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ABSTRACT

Optimization modeling enables critical decisions across industries but remains
hard to automate: informal language must be mapped to precise mathematical
formulations and executable solver code, while prior LLM approaches either rely
on brittle prompting or costly retraining with limited generalization. We present
AlphaOPT, a self-improving experience library that enables an LLM to learn
from limited demonstrations (i.e, even answers along without gold-standard pro-
gram) and solver feedback without annotated reasoning traces or parameter up-
dates. AlphaOPT operates a continual two-phase cycle: (i) a Library Learning
phase that reflects on failed attempts, extracts solver-verified, structured insights
as {taxonomy, condition, explanation, example}; and (ii) a Library Evolution
phase that diagnoses retrieval misalignments and refines the applicability condi-
tions of stored insights, improving transfer across tasks. This design (1) learns
efficiently from limited demonstrations without curated rationales, (2) expands
continually without costly retraining by updating the library rather than model
weights, and (3) makes knowledge explicit and interpretable for human inspection
and intervention. Experiments show that AlphaOPT steadily improves with more
data (65% → 72% from 100 to 300 training items) and surpasses the strongest
baseline by 7.7% on the out-of-distribution OptiBench dataset when trained only
on answers.

1 INTRODUCTION

Optimization models support critical decision-making in finance, manufacturing, marketing, trans-
portation, and logistics (AhmadiTeshnizi et al., 2023; Bertsimas & Tsitsiklis, 1997; Ramamonjison
et al., 2022). Beyond improving efficiency, automating the optimization workflow lowers the barrier
to operations research expertise in industry, enabling non-experts to prototype faster, iterate on for-
mulations, and deploy solver-backed decisions at scale. Yet this process has long been challenging,
as informal and often ambiguous specifications must be mapped to precise, domain-specific for-
mulations and paired with appropriate code and solvers, creating major bottlenecks for end-to-end
automation (Jiang et al., 2025).

Advances in large language models (LLMs) make this vision increasingly feasible: they can parse
natural language requirements (Ouyang et al., 2022), generate executable programs (Nijkamp et al.;
Jimenez et al., 2024), and orchestrate downstream tools (Qin et al., 2024). Two main lines of work
have emerged. Prompt-based systems steer general LLMs with structured prompts and tool use
(Xiao et al., 2023; Thind et al., 2025; AhmadiTeshnizi et al., 2024; Zhang & Luo, 2025). Fine-
tuning approaches adapt models on domain corpora and benchmarks (Huang et al., 2025; Yang
et al., 2024). Despite this progress, both families face limitations: prompt-based systems stop im-
proving once they run out of fixed templates, and they are fragile to small wording changes and
shifts in the domain; fine-tuned models require costly retraining and, critically, most benchmarks
and datasets in the community (e.g., NLP4LP (AhmadiTeshnizi et al., 2024), MAMO (Huang et al.,
2024), IndustryOR (Huang et al., 2025)) contain only programs/solutions rather than the interme-
diate reasoning that governs modeling choices, thereby limiting the generalizability of fine-tuning
approaches. This motivates a new learning paradigm for optimization formulation: instead of rely-
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Figure 1: AlphaOPT identifies and retrieves relevant insights to guide problem solving. In this ex-
ample, it avoids the common mistake of minimizing the sum of process times and instead introduces
an auxiliary variable to correctly minimize the makespan, leading to the correct solution.

ing solely on prompts or retraining, LLMs should continually improve by accumulating, refining,
and reusing solver-verified modeling insights.

We propose AlphaOPT, a self-improving framework that builds and refines a structured library
of solver-verified insights for optimization formulation, as exemplified in Figure 1. Each insight
encodes a reusable modeling rule in the form of a 4-tuple (taxonomy, (applicability) condition, ex-
planation, example), which specifies not only what to reuse but also when and why it applies. We
remark that our library learning framework does not require backpropagation to update framework
parameters and can be regarded as the evolutionary mechanism. AlphaOPT improves through a
continual two-phase cycle. Library Learning acquires new insights from both gold programs (when
available) and solver-verified answer-only supervision, organizing them into a dynamically updating
hierarchical taxonomy. Library Evolution then diagnoses misalignments between tasks and insight
applicability, and refines conditions using aggregate evidence, ensuring that insights remain neither
too narrow nor overly general. This design yields a principled optimization view: library con-
struction corresponds to maximizing expected task success induced by task–insight matching while
regularizing size to maintain efficiency and prevent redundancy.

We conduct quantitative experiments across multiple benchmarks and baselines, as well as qualita-
tive analyses of the learned library. The results show that, compared to prompt-based or fine-tuning
approaches, AlphaOPT (1) learns efficiently from limited demonstrations (i.e., it can learn from
answers without recalling formulation) without requiring annotated reasoning traces or even gold-
standard programs, (2) achieves stronger out-of-distribution generalizability and more consistent
continual growth than learning-based methods, and (3) makes knowledge explicit and interpretable
for human inspection and involvement.

Beyond these advantages, AlphaOPT also achieves state-of-the-art performance on multiple bench-
marks. These results demonstrate the efficacy and potential of self-improving experience-library
learning for optimization formulation, paving the way toward more challenging settings, such as
efficient program formulation and large-scale optimization.

Our main contributions are threefold:

• A library learning framework that learns from answers only. We propose the first
experience-library learning framework for natural language optimization formulation tasks,
formally grounded in a mathematical view. The system can learn solely from answers,
without requiring gold-standard programs.
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• A reusable and interpretable experience library. We construct the first solver-verified
library of structured modeling insights for LLM systems, designed to be reusable across
tasks and explicitly interpretable for reliable transfer in operations research domains.

• State-of-the-art out-of-distribution generalization. AlphaOPT achieves strong general-
ization beyond training distributions, attaining state-of-the-art performance on LogiOR and
OptiBench benchmarks.

2 RELATED WORK

LLMs for Solving Optimization Problems. Related work can be categorized into prompt-based
and learning-based approaches. Prompt-based methods guide reasoning and modeling through
multi-step prompts using proprietary LLMs (AhmadiTeshnizi et al., 2024; Xiao et al., 2023). Ahma-
diTeshnizi et al. (2023) first introduced OptiMUS, demonstrating how LLMs can generate optimiza-
tion formulations from natural language descriptions, and OptiMUS-0.3 (AhmadiTeshnizi et al.,
2024) extends this line of work to large-scale instances, introducing retrieval-augmented prompting
and solver-integrated verification to improve scalability.

In contrast, learning-based methods construct training datasets and apply instruction tuning to open-
source LLMs. Huang et al. (2025) proposed a semi-automated pipeline to synthesize training
data, which is then used to fine-tune an open-source ORLM model. LLMOPT (Jiang et al., 2025)
combines both paradigms by modeling optimization with five elements and fine-tuning on expert-
annotated data via multi-instruction SFT. More recently, ORThought (Yang et al., 2025a) introduced
the LogiOR benchmark and an expert-guided chain-of-thought framework, providing a systematic
dataset and evaluation pipeline for optimization tasks that require harder logic. In terms of multi-
agent design, Xiao et al. (2023) employs a collaborative multi-expert framework to enhance reason-
ing, Zhang & Luo (2025) integrates sandbox-based code execution and self-repair/self-verification.

Several benchmarks now exist that cover LP, MILP, NLP, and other optimization problem types
(Xiao et al., 2023; AhmadiTeshnizi et al., 2024; Huang et al., 2025; Yang et al., 2024). Yet, none
of the prior work has investigated strengthening LLMs’ optimization capabilities by learning and
reusing structured modeling experience.

Decision-making tasks with Library Learning. Library Learning refers to the process where
reusable patterns or modules are automatically extracted from past experiences to improve future
problem-solving. These experiences include concrete trajectories or demonstrations, as well as ab-
stracted rules generalized from successful or failed attempts (Zhao et al., 2024; Mu et al., 2025; Feng
et al., 2025; Wang et al.; Zhu et al., 2023). In terms of experience improvement, Zhao et al. (2024)
and Mu et al. (2025) leverage an LLM to prune the library by checking if a newly added insight
duplicates or conflicts with existing insights, or merges and generalizes from those overlapping in-
sights. Feng et al. (2025) uses check functions to ensure that LLM-translated action sequences
remain within the generalization boundaries of the original experiences.

LLM-driven Evolutionary Methods. Recent LLM-driven evolutionary frameworks have achieved
remarkable advances in scientific discovery, showcasing LLM’s capacity for broad generative ex-
ploration on solutions. Romera-Paredes et al. (2024) introduces FunSearch, a genetic programming
driven by LLMs to search for feasible or optimal solutions of mathematical problems. AlphaEvolve
(Novikov et al., 2025) extends the FunSearch system to provide the ability to perform multiobjective
optimization using rich forms of natural-language context and feedback. Grayeli et al. (2024) applies
LLMs to discover abstract concepts from high-performing hypotheses, combining symbolic regres-
sion with LLM-guided exploration within a concept library. ReEvo (Ye et al., 2024) frames LLMs
as hyper-heuristics with a reflective evolution mechanism, enabling the generation and iterative re-
finement of heuristics across multiple NP-hard problems. HeurAgenix (Yang et al., 2025b) further
develops this direction by evolving a pool of heuristics and dynamically selecting the most suitable
one for each problem state, highlighting LLMs’ role in adaptive heuristic discovery. Besides, LLM-
guided evolution has also found use in discovering heuristics for combinatorial optimization (Liu
et al.).
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Figure 2: AlphaOPT builds and refines an experience library over multiple iterations. Each iteration
consists of a library learning stage, which produces insights from attempts to solve tasks, and a
library refinement stage, which adjusts the applicability of insights to avoid being too narrow or too
general.

3 METHODOLOGY

Optimization tasks arrive with diverse natural-language descriptions, yet they share recurring mod-
eling rules that activate under identifiable conditions. We identify three major challenges in building
reliable systems that leverage LLMs to formulate and solve optimization problems using existing
technologies and resources. First, gold-standard programs are scarce and may contain annotation
errors (Jiang et al., 2025; Yang et al., 2025a), while datasets with only answer labels remain un-
derutilized (Huang et al., 2024; 2025; Lu et al., 2025). Second, fine-tuned models (Huang et al.,
2025; Jiang et al., 2025) struggle to generalize because the crucial when-to-apply-what knowledge
is weakly represented (or missing) in training data; they can mimic syntax without mastering ap-
plicability. Third, the performance of prompt-based agent systems AhmadiTeshnizi et al. (2023);
Xiao et al. (2023); Yang et al. (2025a) stagnates as the number of exemplars increases: they rely on
human empirical curation and lack the capacity to adapt or to continually learn from larger datasets.

We propose AlphaOPT, an experience-library learning framework that learns from both gold pro-
grams (when available) and answer-only supervision. AlphaOPT iteratively builds a structured,
solver-verified repository of reusable insights with explicit applicability conditions and evolves these
conditions at the population level to improve generalization while avoiding redundancy. This two-
stage design is described in Section F.2. In Section 3.2, we provide a mathematical interpretation
that frames library construction as maximizing task success with a size regularizer. In Section A,
we compare our method with prior works on learning from experience and self-evolving problem-
solving agents.

3.1 ALPHAOPT FRAMEWORK

The framework incrementally learns a structured library of experiences over iterations until a stop-
ping criterion indicates that the current model can no longer make meaningful improvements. As
illustrated in Figure 2, each iteration consists of two complementary phases that form a contin-
ual cycle of acquisition and refinement. The first phase, Library Learning, extracts insights from
individual tasks under either gold-program or answer-only supervision while minimizing redun-
dancy. The second phase, Library Evolution, diagnoses misalignments between insights and tasks
and refines applicability conditions to enhance generalization while reducing confusion caused by
overgeneralization. The design follows three guiding principles: it is failure-driven (every error be-
comes a learning opportunity), locally validated (an insight must solve its source task before being
admitted), and compact yet generalizable (redundant insights are merged and conditions refined to
prevent uncontrolled growth that hinders retrieval and execution). The prompts for all LLM modules
are provided in Appendix F.4.
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3.1.1 LIBRARY LEARNING

The objective of this stage is to generate reusable insights as structured 4-tuples (Taxonomy, Con-
dition, Explanation, Example) and organize them in a hierarchical taxonomy for efficient retrieval,
while minimizing redundancy in the library. The workflow for this stage is illustrated in Figure 6.

Insight Extraction, Representation, and Supervision Mode. Insights can be learned from ei-
ther problems with a gold-standard program or with the answer alone. For each task, the system
first constructs a mathematical formulation, then generates an executable solver program, and in-
vokes the solver. When the library is non-empty, both steps are guided by retrieved insights. If
the generated program does not achieve the correct optimal value, two supervision modes are used
to guide the generation of new insights. When a gold program is available, the system compares
the candidate formulation and program against the reference, diagnosing discrepancies (e.g., miss-
ing variables, misformulated constraints, incorrect objective terms) and distilling them into insights.
When only the answer (i.e., final optimal objective) is provided, the system performs solver-guided
self-exploration: it iteratively proposes executable programs, reuses prior failures as context, and
receives verification from the solver. Once a program achieves its correct objective, it is treated as
a proxy for the gold standard in anchor insight extraction. Before being stored in the library, each
insight is locally verified by reapplying it to its source task to ensure that it resolves the original
failure. In addition, to mitigate stochastic successes that could obscure useful lessons, we conduct
three independent trials per task, allowing errors from probabilistic generation to serve as signals for
learning.

Each insight is represented as a structured 4-tuple: Taxonomy, hierarchical labels for indexing and
retrieval; Condition, an explicit description of the applicability signals in the problem; Explanation,
the underlying principle of applying this insight; and Example, a concrete demonstration such as a
mathematical constraint or code snippet.

Library Storage and Retrieval. Insights are stored in a dynamically updated hierarchical taxon-
omy organized into three main tracks: Domain Modeling (problem-specific structures and assump-
tions), General Formulation (reusable mathematical patterns), and Code Implementation (solver-
specific coding practices). Under each track, insights are further classified with two-level labels,
where Level-1 captures a broad category and Level-2 refines it into a more specific subcategory.
The taxonomy is initialized with few-shot labels and expands online: each new insight is either
mapped to an existing category or, if no suitable label exists, prompts the LLM to propose new
Level-1 or Level-2 labels. Each label is also assigned a condition, written by the LLM, that specifies
when the category should be retrieved. When storing insights, to reduce redundancy, the LLM also
checks whether a similar insight already exists and performs merging when appropriate. To align
a target task with relevant insights, we employ a two-step LLM-driven retrieval procedure: Quick
label matching, then full applicability check. The system first scans the taxonomy dictionary to iden-
tify labels that are potentially relevant to the context of the tasks. For example, Level-2 label such
as Fixed Charge (Big-M Linking) will be probably detected when the problem description specifies
that service or flow is allowed only if a facility is opened. After candidate labels are identified, the
system rigorously evaluates each associated insight by examining its condition, and only the most
applicable insights are retained.

During solution generation, retrieved insights from the Domain Modeling and General Formulation
tracks guide the construction of the mathematical model, while insights from the Code Implemen-
tation track guide solver-code generation. This two-step procedure ensures that insights are applied
appropriately, while the hierarchical taxonomy provides an extensible structure for organizing and
retrieving insights as the library grows.

Operational Flow. Training proceeds in an online regime over minibatches of data, starting from
an empty library. For each batch, the system retrieves candidate insights, generates and executes
programs, and upon failures extracts insights and immediately commits those that pass local self-
verification, allowing newly added insights to benefit subsequent tasks and preventing the generation
of repetitive insights. To reduce redundancy, tasks are clustered and reordered by problem type and
semantic similarity, and overlapping insights within a batch are merged prior to integration. The
process iterates until overall accuracy plateaus, at which point the library is archived and used for
evaluation.
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In implementation, for the sake of efficiency, training follows two coordinated data flows. The first
processes minibatches of tasks in parallel for insight extraction. The second maintains a centralized
queue of all generated insights, storing them into the library sequentially. This queue does not allow
asynchronous updates, as concurrent modifications could lead to conflicts if two insights attempt to
update the library simultaneously. This design balances parallelism in problem-solving with strict
serialization in library updates, ensuring both efficiency and consistency.

3.1.2 LIBRARY EVOLUTION

While Library Learning expands the repository of insights, Library Evolution aims to transform
task-specific lessons into broadly applicable knowledge. Since each insight’s applicability is de-
fined by a condition induced from a specific task, early conditions are often too narrow (failing to
trigger on relevant tasks) or too broad (causing misretrieval). Left unchecked, these misalignments
lead to missed opportunities or systematic failures. Library Evolution counters this with a diagnos-
tic–refinement cycle: it detects misaligned insights, aggregates evidence across tasks, and refines
conditions at the end of each iteration. The refinement is guided by an aggregate metric rather than
ad-hox fixes. As illustrated in Figure 3, library refinement can be understood as adjusting each in-
sight’s condition toward the correct retrieval boundary in the problem space. The workflow for this
stage is illustrated in Figure 7.

Figure 3: A locally verified initial con-
dition (light-grey dashed circle) is refined
into a broader applicability boundary (solid
black) through evolutionary prompt optimiza-
tion guided by the aggregate metric.

Diagnostic: Library Diagnosis. After each
training round, we trace failed tasks and analyze
their interaction with the library. The diagnostic
agent partitions the relationship between each in-
sight i and its associated tasks into three disjoint
categories: Π(i) = {Positive : S+

i ,Negative :
S−
i ,Unretrieved : Su

i } where S+
i contains tasks

where the insight was applicable and contributed to
the correct formulation, S−

i contains tasks where
it was misleading and degraded performance, and
Su
i contains tasks where it was not retrieved but

would have been beneficial. By maintaining these
partitions across iterations, the system continuously
builds a performance profile for each insight. If a
failed task is subsequently solved after removing a
misleading (negative) insight or by injecting a pre-
viously unretrieved one, the system attributes the
failure to condition misalignment rather than lack
of knowledge, thus avoiding redundant insight gen-
eration. Unretrieved tasks are identified by first
comparing the model’s generated program with the ground-truth (or a reference program from self-
exploration) to locate discrepancies. These discrepancies guide the search for candidate insights,
which are then verified for their ability to resolve the errors. Verified insights are flagged as rele-
vant but unretrieved, allowing the system to diagnose retrieval gaps without resorting to intractable
combinatorial search.

Evolver: Library Refinement. Building on the diagnosis, the Evolver agent refines insights in
two steps: condition refinement and refinement verification. First, for each diagnosed insight, the
agent strengthens or prunes its applicability condition. Negative tasks contribute explicit inapplica-
bility clauses (e.g., constraints or contexts that block use), while unretrieved tasks highlight missing
applicability signals. The Evolver then proposes multiple refinement strategies (e.g., adding pre-
conditions, introducing keyword anchors, merging overlapping triggers) and produces candidate
conditions with the goal of preserving correct cases, eliminating mismatches, and recovering previ-
ously missed tasks. Then, each candidate condition replaces the original and is tested over the union
Ri = S+

i ∪ S−
i ∪ Su

i . A performance score

pi =
|kept positives|+ |corrected negatives|+ |recovered unretrieved|

|Ri|

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

quantifies improvement. Here, “kept positives” are tasks that still remain correctly retrieved after
refinement; “corrected negatives” are tasks that were misled by the insight before and no longer
retrieved; and “recovered unretrieved” are tasks that become correctly retrieved after refinement.
We accept refinements that increase pi and keep the one with the highest pi.

3.2 OPTIMIZATION PERSPECTIVE

The framework can be viewed as an iterative solution to the optimization problem in the library
space. Let L denote a candidate library and T the distribution of the optimization problems we want
to solve. The objective is to maximize task success while penalizing library complexity to mitigate
retrieval inefficiency and long-context degradation in LLM inference:

max
ℓ∈L

Et∼T [Success(t | ℓ)] − λΩ(ℓ).

where Success(t | ℓ) indicates whether ℓ enables the system to produce a program that achieves the
correct optimal objective for task t, and Ω(ℓ) quantifies library complexity (e.g., number of insights
or redundancy-adjusted size). Under our problem design—bounded and continuous property of
Success(·) and Ω(·), sufficient exploration under solver verification, and bounded merging—the
refinement dynamics converge to a locally optimal library. In Appendix D, we provide a conceptual
sketch showing that convergence holds: As refinement in the second phase strictly improves the
first term, while verified merging in the first phase reduces the second term without diminishing the
first, sufficient exploration combined with iterative cycles of library learning and evolution ensures
convergence to a local optimum. Given the inherent ambiguity of natural language and stochasticity
in LLM outputs, we present this perspective not as a strict theorem but as a principled justification
for the acquisition–refinement design and the redundancy-reduction operations.

4 EXPERIMENTS

Our experiments are designed to reflect the requirements that arise in real-world optimization and
operations research (OR) applications. In these settings, methods are expected not only to perform
well on standard benchmarks, but also to transfer across domains, to remain effective when limited
supervision is available, to improve steadily as more data becomes available, and to offer results
that can be inspected and audited. We therefore organize our evaluation around four questions: (1)
How well does the method generalize across domains? (2) Can it learn effectively with limited
supervision? (3) Does performance improve consistently with more training data? (4) How does it
compare overall with strong baselines? Finally, we examine the interpretability of the insight library
to assess whether the outputs are understandable and actionable to practitioners.

4.1 EXPERIMENTAL SETUP

Our experiments are conducted on a dataset of 454 problem instances, aggregated from four real-
world optimization and operation task datasets, namely the NLP4LP (AhmadiTeshnizi et al., 2024),
NL4OPT (Ramamonjison et al., 2022), IndustryOR (Huang et al., 2025), MAMO (ComplexLP)
(Huang et al., 2024), with any invalid entries discarded. These collections span various formulation
types and originate from diverse sources, including academic papers, textbooks, and real-world
industry scenarios. Detailed descriptions of these datasets are provided in Appendix B.

We perform stratified sampling within each dataset, randomly partitioning 70% for training and 30%
for testing. We maintain a strict separation between training and test data. The experience library
is constructed only from training tasks, ensuring that training-derived insight examples do not leak
into the test set. To assess out-of-distribution generalization, we additionally evaluate on LogiOR
(Yang et al., 2025a) and Optibench (Yang et al., 2024).

Baselines. We evaluate against two families of baselines. (i) Prompt-based: a vanilla baseline that
directly generates the mathematical model from a simple prompt, as well as Reflexion (Shinn et al.,
2023), OptiMUS (AhmadiTeshnizi, Gao, and Udell, 2024), and ORThought (Yang et al., 2025a).
(ii) Learning-based: ORLM (Huang et al., 2025), built on LLaMa3-8B, and LLMOPT (Jiang et al.,
2025), built on Qwen2.5-14B (the latest open-source version available after their paper).
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4.2 OUT-OF-DISTRIBUTION GENERALIZATION

Figure 4: Performance on out-of-distribution datasets.
Numbers report test accuracy on LogiOR, OptiBench, and
OptMath.

We evaluate how well different meth-
ods generalize beyond their train-
ing distribution. For this pur-
pose, we use two benchmarks that
were not included during training:
LogiOR (Yang et al., 2025a) and
OptiBench (Yang et al., 2024).

These datasets were either released
after the baseline model (ORLM)
or explicitly designed in baseline
model’s experiment setting to avoid
overlap with their training set (LL-
MOPT).

Figure 4 summarizes the results.
Fine-tuned models such as ORLM
and LLMOPT show strong in-distribution performance but exhibit a noticeable drop on unseen
datasets. For example, ORLM falls to 19.6% on LogiOR and 13.3% on OptMath, while LLMOPT
performs better but still degrades compared to its in-distribution performance. By contrast, Al-
phaOPT maintains higher accuracy across all three benchmarks, reaching 51.1% on LogiOR and
91.8% on OptiBench. These results support our hypothesis: fine-tuned models tend to learn the syn-
tax of solutions and may perform well when problems are very similar, but they struggle to capture
the underlying principles needed for broader problem solving. In contrast, the learned experience
library equips AlphaOPT with stronger out-of-distribution generalization capability.

4.3 LEARNING WITH LIMITED SUPERVISION

In practical OR applications, gold-standard programs are rarely available. We therefore test whether
AlphaOPT can learn solely from answers. Since two datasets in our training set contain gold-
standard programs, we remove them in this experiment and let AlphaOPT learn exclusively from
answer labels through self-exploration, as introduced in Section 3.1.1. As shown in the last two rows
of Table 2, remarkably, when trained with answer-only supervision, AlphaOPT achieves accuracy
comparable to when it is trained with gold-standard programs. AlphaOPT (self-explore) outper-
forms all prompt-based methods on test splits of the training data and even achieves the best per-
formance on the OOD OptiBench dataset (92.1% accuracy). This demonstrates another advantage
of AlphaOPT over fine-tuning–based methods, which require detailed annotations of mathematical
formulations and code in order to achieve strong performance.

4.4 CONTINUAL GROWTH WITH DATA

Table 1: AlphaOPT steadily improves in both Mi-
cro and Macro averages with increasing training size,
while maintaining a compact library.

Training Size MicroAvg MacroAvg Library Size

100 83.24% 65.80% 38
200 85.09% 69.22% 103
300 85.21% 72.12% 110

We test whether AlphaOPT can improve
its performance as more data becomes
available. We incrementally sample sets
of 100, 200, and 300 data items from
our training set and train AlphaOPT on
each subset. As shown in Table 1, when
evaluated on out-of-distribution datasets
(LogiOR, OptiBench), we observe that
AlphaOPT steadily improves its perfor-
mance with increasing data size, without
requiring updates to its model parameters.

4.5 OVERALL PERFORMANCE

AlphaOPT achieves the best accuracy on out-of-distribution datasets, reaching 51.1% on LogiOR
and 91.8% on OptiBench. On in-distribution test splits, fine-tuned models such as ORLM and
LLMOPT achieve higher scores on certain datasets (e.g., LLMOPT obtains 97.3% on NLP4LP and
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Table 2: Accuracy on in-distribution Test Split and Out-of-Distribution datasets (higher is better).
Best per column in bold.

Test Split Out-of-Distribution

Method NLP4LP
(73)

NL4OPT
(64)

IndustryOR
(25)

MAMO
(ComplexLP) (34)

LogiOR
(92)

OptiBench
(403)

Prompt-based

Standard 68.5 54.7 52.0 44.1 46.7 72.7
Reflexion 76.7 64.1 56.0 47.1 43.5 76.9
OptiMus 71.2 73.4 36.0 29.4 17.4 74.7
ORThought 69.9 75.0 60.0 41.2 44.6 84.4

Fine-tuning-based
ORLM 86.3 87.5 36.0 55.9 19.6 78.2
LLMOPT 97.3 86.5 44.0 85.8 40.2 66.4

Ours
AlphaOPT

(full) 83.6 79.7 60.0 85.3 51.1 91.8

AlphaOPT
(self-explore) 86.3 79.7 60.0 76.5 50.0 92.1

85.8% on MAMO). However, these advantages are less conclusive, since LLMOPT’s training data
are not publicly available and may overlap with our test splits. Moreover, many existing benchmarks
are derived from a small set of seed problems (Ramamonjison et al., 2022; Huang et al., 2024), which
favors fine-tuning approaches that excel at pattern memorization. In contrast, AlphaOPT performs
competitively across all in-distribution datasets, matches or exceeds baselines on IndustryOR and
MAMO(ComplexLP), and maintains a clear margin on out-of-distribution generalization. These
results demonstrate that the experience library enables AlphaOPT to learn transferable modeling
principles rather than dataset-specific syntax, resulting in stronger robustness to distribution shifts.

4.6 LIBRARY ANALYSIS

To fully interpret the content and structure of the library learned from the training data, we visualize
the distribution of insights by taxonomy across the three tracks (Figures 5) and discuss the library
distribution in Section E.

5 CONCLUSION AND DISCUSSION

This paper addresses the limitations of previous methods by presenting a novel self-improving li-
brary learning framework, AlphaOPT, for formulating optimization programs. AlphaOPT can
learn from answer labels only, achieves much stronger out-of-distribution generalization than fine-
tuning–based methods, and provides interpretable and auditable structured knowledge to support
human involvement in real-world practice.

Looking ahead, we highlight three promising directions. First, reasoning-oriented test-time scaling,
which is already powerful in other domains, could be particularly effective for OR formulations,
where results are inherently verifiable. Second, strengthening datasets with both academic research
and large-scale real-world industry problems will move LLM systems beyond the toy examples that
dominate current benchmarks, enabling progress toward truly large-scale optimization tasks. Third,
moving beyond correctness toward improving the efficiency of formulations is crucial for real-world
deployment, and our self-improving library learning approach offers a promising path toward that
goal.

9
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ETHICS STATEMENT

This research focuses on developing AlphaOPT, a self-improving experience library for optimization
modeling. Our experiments are conducted entirely on publicly available optimization benchmarks
and solver outputs. No personally identifiable information, human subject data, or sensitive de-
mographic attributes are used. The solver feedback signals are purely algorithmic (e.g., feasibility,
optimality gaps) and do not raise direct privacy concerns.

We do not identify other immediate ethical risks in the present work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results.

• Datasets: All experiments are based on standard, publicly available optimization bench-
marks. References to each benchmark source are provided in the appendix.

• Preprocessing: Details on input normalization, task construction, and solver interfaces are
described in the paper and appendix. Code for preprocessing and task generation will be
released with the camera-ready version.

• Algorithms and Models: All implementation details, including training scripts, hyperpa-
rameter settings, and evaluation pipelines, will be released.

We will provide a public GitHub repository upon camera-ready submission that contains preprocess-
ing scripts, the AlphaOPT library implementation, and end-to-end reproduction pipelines, enabling
independent verification of all main results, figures, and tables reported in this paper.
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APPENDIX

A COMPARATIVE ANALYSIS OF ALPHAOPT AGAINST PRIOR
EXPERIENCE-LEARNING METHODS

Recent approaches such as Reflexion (Shinn et al., 2023), STaR (Zelikman et al., 2022), Ex-
peL (Zhao et al., 2024), and AlphaEvolve (Novikov et al., 2025) demonstrate that large models
can improve through experiential reuse, storing reflections, rationales, or code edits and applying
them in new tasks. These methods have been effective in open-ended reasoning and programming,
but they face limitations for optimization problems. First, their experiences are largely preserved as
free-form text or edits without explicit applicability semantics, yet in optimization tasks, applying
such experiences inappropriately can have detrimental effects. Second, their verification is limited
to task outcomes such as checking rewards, final answers, or passing test cases, which does not
guarantee that the underlying knowledge is structurally valid or transferable.

Our framework adapts experience learning to operations research (OR) with three key innovations:
(1) solver-guided verifiability: correctness is judged at the program level. If a program achieves the
optimal objective under the solver, it is highly likely to be valid and can serve as a reliable anchor
for extracting insights, broadening the sources of experience collection. New and refined insights
are explicitly re-tested on associated tasks, ensuring they are valid before integration; (2) structured
knowledge for interpretability and auditability: each insight is represented with taxonomy, condi-
tion, explanation, and example, making its applicability explicit, reviewable, and even revisable in
practice; (3) refinement of experience applicability for generalizability and preciseness: applicabil-
ity conditions are refined using cross-task evidence, so insights neither over-generalize nor remain
too narrow, improving safe transfer across problem families. See Table 3 for detailed comparisons.

B DATASETS

We have collected the publicly available optimization problem datasets listed in the table, which
include both natural language problem descriptions and their optimal solutions.

Because our library-based framework derives knowledge feedback from correct solutions, it is rel-
atively sensitive to data noise. Accordingly, we train and evaluate on clean splits that exclude in-
stances labeled as erroneous. Specifically, for NLP4LP, IndustryOR, and ComplexOR we use the
cleaned versions provided by (Yang et al., 2025a); for NL4OPT, MAMO (EasyLP), MAMO (Com-
plexLP), and Optibench we use the cleaned releases from (Astorga et al., 2025), obtained from their
(GitHub repository).

Table 3: Comparison of experience-learning methods. Prior works improve through experiential
reuse but rely on free-form knowledge and outcome-level verification. Our framework introduces
structured insights, solver-guided verification, and refined applicability, which are crucial for OR.

Method Structured
knowledge

Explicit
applicability Verification Applicability

refinement
Application

domain

Reflexion ✗ ✗ Reward signal ✗ General agents
STaR ✗ ✗ Answer correctness ✗ QA / reasoning
ExpeL ✗ (✓) minimal Task success

assumed
✗ General agents

AlphaEvolve ✗ (✓) implicit Test harness (partial) ✗ Code synthesis /
evolution

AlphaOPT ✓ ✓ Solver optimality +
insight verification

✓ OR formulation and
solver code
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Table 4: The statistics of the optimization problem datasets

Dataset Size Formulation Type(s) Completion
NL4OPT (Ramamonjison et al., 2022) 289 LP solution
NLP4LP (AhmadiTeshnizi et al., 2024) 269 LP, MILP, MINLP solution, program
MAMO (complex LP and Easy LP) (Huang et al., 2024) 863 LP solution
IndustryOR (Huang et al., 2025) 100 LP, IP, MILP, NLP, others solution, program
Optibench (Yang et al., 2024) 605 LP, MILP, MINLP solution
LogiOR (Yang et al., 2025a) 80 LP, IP, MIP, NLP solution, program

Abbreviations: LP – Linear Programming; IP - Integer Programming; NLP – Nonlinear Programming; MI –
Mixed-Integer; others - Quadratic Programming, Dynamic&Stochastic Programming, etc.

C SUCCESS AND FAILURE CASE STUDY

To better understand the effectiveness of insights in the experience library when solving new opti-
mization problems, we conducted success and failure case studies on the test datasets. Success cases
refer to instances where the agent successfully retrieved applicable insights that guided it to correctly
solve previously failed problems. Failure cases refer to instances where the retrieved insights failed
to help or even misled the agent, resulting in incorrect solutions.

C.1 SUCCESS CASE ANALYSIS

In the testing datasets, most successful cases focus on correcting Variable Definition Errors, which
identify that decision variables representing physically indivisible items should be integers. This
highlights a common LLM failure point shared across training and test sets. Other common correc-
tions include Objective Function Formulation Errors (such as confusing sum with makespan) and
Constraint Formulation Errors (such as incorrect relational operators or unit inconsistency). Addi-
tionally, a few cases address more advanced or complex model structure errors.

C.2 FAILURE CASE ANALYSIS

We summarize the failure cases into the following three representative types:

1) Overly narrow applicability: Rules induced from specific tasks may be over-generalized to dif-
ferent contexts (e.g., requiring ”food variables must be integers” in nutrition or blending problems
where continuous quantities are appropriate), which unnecessarily restricts the feasible region and
eliminates valid solutions.

2) Mechanical enforcement of equalities/flow conservation: In unbalanced supply–demand settings
or in the presence of surplus, rigidly enforcing == constraints or per-node “net inflow = demand”
creates contradictions and renders the model infeasible.

3) Insight gaps due to data distribution: Limited coverage in training/retrieval samples (e.g., absence
of multi-commodity vehicle routing cases with shared capacity constraints) can leave critical insights
missing, leading to relaxed or mis-specified constraints.

The first two issues can be effectively mitigated in our framework through iterative recall and rewrit-
ing of tasks that expose misaligned insights, thereby refining their applicability boundaries. For the
third issue, however, we call on the community to contribute broader and more diverse datasets to
ensure wider applicability.

D PROOF OF THE LIBRARY CONVERGENCE

Recall the optimization problem in the library training phase

F (ℓ) = Et∼Ttrain

[
r(t | ℓ)

]
− λΩ(ℓ),

where r(t, ℓ) is a bounded reward function that implements the role of the original Success(t | ℓ)
(i.e., it measures the matching quality between optimization problem t and library ℓ), and Ω(ℓ) is a
bounded complexity penalty.
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According to the problem setting, the iterative refinement algorithm satisfies:

1. Monotone update: At iteration k, from ℓk, the algorithm considers a set of admissible
refinements R(ℓk) ⊆ L. Each accepted iteration consists of one of two types of operations:

• Merge step: decreases Ω(ℓ) while leaving r(t, ℓ) non-decrease for all relevant tasks;
• Exploration step: improves r(t, ℓ) for some tasks without increasing Ω(ℓ).

Therefore every accepted refinement strictly increases F (ℓ); otherwise the algorithm keeps
ℓk+1 = ℓk.

2. Sufficient exploration: Any improving neighbor ℓ̃ ∈ R(ℓk) (i.e. one with strictly larger
objective) will eventually be discovered and executed. Empirically, this is achieved through
iterative prompt optimization with LLMs.

3. Boundedness: r(t, ℓ) and Ω(ℓ) are bounded, hence F (ℓ) is bounded above and below.

The following theorem establishes that, under the assumption that the training and testing distribu-
tions are identical, the refinement procedure yields libraries that are locally optimal for the testing
objective.
Theorem 1. Assume Ttrain = Ttest. If the library space L is finite, then the algorithm terminates in
finitely many steps at a library ℓ∗ which is a local maximizer for the testing objective. Moreover, the
algorithm cannot terminate at a saddle point.

Proof. Every accepted merge or exploration step strictly increases F (ℓ), and otherwise the library
remains unchanged. Since F is bounded above, the sequence {F (ℓk)} is monotone non-decreasing
and bounded, hence convergent to some limit F ∗. Furthermore, since L is finite, define

δ = min
{
F (ℓ̃)− F (ℓ) : ℓ̃ ∈ R(ℓ), F (ℓ̃) > F (ℓ)

}
.

Finiteness guarantees δ > 0, so only finitely many strict improvements are possible. The algorithm
halts at some ℓ∗. By sufficient exploration, no improving neighbor of ℓ∗ exists. Therefore, ℓ∗ is a
local maximizer for both training and testing objectives. Saddle points are excluded.

Since the training and testing distributions coincide, the training objective equals the testing objec-
tive, so any local optimality statement directly applies to testing.

Although the assumption of a finite library is reasonable, we also provide a proof for the case of an
infinite library for completeness and rigor.
Theorem 2 (Infinite compact library case). Assume Ttrain = Ttest. If the library space L is compact
(closed and bounded) and F is continuous, then the sequence {F (ℓk)} converges, and any subse-
quential limit point ℓ∞ is a local maximizer for the testing objective. Saddle points are excluded for
all such limit points.

Proof. Each accepted step strictly increases F (ℓ), so {F (ℓk)} is monotone non-decreasing. Since F
is bounded above, {F (ℓk)} converges to some F ∗. By compactness of L, there exists a convergent
subsequence ℓkj

→ ℓ∞. Continuity of F ensures F (ℓkj
) → F (ℓ∞) = F ∗. Suppose ℓ∞ had

a neighbor ℓ̃ ∈ R(ℓ∞) with F (ℓ̃) > F (ℓ∞). Then sufficient exploration would eventually yield
F (ℓk) > F ∗, which is a contradiction. Therefore, ℓ∞ is a local maximizer. Saddle points are
excluded. Since the training and testing distributions coincide, the training objective equals the
testing objective, so any local optimality statement directly applies to testing.

Theorems 1 and 2 together guarantee that, when the training and testing distributions coincide, the
refinement algorithm converges to locally optimal solutions for the testing phase.

E LIBRARY DISTRIBUTION ANALYSIS

E.0.1 LIBRARY STRUCTURE AND COMPOSITION

Domain Modeling. The distribution is relatively diffuse: Resource Allocation (34.78%) and Net-
work Flow (27.54%) dominate, followed by Production Planning (15.94%). The remainder forms

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Library Structure (b) Empirical distribution

Figure 5: Library Content on Three Tracks

a long tail—Balancing (7.25%), Packaging (5.80%), Selection (4.35%), Facility Location (2.90%),
and Routing (1.4%). Overall, Resource Allocation and Network Flow together account for over
60%, reflecting not only the composition of the training data but also the fact that these families har-
bor denser modeling pitfalls (e.g., flow-conservation/capacity coupling, which yield more failures
and thus more recoverable insights.

General Formulation. The distribution is more concentrated: Constraint Formulation (33.33%),
Variable Definition (25.49%), and Objective Specification (21.57%) sum to ∼80.39%, indicating
that most errors arise when formulating constraints, defining variables, and specifying objectives.
Explicit bounds (15.69%) and unit scaling (3.92%) are less frequent but persistent, pointing to re-
curring, codifiable issues for which reusable correction patterns exist.

Code Implementation. The distribution is markedly imbalanced, led by Solver & API Syntax
(59.26%), followed by Data I/O & Validation (29.63%). This suggests that the primary pain points
in generating and implementing optimization code lie in solver/API invocation and data ingestion/-
validation.

E.0.2 INSIGHT UTILITY AND QUALITY ANALYSIS

The utility of insights lies in its ability to abstract and distill general modeling principles applicable
to a wide range of optimization problems. For instance, the insight on Incorrect Relational Operators
emphasizes the necessity of using the correct operators (≥ or ≤) when translating natural language
phrases like “at least” or “at most” into algebraic inequalities. This helps modelers fundamentally
avoid errors and ensures the logical rigor of the model.

The quality of the insights is demonstrated by their in-depth analysis of specific, advanced modeling
practices. For example, the insight into Knapsack Constraints highlights the importance of recog-
nizing the hidden knapsack structure within a problem. This insight allows for the classification of
a specific problem into a known optimization paradigm, enabling the more effective application of
established solution strategies. Another example is the insight on Big-M Magnitude & Numerical
Stability, which represents a high-quality practical guide. It delves into the algorithmic layer of
solvers, revealing the critical impact of choosing an appropriate M value on solving efficiency and
numerical stability. For instance, it suggests using a tighter M value like the maximum demand in-
stead of an arbitrarily large number. This provides modelers with key guidance on how to construct
mixed-integer programming models that are not only correct but also robust.
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Figure 6: For each individual problem, AlphaOPT first proposes a formulation and checks its cor-
rectness. If the formulation is incorrect, it either analyzes and extracts insights from the gold-
standard program (when available) or continues exploring solutions until it finds a correct answer,
using the final generated formulation as a reference for insight extraction. The system then merges
insights into the library in an online manner, performing self-verification before merging to ensure
that the insights actually solve the source problems. For each insight, AlphaOPT also conducts
diagnosis to identify related positive, negative, and unretrieved tasks, thereby preparing for refine-
ments in later stages.

Table 5: The ablation results of AlphaOPT without: performance on benchmarks.

Dataset Logior Optibench MAMO-Easy

AlphaOPT (full) 51.08% 91.81% 95.59%
w/o self-debug 35.87% 89.26% 95.06%
w/o taxonomy 46.74% 90.72% 94.49%
w/o insight example 45.65% 91.06% 95.06%

F IMPLEMENT DETAILS AND ADDITIONAL RESULTS

F.1 LIBRARY LEARNING WORKFLOW

F.2 LIBRARY REFINEMENT FRAMEWORK

F.3 ABLATION STUDY

We assess the effectiveness of library insight retrieval/application and self-debug:

• w/o self-debug: Remove the model’s self-debugging section.

• w/o taxonomy: Remove the library taxonomy and directly match insights by checking all
conditions.

• w/o insight example: Use only the explanation as input, excluding exemplar cases

Table 5 shows that the full AlphaOPT achieves the best scores on all datasets. Removing self-
debug yields the largest drop on Logior (15.21%), indicating that iterative self-correction plays an
important role in the system. Dropping the library taxonomy reduces accuracy by 4.34% on Logior
and by 1.09% on Optibench, suggesting that structured matching meaningfully improves retrieval.
Excluding insight examples similarly lowers performance, showing that concrete, worked snippets
aid application beyond textual explanations alone. Results on MAMO-Easy are nearly unchanged
across ablations (≤ 0.53%), implying a ceiling effect on easier instances.
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Figure 7: AlphaOPT introduces a library-refinement mechanism that revises the applicability con-
ditions of insights diagnosed as misaligned on prior tasks that retrieved them.

F.4 PROMPTS FOR LLM MODULES

Apply self-explore on finding gold-standard program

You are an expert in Industrial Engineering and Operations Research
teaching graduate students to avoid modeling-and-coding mistakes
in solving optimization problems.

You are given:
1. A problem description for the optimization task
2. A mathematical model proposed by your colleague which failed to

yield an optimal solution when solved with the Gurobi optimizer (
hereafter referred to as *the failed mathematical model*)

3. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}
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### The failed mathematical model
(Note: the model is written in LaTeX and presented in a plain-text

code block (‘‘‘))
{failed_formulation}

### The gold-standard program
{correct_program}

### Your task
Step 1: Compare the failed mathematical model with the correct

mathematical model embodied in the gold-standard program to
identify issues that prevent optimality. Note that variable names
in the proposed model may differ from those in the gold-standard
program. Please align them carefully based on the problem
specification.

Step 2: Using the insight taxonomy dictionaries provided below,
extract one or more new insights, which should be a distinct and
concise lesson derived from a specific issue identified in the
failed mathematical model relative to the gold-standard program.

Each new insight must contain exactly four fields:

1) **taxonomy** choose **exactly one** of the two aspects:
- **Domain Modeling**: Level-1 = Problem Domain (e.g., "Network
Flow"); Level-2 = Specific Technique (e.g., "Flow Conservation").
- **General Formulation**: Level-1 = Formulation Component (e.g.,
"Variable Definition"); Level-2 = Specific Aspect/Pitfall (e.g., "
Continuous vs. Discrete Confusion").

Taxonomy rule (nested-dict): ‘{{ Level-1 : {{ Level-2 : null | {{
"definition": "...", "condition": "..." }} }} }}‘
- The taxonomy MUST always be expressed as a **three-level nested
dict**: Level-1 Level-2 (null or a dict with "definition"/"
condition").
- Pick **exactly one** Level-1 (existing key).
- Pick **one or more** Level-2 under that Level-1 (existing key or
keys).
- For an existing Level-2, set its value to null.
- If you must invent a new Level-2, set its value to a dictionary
with two one-sentence fields:

- "definition" what the label means (scope/intent).
- "condition" when to apply the label (a general trigger

grounded in the problem description or in the defining features of
the problem domain).
- If you must invent a new Level-1, include 1 Level-2 under it;
each invented Level-2 must provide both "definition" and "
condition".

2) **condition** Write it as a trigger explicitly grounded in the
problem description or in the defining features of the problem
domain. First state the general situation, then use this problem
as an example. **Use the pattern below**, and keep it strictly non
-prescriptive: do not give any solution, advice or decision:

"This insight applies when ... For example, when the problem statement
mentioned ...".

3) **explanation** A brief and self-contained description that
specifies, under this condition, what the best practice is, what
the common mistake is and its cause. First, use this problem as an
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example to illustrate; Then, appropriately generalize the correct
modeling strategy it reflects, if applicable.

**Use the pattern below**, and ensure the generalization remains
within an appropriate and reasonable scope:

"When the problem involves . The best practice is . A common mistake
is , which happens because . More generally, this reflects that
."

4) **example** A brief, self-contained demonstration showing wrong vs
. correct version (principle, formulation, or code snippet).
Clearly mark them as ’# Wrong’ and ’# Correct’.

### Taxonomy Dictionaries
**Domain Modeling**
{domain_taxo}

**General Formulation**
{formulation_taxo}

### STRICT OUTPUT FORMAT
Return a single JSON **array** of insight objects. No text before/

after. Example with two insights (but not must be two):

[
{{

"taxonomy": {{
"Domain Modeling": {{

"Network Flow": {{
"<New Label If Necessary>": {{ "definition": "<one

sentence>", "condition": "<one sentence>" }}
}}

}}
}},
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"

}},

{{
"taxonomy": {{

"General Formulation": {{
"Variable Definition": {{

"Continuous vs. Discrete Confusion": null
}}

}}
}},
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"

}}
]

**Guidelines**:
- Output as many **distinct, non-overlapping** insights as needed.
- Prefer existing Level-1/Level-2 labels; invent new ones only when no

suitable one exists, and phrase it in general terms** (avoid
overly specific or instance-bound wording).

- **Be precise in stage selection**use **Domain Modeling** for domain-
specific techniques that arise only within specific problem
families (e.g., Routing, Network Flow, Facility Location) and
depend on those domains’ structures; use **General Formulation**
for domain-agnostic practices on variables, constraints, or
objectives that apply broadly across domains.
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Now take a deep breath and think step by step.

Generate structured insights

You are an expert in Industrial Engineering and Operations Research
teaching graduate students to avoid modeling-and-coding mistakes
in solving optimization problems.

You are given:
1. A problem description for the optimization task
2. A mathematical model proposed by your colleague which failed to

yield an optimal solution when solved with the Gurobi optimizer (
hereafter referred to as *the failed mathematical model*)

3. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
(Note: the model is written in LaTeX and presented in a plain-text

code block (‘‘‘))
{failed_formulation}

### The gold-standard program
{correct_program}

### Your task
Step 1: Compare the failed mathematical model with the correct

mathematical model embodied in the gold-standard program to
identify issues that prevent optimality. Note that variable names
in the proposed model may differ from those in the gold-standard
program. Please align them carefully based on the problem
specification.

Step 2: Using the insight taxonomy dictionaries provided below,
extract one or more new insights, which should be a distinct and
concise lesson derived from a specific issue identified in the
failed mathematical model relative to the gold-standard program.

Each new insight must contain exactly four fields:

1) **taxonomy** choose **exactly one** of the two aspects:
- **Domain Modeling**: Level-1 = Problem Domain (e.g., "Network
Flow"); Level-2 = Specific Technique (e.g., "Flow Conservation").
- **General Formulation**: Level-1 = Formulation Component (e.g.,
"Variable Definition"); Level-2 = Specific Aspect/Pitfall (e.g., "
Continuous vs. Discrete Confusion").

Taxonomy rule (nested-dict): ‘{{ Level-1 : {{ Level-2 : null | {{
"definition": "...", "condition": "..." }} }} }}‘
- The taxonomy MUST always be expressed as a **three-level nested
dict**: Level-1 Level-2 (null or a dict with "definition"/"
condition").
- Pick **exactly one** Level-1 (existing key).
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- Pick **one or more** Level-2 under that Level-1 (existing key or
keys).
- For an existing Level-2, set its value to null.
- If you must invent a new Level-2, set its value to a dictionary
with two one-sentence fields:

- "definition" what the label means (scope/intent).
- "condition" when to apply the label (a general trigger

grounded in the problem description or in the defining features of
the problem domain).
- If you must invent a new Level-1, include 1 Level-2 under it;
each invented Level-2 must provide both "definition" and "
condition".

2) **condition** Write it as a trigger explicitly grounded in the
problem description or in the defining features of the problem
domain. First state the general situation, then use this problem
as an example. **Use the pattern below**, and keep it strictly non
-prescriptive: do not give any solution, advice or decision:

"This insight applies when ... For example, when the problem statement
mentioned ...".

3) **explanation** A brief and self-contained description that
specifies, under this condition, what the best practice is, what
the common mistake is and its cause. First, use this problem as an
example to illustrate; Then, appropriately generalize the correct
modeling strategy it reflects, if applicable.

**Use the pattern below**, and ensure the generalization remains
within an appropriate and reasonable scope:

"When the problem involves . The best practice is . A common mistake
is , which happens because . More generally, this reflects that
."

4) **example** A brief, self-contained demonstration showing wrong vs
. correct version (principle, formulation, or code snippet).
Clearly mark them as ’# Wrong’ and ’# Correct’.

### Taxonomy Dictionaries
**Domain Modeling**
{domain_taxo}

**General Formulation**
{formulation_taxo}

### STRICT OUTPUT FORMAT
Return a single JSON **array** of insight objects. No text before/

after. Example with two insights (but not must be two):

[
{{

"taxonomy": {{
"Domain Modeling": {{

"Network Flow": {{
"<New Label If Necessary>": {{ "definition": "<one

sentence>", "condition": "<one sentence>" }}
}}

}}
}},
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"

}},

{{
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"taxonomy": {{
"General Formulation": {{

"Variable Definition": {{
"Continuous vs. Discrete Confusion": null

}}
}}

}},
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"

}}
]

**Guidelines**:
- Output as many **distinct, non-overlapping** insights as needed.
- Prefer existing Level-1/Level-2 labels; invent new ones only when no

suitable one exists, and phrase it in general terms** (avoid
overly specific or instance-bound wording).

- **Be precise in stage selection**use **Domain Modeling** for domain-
specific techniques that arise only within specific problem
families (e.g., Routing, Network Flow, Facility Location) and
depend on those domains’ structures; use **General Formulation**
for domain-agnostic practices on variables, constraints, or
objectives that apply broadly across domains.

Now take a deep breath and think step by step.

Diagnose Issues for failed program

You are an expert in Industrial Engineering and Operations Research.

You are given:
1. A problem description for the optimization task
2. A mathematical model proposed by your colleague which failed to

yield an optimal solution when solved with the Gurobi optimizer (
hereafter referred to as *the failed mathematical model*)

3. The feedback providing clues about the failure to solve the
mathematical model to optimality

4. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
Note: the model is written in LaTeX and presented in a plain-text code

block (‘‘‘)
{failed_formulation}

### The feedback
{feedback}

### The gold-standard program
{correct_program}

### Your task
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Step 1: Compare the failed mathematical model with the correct one
embodied in the gold-standard program, and identify all
formulation issues that prevent optimality. Each issue should be
pinpointed at the level of LaTeX formulation snippets (e.g.,
variables, constraints, and the objective function), and should
correspond to a single, well-defined correction point. Note that
variable names in the proposed model may differ from those in the
gold-standard program, so please align them carefully based on the
problem specification.

Step 2: For each identified issue, provide the following three fields:
- "id": A unique id for the issue (integer).
- "issue": A concise description of the issue.
- "evidence": The evidence showing where the issue occurs, including

the excerpt from the failed mathematical model (mark as #wrong)
and the corresponding excerpt from the gold-standard program (mark
as #correct).

Step 3: Minimize overlap by reporting **independent, root-cause issues
**. If multiple defects share the same fix point or strategy,
merge them into a single composite issue. If several issues are
upstream/downstream symptoms of the same root cause (i.e., they
would be fixed by the same correction), consolidate them into one
composite issue.

### STRICT OUTPUT FORMAT
**Return only a JSON array** of your answer. Each array element must

be an object with keys ‘"id"‘, ‘"issue"‘ and ‘"evidence"‘.

Example:

‘‘‘json
[

{{"id": 1,"issue": "...", "evidence": "..."}},
{{"id": 2,"issue": "...", "evidence": "..."}}

]
‘‘‘

**Guidelines:**
- Make sure to identify **distinct and independent issues** (e.g.,

missing constraints, wrong variable bounds, or incorrect objective
formulation).

- Do NOT include issues that do not directly affect the model’s
ability to reach optimality.

- Only output the JSON array. DO NOT include any explanations,
markdown, or extra text before or after the JSON array.

Now take a deep breath and think step by step.

Diagnose Issues

You are an expert in Industrial Engineering and Operations Research.

You are given:
1. A problem description for the optimization task
2. A mathematical model proposed by your colleague which failed to

yield an optimal solution when solved with the Gurobi optimizer (
hereafter referred to as *the failed mathematical model*)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

3. The feedback providing clues about the failure to solve the
mathematical model to optimality

4. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
Note: the model is written in LaTeX and presented in a plain-text code

block (‘‘‘)
{failed_formulation}

### The feedback
{feedback}

### The gold-standard program
{correct_program}

### Your task

Step 1: Compare the failed mathematical model with the correct one
embodied in the gold-standard program, and identify all
formulation issues that prevent optimality. Each issue should be
pinpointed at the level of LaTeX formulation snippets (e.g.,
variables, constraints, and the objective function), and should
correspond to a single, well-defined correction point. Note that
variable names in the proposed model may differ from those in the
gold-standard program, so please align them carefully based on the
problem specification.

Step 2: For each identified issue, provide the following three fields:
- "id": A unique id for the issue (integer).
- "issue": A concise description of the issue.
- "evidence": The evidence showing where the issue occurs, including

the excerpt from the failed mathematical model (mark as #wrong)
and the corresponding excerpt from the gold-standard program (mark
as #correct).

Step 3: Minimize overlap by reporting **independent, root-cause issues
**. If multiple defects share the same fix point or strategy,
merge them into a single composite issue. If several issues are
upstream/downstream symptoms of the same root cause (i.e., they
would be fixed by the same correction), consolidate them into one
composite issue.

### STRICT OUTPUT FORMAT
**Return only a JSON array** of your answer. Each array element must

be an object with keys ‘"id"‘, ‘"issue"‘ and ‘"evidence"‘.

Example:

‘‘‘json
[

{{"id": 1,"issue": "...", "evidence": "..."}},
{{"id": 2,"issue": "...", "evidence": "..."}}

]
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‘‘‘

**Guidelines:**
- Make sure to identify **distinct and independent issues** (e.g.,

missing constraints, wrong variable bounds, or incorrect objective
formulation).

- Do NOT include issues that do not directly affect the model’s
ability to reach optimality.

- Only output the JSON array. DO NOT include any explanations,
markdown, or extra text before or after the JSON array.

Now take a deep breath and think step by step.

Diagnose Issues

You are an expert in Industrial Engineering and Operations Research.

You are given:
1. A problem description for the optimization task
2. A mathematical model proposed by your colleague which failed to

yield an optimal solution when solved with the Gurobi optimizer (
hereafter referred to as *the failed mathematical model*)

3. The feedback providing clues about the failure to solve the
mathematical model to optimality

4. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
Note: the model is written in LaTeX and presented in a plain-text code

block (‘‘‘)
{failed_formulation}

### The feedback
{feedback}

### The gold-standard program
{correct_program}

### Your task

Step 1: Compare the failed mathematical model with the correct one
embodied in the gold-standard program, and identify all
formulation issues that prevent optimality. Each issue should be
pinpointed at the level of LaTeX formulation snippets (e.g.,
variables, constraints, and the objective function), and should
correspond to a single, well-defined correction point. Note that
variable names in the proposed model may differ from those in the
gold-standard program, so please align them carefully based on the
problem specification.

Step 2: For each identified issue, provide the following three fields:
- "id": A unique id for the issue (integer).
- "issue": A concise description of the issue.
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- "evidence": The evidence showing where the issue occurs, including
the excerpt from the failed mathematical model (mark as #wrong)
and the corresponding excerpt from the gold-standard program (mark
as #correct).

Step 3: Minimize overlap by reporting **independent, root-cause issues
**. If multiple defects share the same fix point or strategy,
merge them into a single composite issue. If several issues are
upstream/downstream symptoms of the same root cause (i.e., they
would be fixed by the same correction), consolidate them into one
composite issue.

### STRICT OUTPUT FORMAT
**Return only a JSON array** of your answer. Each array element must

be an object with keys ‘"id"‘, ‘"issue"‘ and ‘"evidence"‘.

Example:

‘‘‘json
[

{{"id": 1,"issue": "...", "evidence": "..."}},
{{"id": 2,"issue": "...", "evidence": "..."}}

]
‘‘‘

**Guidelines:**
- Make sure to identify **distinct and independent issues** (e.g.,

missing constraints, wrong variable bounds, or incorrect objective
formulation).

- Do NOT include issues that do not directly affect the model’s
ability to reach optimality.

- Only output the JSON array. DO NOT include any explanations,
markdown, or extra text before or after the JSON array.

Now take a deep breath and think step by step.
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G USE OF LARGE LANGUAGE MODELS

We used Large Language Models for two main purposes: first, to debug our code during the devel-
opment of the agent system, and second, to check for grammar mistakes in our writing.
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