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ABSTRACT

We address the challenge of automatically visualizing scientific explanations.
While prior work has explored large language model (LLM)-based vector graphic
generation, existing approaches often overlook structural correctness, a key re-
quirement for valid scientific diagrams. To achieve structurally correct genera-
tion, we make three key contributions. First, we introduce SSVG-Bench, a novel
benchmark for evaluating the generation of Structured Scientific Vector Graphics.
Unlike conventional visual similarity metrics, SSVG-Bench employs task-specific
structural analysis for accurate evaluation, and it supports three vector formats:
TikZ, SVG, and EPS. Second, we conduct an extensive benchmarking and analy-
sis, revealing key findings such as the crucial role of LLM reasoning in ensuring
structural validity. Third, we propose LLM-Oriented Orchestration Prompting
(LOOP), a new prompting method that leverages LLMs’ reasoning potential by
combining familiar subtasks. Experiments demonstrate substantial improvements
over existing prompting techniques, suggesting promising directions for scientific
diagram generation. We will release our code and benchmark upon acceptance.

1 INTRODUCTION

In this paper, we address the challenge of automatically visualizing scientific explanations. Because
scientific explanations are often abstract and complex, they can be difficult to grasp from text alone.
To promote intuitive understanding, visualization is widely used in contexts such as science text-
books and research papers. These observations suggest that automated visualization could have a
significant impact.

Recent research on scientific diagram generation has investigated vector graphics generation with
large language models (LLMs) (Belouadi et al., 2024a;b; Zhang et al., 2025; Belouadi et al., 2025).
As vector graphics encode visual content in structured text form, they can be directly produced by
LLMs. Given that LLMs are capable of capturing scientific concepts in depth and encoding complex
constraints, they are particularly promising for this task.

However, existing methods have overlooked a crucial aspect of scientific diagrams: structural cor-
rectness. To illustrate its importance, we present a physics scenario in Figure 1. Here, the visu-
alization must strictly satisfy structural constraints: the object should remain in contact with the
inclined plane, and three arrows must be shown, one vertical to the ground, one perpendicular to the
plane, and one parallel to the plane. An existing method, namely a fine-tuned LLM for generating
vector code (Belouadi et al., 2025), fails to meet these constraints. Although it prioritizes visual
plausibility, the lack of structural enforcement ultimately leads to invalid scientific diagrams.

Towards the generation of scientific vector graphics with structural correctness, we make three main
contributions. Our first contribution is a new benchmark for the generation of Structured Scien-
tific Vector Graphics, named SSVG-Bench. It targets two foundational domains: plane geometry
and molecular structure. The plane geometry task involves generating geometric figures from tex-
tual descriptions of theorems or construction methods, while the molecular structure task requires
correctly generating a molecule’s structure from its IUPAC name, which encodes structural infor-
mation. These domains are representative of broader applications: the ability to generate plane
geometry structures is fundamental for physics illustrations, engineering diagrams, and architec-
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An object on an inclined plane experiences 
three forces: the gravitational force mg 
acting vertically downward, the normal 
force of magnitude mgcos(theta) acting 
perpendicular to the plane, and a static 
friction force of magnitude mgsin(theta) 
acting up the plane, parallel to its surface.

Textual explanation Output by TikZero+

�Fg

�Fn

�Fs

θ

1

Expected output

mg

mg cosθ mg sinθ

θ

Figure 1: An example highlighting the importance of structural correctness: the object should remain
in contact with the inclined plane, and three arrows must be shown, one vertical to the ground, one
perpendicular to the plane, and one parallel to the plane. TikZero+ (Belouadi et al., 2025), a fine-
tuned LLM for generating vector code, does not meet these structural constraints.

tural blueprints, while generating molecular structures requires correctly producing graph structures,
which are important in various fields such as algorithm flowcharts, circuit designs, and biological
pathways. The most significant feature of SSVG-Bench is its evaluation method. Conventional
visual similarity metrics are insufficient for assessing structural correctness, as even minor visual
changes can cause structural inconsistencies. To address this, we provide task-specific Python scripts
that analyze the structure of the generated outputs, enabling accurate evaluation of structural correct-
ness. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which allows
us to examine performance across formats.

Our second contribution is a comprehensive benchmarking and analysis of existing models using
SSVG-Bench, which yields several key findings. First, LLLs fine-tuned on existing vector graphic
generation datasets to produce vector code rarely generate structurally valid vector graphics. Second,
we show that the reasoning capabilities of LLMs are essential for generating structurally correct
vector graphics. Finally, although prior work has mainly focused on the TikZ format, our results
demonstrate that the SVG format is better suited for LLM reasoning.

As our third contribution, we propose a new prompting technique, LLM-Oriented Orchestration
Prompting (LOOP), to further enhance the reasoning capabilities of LLMs. Recent LLMs are ex-
plicitly trained to perform step-by-step reasoning and can solve complex tasks, but it has been re-
ported that they struggle with tasks not encountered during training (Shojaee et al., 2025; Malek
et al., 2025). Since LLMs are not explicitly trained to generate vector graphics from scientific expla-
nations, they cannot fully utilize their reasoning potential when the task is presented in its original
form. To fully leverage their reasoning abilities, we design a prompt that explicitly guides LLMs
to perform LLM-friendly subtasks such as information extraction and relationship extraction, which
enables them to generate vector graphics with correct structure. Our experiments demonstrate that
LOOP achieves substantially better performance than existing prompting methods.

Our contributions can be summarized as follows.

• Dataset: We introduce SSVG-Bench, a new benchmark for structured scientific vector graphics
generation, including scripts that verify structural correctness.

• Benchmarking and analysis: Our analysis shows that previous fine-tuned models cannot pro-
duce structurally correct graphics, that LLM reasoning capabilities are essential for ensuring
structural correctness, and that the SVG format is well-suited for such reasoning.

• Method: We propose LOOP, a new prompting method that enhances LLM reasoning by solving
LLM-friendly sub-problems step by step.

2 RELATED WORKS

Scientific vector graphic generation benchmarks. Vector graphics are gaining attention as an
image format well-suited for LLMs, as they are represented in text and can be directly input or
output by LLMs without requiring a vision adapter. Several benchmarks have been developed for
general vector graphics generation, such as SVGEditBench (Nishina & Matsui, 2024), SVG Tax-
onomy (Xu & Wall, 2024), and VGBench (Zou et al., 2024). Additionally, several benchmarks for
visualizing scientific data have been developed, such as MatPlotBench (Yang et al., 2024), Pandas-
PlotBench (Galimzyanov et al., 2025), and ChartMimic (Yang et al., 2025).
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Table 1: Comparison of previous benchmarks with our SSVG-Bench.

Benchmark Scientific?# Evaluation
data Evaluation method Vector format

SVGEditBench No 1,366 Visual similarity SVG
SVG Taxonomy No 400 Exact match SVG
VGBench No 5,845 Visual similarity TikZ, SVG, Graphviz

DaTikZ v1 Yes 1,000 Visual/code similarity, Human evaluation TikZ
DaTikZ v2 Yes 1,000 Visual/code similarity, Human evaluation TikZ
DaTikZ v3 Yes 1,000 Visual/code similarity, Human evaluation TikZ
ScImage Yes 404 Human evaluation TikZ
DiagramGenBench Yes 470 Visual/code similarity, Human evaluation TikZ, DOT
SSVG-Bench (ours) Yes 1,230 Structural analysis scripts TikZ, SVG, EPS

Motivated by this trend, some benchmarks have also been created specifically for scientific vector
graphics generation. DaTikZ v1 (Belouadi et al., 2024a) collects TikZ code and corresponding
captions from sources such as arXiv papers. DaTikZ v2 (Belouadi et al., 2024b) collects pairs
of hand-drawn sketches and TikZ code to evaluate the performance of sketch-to-TikZ conversion.
DaTikZ v3 (Belouadi et al., 2025) further extends DaTikZ v1 and v2. ScImage (Zhang et al., 2025)
employs synthetic data to analyze scientific vector generation in terms of attributes, numbers, and
spatial dimensions. DiagramGenBenchmark (Wei et al., 2025) provides diagram structures in TikZ
as well as graph structures in the DOT language.

However, these benchmarks generally do not focus on the structural correctness of the generated
graphics. We present a comparison of these benchmarks with our SSVG-Bench in Table 15. The
most significant feature of SSVG-Bench is its evaluation method. Visual similarity-based and code
similarity-based metrics are insufficient for determining whether the structure of a generated graphic
truly reflects the intended structure. Human evaluations, while informative, are not scalable and are
subject to variability and inconsistency across evaluators. As a result, it is difficult to increase the
number of models evaluated or to use diverse experimental conditions. To address these issues, we
provide task-specific Python scripts that analyze the structure of the generated output and determine
its correctness. Our evaluation framework offers precise, objective, and consistent assessments of
performance. In addition, SSVG-Bench supports three vector formats: TikZ, SVG, and EPS, which
allows us to examine performance across formats.

Scientific vector graphic generation methods. Based on the benchmarks, several scientific vector
graphic generation methods have been proposed. AutomaTikZ (Belouadi et al., 2024a) is designed
for TikZ generation by fine-tuning Llama (Touvron et al., 2023) to output TikZ code from captions.
It leverages CLIP features (Radford et al., 2021), derived from captions, to further improve visual
alignment. DeTikZify (Belouadi et al., 2024b) converts hand-drawn sketches into TikZ code by
combining a vision encoder (SigLIP (Zhai et al., 2023)) with an LLM such as Llama. TikZero (Be-
louadi et al., 2025) addresses the scarcity of paired caption-TikZ data by leveraging readily available
captioned raster images for training. DiagramAgent (Wei et al., 2025) enables the creation of com-
plex diagrams by coordinating multiple agents. Despite their innovations, these models are primarily
trained to predict output code and are not designed to guarantee structural correctness.

LLM prompting methods. The reasoning capabilities of LLMs can be elicited through effective
prompting. Seminal work on Chain-of-Thought (CoT) demonstrated that allowing models to gen-
erate intermediate reasoning steps dramatically improves multi-step reasoning (Wei et al., 2022).
Follow-ups revealed that simply appending “Let’s think step by step” can unlock zero-shot rea-
soning (Kojima et al., 2022), and that sampling multiple reasoning paths and selecting the most
consistent answer (“self-consistency”) further boosts accuracy (Wang et al., 2023b). Beyond linear
reasoning, researchers decomposed problems via least-to-most prompting (Zhou et al., 2023), intro-
duced plan-first then execute strategies such as Plan-and-Solve (Wang et al., 2023a), and proposed
Step-Back prompting, which encourages the model to abstract away from the immediate problem
and reason at a higher conceptual level before providing a solution (Zheng et al., 2024). In this
paper, we introduce a novel prompting method designed for scientific vector graphic generation.
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Plane geometry

Molecular structure

To state the theorem, suppose that 
ABCD and AB'C'D' are two squares 
with common vertex A. Let E and G 
be the midpoints of B'D and D'B 
respectively, and let F and H be the 
centers of the two squares. Then the 
theorem states that the quadrilateral 
EFGH is a square as well.

The Apollonius point of a triangle is 
defined as follows. Let △ABC be any 
given triangle. Let the excircles of △
ABC opposite to the vertices A, B, C 
be EA, EB, EC respectively. Let E be 
the circle which touches the three 
excircles EA, EB, EC such that the 
three excircles are within E. Let A', 
B', C' be the points of contact of the 
circle E with the three excircles. The 
lines AA', BB', CC' are concurrent. 
The point of concurrence is the 
Apollonius point of △ABC.

The exterior angle bisector in A 
intersects the extended side BC in E, 
the exter ior angle bisector in B 
intersects the extended side AC in D 
and the exterior angle bisector in C 
intersects the extended side AB in F.

The three points of intersect ion 
between the exterior angle bisectors 
and the extended triangle sides D, E, 
F are collinear, that is they lie on a 
common line.

the molecular structure of the 
compound with the IUPAC name
4-butyl-2,6-dimethylmorpholine

the molecular structure of the 
compound with the IUPAC name 

6-methoxy-4-methyl-5-phenyl
methoxyquinolin-8-amine

the molecular structure of the 
compound with the IUPAC name

4-[[2,4-diamino-5-[(4-carboxyphenyl)
diazenyl]phenyl]diazenyl]benzoic acid

A
B

C

D

E

F

A

B C
A

B

HF
C

D

B'

D'

E

G

C'

Vector
graphic

Input
text

Vector
graphic

Input
text

Figure 2: Examples in SSVG-Bench.1

3 SSVG-BENCH

To evaluate whether LLMs can generate vector graphics with structural correctness, we introduce
SSVG-Bench. SSVG-Bench covers two key topics: 1) plane geometry and 2) molecular structure.
For each topic, we also develop an automatic evaluation framework. Figure 2 presents some ex-
amples, and Table 2 summarizes respective statistics. We provide a detailed explanation of these
components in the following sections.

3.1 PLANE GEOMETRY

Table 2: Statistics of SSVG-Bench. The num-
ber of elements is counted based on the SVG.

Plane geometry
Total number of input texts 110
Average number of elements per vector graphic

- line 3.96
- circle 2.77
- ellipse 0.03
- polygon 1.65
- polyline 0.01

Molecular structure
Total number of input texts 300
Average number of elements per vector graphic

- line 32.45
- circle 30.38

This task involves generating visualizations of
plane geometric figures from textual descriptions,
translating explanations of theorems or construc-
tions into precise visual representations. To suc-
ceed, LLMs must accurately interpret spatial re-
lationships such as “intersection”, “tangent”, and
“perpendicular”, as well as uniquely determined
constructions like “angle bisectors” and “excir-
cles.” This task can evaluate visualization capa-
bilities that are important in a variety of applica-
tions, including physics illustrations, engineering
diagrams, and architectural blueprints.

1The input texts and vector graphics are from (Wikipedia contributors, 2025b;f; 2024; Kmhkmh, 2019a;
2015; Krishnachandranvn, 2012; National Center for Biotechnology Information, 2025f;l;g)
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The segment AB is bisected 
by drawing intersecting 
circles of equal radius r > 
1/2|AB|, whose centers are 
the endpoints of the segment. 
The line determined by the 
points of intersection of the 
two circles is the perpen- 
d icu lar  b isec tor  o f  the 
segment.

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Gemini 2.0 Flash

B

A

·

·

Incorrect

DeepSeek-R1

Correct

Ground-truth

B

A

B

A

Figure 3: An example of the automatic evaluation results for Pattern 2 in the plane geometry
visualization task, where the correct object is not uniquely determined. Our Python-based automatic
evaluation framework checks whether the radius of each circle is greater than half the length of
segment AB, enabling appropriate assessment.2

the molecular structure of the 
compound with the IUPAC name 
tellurophene-2-carboxylic acid

Input
text

Output
vector

graphic
(TikZ)

Automatic
evaluation

results

Claude Opus 4.1

Incorrect

GPT-5

Correct

Ground-truth

Figure 4: An example of the automatic evaluation results in the molecular structure visualization
task. Correctness can be determined based on graph analysis, even when the images differ signifi-
cantly in visual appearance.3

We curated a dataset by collecting paired textual descriptions and corresponding images related to
plane geometry from Wikipedia. All images used are freely available for modification and redis-
tribution. Most of them are in SVG, a vector graphic format. We cleaned the images using Adobe
Illustrator by removing elements unrelated to the text. When only raster images were available, we
manually recreated the visuals in vector format. In total, we compiled 110 text-vector graphic pairs.

The automatic evaluation falls into two distinct patterns. In Pattern 1, the correct output can be
uniquely determined. We provide some parts of the vector graphics as input to the LLM. As shown
in Figure 2, the elements depicted in black are given as input, and the LLM is expected to generate
the red elements. These red elements are uniquely determined by the black elements. We devel-
oped a Python script to analyze the vector data and assess correctness by checking whether the red
components are present in the LLM’s output.

In Pattern 2, the correct output cannot be uniquely determined, even when the black elements are
provided. For example, in the case illustrated in Figure 3, any circle with a radius greater than half
the length of the given line segment is considered acceptable. For such cases, we implemented case-
specific Python logic to evaluate correctness based on the textual input, allowing for variation in
valid outputs. In Figure 3, the output of Gemini 2.0 Flash is judged as incorrect because the radius
of the circle is shorter than half the length of segment AB. Although the output of DeepSeek-R1
differs from the predefined ground-truth radius, it is judged as correct since their circle radii exceed
half the length of segment AB. We carefully read each text and manually categorized them into
Pattern 1 and Pattern 2. There are 94 cases belonging to Pattern 1 and 16 cases belonging to Pattern
2.

For simplicity, we exclude text layout from the evaluation process.

3.2 MOLECULAR STRUCTURE

In this task, the input is an IUPAC name that describes the molecular structure, and the goal is to
generate the corresponding molecular structure. The IUPAC name encodes the structural informa-

2The input text and the ground-truth are from (Wikipedia contributors, 2025c) and (Ag2gaeh, 2021).
3The molecular structure data is from (National Center for Biotechnology Information, 2025p).
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tion of a molecule, and by interpreting it, the molecular structure can be reconstructed. For example,
the IUPAC name shown on the left side of Figure 2 is “4-butyl-2,6-dimethylmorpholine,” which
indicates that a butyl group is attached to the nitrogen atom at the 4-position (shown in blue) of
the morpholine ring (a six-membered ring), and that methyl groups are attached at the 2- and 6-
positions. In this way, the molecular structure can be accurately restored from the IUPAC name. It
is essential to correctly identify the types and numbers of atoms involved, with particular importance
placed on the graph structure formed by atomic bonds. This task can evaluate the graph structure vi-
sualization capabilities of LLMs, which are important in various fields such as algorithm flowcharts,
circuit design, and biological pathways.

We obtained pairs of IUPAC names and molecular structures from PubChem4. The structural data
is stored in JSON format, and we developed a Python script to convert this information into vec-
tor graphics automatically. Using this script, we generated ground-truth data. We collected 300
molecules in total, with 50 examples each for molecules with fewer than 20 elements (atoms plus
bonds), 21-40, 41-60, 61-80, 81-100, and more than 100 elements.

To enable automatic evaluation, we implemented a Python-based evaluation tool. The generated
vector graphic is converted into a molecular graph, where nodes represent atoms and edges represent
bonds. We then check for “graph isomorphism” between the generated structure and the ground-
truth to automatically assess correctness. Graph isomorphism refers to the problem of determining
whether two graphs are structurally identical, meaning their nodes and edges can be matched one-to-
one while preserving connectivity. We use the NetworkX library to solve this problem. To simplify
the task, we do not consider bond order. We present an example of automatic evaluation results
in Figure 4. Although the output of GPT-5 appears visually different from the ground-truth, it is
considered correct based on graph-theoretic equivalence.

3.3 MULTIPLE VECTOR FORMATS

There are various types of vector graphic formats. To analyze performance differences across for-
mats, we use three types: TikZ, SVG, and EPS. For the plane geometry task, since the vector graph-
ics collected from Wikipedia are in SVG format, we developed Python scripts to automatically con-
vert SVG to TikZ and EPS, thereby generating ground-truth data. For the molecular structure task,
we generate vector graphics in each format directly from molecular structure data stored in JSON
files, using custom Python scripts to automate the process. When evaluating LLMs, we add instruc-
tions to the prompt to generate output in a specific format. This approach allows us to explore which
vector format is most suitable for LLMs. If the syntax is incorrect, it will result in a compilation
error (for TikZ and EPS) or a parsing error (for SVG). In such cases, the output is considered incor-
rect. Therefore, LLMs must strictly adhere to the syntax of each format. Our SSVG-Bench dataset
consists of two tasks and three vector formats, comprising a total of 1,230 text-vector graphic pairs.

4 BENCHMARKING AND ANALYSIS

Using SSVG-Bench, we evaluate whether recent models can generate structurally correct vector
graphics. Our experiments utilize two fine-tuned models: AutomaTikZ (Belouadi et al., 2024a)
and TikZero+ (Belouadi et al., 2025). As these models are trained to generate TikZ, we evaluate
them exclusively on TikZ. We also evaluate recent general-purpose LLMs, including DeepSeek-V3,
R1, V3.1 (DeepSeek, 2025), Claude Opus 4.1 (Anthropic, 2025), Gemini 2.0 Flash, 2.5 Flash, 2.5
Pro (Google, 2025), o4-mini, GPT-4.1, and GPT-5 (OpenAI, 2025). The detailed prompts used
for evaluation are provided in the Appendix. The overall performance is shown in Table 4, with a
detailed analysis provided below.

Limitations of fine-tuned models. Our benchmarking with SSVG-Bench reveals that models fine-
tuned to generate TikZ code (AutomaTikZ and TikZero+) seldom produce structurally valid outputs.
This highlights a limitation: simply training to predict TikZ code from captions is insufficient to
generate correct scientific figures.

4https://pubchem.ncbi.nlm.nih.gov/
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Table 4: Accuracies on SSVG-Bench (%). The fill colors correspond to the values.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Fine-tuned models
AutomaTikZ 0.0 - - 0.0 - - 0.0
TikZero+ 0.9 - - 0.0 - - 0.2

Non-reasoning models
DeepSeek-V3 10.0 5.5 7.3 5.3 3.3 3.0 4.9
DeepSeek-V3.1 11.8 6.4 9.1 6.3 3.7 3.3 5.7
Claude Opus 4.1 14.5 12.7 20.9 24.3 26.0 16.0 20.5
Gemini 2.0 Flash 7.3 5.5 1.8 6.0 3.7 0.7 3.8
Gemini 2.5 Flash 12.7 9.1 5.5 22.7 11.3 14.3 14.2
GPT-4.1 10.9 10.0 14.5 19.0 15.0 13.7 14.8
GPT-5 Chat 12.7 10.0 7.3 16.0 14.3 11.0 12.8

Reasoning models
DeepSeek-R1 28.2 40.9 39.1 18.3 20.0 19.7 23.8
DeepSeek-V3.1 reasoning 23.6 39.1 27.3 31.0 7.3 20.7 22.4
Claude Opus 4.1 thinking 20.0 23.6 17.3 26.7 27.7 23.3 24.4
Gemini 2.5 Flash reasoning 30.0 55.5 41.8 32.0 39.3 34.7 37.2
Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
o4-mini 48.2 62.7 55.5 33.3 42.7 39.0 42.9
GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0

Table 5: Comparison of averages for models with reasoning enabled vs. disabled. DeepSeek-V3.1,
Claude Opus 4.1, Gemini 2.5 Flash, and GPT-5 are considered.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Reasoning disabled 13.0 9.5 10.7 17.3 13.8 11.2 13.3
Reasoning enabled 32.0 48.4 38.2 35.5 32.5 32.1 35.0

Importance of reasoning. To evaluate the effectiveness of reasoning, we consider models where
reasoning can be toggled on and off, and we report results for both configurations in Table 4. The
models compared are as follows: DeepSeek-V3.1 vs. DeepSeek-V3.1 reasoning, Claude Opus 4.1
vs. Claude Opus 4.1 thinking, Gemini 2.5 Flash vs. Gemini 2.5 Flash reasoning, and GPT-5 Chat
vs. GPT-5. Table 5 compares the averages of models with reasoning disabled and enabled. Enabling
reasoning significantly improves performance. These results demonstrate that enabling reasoning
plays a crucial role in generating structured vector graphics.

Table 3: Google search hits for format-specific keywords (Novem-
ber 2025).

TikZ SVG EPS

Keyword “tikzpicture” “</svg>” “showpage” and “moveto”
# Hits 272K 524M 20.7K

Impact of vector format.
Focusing on the two best-
performing models, Gemini
2.5 Pro and GPT-5, we ob-
serve that their performance
on SVG is the highest, sur-
passing their performance on
TikZ and EPS. This represents a novel finding, as prior benchmarks have primarily focused on TikZ.
One possible explanation is the scale of resources used for training. Existing research (Zhu et al.,
2024) has demonstrated that the reasoning capabilities of LLMs tend to be weaker in low-resource
languages (e.g., Bengali or Thai) compared to high-resource languages (e.g., English). Similarly,
it is possible that LLMs are not well-suited for reasoning with TikZ and EPS, because they may
be considered “low-resource languages.” To test this hypothesis, it would be necessary to examine
the training data, but the datasets used to train Gemini 2.5 Pro and GPT-5 remain unspecified. We
instead query Google with format-specific keywords and record the number of hits, since much of
the training data for LLMs is derived from internet sources. Table 3 presents the number of hits
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Table 6: Comparison between our LOOP and other zero-shot prompting methods.

Model Plane geometry Molecular structure Average
TikZ SVG EPS TikZ SVG EPS

Gemini 2.5 Pro 50.0 62.7 56.4 41.3 63.3 57.3 54.6
w/ Zero-shot CoT 39.1 66.4 61.8 47.7 63.0 58.7 56.3
w/ Plan-and-Solve 39.1 69.1 66.4 41.3 58.7 55.0 53.4
w/ Step-Back 33.6 64.5 59.1 40.7 54.3 56.3 51.0
w/ LOOP (ours) 65.5 80.9 62.7 47.7 64.7 67.7 62.6

GPT-5 54.5 75.5 66.4 52.3 55.7 49.7 56.0
w/ Zero-shot CoT 58.2 80.0 75.5 53.0 52.0 49.3 56.7
w/ Plan-and-Solve 61.8 77.3 70.9 52.3 50.3 50.7 56.2
w/ Step-Back 55.5 75.5 72.7 50.7 51.7 48.3 55.0
w/ LOOP (ours) 70.0 80.0 77.3 55.0 57.3 54.3 61.0

obtained from searches using format-specific keywords. Compared to TikZ and EPS, SVG yielded
a much higher number of hits, suggesting that SVG constitutes a high-resource format.

5 LLM-ORIENTED ORCHESTRATION PROMPTING (LOOP)

Through our analysis, we find that LLM reasoning plays a crucial role. Building on this finding, we
propose a method to enhance their reasoning capabilities. Previous research has shown that carefully
crafted prompts can significantly improve LLM reasoning, even in zero-shot settings. For instance,
zero-shot CoT prompting (Kojima et al., 2022), which simply instructs the model with “Let’s think
step by step,” has been shown to improve performance. In this work, we introduce a novel zero-shot
prompting method, termed LOOP. While recent LLMs are explicitly trained for step-by-step reason-
ing and can solve complex tasks, their performance often degrades on tasks outside their training
distribution (Shojaee et al., 2025; Malek et al., 2025). Because LLMs are not inherently trained
to generate vector graphics from scientific explanations, their reasoning potential remains under-
utilized. The core idea of LOOP is to instruct LLMs to generate vector graphics by orchestrating
LLM-familiar tasks. Specifically, we use the following tasks: 1) information extraction, 2) relation-
ship extraction, 3) mathematical reasoning, and 4) code generation. The first three tasks provide the
information necessary for visualization, while the final task produces the vector graphics. Informa-
tion and relationship extraction are long-standing tasks in the field of natural language processing,
whereas mathematical reasoning and code generation are areas where recent LLMs have made sig-
nificant progress. By orchestrating these familiar tasks, LOOP aims to accelerate and enhance LLM
reasoning capabilities.

Specifically, for the plane geometry visual task, we use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the necessary
elements. 2. Relationship extraction: describe their relationships. 3. Mathematical reasoning:
compute the attributes of each element so that they satisfy those relationships. 4. Code generation:
generate the TikZ.”

For the molecular structure visualization task, we exclude mathematical reasoning, as it is not nec-
essary. We use the following prompt:

“Let’s think step by step, following this workflow: 1. Information extraction: describe the functional
groups and substituents present in the IUPAC name. 2. Relationship extraction: describe how these
groups are connected. 3. Code generation: generate the TikZ.”

The word “TikZ” is replaced with the target vector format.

5.1 EVALUATION

We evaluate the performance of LOOP by applying it to the two best-performing models: Gemini
2.5 Pro and GPT-5. For comparison, we use the following three zero-shot prompting techniques:
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Output
vector

graphic
(SVG)

Gemini 2.5 Pro

Incorrect

Gemini 2.5 Pro
w/ LOOP

Correct

Ground-truth

Let O be a circle of radius R. 
Let O_1, O_2, O_3, O_4 be (in 
that order) four non-intersecting 
circles that l ie inside O and 
tangent to it. Denote by t_{ij} the 
length of the exterior common 
bitangent of the circles O_i, O_j. 
Then:t_{12} \cdot t_{34}+t_{14} 
\cdot t_{23}=t_{13}\cdot t_{24}.

Input
text

Output
vector

graphic
(SVG)

GPT-5

Incorrect

GPT-5 w/ LOOP

Correct

Ground-truth
(Pattern 2)

In geometry, the six circles 
theorem relates to a chain of six 
circles together with a triangle, 
such that each circle is tangent 
to two sides of the triangle and 
also to the preceding circle in 
the chain. The chain closes, in 
the sense that the sixth circle is 
always tangent to the first circle.

Input
text

Figure 5: Examples demonstrating improvements from our prompting method on the plane geom-
etry SVG generation task. In the bottom example, since there are two possible exterior common
bitangents for each pair of circles, either line is considered correct.5

Output
vector

graphic
(SVG)

the molecular structure of the 
compound with the IUPAC name
(6-chloro-4-methyl-2-oxochrome
n-7-yl) (2R)-2-[(4-methylphenyl) 
sulfonylamino]pentanoate

Input
text

Output
vector

graphic
(SVG)

GPT-5 GPT-5 w/ LOOP Ground-truth

the molecular structure of the 
compound with the IUPAC name 
3-[[4-(4-methylphenyl)piperazin 
-1 -y l ]me thy l ] -5 - [ (2 -methy l 
quinazolin-4-yl)oxymethyl]-1,3,4-o
xadiazole-2-thione

Input
text

Gemini 2.5 Pro
w/ LOOP

Correct

Gemini 2.5 Pro

Incorrect

Ground-truth

CorrectIncorrect

Figure 6: Examples demonstrating improvements from our prompting method on the molecular
structure SVG generation task.6

• Zero-shot CoT Prompting (Kojima et al., 2022): “Let’s think step by step.”

• Plan-and-Solve Prompting (Wang et al., 2023a): “Let’s first understand the problem and devise
a plan to solve the problem. Then, let’s carry out the plan and solve the problem step by step.”

• Step-Back Prompting (Zheng et al., 2024): “Let’s think step by step, following this workflow: 1.
Step back and pose higher-level, abstract questions. 2. Answer those questions. 3. Generate the
TikZ.”

The results are shown in Table 6. While some methods degrade performance, the proposed method
provides the highest performance gain. This result clearly demonstrates that the proposed method
can efficiently leverage the potential of LLMs.

We present examples in Figures 5 and 6 showing that LOOP enables the generation of structurally
correct vector graphics. Without LOOP, LLMs fail to accurately produce complex structures. LOOP
encourages deeper reasoning, which leads to the generation of structurally correct vector graphics.

5The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2022; 2025e; Roc-
chini, 2010; Kmhkmh, 2018).

6The molecular structure data is from (National Center for Biotechnology Information, 2025j;o).
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6 CONCLUSION

In this paper, we tackled the problem of scientific vector graphics generation using LLMs. Specifi-
cally, aiming for structurally correct vector graphics generation, we made three contributions. First,
we introduced a new benchmark that assesses the structural correctness of generated graphics using
structural analysis scripts. Second, we conducted a comprehensive benchmarking study and pro-
vided detailed analyses based on this benchmark. Third, we proposed a novel prompting technique
that accelerates LLM inference and significantly improves performance.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT when writing our paper, for translation purposes.

B DETAILED PROMPTS USED IN OUR EXPERIMENTS

Figures 7, 8, and 9 show examples of prompts used in the plane geometry task. The
[Explanation] section represents the textual description, while the [TikZ], [SVG], and
[EPS] sections represent the input elements (the black elements in Figure 2).

Figures 10, 11, and 12 show examples of prompts used in the molecular structure task. We first
provide the IUPAC name, followed by a set of instructions. In particular, we include color specifi-
cations so that the types of atoms can be identified by their color. We also present an example using
chlorobenzene, which is a relatively simple molecule.
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[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[TikZ]\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
\draw (38.23,-264.41) -- (65.98,-195.89) -- (32.16,-166.40) -- cycle;
\node at (23.54,-167.59) {A};
\node at (70.26,-197.89) {B};
\node at (28.79,-270.30) {C};
\end{tikzpicture}
\end{document}
Please visualize the explanation by adding elements to the TikZ 
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the TikZ.
– Do not use any animations.

Figure 7: An example prompt from the TikZ generation task on plane geometry.

[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[SVG]<svg xmlns="http://www.w3.org/2000/svg" 
xmlns:ev="http://www.w3.org/2001/xml-events" version="1.1" 
viewBox="0 0 300 300">
<style>
.input_object {
  fill: none;
  stroke: black;
  stroke-width: 1;
}
.input_text {
  fill: black;
  stroke: none;
  font-size: 12px;
}
.output_object {
  fill: none;
  stroke: red;
  stroke-width: 1;
}
.output_text {
  fill: red;
  stroke: none;
  font-size: 12px;
}
</style>
<polygon class="input_object" points="38.23232323232324 
264.4065656565657 65.9848484848485 195.8901515151515 
32.15909090909092 166.40151515151516"/>
<text class="input_text" x="23.541666666666668" 
y="167.58838383838383">A</text>
<text class="input_text" x="70.2588383838384" 
y="197.89141414141415">B</text>
<text class="input_text" x="28.787878787878793" 
y="270.30303030303037">C</text>
</svg>
Please visualize the explanation by adding elements to the SVG 
diagram.
- Assign class="output_text" to any added text elements, and 
class="output_object" to all other added elements.
- Do not modify any elements that are originally present in the SVG.
– Do not use any animations.

Figure 8: An example prompt from the SVG generation task on plane geometry.
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[Explanation]The exterior angle bisector in A intersects the extended 
side BC in E, the exterior angle bisector in B intersects the extended 
side AC in D and the exterior angle bisector in C intersects the 
extended side AB in F.

The three points of intersection between the exterior angle bisectors 
and the extended triangle sides D, E, F are collinear, that is they lie on 
a common line.
[EPS]%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 300 300
1 setlinewidth
0 0 0 setrgbcolor
newpath
38.23232323232324 35.593434343434296 moveto
65.9848484848485 104.1098484848485 lineto
32.15909090909092 133.59848484848484 lineto
closepath
stroke
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
23.541666666666668 132.41161616161617 moveto
(A) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
70.2588383838384 102.10858585858585 moveto
(B) show
/Helvetica findfont 12 scalefont setfont
0 0 0 setrgbcolor
newpath
28.787878787878793 29.69696969696963 moveto
(C) show
showpage
Please visualize the explanation by adding elements to the EPS 
diagram.
– Set the color of any added elements to red.
– Do not modify any elements that are originally present in the EPS.
– Do not use any animations.

Figure 9: An example prompt from the EPS generation task on plane geometry.

Please create a TikZ file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F: 
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br: 
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5, 
Os: #838C8C, U: #00CCD5

As a reference, an example TikZ visualization of the compound 
chlorobenzene is provided below.
\documentclass[tikz]{standalone}
\definecolor{274A4A}{HTML}{274A4A}
\definecolor{2AD52A}{HTML}{2AD52A}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
  \draw[line width=1pt] (20.00,6.22) -- (28.66,1.22);
  \draw[line width=1pt] (45.98,1.22) -- (45.98,-8.78);
  \draw[line width=1pt] (45.98,1.22) -- (37.32,6.22);
  \draw[line width=1pt] (45.98,-8.78) -- (37.32,-13.78);
  \draw[line width=1pt] (37.32,6.22) -- (28.66,1.22);
  \draw[line width=1pt] (37.32,-13.78) -- (28.66,-8.78);
  \draw[line width=1pt] (28.66,1.22) -- (28.66,-8.78);
  \filldraw[fill=2AD52A, draw=none] (20.00,6.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (45.98,1.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (45.98,-8.78) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (37.32,6.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (37.32,-13.78) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (28.66,1.22) circle (1.5pt);
  \filldraw[fill=274A4A, draw=none] (28.66,-8.78) circle (1.5pt);
\end{tikzpicture}
\end{document}

Figure 10: An example prompt from the TikZ generation task on molecular structure.
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Please create an SVG file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: #638c8c, B: #2AD52A, C: #274A4A, N: #0000FF, O: #FF0000, F: 
#D52092, Si: #D59E13, P: #D58600, S: #D5D500, Cl: #2AD52A, Br: 
#D58639, Te: #D5CD72, I: #FF00FF, Eu: #00CCD5, Lu: #00CCD5, 
Os: #838C8C, U: #00CCD5

As a reference, an example SVG visualization of the compound 
chlorobenzene is provided below.
<svg xmlns="http://www.w3.org/2000/svg" viewBox="10 -29.976 
67.479 59.646">
<line x1="20" y1="6.223999999999999" x2="28.66" y2="1.224" 
stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="1.224" 
x2="45.980999999999995" y2="-8.776" stroke="black" 
stroke-width="1" />
<line x1="45.980999999999995" y1="1.224" x2="37.32" 
y2="6.223999999999999" stroke="black" stroke-width="1" />
<line x1="45.980999999999995" y1="-8.776" x2="37.32" y2="-13.776" 
stroke="black" stroke-width="1" />
<line x1="37.32" y1="6.223999999999999" x2="28.66" y2="1.224" 
stroke="black" stroke-width="1" />
<line x1="37.32" y1="-13.776" x2="28.66" y2="-8.776" stroke="black" 
stroke-width="1" />
<line x1="28.66" y1="1.224" x2="28.66" y2="-8.776" stroke="black" 
stroke-width="1" />
<circle cx="20" cy="6.223999999999999" r="1.5" fill="#2AD52A" />
<circle cx="45.980999999999995" cy="1.224" r="1.5" fill="#274A4A" 
/>
<circle cx="45.980999999999995" cy="-8.776" r="1.5" fill="#274A4A" 
/>
<circle cx="37.32" cy="6.223999999999999" r="1.5" fill="#274A4A" />
<circle cx="37.32" cy="-13.776" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="1.224" r="1.5" fill="#274A4A" />
<circle cx="28.66" cy="-8.776" r="1.5" fill="#274A4A" />
</svg>

Figure 11: An example prompt from the SVG generation task on molecular structure.
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Please create an EPS file that visualizes the molecular structure of the 
compound with the IUPAC name 4-butyl-2,6-dimethylmorpholine. 
Represent each atom as a circle, using colors to indicate atom types. 
The color mapping for each atom type is provided below, although not 
all listed types may be present in the molecule. Omit hydrogen atoms 
from the visualization. Depict bonds between atoms as lines, using a 
single line for each bond regardless of bond order.

H: [0.39, 0.55, 0.55], B: [0.16, 0.84, 0.16], C: [0.15, 0.29, 0.29], N: [0.0, 
0.0, 1.0], O: [1.0, 0.0, 0.0], F: [0.84, 0.13, 0.57], Si: [0.84, 0.62, 0.07], 
P: [0.84, 0.53, 0.0], S: [0.84, 0.84, 0.0], Cl: [0.16, 0.84, 0.16], Br: [0.84, 
0.53, 0.22], Te: [0.84, 0.8, 0.45], I: [1.0, 0.0, 1.0], Eu: [0.0, 0.8, 0.84], 
Lu: [0.0, 0.8, 0.84], Os: [0.51, 0.55, 0.55], U: [0.0, 0.8, 0.84]

As a reference, an example EPS visualization of the compound 
chlorobenzene is provided below.
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 10 -29 77 29
%%Creator: EPS Generator
%%EndComments

1 setlinewidth
0 0 0 setrgbcolor

newpath
20 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
45.980999999999995 1.224 moveto
37.32 6.223999999999999 lineto
stroke

newpath
37.32 6.223999999999999 moveto
28.66 1.224 lineto
stroke

newpath
28.66 1.224 moveto
28.66 -8.776 lineto
stroke

newpath
28.66 -8.776 moveto
37.32 -13.776 lineto
stroke

newpath
37.32 -13.776 moveto
45.980999999999995 -8.776 lineto
stroke

newpath
45.980999999999995 -8.776 moveto
45.980999999999995 1.224 lineto
stroke

0.16 0.84 0.16 setrgbcolor
newpath
20 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
45.980999999999995 -8.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 6.223999999999999 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
37.32 -13.776 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 1.224 1.5 0 360 arc
closepath
fill

0.15 0.29 0.29 setrgbcolor
newpath
28.66 -8.776 1.5 0 360 arc
closepath
fill

showpage

Figure 12: An example prompt from the EPS generation task on molecular structure.
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C LIMITATIONS OF OUR AUTOMATIC EVALUATION FRAMEWORK

Our automatic evaluation framework for the plane geometry visualization task assesses whether the
necessary elements are present in the output, but it does not penalize the inclusion of unnecessary
elements. In the example shown in Figure 13, the output from Gemini 2.5 Flash reasoning includes
an irrelevant straight line, yet it is still considered correct. We do not penalize unnecessary elements
because it is often non-trivial to determine whether an additional element is truly unnecessary. For
instance, the output from Gemini 2.5 Flash reasoning in Figure 13 includes circles not anticipated in
the ground-truth, but these represent intersections and the circle center, and they do not hinder the
explanation.

Because in practical scenarios it is usually easier for humans to remove unnecessary elements than to
create necessary ones from scratch, we do not currently view this limitation as a major issue. How-
ever, enabling the framework to identify and evaluate such extraneous content remains an important
direction for future work.

Output
vector

graphic
(SVG)

Gemini 2.5 Flash reasoning Ground-truth

Correct

In geometry, the tangential 
triangle of a reference triangle 
(other than a right triangle) is the 
triangle whose sides are on the 
tangent lines to the reference 
triangle's circumcircle at the 
reference triangle's vertices.

Input
text

Figure 13: An example judged correct despite an unrelated line.7

7The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025m; Kmhkmh,
2019b).
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D ADDITIONAL EXAMPLES OF GENERATED VECTOR GRAPHICS

D.1 EXAMPLES GENERATED BY FINE-TUNED MODELS

Figure 14 shows examples generated by two fine-tuned models, AutomaTikZ (Belouadi et al.,
2024a) and TikZero+ (Belouadi et al., 2025). The top example is the only case where TikZero+
produces a structurally correct vector graphic. However, in all other cases, the models fail to gen-
erate structurally correct vector graphics. In the plane geometry task, they cannot follow simple
instructions such as “Set the color of any added elements to red” or “Do not modify any elements
that are originally present in the TikZ.” In the molecular structure task, the models generate entirely
invalid vector graphics. These results reveal the limitations of fine-tuned models.

�Fg

�Fn

�Fs

θ

1

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect Incorrect

TikZero+ Ground-truthThe center of an excircle is the 
intersection of the internal bisector 
of one angle and the external 
bisectors of the other two. Every 
triangle has three excircle centers.

Input
text

In Eucl idean geometry,  the 
medial  t r iangle or midpoint 
triangle of a triangle △ABC is 
the triangle with vertices at the 
midpoints of the triangle's sides 
AB, AC, BC.

Input
text

Output
vector

graphic
(TikZ)

AutomaTikZ

Incorrect

TikZero+

Correct

Ground-truth
A

B

C

A

B

C

A B

C

a

bc

M

Output
vector

graphic
(TikZ)

AutomaTikZ TikZero+ Ground-truththe molecular structure of the 
compound with the IUPAC name 
N-(2-methylsulfinylethyl)acetamide

Input
text

the molecular structure of the 
compound with the IUPAC name 
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Figure 14: Examples generated by fine-tuned models.8

8The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2025j;g;
Braindrain0000, 2006; Inductiveload, 2007a). The molecular structure data is from (National Center for
Biotechnology Information, 2025k;n).
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D.2 IMPACT OF REASONING

We show in Figures 15 and 16 that enabling reasoning allows LLMs to output the correct structure.
Without reasoning, they struggle to generate even simple structures.

In geometry, an altitude of a 
t r i ang le  i s  a  l i ne  segmen t 
through a given vertex (called 
apex) and perpendicular to a 
line containing the side or edge 
opposite the apex. The altitude 
from A intersects the extended 
base at D (a point outside the 
triangle).
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Correct
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The Gergonne t r iang le  (o f 
\triangle ABC) is defined by the 
three touchpoints of the incircle 
o n  t h e  t h r e e  s i d e s .  T h e 
t o u c h p o i n t  o p p o s i t e  A  i s 
denoted T_A, etc.The three 
lines A{T_A}, B{T_B}, and C
{T_C} intersect in a single point 
cal led the Gergonne point , 
denoted as G_e. 
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T o  b i s e c t  a n  a n g l e  w i t h 
straightedge and compass, one 
draws a circle whose center is 
the vertex. The circle meets the 
angle at two points: one on 
each leg. Using each of these 
points as a center, draw two 
circles of the same size. The 
intersection of the circles (two 
points) determines a line that is 
the angle bisector.
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classical result in Euclidean 
geometry, which can be stated 
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circle, through which two other 
chords AB and CD are drawn; 
AD and BC intersect chord PQ 
at X and Y correspondingly. 
Then M is the midpoint of XY.
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Figure 15: Examples where enabling reasoning allows LLMs to generate the correct structure in the
plane geometry SVG geneartion task.9

9The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025a;g;c;d; Pega-
susRoe, 2007; Inductiveload, 2007c; Ixnay, 2007; Gustavb, 2006).
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Figure 16: Examples where enabling reasoning allows LLMs to generate the correct structure in the
molecular structure SVG geneartion task.10

10The molecular structure data is from (National Center for Biotechnology Information, 2025m;c;e;i).
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D.3 IMPACT OF FORMAT

Figures 17 and 18 present examples where LLMs produce correct structures in SVG format but fail
in TikZ and EPS formats. Although the input text is identical, the results clearly vary depending on
the output format.

Let X be any triangle center of 
△ABC. Draw the lines AX, BX, 
CX and their reflections in the 
internal bisectors of the angles 
a t  t h e  v e r t i c e s  A ,  B ,  C 
respectively. The reflected lines 
are concurrent and the point of 
concurrence is the isogonal 
conjugate Y of X.
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In geometry, symmedians are 
three particular lines associated 
with every triangle. They are 
constructed by taking a median 
of the triangle (a line connecting 
a vertex with the midpoint of the 
opposite side), and reflecting 
the line over the corresponding 
angle bisector (the line through 
the same vertex that divides the 
angle there in half). 
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Figure 17: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the plane geometry task.11

11The input texts and the ground-truth vector graphics are from (Wikipedia contributors, 2025h;i;l;k; Roc-
chini, 2008; Kmhkmh, 2024; 2016; Inductiveload, 2007b).
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Figure 18: Examples where LLMs produce correct structures in SVG format but fail in TikZ and
EPS formats in the molecular structure task.12

12The molecular structure data is from (National Center for Biotechnology Information, 2025d;h;b;a).
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D.4 COMPARISON OF ZERO-SHOT PROMPTING METHODS

We present results obtained by applying zero-shot prompting methods to Gemini 2.5 Pro in Figures
19, 20, 21, and 22. When using methods other than Zero-shot CoT, Gemini 2.5 Pro produces an
explanation prior to generating vector graphics, and we include that explanation as well. In the case
of Plan-and-Solve prompting, the output explanation “C3 will also be in corner B, tangent to C2” is
incorrect, revealing that Gemini 2.5 Pro fails to capture the relationships. In the case of Step-Back
prompting, the output explanation reveals that Gemini 2.5 Pro captures the necessary elements and
relationships, but overlooks the importance of mathematical reasoning. In contrast, by applying
our LOOP, Gemini 2.5 Pro captures the necessary elements and relationships and recognizes the
importance of mathematical reasoning, enabling it to generate structurally correct vector graphics.

In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle 
is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense 
that the sixth circle is always tangent to the first circle.

(There is no output explanation.)

Input
text

Output
explanation

Ground-
truth

Output
vector

graphic
(SVG)

Gemini 2.5 Pro w/ Zero-shot CoT

Incorrect

Input text and ground-truth

Figure 19: Example output generated by applying Zero-shot CoT prompting to Gemini 2.5 Pro.13

13The input text and the ground-truth vector graphic are from (Wikipedia contributors, 2022; Rocchini,
2010).
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An explanation of the six circles theorem has been provided, and it needs to be visualized by adding elements to 
the given SVG.

### Plan:
1.  **Deconstruct the Theorem**: The theorem describes a chain of six circles (C1 to C6) associated with a 
triangle.
    *   There are three pairs of circles, with each pair nestled into one corner of the triangle.
    *   Circles in the same corner are tangent to each other and to the two adjacent sides of the triangle.
    *   The chain follows a sequence around the triangle's vertices: A -> B -> C -> A.
    *   Let's say the given circle, C1, is in corner A.
    *   The next circle, C2, will be in corner B and tangent to C1.
    *   C3 will also be in corner B, tangent to C2.
    *   C4 will be in corner C, tangent to C3.
    *   C5 will also be in corner C, tangent to C4.
    *   C6 will be in corner A, tangent to C5.
    *   The theorem's conclusion is that C6 will also be tangent to the first circle, C1, thus closing the chain.

2.  **Analyze the Input SVG**:
    *   We have a triangle. Let's label its vertices A (top), B (bottom-left), and C (bottom-right).
    *   We have one circle, which we will label C1. It is located in corner A.

3.  **Add Visual Elements**:
    *   Add the remaining five circles (C2, C3, C4, C5, C6) with the class `output_object`.
    *   Place them according to the theorem's rules, ensuring they appear tangent to the correct triangle sides and 
preceding circles. The positions and radii will be estimated to create a visually plausible representation of the 
theorem.
    *   C1 and C6 will be in corner A.
    *   C2 and C3 will be in corner B.
    *   C4 and C5 will be in corner C.
    *   The crucial part is to draw the chain such that C6, which is tangent to C5, is also tangent to C1.
    *   Add text labels "C1" through "C6" for each circle, assigning them the class `output_text`.

### Execution:
The following SVG code adds the five circles and six labels to illustrate the theorem. The positions and sizes of 
the new circles have been chosen to create a clear and accurate visual representation of the tangency 
relationships described.

Output
explanation

Output
vector

graphic
(SVG)

Incorrect

Gemini 2.5 Pro w/ Plan-and-Solve

Figure 20: Example output generated by applying Plan-and-Solve prompting to Gemini 2.5 Pro.
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An explanation of the six circles theorem has been provided. This theorem describes a closed chain of six 
circles, where each circle is tangent to two sides of a triangle and the preceding circle in the chain. The provided 
SVG shows the triangle and the first circle of such a chain.

To visualize the theorem, we will add the remaining five circles to complete the chain.

1.  **Circle C1:** The initial circle is provided, located in the top corner of the triangle.
2.  **Circle C2:** We add the second circle, C2, in the bottom-right corner, making it tangent to the two sides of 
the triangle at that corner and also to circle C1.
3.  **Circle C3:** The third circle, C3, is placed in the bottom-left corner, tangent to the two sides there and to 
circle C2.
4.  **Circle C4:** The fourth circle, C4, is placed back in the top corner. It is tangent to the same two sides as C1, 
and also to circle C3.
5.  **Circle C5:** The fifth circle, C5, is placed in the bottom-right corner, tangent to the sides and to circle C4.
6.  **Circle C6:** The sixth and final circle, C6, is placed in the bottom-left corner, tangent to the sides and to 
circle C5.

The remarkable property of the theorem is that this chain always closes perfectly: circle C6 will not only be 
tangent to C5 but will also be tangent to the very first circle, C1, completing the loop. The visualization below 
illustrates this closed chain.

Output
explanation

Output
vector

graphic
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Gemini 2.5 Pro w/ Step-Back

Incorrect

Figure 21: Example output generated by applying Step-Back prompting to Gemini 2.5 Pro.
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An elegant theorem in geometry, the six circles theorem, describes a fascinating property of a chain of circles 
within a triangle. Starting with a circle tangent to two sides of the triangle, a sequence of five more circles is 
constructed. Each new circle is tangent to two sides of the triangle and to the previous circle in the chain. The 
remarkable result is that this chain always forms a closed loop, with the sixth circle being perfectly tangent to the 
first one.

This visualization completes the chain described by the theorem, starting from the single provided circle.

1.  **Information extraction**: The core components are a triangle and a chain of six circles. The initial SVG 
provides the triangle and the first circle (let's call it C1). C1 is tangent to two sides of the triangle at one vertex. 
The goal is to construct the remaining five circles, C2 through C6, following the theorem's rules.
2.  **Relationship extraction**: The chain proceeds sequentially around the vertices of the triangle.
    *   C1 is tangent to sides AB and AC (at vertex A).
    *   C2 must be tangent to sides AC and BC (at vertex C) and also to C1.
    *   C3 must be tangent to sides BC and AB (at vertex B) and also to C2.
    *   C4 must be tangent to sides AB and AC (at vertex A) and also to C3.
    *   C5 must be tangent to sides AC and BC (at vertex C) and also to C4.
    *   C6 must be tangent to sides BC and AB (at vertex B) and also to C5.
    The theorem guarantees that the resulting C6 will also be tangent to the starting circle, C1.
3.  **Mathematical reasoning**: The center of any circle tangent to two sides of the triangle must lie on the angle 
bisector of the corresponding vertex. The condition that the new circle must also be tangent to the previous circle 
provides a second constraint. Combining these two conditions leads to a solvable quadratic equation for the 
position of the new circle's center along the angle bisector. This process is applied iteratively to find the center 
and radius of each subsequent circle in the chain (C2, C3, C4, C5, and C6). The final calculation confirms the 
theorem: the distance between the centers of C6 and C1 is indeed equal to the sum of their radii, proving their 
tangency.
4.  **Code generation**: Based on the calculated centers and radii, five `<circle>` elements are added to the 
SVG to represent C2 through C6. Additionally, `<text>` elements are added to label each circle from C1 to C6, 
clarifying the sequence of the chain.
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vector
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Correct
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Figure 22: Example output generated by applying our LOOP to Gemini 2.5 Pro.
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E ADDITIONAL EXPERIMENTS

E.1 COMPLEMENTARY AUTOMATIC METRICS

Our evaluation in the main paper relies solely on a single binary metric (Accuracy), which provides
an overly coarse assessment because near-misses and completely incorrect outputs are both scored
as 0. To address this limitation, we employ additional evaluation metrics. Following TikZero+ (Be-
louadi et al., 2025), we use five image- and code-similarity metrics: DreamSim (DSim), Kernel
Inception Distance (KID), CLIPScore (CLIP), CrystalBLEU (cBLEU), and Extended Edit Dis-
tance (EED). We additionally use Coverage as an extra metric, which considers an output correct
if it contains the required elements, regardless of their spatial arrangement. As a comprehensive
evaluation, we compute an Average score, defined as the mean of all metrics after applying min-
max normalization. When applying min-max normalization, we normalize indicators where higher
values are better such that the minimum becomes 0 and the maximum becomes 100. For indica-
tors where lower values are better, we normalize them such that the minimum becomes 100 and the
maximum becomes 0. We present these metrics in Tables 7, 8, 9, 10, 11, and 12.

Focusing on the Average scores, we consistently observe that (1) reasoning models outperform
non-reasoning models, and (2) our proposed LOOP improves the performance in most cases.

E.2 ADDITIONAL MODELS

To demonstrate the versatility of our LOOP, we apply it to two additional reasoning models
(DeepSeek-V3.2 Reasoning and Claude Opus 4.1 Thinking) and two additional non-reasoning mod-
els (Gemini 2.5 Flash and GPT-5 Chat). The results are shown in Tables 7, 8, 9, 10, 11, and 12. Our
LOOP achieves improved performance in many cases, clearly demonstrating its robustness.

E.3 IMPACT OF RESAMPLING ON FINE-TUNED MODELS

The impact of resampling is considered a possible reason for the low performance of the fine-tuned
models. In our experiments, we evaluate each model using only a single generation attempt, and
any outputs that resulted in compilation errors are considered incorrect. This evaluation procedure
is applied uniformly across all models. However, the fine-tuned models are expected to be used
under the assumption that resampling continues until no compilation errors occur. To investigate the
impact of resampling, we allow up to 10 resampling attempts for each sample until a compilable
output is obtained. As shown in Tables 7 and 10, resampling improves performance, and notably,
TikZero+ achieves performance comparable to non-reasoning models.
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Table 7: Complementary metrics for plane geometry TikZ generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Fine-tuned models
AutomaTikZ 0.0 36.0 109.4 3.2 1.1 63.5 3.6 17.3
TikZero+ 0.9 49.0 55.5 13.5 5.6 51.4 12.7 32.6
AutomaTikZ resampling 0.0 56.4 12.5 16.1 1.2 61.1 13.6 33.7
DeTikZify resampling 0.9 67.1 5.8 27.2 7.4 49.6 30.0 46.7

Non-reasoning models
DeepSeek-V3 10.0 56.1 42.4 28.3 11.4 44.0 42.7 48.4
DeepSeek-V3.1 11.8 53.8 49.6 23.8 10.1 45.2 41.8 45.9
Claude Opus 4.1 14.5 60.8 31.4 32.6 9.5 46.1 51.8 51.8
Gemini 2.0 Flash 7.3 71.1 9.9 39.9 19.4 37.4 50.0 62.5
Gemini 2.5 Flash non-reasoning 12.7 48.4 70.7 17.7 6.9 50.7 30.0 37.5
GPT-4.1 10.9 50.9 54.3 25.0 8.3 47.5 39.1 43.1
GPT-5 Chat 12.7 54.9 48.6 28.1 11.4 44.1 38.2 47.5

Rasoning models
DeepSeek-R1 28.2 74.6 7.6 39.9 21.5 33.8 54.5 69.6
DeepSeek-V3.1 reasoning 23.6 63.5 29.5 31.6 11.3 40.8 40.9 54.4
Claude Opus 4.1 thinking 20.0 66.9 18.8 43.8 12.4 41.8 64.5 61.4
Gemini 2.5 Flash reasoning 30.0 55.7 49.6 25.2 8.5 47.8 44.5 48.7
Gemini 2.5 Pro 50.0 67.1 25.0 34.5 9.7 43.3 56.4 61.6
o4-mini 48.2 74.9 7.7 46.5 17.4 37.4 70.0 73.7
GPT-5 54.5 69.7 13.3 44.4 9.3 43.4 66.4 66.9

Prompting
Gemini 2.5 Pro 50.0 67.1 25.0 34.5 9.7 43.3 56.4 61.6

w/ Zero-shot CoT 39.1 64.3 28.5 37.4 9.8 43.7 52.7 58.8
w/ Plan-and-Solve 39.1 60.7 37.3 28.2 9.1 45.9 48.2 54.1
w/ Step-Back 33.6 57.2 45.3 28.6 8.1 47.0 42.7 50.3
w/ LOOP (ours) 65.5 77.4 6.4 47.1 14.7 38.1 67.3 75.6

GPT-5 54.5 69.7 13.3 44.4 9.3 43.4 66.4 66.9
w/ Zero-shot CoT 58.2 72.5 12.4 44.0 10.1 43.3 66.4 68.6
w/ Plan-and-Solve 61.8 74.0 8.1 49.5 11.6 41.4 71.8 72.9
w/ Step-Back 55.5 70.0 13.8 41.7 9.6 43.5 68.2 67.0
w/ LOOP (ours) 70.0 80.6 3.1 52.3 13.4 39.0 82.7 79.7

Gemini 2.5 Flash non-reasoning 12.7 48.4 70.7 17.7 6.9 50.7 30.0 37.5
w/ LOOP (ours) 33.6 72.3 11.4 38.6 11.4 42.6 60.9 63.3

GPT-5 Chat 12.7 54.9 48.6 28.1 11.4 44.1 38.2 47.5
w/ LOOP (ours) 15.5 66.8 15.0 47.2 13.5 40.8 58.2 61.3

DeepSeek-V3.2 reasoning 14.5 63.6 26.8 32.8 11.9 42.1 43.6 53.6
w/ LOOP (ours) 22.7 70.9 12.1 37.6 16.0 36.7 61.8 64.7

Claude Opus 4.1 thinking 20.0 66.9 18.8 43.8 12.4 41.8 64.5 61.4
w/ LOOP (ours) 32.7 84.5 0.2 58.3 19.8 34.5 87.3 80.2
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Table 8: Complementary metrics for plane geometry SVG generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 5.5 80.8 3.5 68.2 21.9 32.8 89.1 77.9
DeepSeek-V3.1 6.4 81.1 2.4 68.5 21.0 33.6 86.4 77.2
Claude Opus 4.1 12.7 81.8 3.4 74.8 15.0 37.1 96.4 77.2
Gemini 2.0 Flash 5.5 83.1 1.5 59.7 26.9 29.8 79.1 78.7
Gemini 2.5 Flash non-reasoning 9.1 86.5 1.0 61.4 22.7 31.4 84.5 78.7
GPT-4.1 10.0 82.9 4.1 73.2 16.9 38.5 87.3 75.9
GPT-5 Chat 10.0 82.9 4.0 74.6 21.2 33.5 81.8 78.7

Rasoning models
DeepSeek-R1 40.9 84.1 0.9 59.2 22.9 30.8 62.7 80.4
DeepSeek-V3.1 reasoning 39.1 83.1 1.1 65.2 20.8 32.4 63.6 79.7
Claude Opus 4.1 thinking 23.6 81.6 3.8 77.8 14.5 36.9 97.3 79.5
Gemini 2.5 Flash reasoning 55.5 87.8 0.7 65.2 19.7 36.1 84.5 85.4
Gemini 2.5 Pro 62.7 88.4 0.7 72.5 20.7 31.8 90.0 90.3
o4-mini 62.7 88.7 1.5 64.0 20.6 32.9 80.9 87.1
GPT-5 75.5 83.5 4.4 76.3 17.4 35.5 94.5 90.1

Prompting
Gemini 2.5 Pro 62.7 88.4 0.7 72.5 20.7 31.8 90.0 90.3

w/ Zero-shot CoT 66.4 81.4 2.3 64.6 17.7 33.2 90.0 86.1
w/ Plan-and-Solve 69.1 83.9 1.3 69.0 17.8 32.5 91.8 88.4
w/ Step-Back 64.5 81.7 2.4 66.3 17.0 33.4 91.8 86.0
w/ LOOP (ours) 80.9 84.6 1.1 62.6 19.2 31.6 93.6 90.6

GPT-5 75.5 83.5 4.4 76.3 17.4 35.5 94.5 90.1
w/ Zero-shot CoT 80.0 84.6 3.9 74.4 16.0 36.3 96.4 90.2
w/ Plan-and-Solve 77.3 82.1 5.6 76.7 15.0 37.4 95.5 88.6
w/ Step-Back 75.5 82.9 4.7 75.3 16.6 35.8 94.5 89.3
w/ LOOP (ours) 80.0 84.8 3.0 74.3 17.2 35.3 94.5 90.9

Gemini 2.5 Flash non-reasoning 9.1 86.5 1.0 61.4 22.7 31.4 84.5 78.7
w/ LOOP (ours) 45.5 86.7 0.8 64.8 21.1 33.6 67.3 82.0

GPT-5 Chat 10.0 82.9 4.0 74.6 21.2 33.5 81.8 78.7
w/ LOOP (ours) 21.8 83.7 3.5 73.4 18.9 34.5 86.4 80.0

DeepSeek-V3.2 reasoning 25.5 84.1 1.3 63.3 25.0 31.3 73.6 81.0
w/ LOOP (ours) 48.2 87.1 0.8 55.0 27.5 28.8 68.2 85.2

Claude Opus 4.1 thinking 23.6 81.6 3.8 77.8 14.5 36.9 97.3 79.5
w/ LOOP (ours) 30.9 83.3 2.1 71.5 15.0 36.1 96.4 80.4
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Table 9: Complementary metrics for plane geometry EPS generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 7.3 65.7 19.0 37.5 12.9 40.9 50.9 56.2
DeepSeek-V3.1 9.1 66.9 16.9 35.5 8.6 43.8 55.5 54.4
Claude Opus 4.1 20.9 80.8 2.1 54.1 10.1 43.4 84.5 69.1
Gemini 2.0 Flash 1.8 63.4 23.1 34.2 19.3 36.6 43.6 56.9
Gemini 2.5 Flash non-reasoning 5.5 60.4 29.3 29.9 11.3 44.0 39.1 49.3
GPT-4.1 14.5 69.2 11.8 44.9 13.1 46.3 62.7 60.8
GPT-5 Chat 7.3 72.5 7.6 45.9 16.6 39.7 60.9 63.7

Rasoning models
DeepSeek-R1 39.1 85.2 1.7 45.9 18.4 32.7 59.1 74.6
DeepSeek-V3.1 reasoning 27.3 77.5 4.4 38.4 14.0 36.0 51.8 65.3
Claude Opus 4.1 thinking 17.3 81.6 1.5 58.2 17.7 38.7 79.1 73.6
Gemini 2.5 Flash reasoning 41.8 79.9 2.8 48.3 14.7 45.8 65.5 70.5
Gemini 2.5 Pro 56.4 83.4 0.7 51.2 17.2 38.2 76.4 79.1
o4-mini 55.5 86.1 0.3 52.9 19.6 35.9 76.4 81.5
GPT-5 66.4 87.0 -0.6 57.6 19.3 37.9 78.2 84.2

Prompting
Gemini 2.5 Pro 56.4 83.4 0.7 51.2 17.2 38.2 76.4 79.1

w/ Zero-shot CoT 61.8 86.6 -0.4 53.9 17.1 39.5 78.2 81.2
w/ Plan-and-Solve 66.4 84.3 0.8 52.9 17.3 38.4 75.5 81.2
w/ Step-Back 59.1 84.1 0.1 50.1 16.2 39.0 73.6 78.5
w/ LOOP (ours) 62.7 85.9 -0.3 50.2 18.4 36.1 74.5 81.4

GPT-5 66.4 87.0 -0.6 57.6 19.3 37.9 78.2 84.2
w/ Zero-shot CoT 75.5 87.6 -0.8 56.2 18.6 38.5 80.0 85.5
w/ Plan-and-Solve 70.9 86.2 -0.3 56.9 15.2 42.1 85.5 82.8
w/ Step-Back 72.7 88.4 -0.6 57.4 18.1 38.7 82.7 85.5
w/ LOOP (ours) 77.3 89.4 0.0 59.1 19.9 37.6 86.4 88.5

Gemini 2.5 Flash non-reasoning 5.5 60.4 29.3 29.9 11.3 44.0 39.1 49.3
w/ LOOP (ours) 34.5 67.8 15.8 35.4 14.3 40.2 51.8 62.3

GPT-5 Chat 7.3 72.5 7.6 45.9 16.6 39.7 60.9 63.7
w/ LOOP (ours) 24.5 81.7 1.9 51.7 16.3 37.3 73.6 72.4

DeepSeek-V3.2 reasoning 18.2 79.8 4.3 44.5 15.5 38.7 65.5 67.5
w/ LOOP (ours) 17.3 78.9 3.6 46.3 17.5 35.7 56.4 67.8

Claude Opus 4.1 thinking 17.3 81.6 1.5 58.2 17.7 38.7 79.1 73.6
w/ LOOP (ours) 22.7 86.8 1.4 60.3 19.8 36.2 88.2 78.9
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Table 10: Complementary metrics for molecular structure TikZ generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Fine-tuned models
AutomaTikZ 0.0 24.0 177.3 0.00 0.00 96.8 0.0 0.7
TikZero+ 0.0 26.1 155.5 0.00 0.00 69.9 0.0 8.5
AutomaTikZ resampling 0.0 27.7 122.7 0.06 0.00 90.8 0.0 7.1
DeTikZify resampling 0.0 43.4 34.8 0.12 0.01 54.3 0.7 25.2

Non-reasoning models
DeepSeek-V3 5.3 72.9 15.9 3.70 0.49 39.0 15.3 40.08
DeepSeek-V3.1 6.3 75.4 12.5 4.91 0.61 38.2 19.0 42.04
Claude Opus 4.1 24.3 80.9 6.0 8.26 0.69 38.7 52.0 52.27
Gemini 2.0 Flash 6.0 68.9 13.0 5.14 0.31 51.3 18.7 37.68
Gemini 2.5 Flash non-reasoning 22.7 64.4 21.5 3.25 0.25 53.9 34.3 40.38
GPT-4.1 19.0 71.6 18.1 3.14 0.34 44.6 33.7 43.41
GPT-5 Chat 16.0 66.0 19.9 1.88 0.06 51.1 24.7 38.47

Rasoning models
DeepSeek-R1 18.3 69.9 16.5 2.64 0.29 44.2 25.7 41.82
DeepSeek-V3.1 reasoning 31.0 71.0 12.8 3.14 0.54 39.5 46.3 48.85
Claude Opus 4.1 thinking 26.7 83.6 4.5 8.97 0.71 37.1 54.7 54.27
Gemini 2.5 Flash reasoning 32.0 60.0 31.3 3.06 0.15 53.1 38.7 41.03
Gemini 2.5 Pro 41.3 78.6 8.1 5.39 0.62 34.4 72.3 57.96
o4-mini 33.3 69.5 15.4 4.39 0.28 41.1 43.7 48.09
GPT-5 52.3 71.3 13.6 3.01 0.81 42.7 74.7 56.20

Prompting
Gemini 2.5 Pro 41.3 78.6 8.1 5.39 0.62 34.4 72.3 57.96

w/ Zero-shot CoT 47.7 79.7 6.8 5.13 0.77 33.7 70.3 59.32
w/ Plan-and-Solve 41.3 77.6 8.2 4.63 0.63 33.8 70.3 57.44
w/ Step-Back 40.7 79.4 6.3 5.56 0.68 33.3 65.7 57.49
w/ LOOP (ours) 47.7 80.2 6.3 7.03 0.68 33.5 71.0 59.90

GPT-5 52.3 71.3 13.6 3.01 0.81 42.7 74.7 56.20
w/ Zero-shot CoT 53.0 70.0 14.8 2.79 0.76 42.4 73.7 55.82
w/ Plan-and-Solve 52.3 71.5 13.4 3.03 0.70 39.6 73.3 56.66
w/ Step-Back 50.7 70.8 13.7 3.05 0.69 41.5 72.3 55.67
w/ LOOP (ours) 55.0 76.7 9.4 4.72 0.78 36.7 79.3 60.40

Gemini 2.5 Flash non-reasoning 22.7 64.4 21.5 3.25 0.25 53.9 34.3 40.38
w/ LOOP (ours) 21.3 60.5 25.4 4.19 0.16 56.2 26.0 37.44

GPT-5 Chat 16.0 66.0 19.9 1.88 0.06 51.1 24.7 38.47
w/ LOOP (ours) 19.0 69.7 17.0 2.61 0.13 48.5 22.3 40.38

DeepSeek-V3.2 reasoning 14.0 70.0 14.6 3.65 0.66 40.5 28.3 42.78
w/ LOOP (ours) 16.0 75.2 10.4 4.76 0.75 38.3 33.7 46.06

Claude Opus 4.1 thinking 26.7 83.6 4.5 8.97 0.71 37.1 54.7 54.27
w/ LOOP (ours) 30.7 83.7 4.9 9.43 0.70 37.0 54.7 55.05
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Table 11: Complementary metrics for molecular structure SVG generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 3.3 20.77 171.88 11.09 0.47 45.71 10.00 15.5
DeepSeek-V3.1 3.7 22.79 161.72 11.75 0.33 49.49 24.84 18.3
Claude Opus 4.1 26.0 30.04 152.34 7.81 0.58 48.64 66.00 30.1
Gemini 2.0 Flash 3.7 39.08 96.48 4.47 0.53 47.65 22.36 25.7
Gemini 2.5 Flash non-reasoning 11.3 39.68 103.13 3.70 0.44 56.45 27.16 25.3
GPT-4.1 15.0 28.96 145.31 5.55 0.40 48.00 24.67 22.0
GPT-5 Chat 14.3 30.30 146.09 3.20 0.35 48.81 23.00 21.3

Rasoning models
DeepSeek-R1 20.0 27.48 143.75 4.48 0.52 47.01 29.67 23.5
DeepSeek-V3.1 reasoning 7.3 22.73 164.84 9.79 0.49 48.47 31.89 19.6
Claude Opus 4.1 thinking 27.7 30.34 153.13 6.75 0.68 44.91 62.33 30.5
Gemini 2.5 Flash reasoning 39.3 51.54 66.80 2.81 0.37 52.59 45.63 38.9
Gemini 2.5 Pro 63.3 36.66 125.78 6.78 0.53 42.48 73.09 42.3
o4-mini 42.7 28.43 155.47 6.09 0.38 46.60 56.62 31.1
GPT-5 55.7 37.97 121.09 4.07 0.60 51.98 76.00 39.6

Prompting
Gemini 2.5 Pro 63.3 36.66 125.78 6.78 0.53 42.48 73.09 42.3

w/ Zero-shot CoT 63.0 36.85 122.66 5.81 0.61 42.61 72.85 42.3
w/ Plan-and-Solve 58.7 35.59 125.00 5.61 0.57 42.44 70.53 40.8
w/ Step-Back 54.3 41.46 104.69 4.55 0.52 42.99 64.69 41.6
w/ LOOP (ours) 64.7 33.94 135.94 7.98 0.65 42.53 75.33 41.8

GPT-5 55.7 37.97 121.09 4.07 0.60 51.98 76.00 39.6
w/ Zero-shot CoT 52.0 42.00 107.03 3.26 0.45 54.45 75.00 40.0
w/ Plan-and-Solve 50.3 41.66 107.81 3.75 0.53 52.63 72.00 39.6
w/ Step-Back 51.7 37.52 122.66 4.29 0.54 51.40 74.33 38.5
w/ LOOP (ours) 57.3 31.55 150.78 5.12 0.59 47.66 81.00 38.0

Gemini 2.5 Flash non-reasoning 11.3 39.68 103.13 3.70 0.44 56.45 27.16 25.3
w/ LOOP (ours) 30.0 46.39 82.81 3.21 0.34 57.12 39.68 33.1

GPT-5 Chat 14.3 30.30 146.09 3.20 0.35 48.81 23.00 21.3
w/ LOOP (ours) 19.7 27.16 159.38 5.27 0.59 45.16 28.00 22.5

DeepSeek-V3.2 reasoning 10.7 27.40 142.97 7.41 0.68 49.65 25.00 21.3
w/ LOOP (ours) 27.7 28.11 146.09 7.01 0.74 47.89 38.00 26.5

Claude Opus 4.1 thinking 27.7 30.34 153.13 6.75 0.68 44.91 62.33 30.5
w/ LOOP (ours) 27.0 27.25 166.41 7.64 0.82 45.15 59.00 28.3
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Table 12: Complementary metrics for molecular structure EPS generation.

Model Acc↑ DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Coverage↑ Average↑
Non-reasoning models
DeepSeek-V3 3.0 61.38 31.25 2.61 0.03 49.28 9.33 32.6
DeepSeek-V3.1 3.3 64.77 24.90 1.77 0.03 49.10 13.33 34.3
Claude Opus 4.1 16.0 77.47 11.13 5.14 0.07 49.79 58.33 47.4
Gemini 2.0 Flash 0.7 29.54 140.63 0.03 0.01 56.48 0.67 13.5
Gemini 2.5 Flash non-reasoning 14.3 58.86 34.57 2.23 0.04 57.81 31.33 35.1
GPT-4.1 13.7 66.67 22.75 3.33 0.05 51.73 24.33 38.1
GPT-5 Chat 11.0 52.22 49.80 0.46 0.01 54.50 16.00 30.1

Rasoning models
DeepSeek-R1 19.7 67.07 24.22 1.34 0.05 48.31 27.33 39.9
DeepSeek-V3.1 reasoning 20.7 65.49 22.66 1.48 0.04 49.62 33.00 40.4
Claude Opus 4.1 thinking 23.3 84.57 6.74 7.93 0.11 47.26 54.00 50.9
Gemini 2.5 Flash reasoning 34.7 57.88 38.67 2.63 0.03 54.74 43.33 40.7
Gemini 2.5 Pro 57.3 79.00 3.98 9.83 0.08 45.14 76.67 60.1
o4-mini 39.0 71.66 14.84 4.94 0.04 49.13 51.67 49.1
GPT-5 49.7 69.79 18.26 3.13 0.05 57.29 73.33 51.4

Prompting
Gemini 2.5 Pro 57.3 79.00 3.98 9.83 0.08 45.14 76.67 60.1

w/ Zero-shot CoT 58.7 79.59 3.91 8.83 0.10 45.61 79.33 60.6
w/ Plan-and-Solve 55.0 79.22 3.88 9.25 0.07 45.44 76.00 59.5
w/ Step-Back 56.3 77.40 4.83 7.94 0.07 45.62 73.67 58.6
w/ LOOP (ours) 67.7 80.65 3.81 9.14 0.09 44.97 79.67 62.7

GPT-5 49.7 69.79 18.26 3.13 0.05 57.29 73.33 51.4
w/ Zero-shot CoT 49.3 69.82 17.19 3.57 0.05 56.81 70.00 51.1
w/ Plan-and-Solve 50.7 70.57 15.92 4.05 0.04 55.41 70.33 52.1
w/ Step-Back 48.3 68.53 20.31 3.12 0.04 56.33 68.67 50.3
w/ LOOP (ours) 54.3 76.43 9.67 4.73 0.07 50.75 79.00 56.8

Gemini 2.5 Flash non-reasoning 14.3 58.86 34.57 2.23 0.04 57.81 31.33 35.1
w/ LOOP (ours) 22.3 54.08 46.48 2.50 0.04 59.45 34.33 34.8

GPT-5 Chat 11.0 52.22 49.80 0.46 0.01 54.50 16.00 30.1
w/ LOOP (ours) 18.7 70.96 20.70 2.19 0.06 48.52 22.33 40.2

DeepSeek-V3.2 reasoning 6.7 68.01 19.24 1.86 0.04 51.89 18.67 36.2
w/ LOOP (ours) 9.0 73.88 14.65 3.59 0.08 51.96 23.33 39.3

Claude Opus 4.1 thinking 23.3 84.57 6.74 7.93 0.11 47.26 54.00 50.9
w/ LOOP (ours) 22.3 83.46 6.59 7.45 0.10 47.23 51.67 50.1
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E.4 EVALUATION ON THE DATIKZ V3 DATASET

We evaluate the robustness of the proposed LOOP using the DaTikZ v3 dataset. The same prompt
from the plane geometry task is employed. For comparison, we also include the fine-tuned models
in the evaluation. Because DaTikZ v3 publishes only a subset of its test set, the fine-tuned models
are re-evaluated. The results are shown in Figure 13. LOOP improves performance even on DaTikZ
v3, demonstrating its robustness.

Table 13: Evaluation on the DaTikZ v3 Dataset.

Model DSim↑ KID↓ CLIP↑ cBLEU↑ EED↓ Average↑
AutomaTikZ resampling 46.2 26.4 10.4 1.4 58.4 20.3
TikZero+ resampling 47.1 22.1 10.0 2.5 59.1 40.6

Gemini 2.5 Pro 46.6 14.2 28.4 1.7 60.7 30.7
w/ LOOP (ours) 50.8 8.3 36.8 1.9 59.1 70.9

GPT-5 53.1 6.1 42.3 2.2 59.5 84.7
w/ LOOP (ours 53.5 6.1 39.5 2.5 59.6 87.5
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E.5 ABLATIONS ON LOOP

To identify the contribution of each component of LOOP to the overall performance, we perform
an ablation study. The target task is plane geometry SVG generation using Gemini 2.5 Pro. The
experiments are performed under the following three settings.

• w/o information extraction: “Let’s think step by step, following this workflow: 1. Re-
lationship extraction: describe the relationships among the elements. 2. Mathematical
reasoning: compute the attributes of each element so that they satisfy those relationships.
3. Code generation: generate the TikZ.”

• w/o relationship extraction: “Let’s think step by step, following this workflow: 1. Informa-
tion extraction: describe the necessary elements. 2. Mathematical reasoning: compute the
attributes of each element. 3. Code generation: generate the TikZ.”

• w/o mathematical reasoning: “Let’s think step by step, following this workflow: 1. Infor-
mation extraction: describe the necessary elements. 2. Relationship extraction: describe
their relationships. 3. Code generation: generate the TikZ.”

• w/o code generation: “Let’s think step by step, following this workflow: 1. Information
extraction: describe the necessary elements. 2. Relationship extraction: describe their
relationships. 3. Mathematical reasoning: compute the attributes of each element so that
they satisfy those relationships.”

We show the results of applying these prompts in Figure 14. The original prompt achieves the best
performance, clearly demonstrating that each component contributes to the improvement.

Table 14: The performance of Gemini 2.5 Pro with different prompts in the plane-geometry SVG
generation task.

Method Accuracy
LOOP 80.9
w/o information extraction 72.7
w/o relationship extraction 72.7
w/o mathematical reasoning 70.0
w/o code generation 72.7

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F DETAILS OF THE EVALUATION CODE

We describe below the evaluation code used in our SSVG-Bench, specifically for the SVG format.
For TikZ and EPS, since we first compile them to PDF and then convert them to SVG using the
pdf2svg command before processing, the code is nearly identical to that used for SVG.

F.1 PLANE GEOMETRY

F.1.1 PARSING CODE

We first present the parsing code for extracting straight lines, circles, and ellipses from vector data
(in this case, SVG), as shown in Figures 23, 24, 25, 26, and 27. This enables subsequent structural
analysis.

Overview. The code uses Python’s built-in XML parser (xml.etree.ElementTree) to traverse
the SVG document tree. For selected shapes, it extracts the coordinates of geometric primitives in a
uniform form:

• Line-like shapes are decomposed into straight line segments of the form
((x1, y1), (x2, y2)).

• Circles are returned as ((cx, cy), r).
• Ellipses are represented as ((cx, cy), R1, R2, θ), where R1, R2 are the principal semi-axes

(radii) and θ is the rotation of the major axis from the x-axis.

All extracted data can optionally be filtered by CSS class.

Extracting Line Segments. The function parse segments() scans the SVG tree and detects
elements whose geometry can be expressed as connected straight lines:

• <line> elements directly provide two endpoints.
• <polygon> and <polyline> elements contain a sequence of vertex coordinates, where

each consecutive pair defines a segment (polygons also include the closing edge).
• <rect> elements are decomposed into four boundary segments.
• <path> elements are partially supported for straight motions (M, L). Each L instruction

yields a segment from the previous position.

For all these shapes, the function returns a list of straight-line segments.

Extracting Circles. The function parse circles() searches for <circle> elements and
extracts their center (cx, cy) and radius r. When a filter is specified, only circles matching the
given CSS class are processed.

Extracting Ellipses with Affine Transforms. The function parse ellipses() identifies
<ellipse> elements as well as transformed <circle> elements. It supports general SVG affine
transformations including: matrix, translate, rotate, scale, skewX, skewY. The trans-
formation is processed as follows:

1. Construct the affine matrix from the SVG transform attribute.
2. Apply the affine transformation to the ellipse center.
3. Decompose the linear part of the affine transform applied to the ellipse radii. The principal

radii R1, R2 and orientation θ are obtained from eigenvalue analysis of the matrix AAT .

Result. The function parse svg file() loads the SVG data, calls the three extraction routines,
and returns: segs, circs, ells, where:

• segs : list of line segments (x1, y1), (x2, y2).
• circs : list of circles ((cx, cy), r).
• ells : list of ellipses ((cx, cy), R1, R2, θ).
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~/Desktop/experiment/svg_math/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import re
5 import math
6 import xml.etree.ElementTree as ET
7  
8  
9 def tag(elem):

10     """Return the tag name without namespace."""
11     return elem.tag.split('}')[-1]
12  
13  
14 def parse_segments(root, filter_class=None):
15     """
16     Decompose line, polygon, polyline, path, and rect elements into line segments.
17     If filter_class is specified, only elements that have that class attribute are used.
18     Returns: [ ((x1, y1), (x2, y2)), ... ]
19     """
20     segs = []
21  
22     def ok_class(elem):
23         if filter_class is None:
24             return True
25         return filter_class in elem.get('class', '').split()
26  
27     for elem in root.iter():
28         t = tag(elem)
29  
30         def safe_float(value):
31             try:
32                 return float(value)
33             except (TypeError, ValueError):
34                 return 0.0
35  
36         if t == 'line' and ok_class(elem):
37             x1 = safe_float(elem.get('x1', 0))
38             y1 = safe_float(elem.get('y1', 0))
39             x2 = safe_float(elem.get('x2', 0))
40             y2 = safe_float(elem.get('y2', 0))
41             segs.append(((x1, y1), (x2, y2)))
42  
43         elif t == 'polygon' and ok_class(elem):
44             pts = re.split(r'[,\s]+', elem.get('points', '').strip())
45             coords = [float(v) for v in pts if v]
46             pts_list = list(zip(coords[0::2], coords[1::2]))
47             for i in range(len(pts_list)):
48                 segs.append((pts_list[i], pts_list[(i + 1) % len(pts_list)]))
49  
50         elif t == 'polyline' and ok_class(elem):
51             pts = re.split(r'[,\s]+', elem.get('points', '').strip())
52             coords = [float(v) for v in pts if v]
53             pts_list = list(zip(coords[0::2], coords[1::2]))
54             for i in range(len(pts_list) - 1):
55                 segs.append((pts_list[i], pts_list[i + 1]))
56  
57         elif t == 'path' and ok_class(elem):
58             d = elem.get('d', '')
59             tokens = re.findall(r'[ML]|[-+]?\d*\.?\d+(?:\.\d+)?', d)
60             cur = None
61             i = 0
62             while i < len(tokens):
63                 tok = tokens[i]
64                 if tok == 'M':
65                     cur = (float(tokens[i + 1]), float(tokens[i + 2]))

Figure 23: SVG parsing code (1/5).

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

~/Desktop/experiment/svg_math/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import re
5 import math
6 import xml.etree.ElementTree as ET
7  
8  
9 def tag(elem):

10     """Return the tag name without namespace."""
11     return elem.tag.split('}')[-1]
12  
13  
14 def parse_segments(root, filter_class=None):
15     """
16     Decompose line, polygon, polyline, path, and rect elements into line segments.
17     If filter_class is specified, only elements that have that class attribute are used.
18     Returns: [ ((x1, y1), (x2, y2)), ... ]
19     """
20     segs = []
21  
22     def ok_class(elem):
23         if filter_class is None:
24             return True
25         return filter_class in elem.get('class', '').split()
26  
27     for elem in root.iter():
28         t = tag(elem)
29  
30         def safe_float(value):
31             try:
32                 return float(value)
33             except (TypeError, ValueError):
34                 return 0.0
35  
36         if t == 'line' and ok_class(elem):
37             x1 = safe_float(elem.get('x1', 0))
38             y1 = safe_float(elem.get('y1', 0))
39             x2 = safe_float(elem.get('x2', 0))
40             y2 = safe_float(elem.get('y2', 0))
41             segs.append(((x1, y1), (x2, y2)))
42  
43         elif t == 'polygon' and ok_class(elem):
44             pts = re.split(r'[,\s]+', elem.get('points', '').strip())
45             coords = [float(v) for v in pts if v]
46             pts_list = list(zip(coords[0::2], coords[1::2]))
47             for i in range(len(pts_list)):
48                 segs.append((pts_list[i], pts_list[(i + 1) % len(pts_list)]))
49  
50         elif t == 'polyline' and ok_class(elem):
51             pts = re.split(r'[,\s]+', elem.get('points', '').strip())
52             coords = [float(v) for v in pts if v]
53             pts_list = list(zip(coords[0::2], coords[1::2]))
54             for i in range(len(pts_list) - 1):
55                 segs.append((pts_list[i], pts_list[i + 1]))
56  
57         elif t == 'path' and ok_class(elem):
58             d = elem.get('d', '')
59             tokens = re.findall(r'[ML]|[-+]?\d*\.?\d+(?:\.\d+)?', d)
60             cur = None
61             i = 0
62             while i < len(tokens):
63                 tok = tokens[i]
64                 if tok == 'M':
65                     cur = (float(tokens[i + 1]), float(tokens[i + 2]))

66                     i += 3
67                 elif tok == 'L' and cur is not None:
68                     nxt = (float(tokens[i + 1]), float(tokens[i + 2]))
69                     segs.append((cur, nxt))
70                     cur = nxt
71                     i += 3
72                 else:
73                     i += 1
74  
75         elif t == 'rect' and ok_class(elem):
76             x = float(elem.get('x', '0'))
77             y = float(elem.get('y', '0'))
78             w = float(elem.get('width', '0'))
79             h = float(elem.get('height', '0'))
80             p1 = (x, y)
81             p2 = (x + w, y)
82             p3 = (x + w, y + h)
83             p4 = (x, y + h)
84             segs.extend([(p1, p2), (p2, p3), (p3, p4), (p4, p1)])
85  
86     return segs
87  
88  
89 def parse_circles(root, filter_class=None):
90     """
91     Extract circle elements. If filter_class is specified, filter by that class.
92     Returns: [ ((cx, cy), r), ... ]
93     """
94     circs = []
95     for elem in root.iter():
96         if tag(elem) == 'circle':
97             cls = elem.get('class', '').split()
98             if filter_class is None or filter_class in cls:
99                 cx = float(elem.get('cx', 0))

100                 cy = float(elem.get('cy', 0))
101                 r = float(elem.get('r', 0))
102                 circs.append(((cx, cy), r))
103     return circs
104  
105  
106 def parse_ellipses(root, filter_class=None):
107     """
108     Extract ellipse elements. Supports translate / rotate / scale / matrix in the transform attribute.
109     Returns: [ ((cx, cy), rx, ry, angle_deg), ... ]
110     - angle_deg: angle in degrees, counter-clockwise from the x-axis
111     - Even with non-uniform scale or arbitrary matrices, approximates major/minor axis lengths and 

orientation.
112     """
113     ellipses = []
114     # Tokenizer for transform attribute
115     t_re = re.compile(r'(matrix|translate|rotate|scale|skewX|skewY)\s*\(([^)]+)\)', re.I)
116  
117     def mult(A, B):
118         """3x3 matrix multiplication A @ B."""
119         return [
120             [
121                 A[0][0] * B[0][0] + A[0][1] * B[1][0] + A[0][2] * B[2][0],
122                 A[0][0] * B[0][1] + A[0][1] * B[1][1] + A[0][2] * B[2][1],
123                 A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2] * B[2][2],
124             ],
125             [
126                 A[1][0] * B[0][0] + A[1][1] * B[1][0] + A[1][2] * B[2][0],
127                 A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1],
128                 A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2] * B[2][2],
129             ],
130             [0, 0, 1],
131         ]

Figure 24: SVG parsing code (2/5).
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66                     i += 3
67                 elif tok == 'L' and cur is not None:
68                     nxt = (float(tokens[i + 1]), float(tokens[i + 2]))
69                     segs.append((cur, nxt))
70                     cur = nxt
71                     i += 3
72                 else:
73                     i += 1
74  
75         elif t == 'rect' and ok_class(elem):
76             x = float(elem.get('x', '0'))
77             y = float(elem.get('y', '0'))
78             w = float(elem.get('width', '0'))
79             h = float(elem.get('height', '0'))
80             p1 = (x, y)
81             p2 = (x + w, y)
82             p3 = (x + w, y + h)
83             p4 = (x, y + h)
84             segs.extend([(p1, p2), (p2, p3), (p3, p4), (p4, p1)])
85  
86     return segs
87  
88  
89 def parse_circles(root, filter_class=None):
90     """
91     Extract circle elements. If filter_class is specified, filter by that class.
92     Returns: [ ((cx, cy), r), ... ]
93     """
94     circs = []
95     for elem in root.iter():
96         if tag(elem) == 'circle':
97             cls = elem.get('class', '').split()
98             if filter_class is None or filter_class in cls:
99                 cx = float(elem.get('cx', 0))

100                 cy = float(elem.get('cy', 0))
101                 r = float(elem.get('r', 0))
102                 circs.append(((cx, cy), r))
103     return circs
104  
105  
106 def parse_ellipses(root, filter_class=None):
107     """
108     Extract ellipse elements. Supports translate / rotate / scale / matrix in the transform attribute.
109     Returns: [ ((cx, cy), rx, ry, angle_deg), ... ]
110     - angle_deg: angle in degrees, counter-clockwise from the x-axis
111     - Even with non-uniform scale or arbitrary matrices, approximates major/minor axis lengths and 

orientation.
112     """
113     ellipses = []
114     # Tokenizer for transform attribute
115     t_re = re.compile(r'(matrix|translate|rotate|scale|skewX|skewY)\s*\(([^)]+)\)', re.I)
116  
117     def mult(A, B):
118         """3x3 matrix multiplication A @ B."""
119         return [
120             [
121                 A[0][0] * B[0][0] + A[0][1] * B[1][0] + A[0][2] * B[2][0],
122                 A[0][0] * B[0][1] + A[0][1] * B[1][1] + A[0][2] * B[2][1],
123                 A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2] * B[2][2],
124             ],
125             [
126                 A[1][0] * B[0][0] + A[1][1] * B[1][0] + A[1][2] * B[2][0],
127                 A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1],
128                 A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2] * B[2][2],
129             ],
130             [0, 0, 1],
131         ]

132  
133     def mat_translate(tx, ty=0.0):
134         return [[1, 0, tx], [0, 1, ty], [0, 0, 1]]
135  
136     def mat_rotate(angle_deg, cx=0.0, cy=0.0):
137         a = math.radians(angle_deg)
138         c = math.cos(a)
139         s = math.sin(a)
140         # Affine transform including rotation around center (cx, cy)
141         return mult(
142             mult(mat_translate(cx, cy), [[c, -s, 0], [s, c, 0], [0, 0, 1]]),
143             mat_translate(-cx, -cy),
144         )
145  
146     def mat_scale(sx, sy=None):
147         if sy is None:
148             sy = sx
149         return [[sx, 0, 0], [0, sy, 0], [0, 0, 1]]
150  
151     def mat_skewx(a_deg):
152         t = math.tan(math.radians(a_deg))
153         # Note: SVG skewX corresponds to x' = x + tan(ax) * y
154         return [[1, math.tan(0), 0], [t, 1, 0], [0, 0, 1]]
155  
156     def mat_skewy(a_deg):
157         t = math.tan(math.radians(a_deg))
158         # Note: SVG skewY corresponds to y' = y + tan(ay) * x
159         return [[1, t, 0], [math.tan(0), 1, 0], [0, 0, 1]]
160  
161     def mat_matrix(a, b, c, d, e, f):
162         # SVG: [x', y'] = [a c e; b d f; 0 0 1] [x, y, 1]^T
163         return [[a, c, e], [b, d, f], [0, 0, 1]]
164  
165     def parse_transform(txt):
166         """Compose transform string from left to right (SVG applies transforms in that order)."""
167         M = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
168         for m in t_re.finditer(txt or ''):
169             name = m.group(1).lower()
170             parts = [float(v) for v in re.split(r'[,\s]+', m.group(2).strip()) if v]
171             if name == 'matrix' and len(parts) == 6:
172                 Mi = mat_matrix(*parts)
173             elif name == 'translate':
174                 Mi = mat_translate(parts[0], parts[1] if len(parts) > 1 else 0.0)
175             elif name == 'rotate':
176                 if len(parts) >= 3:
177                     Mi = mat_rotate(parts[0], parts[1], parts[2])
178                 else:
179                     Mi = mat_rotate(parts[0])
180             elif name == 'scale':
181                 Mi = mat_scale(parts[0], parts[1] if len(parts) > 1 else None)
182             elif name == 'skewx':
183                 Mi = mat_skewx(parts[0])
184             elif name == 'skewy':
185                 Mi = mat_skewy(parts[0])
186             else:
187                 continue
188             M = mult(M, Mi)
189         return M
190  
191     def apply_affine(M, x, y):
192         """Apply 3x3 affine matrix to point (x, y)."""
193         return (
194             M[0][0] * x + M[0][1] * y + M[0][2],
195             M[1][0] * x + M[1][1] * y + M[1][2],
196         )
197  
198     def decompose_axes(Mlin, rx, ry):

Figure 25: SVG parsing code (3/5).
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132  
133     def mat_translate(tx, ty=0.0):
134         return [[1, 0, tx], [0, 1, ty], [0, 0, 1]]
135  
136     def mat_rotate(angle_deg, cx=0.0, cy=0.0):
137         a = math.radians(angle_deg)
138         c = math.cos(a)
139         s = math.sin(a)
140         # Affine transform including rotation around center (cx, cy)
141         return mult(
142             mult(mat_translate(cx, cy), [[c, -s, 0], [s, c, 0], [0, 0, 1]]),
143             mat_translate(-cx, -cy),
144         )
145  
146     def mat_scale(sx, sy=None):
147         if sy is None:
148             sy = sx
149         return [[sx, 0, 0], [0, sy, 0], [0, 0, 1]]
150  
151     def mat_skewx(a_deg):
152         t = math.tan(math.radians(a_deg))
153         # Note: SVG skewX corresponds to x' = x + tan(ax) * y
154         return [[1, math.tan(0), 0], [t, 1, 0], [0, 0, 1]]
155  
156     def mat_skewy(a_deg):
157         t = math.tan(math.radians(a_deg))
158         # Note: SVG skewY corresponds to y' = y + tan(ay) * x
159         return [[1, t, 0], [math.tan(0), 1, 0], [0, 0, 1]]
160  
161     def mat_matrix(a, b, c, d, e, f):
162         # SVG: [x', y'] = [a c e; b d f; 0 0 1] [x, y, 1]^T
163         return [[a, c, e], [b, d, f], [0, 0, 1]]
164  
165     def parse_transform(txt):
166         """Compose transform string from left to right (SVG applies transforms in that order)."""
167         M = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
168         for m in t_re.finditer(txt or ''):
169             name = m.group(1).lower()
170             parts = [float(v) for v in re.split(r'[,\s]+', m.group(2).strip()) if v]
171             if name == 'matrix' and len(parts) == 6:
172                 Mi = mat_matrix(*parts)
173             elif name == 'translate':
174                 Mi = mat_translate(parts[0], parts[1] if len(parts) > 1 else 0.0)
175             elif name == 'rotate':
176                 if len(parts) >= 3:
177                     Mi = mat_rotate(parts[0], parts[1], parts[2])
178                 else:
179                     Mi = mat_rotate(parts[0])
180             elif name == 'scale':
181                 Mi = mat_scale(parts[0], parts[1] if len(parts) > 1 else None)
182             elif name == 'skewx':
183                 Mi = mat_skewx(parts[0])
184             elif name == 'skewy':
185                 Mi = mat_skewy(parts[0])
186             else:
187                 continue
188             M = mult(M, Mi)
189         return M
190  
191     def apply_affine(M, x, y):
192         """Apply 3x3 affine matrix to point (x, y)."""
193         return (
194             M[0][0] * x + M[0][1] * y + M[0][2],
195             M[1][0] * x + M[1][1] * y + M[1][2],
196         )
197  
198     def decompose_axes(Mlin, rx, ry):

199         """
200         Linear part of ellipse transform: A = Mlin @ diag(rx, ry)
201         Major/minor axis lengths = sqrt(eigenvalues of A A^T),
202         orientation angle = angle of the principal eigenvector.
203         """
204         a, c = Mlin[0][0], Mlin[0][1]
205         b, d = Mlin[1][0], Mlin[1][1]
206         # A = [[a*rx, c*ry],
207         #      [b*rx, d*ry]]
208         arx, cry = a * rx, c * ry
209         brx, dry = b * rx, d * ry
210         # B = A A^T = [[p, r], [r, q]]
211         p = arx * arx + cry * cry
212         q = brx * brx + dry * dry
213         r = arx * brx + cry * dry
214         # Eigenvalues (>= 0)
215         trace = p + q
216         diff = p - q
217         disc = math.hypot(diff, 2 * r)  # sqrt(diff^2 + (2r)^2)
218         lam1 = 0.5 * (trace + disc)  # larger eigenvalue
219         lam2 = 0.5 * (trace - disc)  # smaller eigenvalue
220         # Radii (>= 0)
221         R1 = math.sqrt(max(lam1, 0.0))
222         R2 = math.sqrt(max(lam2, 0.0))
223         # Angle (orientation of major axis): 0.5 * atan2(2r, p - q)
224         angle = 0.5 * math.atan2(2 * r, diff) if (abs(r) + abs(diff)) > 0 else 0.0
225         return R1, R2, math.degrees(angle)
226  
227     # --- Main loop ---
228     for elem in root.iter():
229         if tag(elem) == 'ellipse':
230             cls = elem.get('class', '').split()
231             if filter_class is not None and filter_class not in cls:
232                 continue
233             cx = float(elem.get('cx', 0.0))
234             cy = float(elem.get('cy', 0.0))
235             rx = float(elem.get('rx', 0.0))
236             ry = float(elem.get('ry', 0.0))
237  
238             # Compose transform matrix (3x3)
239             M = parse_transform(elem.get('transform', ''))
240  
241             # Transformed center
242             cx_t, cy_t = apply_affine(M, cx, cy)
243  
244             # Linear part (2x2)
245             Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
246  
247             # Decompose radii and angle
248             if rx == 0.0 and ry == 0.0:
249                 R1 = R2 = 0.0
250                 angle_deg = 0.0
251             else:
252                 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
253  
254             ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
255  
256         elif tag(elem) == 'circle' and elem.get('transform', '') != '':
257             cls = elem.get('class', '').split()
258             if filter_class is not None and filter_class not in cls:
259                 continue
260             cx = float(elem.get('cx', 0.0))
261             cy = float(elem.get('cy', 0.0))
262             rx = float(elem.get('r', 0.0))
263             ry = float(elem.get('r', 0.0))
264  
265             # Compose transform matrix (3x3)

Figure 26: SVG parsing code (4/5).
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199         """
200         Linear part of ellipse transform: A = Mlin @ diag(rx, ry)
201         Major/minor axis lengths = sqrt(eigenvalues of A A^T),
202         orientation angle = angle of the principal eigenvector.
203         """
204         a, c = Mlin[0][0], Mlin[0][1]
205         b, d = Mlin[1][0], Mlin[1][1]
206         # A = [[a*rx, c*ry],
207         #      [b*rx, d*ry]]
208         arx, cry = a * rx, c * ry
209         brx, dry = b * rx, d * ry
210         # B = A A^T = [[p, r], [r, q]]
211         p = arx * arx + cry * cry
212         q = brx * brx + dry * dry
213         r = arx * brx + cry * dry
214         # Eigenvalues (>= 0)
215         trace = p + q
216         diff = p - q
217         disc = math.hypot(diff, 2 * r)  # sqrt(diff^2 + (2r)^2)
218         lam1 = 0.5 * (trace + disc)  # larger eigenvalue
219         lam2 = 0.5 * (trace - disc)  # smaller eigenvalue
220         # Radii (>= 0)
221         R1 = math.sqrt(max(lam1, 0.0))
222         R2 = math.sqrt(max(lam2, 0.0))
223         # Angle (orientation of major axis): 0.5 * atan2(2r, p - q)
224         angle = 0.5 * math.atan2(2 * r, diff) if (abs(r) + abs(diff)) > 0 else 0.0
225         return R1, R2, math.degrees(angle)
226  
227     # --- Main loop ---
228     for elem in root.iter():
229         if tag(elem) == 'ellipse':
230             cls = elem.get('class', '').split()
231             if filter_class is not None and filter_class not in cls:
232                 continue
233             cx = float(elem.get('cx', 0.0))
234             cy = float(elem.get('cy', 0.0))
235             rx = float(elem.get('rx', 0.0))
236             ry = float(elem.get('ry', 0.0))
237  
238             # Compose transform matrix (3x3)
239             M = parse_transform(elem.get('transform', ''))
240  
241             # Transformed center
242             cx_t, cy_t = apply_affine(M, cx, cy)
243  
244             # Linear part (2x2)
245             Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
246  
247             # Decompose radii and angle
248             if rx == 0.0 and ry == 0.0:
249                 R1 = R2 = 0.0
250                 angle_deg = 0.0
251             else:
252                 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
253  
254             ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
255  
256         elif tag(elem) == 'circle' and elem.get('transform', '') != '':
257             cls = elem.get('class', '').split()
258             if filter_class is not None and filter_class not in cls:
259                 continue
260             cx = float(elem.get('cx', 0.0))
261             cy = float(elem.get('cy', 0.0))
262             rx = float(elem.get('r', 0.0))
263             ry = float(elem.get('r', 0.0))
264  
265             # Compose transform matrix (3x3)

266             M = parse_transform(elem.get('transform', ''))
267  
268             # Transformed center
269             cx_t, cy_t = apply_affine(M, cx, cy)
270  
271             # Linear part (2x2)
272             Mlin = [[M[0][0], M[0][1]], [M[1][0], M[1][1]]]
273  
274             # Decompose radii and angle
275             if rx == 0.0 and ry == 0.0:
276                 R1 = R2 = 0.0
277                 angle_deg = 0.0
278             else:
279                 R1, R2, angle_deg = decompose_axes(Mlin, rx, ry)
280  
281             ellipses.append(((cx_t, cy_t), R1, R2, angle_deg))
282     return ellipses
283  
284  
285 def parse_svg_file(path, filter_class=None):
286     root = ET.parse(path).getroot()
287     segs = parse_segments(root, filter_class)
288     circs = parse_circles(root, filter_class)
289     ells = parse_ellipses(root, filter_class)
290     return segs, circs, ells
291  

Figure 27: SVG parsing code (5/5).
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F.1.2 EVALUATION CODE FOR PATTERN 1

We now present the evaluation code for Pattern 1, where the correct objects are not uniquely de-
termined. This code checks whether the SVG produced by the LLM correctly reproduces the
ground-truth primitives (straight segments, circles, and ellipses), as shown in Figures 28, 29, and
30. The core of this evaluation is implemented by the three functions match segments(),
match circles(), and match ellipses().

Overall Evaluation Procedure. Given two SVG files,

• ground truth: the reference SVG, and
• llm output: the SVG generated by the model,

the script first calls parse svg file() to extract:

• line segments gt segs, out segs,
• circles gt circs, out circs,
• ellipses gt ells, out ells.

The output segments are then augmented by merge collinear segments(), which attempts
to merge nearly collinear segments that share an endpoint, so that broken polylines can still match a
single ground-truth segment.

The evaluation is decomposed into three independent stages:

stage1 = match segments(gt segs,out segs),

stage2 = match circles(gt circs,out circs),

stage3 = match ellipses(gt ells,out ells).

If and only if all three stages succeed, the script prints "1"; otherwise it prints "0".

Step 1: Matching Line Segments. The function match segments(gt segs, out segs,
tol) verifies that every ground-truth segment is represented in the LLM output within a geometric
tolerance. Each segment is represented by its two endpoints:

gt segs = {(p1, p2)}, out segs = {(q1, q2)},
where p1, p2, q1, q2 ∈ R2 denote 2D coordinates.

• For each ground-truth segment (p1, p2), the function searches over all output segments
(q1, q2).

• The helper dist point to segment(pt, a, b) computes the Euclidean distance
from a point pt to the finite segment ab by projecting pt onto the segment and clamping
the projection parameter to [0, 1].

• A ground-truth segment is considered matched if there exists an output segment such that
both endpoints p1 and p2 are within distance tol of the segment q1q2:

dist(p1, q1q2) ≤ tol, dist(p2, q1q2) ≤ tol.

If all ground-truth segments find such a matching segment in out segs, the function returns True;
otherwise it returns False. This ensures that every reference straight line is geometrically repro-
duced in the LLM output.

Step 2: Matching Circles. The function match circles(gt circs, out circs,
tol center, tol r) checks that all ground-truth circles are present in the output with simi-
lar centers and radii. Each circle is represented as ((cx, cy), r), where c = (cx, cy) is the center and
r is the radius.

• The outer loop iterates over ground-truth circles (cgt, rgt). A working copy of output circles
is stored in unmatched so that once an output circle is assigned to a ground-truth circle,
it is removed and cannot be reused.
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• For each ground-truth circle, the function selects the output circle with the maximum
intersection-over-union (IoU), computed by circle iou(c1, r1, c2, r2). The
IoU is defined between the two disks D1, D2 as:

IoU(D1, D2) =
area(D1 ∩D2)

area(D1 ∪D2)
.

This IoU is used only to choose the best candidate in unmatched.

• After selecting the circle with maximum IoU, the function checks strict geometric toler-
ances on center and radius:

∥cgt − cout∥ ≤ tol center, |rgt − rout| ≤ tol r.

If both conditions are satisfied, the output circle is removed from unmatched and the
ground-truth circle is deemed matched. Otherwise, the entire matching fails and the func-
tion returns False.

If all ground-truth circles are successfully matched in this way, match circles() returns True.
Thus, every reference circle must appear in the LLM output with nearly the same center and radius.

Step 3: Matching Ellipses. The function match ellipses(gt ells, out ells,
iou thresh) evaluates whether each ground-truth ellipse has a corresponding ellipse in the out-
put that overlaps sufficiently in area. An ellipse is represented as:

((cx, cy), Rx, Ry, θ),

where (cx, cy) is the center, Rx, Ry are the radii along the principal axes, and θ is the rotation angle.

• As in circle matching, a list unmatched stores the remaining output ellipses that have not
yet been assigned.

• For each ground-truth ellipse egt, the function searches for the output ellipse eout that max-
imizes the IoU, computed by ellipse iou(e1, e2).

Approximate IoU for Rotated Ellipses. The helper ellipse iou(e1, e2, samples) esti-
mates IoU by Monte Carlo sampling:

1. For each ellipse, an axis-aligned bounding box is computed that tightly encloses the rotated
ellipse.

2. A joint bounding box that covers both ellipses is obtained by taking the min/max of the two
boxes.

3. A number of random points (given by samples) are uniformly sampled in this joint
bounding box.

4. For each point, the function tests membership in each ellipse by transforming the point into
the ellipse-aligned coordinate system and checking

x2

R2
x

+
y2

R2
y

≤ 1.

5. From these samples, the areas of intersection and union are estimated, and the IoU is ap-
proximated as:

IoU(e1, e2) ≈
area(e1 ∩ e2)

area(e1 ∪ e2)
.

IoU-based Acceptance Criterion. Back in match ellipses(), after computing IoU values
between a ground-truth ellipse and all remaining output ellipses:

• The output ellipse with maximum IoU is selected as the candidate match.

• If this maximum IoU is greater than or equal to the threshold iou thresh (default 0.95),
the candidate is accepted and removed from unmatched.
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• Otherwise, the function returns False, indicating that no sufficiently overlapping ellipse
was found.

If every ground-truth ellipse is matched with IoU at least iou thresh, the function returns True.

Result. Combining the three matching functions, the script provides a binary evaluation:

• The LLM output is considered correct if and only if all ground-truth line segments, circles,
and ellipses are geometrically reproduced within the specified tolerances and IoU thresh-
olds.

• In that case, the program prints "1"; otherwise it prints "0".

This evaluation criterion enforces a strict structural fidelity of the generated SVG against the refer-
ence vector graphics.
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~/Desktop/experiment/svg_math/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import random

10 from parse_svg_file import parse_svg_file
11  
12  
13 def dist_point_to_segmen t(pt, a, b):
14     """Distance between point `pt` and segment `ab`"""
15     x, y = pt; x1, y1 = a; x2, y2 = b
16     dx, dy = x2-x1, y2-y1
17     if dx == 0 and dy == 0:
18         return math.hypot(x-x1, y-y1)
19     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
20     t = max(0.0, min(1.0, t))
21     proj = (x1 + t*dx, y1 + t*dy)
22     return math.hypot(x-proj[0], y-proj[1])
23  
24  
25 def match_segments(gt_segs, out_segs, tol=1e1):
26     """Check whether each segment in ground truth matches any segment in output"""
27     for p1, p2 in gt_segs:
28         ok = False
29         for q1, q2 in out_segs:
30             if dist_point_to_segmen t(p1, q1, q2) <= tol and \
31                dist_point_to_segmen t(p2, q1, q2) <= tol:
32                 ok = True
33                 break
34         if not ok:
35             return False
36     return True
37  
38  
39 def circle_iou(c1, r1, c2, r2):
40     """Calculate IoU (Intersection over Union) of two circles"""
41     d = math.hypot(c1[0]-c2[0], c1[1]-c2[1])
42     if d >= r1 + r2:
43         return 0.0
44     if d <= abs(r1 - r2):
45         return (min(r1, r2)**2) / (max(r1, r2)**2)
46     r1_sq, r2_sq = r1**2, r2**2
47     alpha = math.acos((d*d + r1_sq - r2_sq) / (2*d*r1))
48     beta  = math.acos((d*d + r2_sq - r1_sq) / (2*d*r2))
49     inter = (r1_sq*alpha + r2_sq*beta -
50              0.5*math.sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2)))
51     union = math.pi*(r1_sq + r2_sq) - inter
52     return inter / union
53  
54  
55 def match_circles(gt_circs, out_circs, tol_center=1e1, tol_r=1e1):
56     """
57     Match each ground-truth circle by maximizing IoU and
58     filter by center distance and radius difference
59     """
60     unmatched = list(out_circs)
61     for c_gt, r_gt in gt_circs:
62         if not unmatched:
63             return False
64         # find best IoU
65         best_i, best_iou = 0, circle_iou(c_gt, r_gt, unmatched[0][0], unmatched[0][1])

Figure 28: Evaluation code for Pattern 1 (1/3).
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~/Desktop/experiment/svg_math/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import random

10 from parse_svg_file import parse_svg_file
11  
12  
13 def dist_point_to_segmen t(pt, a, b):
14     """Distance between point `pt` and segment `ab`"""
15     x, y = pt; x1, y1 = a; x2, y2 = b
16     dx, dy = x2-x1, y2-y1
17     if dx == 0 and dy == 0:
18         return math.hypot(x-x1, y-y1)
19     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
20     t = max(0.0, min(1.0, t))
21     proj = (x1 + t*dx, y1 + t*dy)
22     return math.hypot(x-proj[0], y-proj[1])
23  
24  
25 def match_segments(gt_segs, out_segs, tol=1e1):
26     """Check whether each segment in ground truth matches any segment in output"""
27     for p1, p2 in gt_segs:
28         ok = False
29         for q1, q2 in out_segs:
30             if dist_point_to_segmen t(p1, q1, q2) <= tol and \
31                dist_point_to_segmen t(p2, q1, q2) <= tol:
32                 ok = True
33                 break
34         if not ok:
35             return False
36     return True
37  
38  
39 def circle_iou(c1, r1, c2, r2):
40     """Calculate IoU (Intersection over Union) of two circles"""
41     d = math.hypot(c1[0]-c2[0], c1[1]-c2[1])
42     if d >= r1 + r2:
43         return 0.0
44     if d <= abs(r1 - r2):
45         return (min(r1, r2)**2) / (max(r1, r2)**2)
46     r1_sq, r2_sq = r1**2, r2**2
47     alpha = math.acos((d*d + r1_sq - r2_sq) / (2*d*r1))
48     beta  = math.acos((d*d + r2_sq - r1_sq) / (2*d*r2))
49     inter = (r1_sq*alpha + r2_sq*beta -
50              0.5*math.sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2)))
51     union = math.pi*(r1_sq + r2_sq) - inter
52     return inter / union
53  
54  
55 def match_circles(gt_circs, out_circs, tol_center=1e1, tol_r=1e1):
56     """
57     Match each ground-truth circle by maximizing IoU and
58     filter by center distance and radius difference
59     """
60     unmatched = list(out_circs)
61     for c_gt, r_gt in gt_circs:
62         if not unmatched:
63             return False
64         # find best IoU
65         best_i, best_iou = 0, circle_iou(c_gt, r_gt, unmatched[0][0], unmatched[0][1])

66         for i, (c_out, r_out) in enumerate(unmatched[1:], start=1):
67             iou = circle_iou(c_gt, r_gt, c_out, r_out)
68             if iou > best_iou:
69                 best_iou, best_i = iou, i
70         c_out, r_out = unmatched[best_i]
71         dc = math.hypot(c_gt[0]-c_out[0], c_gt[1]-c_out[1])
72         if dc <= tol_center and abs(r_gt-r_out) <= tol_r:
73             unmatched.pop(best_i)
74         else:
75             return False
76     return True
77  
78  
79 def ellipse_iou(e1, e2, samples=2000):
80     """Compute approximate IoU for two rotated ellipses by Monte Carlo sampling"""
81     def inside(pt, ell):
82         (cx, cy), rx, ry, angle = ell
83         rad = math.radians(-angle)
84         cosA = math.cos(rad); sinA = math.sin(rad)
85         dx, dy = pt[0]-cx, pt[1]-cy
86         x = dx*cosA - dy*sinA
87         y = dx*sinA + dy*cosA
88         return x*x/(rx*rx) + y*y/(ry*ry) <= 1
89  
90     def bbox(ell):
91         (cx, cy), rx, ry, angle = ell
92         rad = math.radians(angle)
93         cosA = math.cos(rad); sinA = math.sin(rad)
94         w = abs(rx*cosA) + abs(ry*sinA)
95         h = abs(rx*sinA) + abs(ry*cosA)
96         return (cx-w, cy-h, cx+w, cy+h)
97  
98     b1 = bbox(e1); b2 = bbox(e2)
99     minx = min(b1[0], b2[0]); miny = min(b1[1], b2[1])

100     maxx = max(b1[2], b2[2]); maxy = max(b1[3], b2[3])
101     area_box = (maxx-minx)*(maxy-miny)
102     cnt1 = cnt2 = cnt_both = 0
103     for _ in range(samples):
104         x = random.uniform(minx, maxx)
105         y = random.uniform(miny, maxy)
106         in1 = inside((x, y), e1)
107         in2 = inside((x, y), e2)
108         if in1: cnt1 += 1
109         if in2: cnt2 += 1
110         if in1 and in2: cnt_both += 1
111     if cnt1+cnt2-cnt_both == 0:
112         return 0.0
113     area_inter = cnt_both/samples * area_box
114     area_union = (cnt1+cnt2-cnt_both)/samples * area_box
115     return area_inter / area_union
116  
117  
118 def match_ellipses(gt_ells, out_ells, iou_thresh=0.95):
119     """Match each ground-truth ellipse by maximizing IoU; pass if above threshold"""
120     unmatched = list(out_ells)
121     for gt in gt_ells:
122         if not unmatched:
123             return False
124         best_i, best_iou = 0, ellipse_iou(gt, unmatched[0])
125         for i, out in enumerate(unmatched[1:], start=1):
126             iou = ellipse_iou(gt, out)
127             if iou > best_iou:
128                 best_iou, best_i = iou, i
129         if best_iou >= iou_thresh:
130             unmatched.pop(best_i)
131         else:
132             return False

Figure 29: Evaluation code for Pattern 1 (2/3).
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66         for i, (c_out, r_out) in enumerate(unmatched[1:], start=1):
67             iou = circle_iou(c_gt, r_gt, c_out, r_out)
68             if iou > best_iou:
69                 best_iou, best_i = iou, i
70         c_out, r_out = unmatched[best_i]
71         dc = math.hypot(c_gt[0]-c_out[0], c_gt[1]-c_out[1])
72         if dc <= tol_center and abs(r_gt-r_out) <= tol_r:
73             unmatched.pop(best_i)
74         else:
75             return False
76     return True
77  
78  
79 def ellipse_iou(e1, e2, samples=2000):
80     """Compute approximate IoU for two rotated ellipses by Monte Carlo sampling"""
81     def inside(pt, ell):
82         (cx, cy), rx, ry, angle = ell
83         rad = math.radians(-angle)
84         cosA = math.cos(rad); sinA = math.sin(rad)
85         dx, dy = pt[0]-cx, pt[1]-cy
86         x = dx*cosA - dy*sinA
87         y = dx*sinA + dy*cosA
88         return x*x/(rx*rx) + y*y/(ry*ry) <= 1
89  
90     def bbox(ell):
91         (cx, cy), rx, ry, angle = ell
92         rad = math.radians(angle)
93         cosA = math.cos(rad); sinA = math.sin(rad)
94         w = abs(rx*cosA) + abs(ry*sinA)
95         h = abs(rx*sinA) + abs(ry*cosA)
96         return (cx-w, cy-h, cx+w, cy+h)
97  
98     b1 = bbox(e1); b2 = bbox(e2)
99     minx = min(b1[0], b2[0]); miny = min(b1[1], b2[1])

100     maxx = max(b1[2], b2[2]); maxy = max(b1[3], b2[3])
101     area_box = (maxx-minx)*(maxy-miny)
102     cnt1 = cnt2 = cnt_both = 0
103     for _ in range(samples):
104         x = random.uniform(minx, maxx)
105         y = random.uniform(miny, maxy)
106         in1 = inside((x, y), e1)
107         in2 = inside((x, y), e2)
108         if in1: cnt1 += 1
109         if in2: cnt2 += 1
110         if in1 and in2: cnt_both += 1
111     if cnt1+cnt2-cnt_both == 0:
112         return 0.0
113     area_inter = cnt_both/samples * area_box
114     area_union = (cnt1+cnt2-cnt_both)/samples * area_box
115     return area_inter / area_union
116  
117  
118 def match_ellipses(gt_ells, out_ells, iou_thresh=0.95):
119     """Match each ground-truth ellipse by maximizing IoU; pass if above threshold"""
120     unmatched = list(out_ells)
121     for gt in gt_ells:
122         if not unmatched:
123             return False
124         best_i, best_iou = 0, ellipse_iou(gt, unmatched[0])
125         for i, out in enumerate(unmatched[1:], start=1):
126             iou = ellipse_iou(gt, out)
127             if iou > best_iou:
128                 best_iou, best_i = iou, i
129         if best_iou >= iou_thresh:
130             unmatched.pop(best_i)
131         else:
132             return False

133     return True
134  
135  
136 def merge_collinear_segm ents(segments, angle_tol=math.radians(5)):
137     """Merge segments that share an endpoint and are almost collinear"""
138     merged = []
139     thresh = -math.cos(angle_tol)
140     n = len(segments)
141     for i in range(n):
142         u, v = segments[i]
143         for j in range(i+1, n):
144             w, x = segments[j]
145             shared = None
146             if u == w:
147                 shared, p1, p2 = u, v, x
148             elif u == x:
149                 shared, p1, p2 = u, v, w
150             elif v == w:
151                 shared, p1, p2 = v, u, x
152             elif v == x:
153                 shared, p1, p2 = v, u, w
154             else:
155                 continue
156             vec1 = (p1[0]-shared[0], p1[1]-shared[1])
157             vec2 = (p2[0]-shared[0], p2[1]-shared[1])
158             n1 = math.hypot(*vec1); n2 = math.hypot(*vec2)
159             if n1 == 0 or n2 == 0:
160                 continue
161             cos_ang = (vec1[0]*vec2[0] + vec1[1]*vec2[1]) / (n1*n2)
162             if cos_ang <= thresh:
163                 merged.append((p1, p2))
164     return merged
165  
166  
167 def main():
168     p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
169     p.add_argument('ground_truth', help="File path of ground-truth SVG")
170     p.add_argument('llm_output',   help="File path of LLM-generated SVG")
171     args = p.parse_args()
172  
173     try:
174         gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='output_object')
175         out_segs, out_circs, out_ells = parse_svg_file(args.llm_output)
176     except Exception:
177         print("0")
178         sys.exit(0)
179     out_segs.extend(merge_collinear_segm ents(out_segs))
180     
181     # Matching
182     stage1 = match_segments(gt_segs, out_segs)
183     stage2 = match_circles(gt_circs, out_circs)
184     stage3 = match_ellipses(gt_ells, out_ells)
185  
186     print("1" if (stage1 and stage2 and stage3) else "0")
187  
188 if __name__ == '__main__':
189     main()
190   Figure 30: Evaluation code for Pattern 1 (3/3).
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F.1.3 EVALUATION CODE FOR PATTERN 2

In Pattern 2, it is not possible to uniquely determine the correct objects. To address this, we im-
plemented case-specific Python logic that evaluates correctness based on textual input, allowing for
variations in valid outputs. As examples, we present the evaluation code for the case in Figure 3 and
for the bottom case in Figure 5.

The evaluation code corresponding to Figure 3 is shown in Figures 31 and 32.

Overall Evaluation Procedure. The script compares two SVG files:

• the ground-truth construction (annotated with the class input object), and
• the LLM-generated output (annotated with the class output object).

Both are parsed by parse svg file(), which returns:

(gt segs,gt circs,gt ells), (out segs,out circs,out ells)

for the input and output respectively. If parsing fails at any point, the script prints 0 and terminates,
indicating an incorrect solution.

Geometric Helper Functions. Two helper routines implement basic Euclidean geometry needed
for the evaluation:

• dist point to segment(pt, a, b): given a point pt and a segment with end-
points a and b, this function computes the shortest distance from pt to the segment. It
projects pt onto the supporting line of ab, clamps the projection parameter to the interval
[0, 1], and returns the Euclidean distance from pt to the resulting closest point.

• circle intersections(c1, r1, c2, r2): given two circles with centers c1, c2
and radii r1, r2, this function returns their intersection points. It first computes the center
distance d; if the circles are too far apart, nested, or numerically degenerate, it returns an
empty list. Otherwise, it computes the base point on the line between the centers and the
perpendicular offset, yielding either one point (tangency) or two intersection points.

Tolerance Parameters. Because the LLM-generated SVG may differ slightly due to numerical
precision or stylistic variation, the script uses small tolerances:

• tol center: allowed deviation when matching circle centers to line endpoints.
• tol r: allowed difference between radii.
• tol line: allowed distance when checking whether intersection points lie on a candidate

line segment.

These tolerances make the evaluation robust to minor floating-point noise.

Step 1: Extracting the Reference Segment. From the ground-truth data, the script takes the first
input segment:

(p1, p2) = gt segs[0].

This segment represents the original line in Figure 3 on which the construction is based. If no such
segment exists, the evaluation immediately fails.

Step 2: Matching Circles at the Endpoints. The first condition requires that the output contain
two circles whose centers coincide with the endpoints p1 and p2 of the input segment:

1. The script scans out circs to find a circle with center within tol center of p1. This
circle is stored as (c1, r1).

2. It then scans again to find a different circle with center within tol center of p2, stored
as (c2, r2).

If either endpoint does not have a corresponding circle center, the script prints 0 (incorrect).

Step 3: Checking the Radii. The second condition enforces both equality and sufficient size of the
radii:
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• The radii must be equal up to tolerance: |r1 − r2| ≤ tol r.
• Each radius must be strictly larger than half the length of the original segment:

r1 >
∥p2 − p1∥

2
− tol r.

Intuitively, this ensures that the two circles intersect in two distinct points above and below the
segment, as in the geometric construction. If either inequality is violated, the output is rejected.

Step 4: Computing Circle Intersections. The third condition uses the intersection points of the
two circles:

1. The script calls circle intersections(c1, r1, c2, r2) to compute the inter-
section points.

2. If fewer than two intersection points are found (no intersection or tangency), the configu-
ration cannot reproduce the intended construction, and the script outputs 0.

When two intersections exist, denote them by I1 and I2.

Step 5: Verifying a Line Through Both Intersections. Finally, the script checks whether the LLM
has drawn a line that passes through both intersection points:

• It iterates over each output segment (q1, q2) ∈ out segs.
• For each segment, it computes the distance from I1 and I2 to the segment using
dist point to segment.

• If both distances are within tol line, then (q1, q2) is considered to pass through both
circle intersections.

If such a segment is found, the configuration is deemed correct and the script prints 1. Otherwise, it
prints 0.
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~/Desktop/experiment/svg_math/evaluation_code/svg/Bisection.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 from parse_svg_file import parse_svg_file

10  
11 # ----- Tolerances (adjust if necessary) -----
12 tol_center = 1e-1   # Tolerance for matching a circle center with a line endpoint
13 tol_r      = 1e-1   # Tolerance for comparing radii
14 tol_line   = 1e-1   # Tolerance for checking if intersection points lie on a line segment
15  
16 def dist_point_to_segmen t(pt, a, b):
17     """
18     Return the distance between a point pt and a line segment ab.
19     """
20     x,y = pt
21     x1,y1 = a
22     x2,y2 = b
23     dx = x2 - x1
24     dy = y2 - y1
25     if dx==0 and dy==0:
26         return math.hypot(x-x1, y-y1)
27     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
28     t = max(0.0, min(1.0, t))
29     proj_x = x1 + t*dx
30     proj_y = y1 + t*dy
31     return math.hypot(x - proj_x, y - proj_y)
32  
33 def circle_intersections (c1, r1, c2, r2, tol=1e-6):
34     """
35     Return the intersection points of two circles.
36     If the circles intersect at two points, return a list of length 2.
37     If they are tangent, return a list of length 1.
38     If they do not intersect, return an empty list.
39     """
40     x0,y0 = c1
41     x1,y1 = c2
42     dx = x1 - x0
43     dy = y1 - y0
44     d = math.hypot(dx,dy)
45     # Same center or too far apart
46     if d < tol or d > r1 + r2 + tol or d < abs(r1 - r2) - tol:
47         return []
48     # Distance a and height h of intersection
49     a = (r1*r1 - r2*r2 + d*d) / (2*d)
50     h2 = r1*r1 - a*a
51     if h2 < 0 and abs(h2) <= tol:
52         h = 0.0
53     elif h2 < 0:
54         return []
55     else:
56         h = math.sqrt(h2)
57     xm = x0 + a * dx / d
58     ym = y0 + a * dy / d
59     rx = -dy * (h / d)
60     ry = dx * (h / d)
61     p1 = (xm + rx, ym + ry)
62     p2 = (xm - rx, ym - ry)
63     return [p1] if h == 0 else [p1, p2]
64  
65   Figure 31: Evaluation code for the case in Figure 3 (1/2).
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~/Desktop/experiment/svg_math/evaluation_code/svg/Bisection.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 from parse_svg_file import parse_svg_file

10  
11 # ----- Tolerances (adjust if necessary) -----
12 tol_center = 1e-1   # Tolerance for matching a circle center with a line endpoint
13 tol_r      = 1e-1   # Tolerance for comparing radii
14 tol_line   = 1e-1   # Tolerance for checking if intersection points lie on a line segment
15  
16 def dist_point_to_segmen t(pt, a, b):
17     """
18     Return the distance between a point pt and a line segment ab.
19     """
20     x,y = pt
21     x1,y1 = a
22     x2,y2 = b
23     dx = x2 - x1
24     dy = y2 - y1
25     if dx==0 and dy==0:
26         return math.hypot(x-x1, y-y1)
27     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
28     t = max(0.0, min(1.0, t))
29     proj_x = x1 + t*dx
30     proj_y = y1 + t*dy
31     return math.hypot(x - proj_x, y - proj_y)
32  
33 def circle_intersections (c1, r1, c2, r2, tol=1e-6):
34     """
35     Return the intersection points of two circles.
36     If the circles intersect at two points, return a list of length 2.
37     If they are tangent, return a list of length 1.
38     If they do not intersect, return an empty list.
39     """
40     x0,y0 = c1
41     x1,y1 = c2
42     dx = x1 - x0
43     dy = y1 - y0
44     d = math.hypot(dx,dy)
45     # Same center or too far apart
46     if d < tol or d > r1 + r2 + tol or d < abs(r1 - r2) - tol:
47         return []
48     # Distance a and height h of intersection
49     a = (r1*r1 - r2*r2 + d*d) / (2*d)
50     h2 = r1*r1 - a*a
51     if h2 < 0 and abs(h2) <= tol:
52         h = 0.0
53     elif h2 < 0:
54         return []
55     else:
56         h = math.sqrt(h2)
57     xm = x0 + a * dx / d
58     ym = y0 + a * dy / d
59     rx = -dy * (h / d)
60     ry = dx * (h / d)
61     p1 = (xm + rx, ym + ry)
62     p2 = (xm - rx, ym - ry)
63     return [p1] if h == 0 else [p1, p2]
64  
65  

66 def main():
67     p = argparse.ArgumentParser(description="SVG Output Evaluation Script")
68     p.add_argument('ground_truth', help="File path of correct SVG")
69     p.add_argument('llm_output',   help="File path of SVG output from LLM")
70     args = p.parse_args()
71  
72     try:
73         gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')
74         out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object')
75     except Exception:
76         print("0")
77         sys.exit(0)
78  
79     input_line = gt_segs[0]
80     if input_line is None:
81         print("0"); sys.exit(0)
82  
83     p1, p2 = input_line
84  
85     # Find circles that match p1 and p2
86     c1 = r1 = c2 = r2 = None
87  
88     # ----- Condition 1: The output must contain exactly two circles whose centers match the endpoints 

of the input segment -----
89     # Search for the circle centered at p1
90     for center, r in out_circs:
91         if math.hypot(center[0]-p1[0], center[1]-p1[1]) <= tol_center:
92             c1, r1 = center, r
93             break
94     if c1 is None:
95         print("0"); sys.exit(0)
96  
97     # Search for the circle centered at p2 (make sure it's not the same one as c1)  
98     for center, r in out_circs:
99         # Avoid matching the same circle by excluding identical centers
100         if (abs(center[0]-c1[0]) > tol_center or abs(center[1]-c1[1]) > tol_center) \
101            and math.hypot(center[0]-p2[0], center[1]-p2[1]) <= tol_center:
102             c2, r2 = center, r
103             break
104     if c2 is None:
105         print("0"); sys.exit(0)
106  
107     # --- Condition 2: Radii must match and must be greater than half the segment length ---
108     line_len = math.hypot(p2[0]-p1[0], p2[1]-p1[1])
109     if abs(r1 - r2) > tol_r or r1 <= line_len/2 - tol_r:
110         print("0"); sys.exit(0)
111  
112     # --- Condition 3: There must exist a line segment passing through the intersection points of the 

circles ---
113     inters = circle_intersections (c1, r1, c2, r2, tol=tol_r)
114     if len(inters) < 2:
115         print("0"); sys.exit(0)
116  
117     found_line = False
118     for q1, q2 in out_segs:
119         if dist_point_to_segmen t(inters[0], q1, q2) <= tol_line \
120            and dist_point_to_segmen t(inters[1], q1, q2) <= tol_line:
121             found_line = True
122             break
123  
124     if not found_line:
125         print("0"); sys.exit(0)
126  
127     # All conditions satisfied
128     print("1")
129  
130 if __name__ == '__main__':
131     main()

Figure 32: Evaluation code for the case in Figure 3 (2/2).
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The evaluation code corresponding to the bottom case in Figure 5 is shown in Figures 33 and 34.

Overall Evaluation Procedure. The script evaluates whether an LLM–generated SVG correctly
draws the external tangents between four small circles found in a ground–truth SVG. It parses both
SVG files using parse svg file():

(gt segs,gt circs,gt ells), (out segs,out circs,out ells)

Only graphical items marked with the class names input object (ground truth) and
output object (LLM output) are retrieved. If parsing fails, the script immediately prints 0.

Geometric Helper Functions. Two main routines support the evaluation:

• dist point to segment(pt, a, b) computes the Euclidean distance from a point
pt to a segment with endpoints a, b. Using a projection onto line ab, the value is clamped
to the segment and the closest-point distance is returned.

• external tangents(c1, r1, c2, r2) returns pairs of tangent contact points be-
tween two circles with centers c1, c2 and radii r1, r2. If the distance between the centers is
too small (one circle inside another or touching internally), no external tangents exist and
an empty list is returned.

Tolerance Handling. A fixed distance tolerance

tol = 10

is used when determining whether a drawn segment approximates a target tangent. Small variations
due to SVG scaling or floating precision are therefore accepted.

Reference Circles in the Ground Truth. The script extracts all circles from the ground truth
drawing and sorts them by increasing radius. Only

the four circles with the smallest radii

are used as the construction targets. If fewer than five ground–truth circles exist, the problem is
considered invalid and the output score is 0.

Expected Geometry: External Tangents. For every pair among the four selected circles (six pairs
in total), the script computes the two possible external tangent segments:(

(p11, p12), (p21, p22)
)

Each tangent is a pair of points, one on each circle. At least one tangent for each circle pair must
appear in the LLM’s output as a drawn segment.

Matching Tangents in the LLM Output. For each correct tangent candidate (A,B), the script
checks whether any output segment (Q1, Q2) matches it using:

match segments() ⇐⇒
(
dist(A,Q1Q2) ≤ tol ∧ dist(B,Q1Q2) ≤ tol

)
.

If no output segment matches at least one tangent for a given circle pair, evaluation halts and returns
0.

Final Decision. If all six circle pairs have at least one tangent segment successfully approximated
by the LLM–generated SVG, the script prints: 1 otherwise it prints: 0.
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~/Desktop/experiment/svg_math/evaluation_code/svg/Casey%27s_theorem.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import itertools

10 from parse_svg_file import parse_svg_file
11  
12  
13 def dist_point_to_segmen t(pt, a, b):
14     x,y = pt; x1,y1 = a; x2,y2 = b
15     dx = x2 - x1; dy = y2 - y1
16     if dx==0 and dy==0:
17         return math.hypot(x-x1, y-y1)
18     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
19     t = max(0.0, min(1.0, t))
20     proj_x = x1 + t*dx; proj_y = y1 + t*dy
21     return math.hypot(x - proj_x, y - proj_y)
22  
23  
24 def match_segments(gt_segs, out_segs, tol=1e1):
25     """Check whether each segment in gt is contained in any segment in out"""
26     for (p1,p2) in gt_segs:
27         ok = False
28         for (q1,q2) in out_segs:
29             if dist_point_to_segmen t(p1, q1, q2) <= tol and dist_point_to_segmen t(p2, q1, q2) <= tol:
30                 ok = True; break
31         if not ok:
32             return False
33     return True
34  
35  
36 def external_tangents(c1, r1, c2, r2):
37     """Return pairs of tangent points for the external common tangents of two circles"""
38     (x1,y1), (x2,y2) = c1, c2
39     dx = x2 - x1; dy = y2 - y1
40     d2 = dx*dx + dy*dy
41     if d2 <= (r1 - r2)**2:
42         return []
43     d = math.sqrt(d2)
44     a = (r1 - r2) / d
45     a = max(-1.0, min(1.0, a))
46     b = math.sqrt(max(0.0, 1 - a*a))
47     ux = dx / d; uy = dy / d
48     vx = -dy / d; vy = dx / d
49     n1 = (a*ux + b*vx, a*uy + b*vy)
50     n2 = (a*ux - b*vx, a*uy - b*vy)
51     p11 = (x1 + r1 * n1[0], y1 + r1 * n1[1])
52     p12 = (x2 + r2 * n1[0], y2 + r2 * n1[1])
53     p21 = (x1 + r1 * n2[0], y1 + r1 * n2[1])
54     p22 = (x2 + r2 * n2[0], y2 + r2 * n2[1])
55     return [(p11, p12), (p21, p22)]
56  
57  
58 def main():
59     p = argparse.ArgumentParser(description="SVG output evaluation script")
60     p.add_argument('ground_truth', help="Path to the ground truth SVG file")
61     p.add_argument('llm_output',   help="Path to the LLM output SVG file")
62     args = p.parse_args()
63  
64     try:
65         gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')

Figure 33: Evaluation code for the bottom case in Figure 5 (1/2).
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~/Desktop/experiment/svg_math/evaluation_code/svg/Casey%27s_theorem.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 import re
7 import math
8 import sys
9 import itertools

10 from parse_svg_file import parse_svg_file
11  
12  
13 def dist_point_to_segmen t(pt, a, b):
14     x,y = pt; x1,y1 = a; x2,y2 = b
15     dx = x2 - x1; dy = y2 - y1
16     if dx==0 and dy==0:
17         return math.hypot(x-x1, y-y1)
18     t = ((x-x1)*dx + (y-y1)*dy) / (dx*dx + dy*dy)
19     t = max(0.0, min(1.0, t))
20     proj_x = x1 + t*dx; proj_y = y1 + t*dy
21     return math.hypot(x - proj_x, y - proj_y)
22  
23  
24 def match_segments(gt_segs, out_segs, tol=1e1):
25     """Check whether each segment in gt is contained in any segment in out"""
26     for (p1,p2) in gt_segs:
27         ok = False
28         for (q1,q2) in out_segs:
29             if dist_point_to_segmen t(p1, q1, q2) <= tol and dist_point_to_segmen t(p2, q1, q2) <= tol:
30                 ok = True; break
31         if not ok:
32             return False
33     return True
34  
35  
36 def external_tangents(c1, r1, c2, r2):
37     """Return pairs of tangent points for the external common tangents of two circles"""
38     (x1,y1), (x2,y2) = c1, c2
39     dx = x2 - x1; dy = y2 - y1
40     d2 = dx*dx + dy*dy
41     if d2 <= (r1 - r2)**2:
42         return []
43     d = math.sqrt(d2)
44     a = (r1 - r2) / d
45     a = max(-1.0, min(1.0, a))
46     b = math.sqrt(max(0.0, 1 - a*a))
47     ux = dx / d; uy = dy / d
48     vx = -dy / d; vy = dx / d
49     n1 = (a*ux + b*vx, a*uy + b*vy)
50     n2 = (a*ux - b*vx, a*uy - b*vy)
51     p11 = (x1 + r1 * n1[0], y1 + r1 * n1[1])
52     p12 = (x2 + r2 * n1[0], y2 + r2 * n1[1])
53     p21 = (x1 + r1 * n2[0], y1 + r1 * n2[1])
54     p22 = (x2 + r2 * n2[0], y2 + r2 * n2[1])
55     return [(p11, p12), (p21, p22)]
56  
57  
58 def main():
59     p = argparse.ArgumentParser(description="SVG output evaluation script")
60     p.add_argument('ground_truth', help="Path to the ground truth SVG file")
61     p.add_argument('llm_output',   help="Path to the LLM output SVG file")
62     args = p.parse_args()
63  
64     try:
65         gt_segs, gt_circs, gt_ells = parse_svg_file(args.ground_truth, filter_class='input_object')

66         out_segs, out_circs, out_ells = parse_svg_file(args.llm_output, filter_class='output_object')
67     except Exception:
68         print("0")
69         sys.exit(0)
70  
71     # Get circles from the ground truth and select the top 4 with the smallest radius
72     if len(gt_circs) < 5:
73         print("0"); sys.exit(0)
74     gt_circs_sorted = sorted(gt_circs, key=lambda x: x[1])[:4]
75  
76     tol = 1e1
77     ok_all = True
78     for (c1, r1), (c2, r2) in itertools.combinations(gt_circs_sorted, 2):
79         tangents = external_tangents(c1, r1, c2, r2)
80         if not tangents:
81             ok_all = False; break
82         # It is OK if at least one of the two tangent pairs exists in the output
83         if not any(match_segments([seg], out_segs, tol) for seg in tangents):
84             ok_all = False; break
85  
86     print("1" if ok_all else "0")
87  
88 if __name__ == '__main__':
89     main()
90  

Figure 34: Evaluation code for the bottom case in Figure 5 (2/2).
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F.2 MOLECULAR STRUCTURE

F.2.1 PARSING CODE

We present the parsing code for converting vector data into graphs representing molecular structures
as shown in Figure 35.

The parse svg file function reads an SVG file and constructs a network graph using
networkx. Nodes are extracted from <circle> elements, where each circle’s coordinates and
fill color are stored as node attributes. Line endpoints (<line> elements) are matched with the
nearest circle positions to determine which nodes are connected. When both endpoints correspond
to valid circles, an edge is created between the associated nodes. The function therefore produces
an undirected graph whose topology reproduces the molecular connectivity encoded in the SVG
drawing.

~/Desktop/experiment/svg_chem/evaluation_code/svg/parse_svg_file.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import math
5 import xml.etree.ElementTree as ET
6 import networkx as nx
7  
8  
9 def parse_svg_file(path, tol=1e-1):

10     """
11     A function that builds a graph structure from an SVG file.
12     Nodes are extracted from <circle> elements, and edges are extracted by associating
13     endpoints of <line> elements with those nodes.
14     """
15     root = ET.parse(path).getroot()
16  
17     G = nx.Graph()
18     # Specify the SVG namespace
19     ns = {'svg': 'http://www.w3.org/2000/svg'}
20     
21     circles = []
22     # Retrieve circle elements and register each node
23     for i, circle in enumerate(root.findall(".//svg:circle", ns)):
24         cx = float(circle.attrib['cx'])
25         cy = float(circle.attrib['cy'])
26         fill = circle.attrib.get('fill', '')
27         circles.append((cx, cy, fill, i))
28         G.add_node(i, fill=fill, pos=(cx, cy))
29     
30     # Find the closest circle (node) to the given coordinates
31     def find_circle(x, y):
32         for cx, cy, fill, node_id in circles:
33             if math.hypot(cx - x, cy - y) < tol:
34                 return node_id
35         return None
36  
37     # Add edges based on line elements
38     for line in root.findall(".//svg:line", ns):
39         x1 = float(line.attrib['x1'])
40         y1 = float(line.attrib['y1'])
41         x2 = float(line.attrib['x2'])
42         y2 = float(line.attrib['y2'])
43         n1 = find_circle(x1, y1)
44         n2 = find_circle(x2, y2)
45         # Add edge only if both endpoints correspond to circles (nodes)
46         if n1 is not None and n2 is not None:
47             G.add_edge(n1, n2)
48     return G
49  

Figure 35: SVG parsing code.
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F.2.2 EVALUATION CODE

The script in Figure 36 evaluates whether two SVG files represent the same molecular graph. It takes
two SVG file paths as input: a ground-truth structure and an SVG produced by a language model.
Both files are parsed into graphs using the previously defined parse svg file function.

After parsing, the script compares the two graphs using networkx.is isomorphic, where
nodes are matched based on their fill attribute, ensuring that atoms of the same type correspond
between graphs. If the two SVG-derived graphs are isomorphic under this constraint, the script out-
puts 1; otherwise, it outputs 0. This enables automated validation of molecular structure predictions
generated from vector graphics.

~/Desktop/experiment/svg_chem/evaluation_code/svg/evaluate_svg_base.py

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3  
4 import argparse
5 import xml.etree.ElementTree as ET
6 from parse_svg_file import parse_svg_file
7 import networkx as nx
8  
9  

10 def main():
11     p = argparse.ArgumentParser(description="SVG output evaluation script")
12     p.add_argument('ground_truth', help="File path of the ground truth SVG")
13     p.add_argument('llm_output',   help="File path of the LLM-generated SVG")
14     args = p.parse_args()
15  
16     gt_G = parse_svg_file(args.ground_truth)
17     out_G = parse_svg_file(args.llm_output)
18     
19     node_match = lambda n1, n2: n1['fill'] == n2['fill']
20  
21     # Graph isomorphism check
22     iso = nx.is_isomorphic(gt_G, out_G, node_match=node_match)
23  
24     print("1" if iso else "0")
25  
26 if __name__ == '__main__':
27     main()
28   Figure 36: Evaluation code.
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G VALIDATION OF HUMAN-SYSTEM AGREEMENT

We verify the validity of our automated evaluation code by assessing how closely human evaluations
align with the code’s judgments. Two human evaluators judge whether LLM outputs are correct or
incorrect. One is a master’s student and the other is an undergraduate student. They both major in
engineering. They were not involved in our research and had no prior knowledge of the project. For
each description, we present a ground-truth vector graphic along with an LLM-generated output,
and ask them to evaluate its correctness. For the plane geometry task, we use all 110 instances.
For the molecular structure task, highly complex structures can increase the likelihood of errors by
human evaluators; therefore, we use a relatively simple set of 50 instances. We randomly select LLM
outputs so that the data labeled as correct and incorrect by our code are evenly balanced. Therefore,
the instances we used consist of 50% judged correct by our code and 50% judged incorrect. We
include all output formats: TikZ, SVG, and EPS.

Table 15 shows the percentage of agreement and Cohen’s Kappa scores between the human evalua-
tors and our code. These results demonstrate very high agreement rates, indicating the reliability of
our evaluation approach.

Table 15: The percentage of agreement and Cohen’s Kappa scores between the human evaluators
and our code.

Annotator 1 Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement 97.3% 95.5% 95.5% 98.0% 98.0% 98.0%

Cohen’s Kappa 0.946 0.909 0.909 0.960 0.960 0.960

Annotator 2 Plane geometry Molecular structure

TikZ SVG EPS TikZ SVG EPS
Percentage of agreement 96.4% 99.1% 95.5% 98.0% 100.0% 96.0%

Cohen’s Kappa 0.927 0.982 0.909 0.960 1.000 0.920
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