangle's sides 
AB, AC, BC.

Input
text

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect

TikZero+

Correct

Ground-truth
A

B

C

A

B

C

A B

C

a

bc

M

Output
vector

graphic
(TikZ)

AutomaTikZ TikZero+ Ground-truththe molecular structure of the 
compound with the IUPAC name 
N-(2-methylsulfinylethyl)acetamide

Input
text

the molecular structure of the 
compound with the IUPAC name 
5-ethylcyclopentene-1-carboxylic 
acid

Input
text

Output
vector

graphic
(TikZ)

AutomaTikZ
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Figure 14: Examples generated by fine-tuned models.8

8The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025j;g;
Braindrain0000, 2006; Inductiveload, 2007a). The molecular structure data is from (National Center for
Biotechnology Information, 2025k;n).
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D.2 IMPACT OF REASONING

We show in Figures 15 and 16 that enabling reasoning allows LLMs to output the correct structure.
Without reasoning, they struggle to generate even simple structures.

In geometry, an altitude of a 
t r i ang le  i s  a  l i ne  segmen t 
through a given vertex (called 
apex) and perpendicular to a 
line containing the side or edge 
opposite the apex. The altitude 
from A intersects the extended 
base at D (a point outside the 
triangle).
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t o u c h p o i n t  o p p o s i t e  A  i s 
denoted T_A, etc.The three 
lines A{T_A}, B{T_B}, and C
{T_C} intersect in a single point 
cal led the Gergonne point , 
denoted as G_e. 
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draws a circle whose center is 
the vertex. The circle meets the 
angle at two points: one on 
each leg. Using each of these 
points as a center, draw two 
circles of the same size. The 
intersection of the circles (two 
points) determines a line that is 
the angle bisector.
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circle, through which two other 
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AD and BC intersect chord PQ 
at X and Y correspondingly. 
Then M is the midpoint of XY.
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Figure 15: Examples where enabling reasoning allows LLMs to generate the correct structure in the
plane geometry SVG geneartion task.9

9The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025a;g;c;d; Pega-
susRoe, 2007; Inductiveload, 2007c; Ixnay, 2007; Gustavb, 2006).
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Figure 16: Examples where enabling reasoning allows LLMs to generate the correct structure in the
molecular structure SVG geneartion task.10

10The molecular structure data is from (National Center for Biotechnology Information, 2025m;c;e;i).
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D.3 IMPACT OF FORMAT

Figures 17 and 18 present examples where LLMs produce correct structures in SVG format but fail
in TikZ and EPS formats. Although the input text is identical, the results clearly vary depending on
the output format.

Let X be any triangle center of 
△ABC. Draw the lines AX, BX, 
CX and their reflections in the 
internal bisectors of the angles 
a t  t h e  v e r t i c e s  A ,  B ,  C 
respectively. The reflected lines 
are concurrent and the point of 
concurrence is the isogonal 
conjugate Y of X.
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In geometry, symmedians are 
three particular lines associated 
with every triangle. They are 
constructed by taking a median 
of the triangle (a line connecting 
a vertex with the midpoint of the 
opposite side), and reflecting 
the line over the corresponding 
angle bisector (the line through 
the same vertex that divides the 
angle there in half). 
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Figure 17: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the plane geometry task.11

11The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025h;i;l;k; Roc-
chini, 2008; Kmhkmh, 2024; 2016; Inductiveload, 2007b).
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Figure 18: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the molecular structure task.12

12The molecular structure data is from (National Center for Biotechnology Information, 2025d;h;b;a).
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D.4 COMPARISON OF ZERO-SHOT PROMPTING METHODS

We present results obtained by applying zero-shot prompting methods to Gemini 2.5 Pro in Figures
19, 20, 21, and 22. When using methods other than Zero-shot CoT, Gemini 2.5 Pro produces an
explanation prior to generating vector graphics, and we include that explanation as well. In the case
of Plan-and-Solve prompting, the output explanation “C3 will also be in corner B, tangent to C2” is
incorrect, revealing that Gemini 2.5 Pro fails to capture the relationships. In the case of Step-Back
prompting, the output explanation reveals that Gemini 2.5 Pro captures the necessary elements and
relationships, but overlooks the importance of mathematical reasoning. In contrast, by applying
our LOOP, Gemini 2.5 Pro captures the necessary elements and relationships and recognizes the
importance of mathematical reasoning, enabling it to generate structurally correct vector graphics.

In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle 
is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense 
that the sixth circle is always tangent to the first circle.

(There is no output explanation.)

Input
text

Output
explanation

Ground-
truth

Output
vector

graphic
(SVG)

Gemini 2.5 Pro w/ Zero-shot CoT

Incorrect

Input text and ground-truth

Figure 19: Example output generated by applying Zero-shot CoT prompting to Gemini 2.5 Pro.13

13The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2022; Rocchini,
2010).
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An explanation of the six circles theorem has been provided, and it needs to be visualized by adding elements to 
the given SVG.

### Plan:
1.  **Deconstruct the Theorem**: The theorem describes a chain of six circles (C1 to C6) associated with a 
triangle.
    *   There are three pairs of circles, with each pair nestled into one corner of the triangle.
    *   Circles in the same corner are tangent to each other and to the two adjacent sides of the triangle.
    *   The chain follows a sequence around the triangle's vertices: A -> B -> C -> A.
    *   Let's say the given circle, C1, is in corner A.
    *   The next circle, C2, will be in corner B and tangent to C1.
    *   C3 will also be in corner B, tangent to C2.
    *   C4 will be in corner C, tangent to C3.
    *   C5 will also be in corner C, tangent to C4.
    *   C6 will be in corner A, tangent to C5.
    *   The theorem's conclusion is that C6 will also be tangent to the first circle, C1, thus closing the chain.

2.  **Analyze the Input SVG**:
    *   We have a triangle. Let's label its vertices A (top), B (bottom-left), and C (bottom-right).
    *   We have one circle, which we will label C1. It is located in corner A.

3.  **Add Visual Elements**:
    *   Add the remaining five circles (C2, C3, C4, C5, C6) with the class `output_object`.
    *   Place them according to the theorem's rules, ensuring they appear tangent to the correct triangle sides and 
preceding circles. The positions and radii will be estimated to create a visually plausible representation of the 
theorem.
    *   C1 and C6 will be in corner A.
    *   C2 and C3 will be in corner B.
    *   C4 and C5 will be in corner C.
    *   The crucial part is to draw the chain such that C6, which is tangent to C5, is also tangent to C1.
    *   Add text labels "C1" through "C6" for each circle, assigning them the class `output_text`.

### Execution:
The following SVG code adds the five circles and six labels to illustrate the theorem. The positions and sizes of 
the new circles have been chosen to create a clear and accurate visual representation of the tangency 
relationships described.

Output
explanation

Output
vector

graphic
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Incorrect

Gemini 2.5 Pro w/ Plan-and-Solve

Figure 20: Example output generated by applying Plan-and-Solve prompting to Gemini 2.5 Pro.
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An explanation of the six circles theorem has been provided. This theorem describes a closed chain of six 
circles, where each circle is tangent to two sides of a triangle and the preceding circle in the chain. The provided 
SVG shows the triangle and the first circle of such a chain.

To visualize the theorem, we will add the remaining five circles to complete the chain.

1.  **Circle C1:** The initial circle is provided, located in the top corner of the triangle.
2.  **Circle C2:** We add the second circle, C2, in the bottom-right corner, making it tangent to the two sides of 
the triangle at that corner and also to circle C1.
3.  **Circle C3:** The third circle, C3, is placed in the bottom-left corner, tangent to the two sides there and to 
circle C2.
4.  **Circle C4:** The fourth circle, C4, is placed back in the top corner. It is tangent to the same two sides as C1, 
and also to circle C3.
5.  **Circle C5:** The fifth circle, C5, is placed in the bottom-right corner, tangent to the sides and to circle C4.
6.  **Circle C6:** The sixth and final circle, C6, is placed in the bottom-left corner, tangent to the sides and to 
circle C5.

The remarkable property of the theorem is that this chain always closes perfectly: circle C6 will not only be 
tangent to C5 but will also be tangent to the very first circle, C1, completing the loop. The visualization below 
illustrates this closed chain.
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Figure 21: Example output generated by applying Step-Back prompting to Gemini 2.5 Pro.
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An elegant theorem in geometry, the six circles theorem, describes a fascinating property of a chain of circles 
within a triangle. Starting with a circle tangent to two sides of the triangle, a sequence of five more circles is 
constructed. Each new circle is tangent to two sides of the triangle and to the previous circle in the chain. The 
remarkable result is that this chain always forms a closed loop, with the sixth circle being perfectly tangent to the 
first one.

This visualization completes the chain described by the theorem, starting from the single provided circle.

1.  **Information extraction**: The core components are a triangle and a chain of six circles. The initial SVG 
provides the triangle and the first circle (let's call it C1). C1 is tangent to two sides of the triangle at one vertex. 
The goal is to construct the remaining five circles, C2 through C6, following the theorem's rules.
2.  **Relationship extraction**: The chain proceeds sequentially around the vertices of the triangle.
    *   C1 is tangent to sides AB and AC (at vertex A).
    *   C2 must be tangent to sides AC and BC (at vertex C) and also to C1.
    *   C3 must be tangent to sides BC and AB (at vertex B) and also to C2.
    *   C4 must be tangent to sides AB and AC (at vertex A) and also to C3.
    *   C5 must be tangent to sides AC and BC (at vertex C) and also to C4.
    *   C6 must be tangent to sides BC and AB (at vertex B) and also to C5.
    The theorem guarantees that the resulting C6 will also be tangent to the starting circle, C1.
3.  **Mathematical reasoning**: The center of any circle tangent to two sides of the triangle must lie on the angle 
bisector of the corresponding vertex. The condition that the new circle must also be tangent to the previous circle 
provides a second constraint. Combining these two conditions leads to a solvable quadratic equation for the 
position of the new circle's center along the angle bisector. This process is applied iteratively to find the center 
and radius of each subsequent circle in the chain (C2, C3, C4, C5, and C6). The final calculation confirms the 
theorem: the distance between the centers of C6 and C1 is indeed equal to the sum of their radii, proving their 
tangency.
4.  **Code generation**: Based on the calculated centers and radii, five `<circle>` elements are added to the 
SVG to represent C2 through C6. Additionally, `<text>` elements are added to label each circle from C1 to C6, 
clarifying the sequence of the chain.
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Figure 22: Example output generated by applying our LOOP to Gemini 2.5 Pro.
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