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ABSTRACT

Vision-Language Models (VLMs) like CLIP have demonstrated remarkable gener-
alization in zero- and few-shot settings, but adapting them efficiently to decentral-
ized, heterogeneous data remains a challenge. While prompt tuning has emerged
as a popular parameter-efficient approach in personalized federated learning, exist-
ing methods often sacrifice generalization in favor of personalization, struggling
particularly on unseen classes or domains. In this work, we propose pFedMMA,
a personalized federated learning framework that leverages multi-modal adapters
for vision-language tasks. Each adapter contains modality-specific up- and down-
projection layers alongside a globally shared projection that aligns cross-modal
features. Our optimization strategy allows clients to locally adapt to personalized
data distributions while collaboratively training the shared projection to improve
global generalization. This design is also communication-efficient, as only the
shared component is exchanged during communication rounds. Through extensive
experiments across eleven datasets, including domain- and label-shift scenarios, we
show that pFedMMA achieves state-of-the-art trade-offs between personalization
and generalization, outperforming recent federated prompt tuning methods.

1 INTRODUCTION

Vision-Language Models (VLMs) like CLIP Radford et al.|(2021) have revolutionized multi-modal
learning by jointly embedding visual and textual data through massive contrastive pre-training |[Jia
et al. (2021);[L1 et al.| (2022);|Yao et al.. This paradigm empowers models to generalize effectively
in zero-shot and few-shot settings Zhang et al.| (2022); Zhu et al.[(2023); Ghiasvand et al.| (2025);
Aghdam & Hu| (2025). Among them, larger transformer-based variants Vaswani| (2017)) (e.g., CLIP
ViT-L/14) consistently outperform smaller counterparts such as ViT-B/16, with margins exceeding
6% on benchmarks like ImageNet Deng et al.[(2009). However, the computational demands of fine-
tuning such large-scale models with billions of parameters pose significant challenges, particularly
for domain-specific tasks|Oskouie et al.|(2025). To mitigate this, Parameter-Efficient Fine-Tuning
(PEFT) techniques have emerged, especially in NLP. These methods, including adapters|Chen et al.
(2022)); Karimi Mahabadi et al.| (2021); [Rebuffi et al.|(2017)) and prompt tuning Jia et al.[(2022); Li &
Liang| (2021), introduce a lightweight set of trainable parameters or tokens, allowing the backbone
model to remain frozen.

While highly effective in centralized settings, these techniques fall short in scenarios involving
decentralized and privacy-sensitive data, such as healthcare, legal, or industrial domains Manoel
et al.| (2023); Shoham & Rappoport| (2023)); Mahjourian & Nguyen| (2025)). Federated Learning (FL)
offers a promising alternative by enabling collaborative training without raw data sharing. In FL,
clients update their local models and transmit only intermediate model updates such as parameters or
gradients, which are aggregated into a global model by a central server McMahan et al.| (2017).

In real-world scenarios, client data often exhibits variations in domain discrepancies (feature shift) Li
et al.| or imbalanced class distributions (label shift) |L1 et al.| (2021a)). Simply applying standard
aggregation strategies, such as FedAvg McMabhan et al.| (2017), over prompts |Guo et al.| (2023b))
or other fine-tuning methods, such as LoRA, often leads to suboptimal performance due to data
heterogeneity |[Zhang et al.| (2023)); |Borazjani et al.| (2025)). As a result, Personalized Federated
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Learning (PFL), particularly with prompt tuning, has gained increasing attention. pFedPrompt|Guo
et al.| (2023a) introduces personalization by coupling a global text prompt with local visual attention
modules to tailor predictions to each client’s data. FedOTP |Li et al.[(2024) uses Optimal Transport to
align local and global representations under label shift. FedPGP|Cui et al.|(2024])) applies prompt-wise
contrastive learning to enhance inter-client generalization. Recently, pFedMoAP |Luo et al.| (2025)
proposes a Mixture-of-Experts framework, where prompts from other clients serve as non-local
experts, and each client learns an attention-based gating mechanism for selective adaptation. While
these methods achieve impressive personalization performance, they often struggle to generalize to
unseen classes or domains, limiting their applicability in out-of-distribution scenarios. For example,
as shown in Fig. [I] FedOTP achieves poor harmonic mean accuracy, even though it has been shown
to have strong personalization performance.

Figure 1: Few-shot performance across datasets using the ViT-B/16 model. Each radar chart
illustrates accuracy (%) for a fixed shot count, with spokes representing the evaluation datasets.
Curves correspond to different methods, and values increase outward (20—-100%). Accuracy is
reported as the harmonic mean (HM) over local, base, and novel classes for each dataset and shot.

Beyond prompt tuning, adapters offer another PEFT strategy by introducing small trainable modules
into frozen pre-trained models |Cai et al.|(2020); |Chen et al.[ (2022} b)); |Gao et al.| (2024)); |[Hu et al.
(2021);/Zhang et al.|(2022). Unlike prompts, adapters operate independently of model architecture and
can be easily inserted into various backbones, such as ResNets|He et al.| (2016), ViTsDosovitskiy et al.|
and Swin Transformers [Liu et al.|(2021). However, most adapter methods like AdaptFormer|Chen
et al.| (2022) and LoRA Hu et al.| (2021) are uni-modal and do not account for the cross-modal
dependencies inherent in VLMs like CLIP |Radford et al.|(2021). Multi-modal adapters|Yang et al.
(2024) address this by integrating both visual and textual signals via a shared projection layer that
promotes feature alignment across modalities while preserving modality-specific knowledge. Despite
their demonstrated advantages over prompt-based approaches Yang et al.| (2024); Guo & Gu|(2025),
their integration with PFL remains largely unexplored.

In this work, we introduce a Personalized Federated Multi-Modal Adapter (pFedMMA) architecture
that adopt a multi-modal adapter design with three components: a modality-specific down-projection,
a shared projection, and a modality-specific up-projection. During training, all components are
updated locally by each client, but only the shared projection is globally aggregated. This asymmetric
training scheme enables effective personalization through client-specific projections, while promoting
generalization via a shared modality-alignment space. Moreover, since only the shared adapter is
communicated during rounds, the method remains communication-efficient. As confirmed by our
experiments, this design achieves the strongest trade-off between personalization and generalization
under both feature and label shifts. As shown in Fig. |1} on average, our proposed pFedMMA delivers
the best harmonic mean performance compared to state-of-the-art federated prompt tuning methods.

Before delving into details, we summarize our contributions: (1) We observe that while most
state-of-the-art prompt tuning methods achieve strong personalization performance, they often
generalize poorly to unseen classes. To address this, we introduce a multi-modal adapter framework
that explicitly aims to balance personalization and generalization in federated vision-language
learning. (2) We propose pFedMMA, an adapter-based approach for PFL of VLMs. Our architecture
incorporates modality-specific up- and down-projection layers and a shared cross-modal projection.
All components are updated locally, but only the shared projection is aggregated globally, enabling
effective asymmetric optimization. (3) We conduct extensive experiments on widely used benchmarks
to evaluate pFedMMA’s performance on base-to-novel generalization across both category- and
domain-level tasks under heterogeneous data distributions. Results demonstrate the superiority of our
approach in harmonizing generalization and personalization.
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2 PRELIMINARIES

2.1 PERSONALIZED FEDERATED LEARNING

Traditional federated learning frameworks are designed around the principle of global consensus,
where the goal is to collaboratively train a single model that generalizes well across a federation of
clients. The canonical approach, FedAvg McMahan et al.| (2017), formalizes this as the minimization
of a weighted average of local objectives: ming F'(6) = Ef\il p;F;(0), where 0 denotes the global
model, F;(-) represents the local empirical loss of client i, and p; = % scales the contribution of
each client by its dataset size n;, with n = >, n;. In this setup, each client’s local loss is computed
as the average over its data: Y " | £;(0 | (zx, yx)), where L; is the local loss function and (xy, yx)
is the k-th data point on client 4.

In contrast, personalized federated learning (PFL) challenges the one-size-fits-all paradigm by
allowing each client to maintain its own model ;. This formulation acknowledges data heterogeneity
and aims to tailor learning to each client’s unique distribution. The objective for PFL becomes:

01,....0Nn

N
i=1
offering a flexible alternative that prioritizes personalized performance over strict global consensus.

2.2  VISION-LANGUAGE CLASSIFICATION WITH FEW-SHOT ADAPTATION

In vision-language classification, predictions emerge from the powerful alignment between visual
and textual modalities established during pretraining. Given a label set with K classes, the model
begins by crafting natural language prompts [Liu et al.| (2023)—semantic descriptions like “a photo
of a [class name]”—for each class c;. These textual cues are passed through a frozen text encoder
0, producing normalized text embeddings Z;CT) = 0;(cx) € R? In parallel, each input image

x; is processed by a visual encoder 6,,, generating a corresponding normalized image embedding

ZEI) = 0,(x;) € R?. Classification then hinges on comparing the cosine similarity between these

multimodal representations. The result is a set of logits transformed into class probabilities via

a temperature-scaled softmax: p;; = exp (cos(zz(»l), ZEGT))/’y) /Z:j(=1 exp (cos(zz([), Z§T))/7) ,

where 7 is the temperature parameter controlling distribution sharpness. The predicted label for
image x; corresponds to the class with the highest posterior probability: & = arg maxy, p; k.

This zero-shot classification pipeline mirrors the contrastive training strategy employed in founda-
tional vision-language models like CLIP Radford et al.|(2021), enabling impressive generalization to
novel tasks without requiring any target-domain fine-tuning.

To further tailor the model to downstream tasks, the few-shot setting introduces a small set of labeled
examples per class, typically fewer than 16. With M support samples per class and ground-truth
labels encoded as one-hot vectors y;;, (where y;;; = 1 if x; belongs to class k, and O otherwise),
classification proceeds identically to the zero-shot case. However, the model is now adapted by

minimizing the cross-entropy loss over the labeled support set: Lcg = —ﬁ Z£1 Zle Yik 10 p; k.

This fine-tuning step enables the model to better capture domain-specific semantics while maintaining
the efficiency and generalization capabilities of the pretrained architecture. Adaptation can be
achieved through various strategies. One approach is to directly optimize the input prompts {ck}i{:l,
following the principles of prompt tuning (Chen et al.| (a). Alternatively, lightweight task-specific
modules such as adapter layers|Gao et al.|(2024) or low-rank parameterizations like LoRA [Zanella &
Ben Ayed (2024) can be fine-tuned, while keeping the backbone encoders frozen.

2.3 FINE-TUNING VIA PARALLEL ADAPTERS

In contrast to the serial adapter architecture introduced by Houlsby et al.|(2019), where adapter
modules are inserted sequentially after each sub-layer (e.g., attention or feed-forward), parallel
adapters He et al.| adopt an alternative integration strategy. Rather than placing the adapter transfor-
mation after the main layer, the parallel formulation processes the input through the adapter module
concurrently with the frozen backbone transformation and combines their outputs additively.
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Let x € R? be the input to a transformer sub-layer, and let f(x) denote the frozen pre-trained
transformation. A parallel adapter layer computes the output as: Output(xz) = f(x) + aA(x),
where « is a scaling factor and the adapter module A(x) uses the same bottleneck structure as in
the serial configuration: A(x) = U (6(D(x))), where U is an up-projection affine map, D is a
down-projection affine map, and ¢ is a non-linear activation function such as ReL.U. If the input « has
dimensionality d, then D € R"*% and U € R%*", where r < d. This bottleneck structure introduces
significantly fewer trainable parameters compared to the full model. As with serial adapters, only
the adapter parameters are trained during fine-tuning, and the base model remains frozen. Parallel
adapters preserve model expressiveness while enabling efficient adaptation with minimal architectural
modifications.

3 PROPOSED METHOD

In this section, we introduce pFedMMA, a novel framework that leverages multi-modal adapters to
efficiently and effectively adapt large pre-trained VLMs under federated learning settings. Our design
consists of two central components: (i) a multi-modal adapter architecture that bridges and enriches
representations across visual and textual modalities, and (ii) a hybrid personalization strategy that
promotes both generalization and personalization by decoupling local and shared adapter components.

3.1 MULTI-MODAL ADAPTER ARCHITECTURE

‘We build on the adapter-based design introduced in|Yang et al.|(2024)) to incorporate a lightweight
and efficient tuning mechanism for vision-language models. This architecture has proven effective in
few-shot generalization settings, where pre-trained CLIP models are fine-tuned on a limited number
of base classes and tested on base and novel, unseen categories.

The motivation for this design stems from two empirical findings: (i) higher layers of both image
and text encoders in CLIP contain more discriminative and dataset-specific features, while lower
layers preserve general, transferable knowledge; and (ii) larger modality gaps between text and image
encoders are observed in the lower layers, making cross-modal alignment particularly challenging in
the early stages of the network |Yang et al.[(2024)).

Based on these insights, the multi-modal adapter is inserted into the upper transformer blocks of both
encoders, starting from block ¢, while the lower layers remain frozen. This helps preserve general
representations while enabling task-specific adaptation at the top layers.

Each adapter consists of: (i) A down-projection layer that reduces the input dimension, (ii) A shared
projection layer that facilitates interaction between the modalities, (iii) An up-projection layer that
restores the original dimension.

This three-part structure allows the adapter to first transform features into a low-dimensional space,
fuse them through a shared module, and then project them back. Formally, for the visual adapter
(indexed by (1)) and the textual adapter (indexed by (7')) at the j-th block:

AN =W (Wi sW - 27), o€l Ty, jeft--.L}, @

where zj(-I) and zj(-T) denote the input hidden states at the j-th transformer layer for the vision and text

encoders, Wj(;) and Wj(dT) are the down-projection matrices, W, is the shared projection matrix

used across both modalities, W-(i) and W(f ) are the up-projection matrices, and J(-) denotes the
non-linear activation function (e.g., GELU), applied element-wise.

This shared projection structure encourages information exchange across modalities, while still
maintaining modality-specific processing through separate up/down projections.

In contrast to methods that inject prompts or adapters across all layers |Chen et al.| (2022); Houlsby
et al.| (2019);Hu et al{(2021)) or some lower layers Khattak et al.|(2023azb)); Zhou et al.[(2022b;a)), this
selective, top-layer insertion strategy reduces the number of trainable parameters while maintaining
cross-modal adaptability.
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Figure 2: An overview of the pFedMMA framework. Each client independently updates all trainable
components of the multi-modal adapters including client-specific up/down projections and the
shared projection over local epochs. After local training, only the shared adapter is uploaded and
aggregated by the server. This design promotes personalization through local adapters while enabling
generalization via a globally shared component.

3.2 GENERALIZATION AND PERSONALIZATION VIA PFEDMMA

To effectively balance generalization and personalization in federated vision-language learning, we
propose a hybrid training strategy within the multi-modal adapter framework. Each adapter consists
of three projection components: a modality-specific down-projection, a shared projection, and a
modality-specific up-projection. In our personalization scheme, clients update the down- and up-
projection components locally, while the shared projection matrix is synchronized globally via server
aggregation.

This selective update mechanism provides several key benefits: (i) Local personalization: By
allowing clients to optimize their own up- and down-projection matrices, each client can adapt the
representation space to their unique local data distribution. This is particularly effective under label
and feature heterogeneity. (ii) Global generalization: The shared projection matrix is collaboratively
trained across clients and is responsible for aligning the modalities in a consistent global space.
This facilitates transferability and enables the model to generalize well across diverse domains
and tasks. (iii) Communication efficiency: Since the shared projection layer is low-dimensional
compared to the full model or full adapter stack, transmitting only the shared component during
communication rounds results in significantly reduced communication cost. Extensive communication
and computational cost analysis are provided in Appendix [E]

Specifically, for a client ¢ in communication round ¢, all trainable parameters

W e {W(I) w w® w® WW-}, jef{t,--,L}, ie{l,---,N}, (3

jd,o Ju,? jd,i Jju,?

are updated for E local epochs using gradient descent: W)* = W' — nVL..(W! "), where
7 is the learning rate, L. is the cross-entropy loss, and e € {1,--- , E'}.

After local updates, only the shared projection parameters Wf;f are uploaded to the server. These
are aggregated across all participating clients to obtain the updated global shared adapter: W]tjl =

vazl pint;b;, where p; = " scales the contribution of each client by its dataset size n;, with
n =), n; and N is the number of participating clients. In contrast, the up- and down-projection

parameters remain local and are not shared or averaged.

This asymmetric update design enables pFedMMA to effectively capture both shared and client-
specific information, resulting in an improved balance between personalization and generalization, as
demonstrated in our experiments on tasks involving domain and label shifts. The overall training and
communication flow of pFedMMA is illustrated in Fig[2]
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4 EMPIRICAL RESULTS

In this section, we conduct extensive experiments to evaluate the generalization and personalization
capability of pFedMMA in heterogeneous data distribution scenarios.

4.1 EXPERIMENTAL SETUP

Datasets and Data Heterogeneity. To evaluate the effectiveness of pFedMMA, we conduct ex-
periments across eleven public benchmark datasets that cover various types of data heterogeneity,
including label shift and feature shift. Following prior work such as |Guo et al.| (2023b)), we use
seven visual classification datasets: SUN397 [Xiao et al.| (2010), OxfordPets |Parkhi et al.| (2012),
Flowers102 Nilsback & Zisserman| (2008), DTD [Cimpoi et al.| (2014), Caltech101 Fei-Fei et al.
(2004), UCF101 Soomro et al.|(2012)), and Food101 |Bossard et al.| (2014). We refer to these as the
CLIP datasets. To simulate severe label heterogeneity, we apply a pathological non-1ID setting in
which each client is assigned a distinct, non-overlapping set of classes. Clients are trained on their
local classes and evaluated on their own classes, on base classes held by other clients, and on novel
classes that are unseen during the training process.

To evaluate performance under feature shift, we utilize two widely adopted multi-domain datasets:
DomainNet Peng et al.|(2019)), which consists of six distinct domains, and Office-Caltech10|Gong
et al.| (2012)), which includes four domains. Following prior studies, each client is assigned data from
a single domain, ensuring that every domain is represented by a group of clients in the federation.
To introduce additional heterogeneity and simulate realistic federated learning scenarios, we further
partition the data within each domain using a symmetric Dirichlet distribution with concentration
parameter 3. This setup introduces both feature shift across domains and label shift within domains.
All domains participate in both training and evaluation phases, allowing us to assess cross-domain
generalization and personalization performance in more realistic federated conditions.

For personalization evaluation, we include CIFAR-10 |Krizhevsky et al.| (2010) and CIFAR-
100 Krizhevsky et al.|(2009). These datasets are partitioned among clients using a Dirichlet distribu-
tion, which creates varying degrees of label skew across clients. Additionally, we apply the same
pathological class split as used in the CLIP datasets to test robustness under extreme heterogeneity.
Further details on the dataset configurations and partitioning strategies can be found in Appendix [C.1]

Baselines. We evaluate pFedMMA across all experimental settings, including generalization, person-
alization, and domain generalization, using a consistent set of five baselines. Zero-shot CLIP Radford
et al.| (2021) serves as a non-adaptive reference model that uses fixed hand-crafted prompt templates
such as “a photo of a [class]” without any task-specific learning. PromptFL |Guo et al.| (2023b)
represents a standard federated prompt learning approach in which a shared prompt is collaboratively
learned across clients using FedAvg. FedPGP |Cui et al.|(2024)) introduces prompt-wise contrastive
learning to encourage consistency between global and local prompts. FedOTP |Li et al.|(2024) applies
unbalanced Optimal Transport to align global knowledge with client-specific prompt representations.
Finally, pFedMoAP [Luo et al.| (2025) leverages a Mixture-of-Experts design that enables each client
to access both local and non-local prompt experts through a lightweight attention-based gating
mechanism. In addition to these prompt-based methods, we also consider adapter and LoRA-style
PEFT baselines by implementing federated CLIP-Adapter |Gao et al.| (2024) and federated CLIP-
LoRA [Zanella & Ben Ayed (2024), where only the adapter or low-rank layers are updated and
aggregated across clients. These baselines cover a diverse range of federated adaptation strategies,
providing a strong benchmark for assessing the performance of pPFedMMA across different types of
heterogeneity.

Implimentation Details. All methods, including pPFedMMA and all baselines, are implemented on
top of a frozen CLIP model. We use two backbone architectures, ViT-B16 and ViT-B32 |Dosovitskiy
et al., and default to ViT-B16 unless otherwise specified. For the CLIP datasets, each is split into
10 clients with non-overlapping classes, using 100 percent participation, 2 local epochs, and 50
communication rounds. For the CIFAR-10 and CIFAR-100 datasets, we simulate a large-scale
federated environment with 100 clients, using a varying Dirichlet distribution and a 10 percent client
participation rate per communication round. Training runs for 50 rounds with 1 local epoch per round.
In the case of DomainNet and Office-Caltech10, each domain of these two datasets is partitioned
to 1/2 clients, resulting in N = 6/12 for DomainNet and N = 4/8 for Office-Caltech10. We use
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Table 1: Top-1 accuracy (%) of different methods across 7 datasets in the 16-shot setting.

Average on 7 datasets SUN397 Flowers102 DTD
Method Local  Base  Novel HM  Local  Base  Novel HM Local  Base  Novel Local Base Novel  HM
CLIP|Radford et al 2021 7636 7681 8121 7803 6941 6938 7552 7132 6789 6923 7688 5426 5486 5918 56.02
PromptFLGuo et al. 120235 8893 8895 7536  83.09  77.73 771 7296 76.07  97.37  97.06  63.62 8023 80.21 1529 6381
FedCLIP-ATapterGao et al }12024) 7897 7922 8200 80.04 7282 7278 7422 714G 322 7738 5699 55.90 59.78 5751
FedCLIP-LoRA[Zanella & Ben Ayed|2024] ~ 81.69 9016 79.76 8335 7467 8046 7565 7677 9772 6816 6816 8194 5942 68.64
FedPGP|Cui et al_12024] 95.38 7649 TGS 79.09 9420 5488 65.02  99.67 7244 5865 89.03 7103 5094 66.75
FedOTP|Li et al (2024 9734 1800 3669 3108 9450  1L51 1486 1821 99.65 1462 3049 9808 2079 3536 34.65
pFedMoAP]Luo et al. || 2025, 9789 6182 66.60  7L05 9593 3118 3540 4241 9981 4370 4837 9643 5360 4821 60.28
PFedMMA (Ours) 97.17 7740 8149 8415 9406  70.99 7637  79.34 9558 7154 76.00 9745 5544 6155  67.35
A 0.74%  +1.19%  +13.69%  +6.4% L95%  +20.35%  +32.22% +22.02% —4.24% —124%  +29.58% 0.64% —21.95%  +20.83%  +0.9%
OxfordPets Caltech101 Food101 UCFI01
Method Local  Base  Novel HM  Local  Base  Novel HM] Local  Base  Novl HM  Local Base Novel  HM
CLIP|Radford et al J12021 8045 8942 9681 9177 9614 9722 9421 9584 8940 8942 9070  §984 6800 6815 7518 7029
PromptFL{Guo el al. 12023b; 96.35 9628  97.26 9663 9777 9819 9258 9611 9048 9050 9137 9078 8257 8273 6447 7555
FedCLIP-ATapteriGao et al }2024) 93.01 9293 97.00 9430 9628 9735 9400 90.07 9010 9119 9045 7213 7223 7788 7398
FedCLIP-LoRA[Zanella & Ben Ayed|2024] ~ 90.71  95.64 g 9459 9676 97.93 9443 8918 9032 9149  90.32 7558 8713 7480 7879
FedPGP|Cui et al 12024] 96.62 9517 96.31 9942 9491 9088 9370 8638  ST.4  $896 9494 6062  59.26 6833
FedOTP|Lr et al. (2024 10000 11.60 2592 9994 3647 6277 95.60 1729 3797  3L70 9354 1362 2419 2391
pFedMoAP]Luo et al. || 2025, 9992  77.61 SS8T 9992 9407 9243 9749 698G 8351 8209 9579 6274 6623 7233
PFedMMA (Ours) 100.00 8850 9660 9478  100.00 9653 9429 9745 8915 9077 9232 9563  69.61 7488 7858
A 0% —7.01% —0.57% —1.59% +0.06% +1.67% +2.01% +1.58% —0.04% +3.21% +4.17% +3.78% —0.17% +10.95% +13.06% +8.64%
—e— pFedMMA (Ours) ~ —e— FedOTP FedPGP PromptFL pFedMoAP
Average (HM) SUN397 (HM) DTD (HM) Caltech101 (HM) Food101 (HM) UCF101 (HM)
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Figure 3: Local and harmonic mean (HM) accuracies of various methods across different shot settings.

SGD with a learning rate of 0.001, and batch sizes of 32 for training and 100 for testing. Further
implementation details are provided in the Appendix, where we also report additional results using
the Adam optimizer (Table[I8)), which exhibit similar trends to those obtained with SGD.

4.2 PERFORMANCE EVALUATION

Base-to-Novel Class Generalization.

We evaluate the performance of pFedMMA in terms of its ability to generalize from locally trained
classes to both base and novel classes. Following prior work, we report top-1 accuracy on each client’s
local classes, on the base classes seen by other clients, and on novel classes that are entirely unseen
during training. To capture overall effectiveness, we use the harmonic mean (HM) of these three
metrics, HM = 3/(Accy., + Accy,l, + Acc,.l ), which penalizes methods that over-optimize one
component at the expense of the others and thus better reflects the balance between personalization
(local) and generalization (base and novel) than a simple arithmetic mean; this type of harmonic-mean
score is standard in generalized zero-shot learning and base-to-novel CLIP adaptation, and has also
been adopted in recent PFL work to jointly summarize local, base, and novel accuracies [Verma
et al.| (2020); |Du et al.|(2025); Cu1 et al.| (2024). As summarized in Table|I|for the 16-shot setting,
pFedMMA consistently achieves strong performance across all evaluation categories and delivers the
best overall HM averaged across seven datasets, outperforming all baselines.

Zero-shot CLIP, PromptFL, federated CLIP-Adapter, and CLIP-LoRA suffer from poor local accuracy,
tending to favor generalization at the expense of personalization. We also report A, which denotes
the relative improvement of pFedMMA compared with the strongest non-baseline methods (FedPGP,
FedOTP, and pFedMoAP). While FedOTP sometimes achieves high local accuracy, its extremely low
base and novel class scores indicate poor generalization. pFedMoAP performs well on local classes
due to its MoE-based prompt sharing, but it lags behind pFedMMA in base and novel accuracy.
By contrast, pFedMMA achieves the highest base and novel accuracy, surpassing FedPGP and
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Table 2: Accuracy comparison (%) on the Dirichlet Non-IID setting in CIFAR-10 and CIFAR-100.

Dataset CIFAR-100 CIFAR-10

#0 0.1 0.3 0.5 1 5 10 0.1 0.3 0.5 1 5 10
CLIP|Radford et al.|(2021] 64.93 64.90 65.00 64.95 64.94 64.91 87.98 87.95 8793 8798  88.02 87.98
PromptFLIGuo et al.[(2023b)  75.34 73.48 72.85 72.83 72.21 72.41 92.80 92.95 94.34 93.89 93.31 93.02
FedPGP|Cui et al. (2024 74.72 72.89 74.85 74.18 74.07 73.90 91.69 93.19 93.21 92.98  93.04 9291
FedOTP|L1 et al.|(2024 71.53 73.83 7221 70.99 69.40 68.97 97.23 95.82 94.64 9310  91.87 91.67
pFedMoAP|Luo et al.[(2025]  80.29 75.70 75.68 74.53 73.00 72.61 97.13 95.92 94.86 9397  92.67 92.65
pFedMMA (Ours) 81.82 78.33 76.92 75.70 74.03 73.65 97.37 96.92 9582 9482 93.52 93.07
A +1.91% +3.47% +1.64% +1.57% —0.05% —0.34%  +0.14% +1.04% +1.01% +0.9% +0.23% +0.05%

Table 3: Test accuracy (%) of different methods on DomainNet and Office-Caltech10 with lable shift
and domain shift using Dirichlet partitioning (5 = 0.5).

DomainNet Office-Caltech10
Method Clipart Infograph Painting Quickdraw Real ~Sketch ~Avg. Amazon Caltech DSLR Webcam Avg.
CLIP|Radford et al.|(2021} 8.99 10.69 11.20 10.85 9.53 939  10.11 11.78 6.21 9.92 851 9.11
PromptFL|Guo et al. {(2023b}  11.02 1.65 11.20 8.95 13.89 2075 1124 1035 1583 32.06 7.13 16.34
FedPGP|Cui et al. [(2024] 24.77 31.87 23.87 22.87 2240 23.64 2490 2034 19.12 2085 2252 2071
pFedMoAP|Luo et al. |[(2025] 24.77 30.93 26.09 20.46 22.59 23.10 24.65 20.01 24.45 18.02 15.73 19.55
pFedMMA (Ours) 50.38 23.81 60.27 61.44 40.35 4679 4717 9.26 29.15 3326 13.64 2133

demonstrating excellent generalization, while remaining competitive on local classes—only 0.74%
lower than pFedMoAP.

Fig. illustrates local and HM accuracy across varying numbers of shots {1,2, 4,8, 16}, showing the
same performance pattern. Detailed results for all datasets are provided in Table[§]in the Appendix.

Evaluation on Personalization. We further evaluate the personalization capability of pFedMMA on
CIFAR-10 and CIFAR-100 under a challenging Dirichlet partitioning scheme, varying the concen-
tration parameter 3 across 100 clients with 10% client participation per communication round. The
results, summarized in Table[2} show that pFedMMA consistently achieves the highest accuracy on
both datasets, demonstrating its strong adaptability to highly non-IID data distributions.

Model Evaluation on Feature & Label Shifts. To evaluate the robustness of pFedMMA in realistic
federated learning scenarios, we examine its performance under both label shift and feature shift using
the DomainNet and Office-Caltech10 datasets. Following the standard protocol, each domain is split
into two clients via a Dirichlet distribution with 5 = 0.5, yielding 12 clients for DomainNet and 8
clients for Office-Caltech10. The results in Table [3|show that under these challenging heterogeneous
conditions, traditional methods such as CLIP and PromptFL struggle to generalize effectively.
In contrast, pFedMMA consistently achieves the highest average accuracy across both datasets,
highlighting its strong robustness to cross-domain shifts. Additional experiments with one or two
clients per domain and varying /3 are provided in Tables[I0]and [[T]in the Appendix.

4.3 ABLATION STUDY

Impact of model. To further examine the performance of pFedMMA under a different backbone, we
report results with ViT-B/32 on the average of six datasets across five shot settings, comparing against
three advanced baselines (Table {). While pFedMMA shows slightly lower local accuracy than
FedOTP and pFedMoAP, this gap narrows as the number of shots increases. Importantly, pFedMMA
consistently achieves the best trade-off between personalization and generalization, demonstrating
stable improvements in the harmonic mean across all settings. Detailed results for all datasets are
provided in Table[9]in the Appendix.

Dimension of the Shared Layer. Table [5 (bottom-left) reports the average accuracies over four
datasets and five shot settings. As shown, using a larger 128-dimensional representation yields
slightly better performance than 32 dimensions. However, to keep the number of trainable parameters
low, we consistently adopt the 32-dimensional setting throughout the paper. Detailed results are
provided in Tables[I2]and[T3]in the Appendix.

Scaling Factor «. The scaling factor controls the balance between general features and task-specific
features. We systematically evaluate its effect, with results summarized in Table 3] (top-left). Our
pFedMMA achieves the best trade-off performance (HM) between local, base, and novel classes
at o = 0.005. A larger scaling factor enables faster adaptation to base classes but leads to weaker
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Table 4: Average performance across six datasets using the ViT-B/32 backbone under different shot
settings (1, 2, 4, 8, and 16).

Method 1 Shot 2 Shots 4 Shots 8 Shots 16 Shots

Local Base Novel HM Local Base Novel ~HM  Local Base Novel HM  Local Base Novel HM  Local Base Novel —HM
FedPGP 7931 7935 8025 79.53 8229 8143 77.08 80.07 8586 81.91 7450 79.68 89.07 8033 73.61 79.63 93.57 70.79 68.89  74.66
FedOTP 86.84 11.20 20.66 19.50 88.69 1129 23.12 2004 91.51 1102 21.19 19.33 9244 995 19.39 1725 9460 9.97 16.74 16.46
pFedMoAP 93.18 4553 54.08 56.99 95.05 47.14 5833 5937 9653 44.14 5434 56.26  96.88 42.53 50.93 5383 9721 29.83 4415 44.86

pFedMMA (Ours) 82.14 7678 7935 79.31 8440 77.04 79.34 80.09 86.82 7685 79.32 80.67 88.07 7679 79.01 80.83 90.02 76.57 79.75 8129
A

—0.28% +0.02% +1.24% +1.51% +8.88%

Table 5: Ablation study on pFedMMA design choices, including scaling factor, adapter dimension,
starting layer, and adapter sharing strategies.

a Local Base Novel HM (- L Local Base Novel HM
0.0001 9140 5.06 5.76 7.62 12 96.49 76.85 8137 83.57
0.0005 9145 4634 59.16 59.15 1012 96.61 78.14 8198 84.38
0.001 9091 7221 7848 79.37 8 — 12 95.75 78.43 81.82 84.27
0.005 91.03 78.65 81.77 83.25 6— 12 91.53 78.53 81.76 83.32
0.01 91.47 78.12 81.56 82.03 5—12 91.58 78.67 81.71 83.38

Dims Local Base Novel HM

8 89.15 7223 76.41 78.24 Method DTD Caltech Flowers OxfordPets
16 89.84 7251 7736 78.93 Baseline1  61.10  96.61 73.82 91.91
32 90.91 7221 7833 79.37 Baseline2  62.19 98.14 77.04 92.75
64 91.55 7137 7831 79.15 pFedMMA  76.38  99.48 86.34 97.39

128 91.78 7255 7823 79.68

performance on novel and base classes, whereas a smaller scaling factor hinders effective tuning for
downstream tasks. Detailed results are provided in Table[I3]in the Appendix.

Starting Layer ¢. We evaluate different choices of encoder layers for integrating pFedMMA in Table
[] (top-right). As shown, updating the last three layers yields the best HM performance, which we
attribute to the limited amount of training data in few-shot settings. Accordingly, we consistently set
¢ = 10 for CLIP datasets throughout the paper. For other datasets, updating additional layers leads to
better results, so we adopt £ = 5. Detailed results are provided in Table[T7)in the Appendix.

Adapting Variant Options for Personalization. We evaluate the effectiveness of different design
choices of MMA in personalized federated learning. In Table [3 (bottom-right), we compare two
alternative baselines: treating all adapters as global (Baseline 1) and using the shared adapter as the
personalized component while treating the up- and down-projection adapters as global (Baseline 2).
As shown, pFedMMA achieves significantly higher local accuracy than both baselines. Moreover, it
achieves superior base and novel performance compared to state-of-the-art prompt learning methods,
as shown earlier, underscoring its ability to strike a strong balance between personalization and
generalization.

Adapting Variant Options for FL. Aggregation.

We next ablate how the shared adapter is aggre- Table 6: Comparison of FL aggregation vari-
gated across clients to localize the main information- gptg (vision-only, text-only, and both-sides)
sharing channel. In Table[6] we compare three vari- for the shared adapter.

ants that differ in which modality-specific shared

block is federated: Vision Only, where only the vision- Methods Local Base Novel HM
side shared block is aggregated; Text Only, where Vision Only 0581 7119 76.07 79.31
only the text-side shared block is aggregated; and Text Only 95.99 7119 76.13  79.38

.. Both Vision & Text 95.99 71.24 76.10 79.39
Both Vision & Text, where separate shared blocks for pFedMMA (Ours)  96.14 7178 7617  79.70

each modality are aggregated simultaneously. These
variants achieve very similar local accuracy, with
small but consistent differences in base, novel, and HM: aggregating text-only or both modalities
yields a slight edge in HM over aggregating vision-only. Our full pFedMMA, which uses a single
multi-modal shared projection rather than two separate modality-specific ones, further improves local,
base, novel, and HM over all three variants, suggesting that tying the modalities through a unified
shared adapter provides a slightly stronger and more stable information-sharing mechanism without
harming personalization.
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4.4 LEARNING CURVES

To further analyze the convergence behavior of pFedMMA, we plot the average local accuracy over
communication rounds across five different shot settings in Fig. [f] As shown, pFedMMA consistently
attains high accuracy and converges faster than the baselines. Detailed results are provided in Fig. [3]
in the Appendix.

— FedOTP FedPGP  —— PromptfL _—— pFedMoAP  —— pFedMMA (ours)
-shot 4-shot

1-shot 2 8-shot 16-shot

0 T 20 30 30 3
Round Round Round Round Round

Figure 4: Accuracy learning curves of pFedMMA and baselines.

5 CONCLUSION

In this work, we introduced pFedMMA, a novel personalized federated learning framework that
leverages multi-modal adapters to adapt large-scale vision-language models under heterogeneous data
conditions. The proposed architecture separates each adapter into modality-specific and shared projec-
tion components. Clients update all components locally, but only the shared projection is aggregated
globally. This asymmetric optimization strategy enables client-specific adaptation while maintaining
a globally aligned feature space for effective generalization. Moreover, the communication-efficient
nature of the framework makes it scalable to real-world federated deployments. Our extensive
experiments across diverse datasets demonstrate that pFedMMA consistently outperforms existing
prompt-based PFL methods in both domain- and category-level generalization, while retaining strong
personalization capabilities. This work can motivate further exploration of adapter-based architectures
for personalized federated learning in multi-modal settings.

10
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A PIPELINES OF THE PROPOSED ALGORITHM

For a better understanding of the steps of the designed algorithm, we present pFedMMA in Algorithm

Algorithm 1 pFedMMA

1: Input: Step size 1, number of communication rounds 7", number of local epoch E, number of clients V.
2: for communication round ¢ <— 1to 7" do
3: Select a subset of |S;| clients, S;

4 Send {W/,,--- ,W},} to the selected clients
5 for clients ¢ € S; in parallel do

6: for local update e <— 1 to £ do
7
8

for trainable parameters W € {Ww wD wh w) st,i} , je{t,---,L}:

Jd,i? T ju,ed TV gdi VT ju,ed

Wit,e — W't,efl _ nvﬁce(Wit,efl)

7

9 end for

10: Client % sends W;ﬁ to the server
11: end for
}%z dAft server: ijl = zivzl pLW;sf’ Je {67 e >L}
: end for
14: Return: {W].(;fi7wj.<i?i7wj,<§z,Wﬁ%sz’i}7 ieft,.- Ly, jelt,- L}

B RELATED WORK

B.1 PERSONALIZED FEDERATED LEARNING

Personalized Federated Learning (PFL) has emerged as a pivotal research direction to address the
limitations of conventional federated learning McMahan et al.|(2017) when faced with heterogeneous
client data. Unlike standard FL, which learns a single global model, PFL aims to produce tailored
models for individual clients, thus better coping with statistical and systemic heterogeneity [Tan et al.
(2022); Kulkarni et al.[(2020). Several personalization strategies have been proposed, including
local fine-tuning Mansour et al.[(2020); Tan et al.|(2022); Wang et al.|(2019), regularization-based
optimization |Li et al.|(2020; |2021b); T Dinh et al.| (2020)), and parameter decomposition into shared
and client-specific components |Arivazhagan et al.| (2019); |Oh et al.; |Collins et al.| (2021)). Other
methods pursue clustering of clients to exploit latent similarities Huang et al.[(2021));/Zhang et al.;
Sattler et al.|(2020); |Ziad et al.|(2024)), or leverage attention mechanisms and adaptive layers Liang
et al.[(2020); |Li et al.| (2023a)); |Sun et al.|(2023)). To further improve adaptability, techniques like
FedBN L1 et al.| and PartialFed |Sun et al.| (2021)) address feature shift via local normalization or
selective personalization. Hybrid global-local learning approaches have also been developed Deng
et al.|(2020); Chen & Chao|(2022). FedOT |Farnia et al.| (2022) proposes learning optimal transport
maps that align local distributions to a shared probability space, enabling a global classifier to be
trained more effectively; personalization is achieved by composing this shared model with each
client’s transport map. While these approaches have demonstrated success, they typically center on
traditional ML architectures and do not yet fully leverage the potential of large pre-trained models,
such as vision-language or foundation models, for personalization.

B.2 FEDERATED PROMPT LEARNING FOR VLMS

Federated Prompt Learning (FPL) extends the flexibility of prompt tuning for adapting large pre-
trained models such as CLIP Radford et al.|(2021)) to the FL settings, enabling efficient and person-
alized downstream task adaptation across decentralized clients. Early works like CoOp Zhou et al.
(2022b) and CoCoOp |Zhou et al.|(20224) laid the foundation by introducing learnable continuous
prompt vectors, which sparked interest in federated extensions. PromptFL |Guo et al.| (2023b)) and
FedPrompt Zhao et al.[(2022) introduced FL-style prompt aggregation, performing FedAvgMcMahan
et al.|(2017) over client-specific prompt updates. FedPR |[Feng et al.[(2023) explores visual prompt
learning within the null space of global prompts for MRI reconstruction, while FedAPT |Su et al.
(2022) focuses on domain-adaptive prompt tuning for cross-domain image classification. To en-
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hance personalization, pFedPrompt |Guo et al.|(2023a)) introduces a non-parametric attention module
over local few-shot memory, and pFedPG |Yang et al.|(2023)) and FedTPG Qiu et al.| design server-
side prompt generators to issue personalized prompts to each client. FedCLIP |Lu et al.| integrates
attention-based adapters to better exploit the pre-trained model’s knowledge. Furthermore, FedOTP|Li
et al.| (2024) leverages Optimal Transport to align global and local prompts, and FedPGP ? utilizes
prompt-wise contrastive losses to better capture diverse category-level traits across clients. Recently,
pFedMoAP Luo et al.| (2025)) rethinks prompt sharing by treating pre-aggregated prompts from other
clients as non-local experts in a Mixture-of-Experts framework, enabling effective personalization
via a lightweight, attention-based gating mechanism. Theoretical analysis of FPL |Pan et al.| (2024)
provides deeper understanding of its convergence properties.

B.3 EFFICIENT TRANSFER LEARNING FOR VLMS

Traditional transfer learning approaches typically fine-tune all parameters of pre-trained VLMs|Devlin
et al.| (2019); He et al.| (2016)), but this becomes increasingly impractical as model sizes scale up,
especially under computational or data constraints. To mitigate this, the community has embraced
parameter-efficient transfer learning strategies that modify only a small fraction of model parameters.
Among these, prompt learning techniques, briefly introduced in the previous section, optimize
lightweight vectors or tokens to steer the model without altering its backbone [Zhou et al.|(2022bja)); Lu
et al.[(2022)); Khattak et al.|(2023b)). Although effective, they are often limited in their expressiveness
or modality interaction. As a result, adapter-based methods have emerged as a powerful alternative.
CLIP-Adapter|Gao et al.|(2024) and Tip-Adapter Zhang et al.| (2022) inject lightweight MLP layers
after the image encoder to refine visual representations. Tip-Adapter further improves efficiency by
caching training features for fast inference. However, these image-only approaches neglect the cross-
modal nature of VLMs. To address this, MMA |Yang et al.|(2024) introduces a multi-modal adapter
architecture that fuses features across the vision and language branches via a shared representation
space, enabling gradient flow between modalities. Similarly, other works explore deeper adapter
integration, such as inserting adapters within self-attention and MLP blocks Wiang et al.| (2022),
allowing more granular control over the representation learning process. These advances mark a shift
from single-stream to multi-stream adaptation, aligning with the unique demands of multi-modal
tasks. In federated settings, where full model updates are prohibitive, adapter-based techniques offer a
compelling balance between personalization, generalization, and communication efficiency—making
them well-suited foundations for multi-model federated frameworks like ours.

B.4 FEDERATED OUT-OF-DISTRIBUTION AND DOMAIN GENERALIZATION

A complementary line of work studies federated domain generalization (FedDG), where the goal is
to train a single global model that generalizes to unseen target domains under client heterogeneity.
FedDAT [Chen et al.|(2024) tackles multi-modal heterogeneous FL for foundation vision-language
models via a dual-adapter teacher and mutual knowledge distillation, improving global performance
across diverse vision-language tasks under domain shift. PLAN |Gong et al.| (2024) introduces
a FedDG framework for pre-trained vision-language models based on visual and textual prompt
learning and attention-based prompt aggregation, explicitly using a leave-one-domain-out protocol
to adapt a global CLIP-style model to unseen domains. Other recent methods similarly design
adapter- or prompt-based FedDG algorithms to enhance out-of-domain robustness of federated
foundation models [Li et al.[| (2023b); |Yang et al.| (2025); |[Lu et al| (2023). In contrast, our work
is formulated in the personalized federated learning (PFL) setting, where each client maintains
its own model (or adapter) and we explicitly optimize the personalization—generalization trade-
off; consequently, we treat FedDG methods as complementary rather than direct baselines, and
instead compare against personalized prompt- and adapter-based methods, while showing that our
approach achieves comparable personalized performance and substantially stronger cross-domain
generalization within this PFL protocol.
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C EXPERIMENTAL DETAILS

C.1 DATASET SETUP

For evaluation, we consider a broad set of eleven visual recognition benchmarks that span diverse
tasks and levels of granularity. Table[7]provides a comprehensive overview, detailing the task type,
number of classes, training and testing sizes, client splits, and the heterogeneity assumption used in
our experiments.

The pathological partition setting is adopted for datasets such as Caltech101, Flowers102, OxfordPets,
Food101, DTD, SUN397, and UCF101, where each client is assigned data corresponding to a limited
number of classes, creating strong non-IID conditions. This simulates realistic personalization
scenarios for fine-grained recognition, texture classification, scene recognition, and video action
recognition.

For CIFAR-10 and CIFAR-100, we follow the common Dirichlet partitioning scheme with varying 3
values to control the label skew among 100 clients. This allows systematic evaluation under different
degrees of heterogeneity.

To capture the challenges of multi-domain learning, we also include Office-Caltech10 and DomainNet.
Office-Caltech10 contains four domains (Amazon, Caltech, DSLR, Webcam), reflecting variations
across acquisition devices and environments, while DomainNet consists of six domains (Clipart,
Infograph, Painting, Quickdraw, Real, Sketch), which are significantly diverse and large-scale.
For these benchmarks, we use 10 selected classes and evaluate both single-client-per-domain and
multi-client-per-domain partitions.

Table 7: Statistical details of datasets used in experiments.

Dataset Task #Classes #Clients Sample Rate Training Size Testing Size Domains Heterogeneity
Caltech101|Fei-Fei et al. (2004} Object recognition 100 10 100% 4,128 2,465 1 Pathological
Flowers102|Nilsback & Zisserman (2008}  Fine-grained flowers recognition 102 10 100% 4,093 2,463 1 Pathological
OxfordPets|Parkhi et al. (2012] Fine-grained pets recognition 37 10 100% 2,944 3,669 1 Pathological
Food101Bossard et al.|(2014] Fine-grained food recognition 101 10 100% 50,500 30,300 1 Pathological
DTD|Cimpot et al.|(2014] Texture recognition 47 10 100% 2,820 1,692 1 Pathological
SUN397 Xiao et al.[(2010} Scene recognition 397 10 100% 76,128 21,750 1 Pathological
UCF101|Soomro et al.|(2012} Action recognition (video) 101 10 100% 9,537 3,783 1 Pathological
CIFAR-10|Krizhevsky et al.|(2010) Image classification 10 100 10% 50,000 10,000 1 Dir(3)
CIFAR-100[Krizhevsky et al.[(2009) Image classification 100 100 10% 50,000 10,000 1 Dir(3)
DomainNet Peng et al.|(2019] Image recognition 10 4/8 100% 18,278 4,573 6 Dir(3)
Office-CaltechTO|Gong et al.|(2012} Image recognition 10 6/12 100% 2,025 508 4 Dir(5)

C.2 EXPERIMENTAL SETUP

All models are trained using the SGD optimizer with a learning rate of = 0.001. Each experiment
is repeated three times with different random seeds, and we report the average performance. The final
results are obtained by averaging performance across all clients. All experiments are implemented in
PyTorch and run on NVIDIA A6000 GPUs.

Base-to-Novel Class Generalization. To evaluate generalization, we divide each dataset evenly into
base and novel classes. Base classes are distributed across clients without overlap, such that each
client only observes a subset during training. Clients train their local models on their own classes,
and evaluation is performed on three levels: (i) local classes (the client’s own training classes), (ii)
base classes (classes seen by other clients but unseen locally), and (iii) novel classes (completely
unseen during training). Accuracy is averaged across 10 clients.

Feature & Label Shifts. To evaluate robustness under realistic federated learning conditions, we
conduct experiments with both label shift and feature shift using the DomainNet and Office-Caltech10
datasets. Each domain is partitioned into one or two clients using a Dirichlet distribution with varying
B, resulting in 6 or 12 clients for DomainNet and 4 or 8 clients for Office-Caltech10. This setup
generates heterogeneous client distributions, effectively simulating domain shifts.

Personalization. For personalization analysis, CIFAR-10 and CIFAR-100 are partitioned among 100
clients using a symmetric Dirichlet distribution. In addition, for the CLIP datasets, we follow the
pathological partitioning strategy from the base-to-novel generalization setting, where classes are
non-overlapping across 10 clients.
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D ADDITIONAL EXPERIMENTS RESULTS
D.1 BASE-TO-NOVEL CLASS GENERALIZATION

Table 8: Top-1 accuracy (%) of different methods across 7 datasets using ViT-B/16 as the backbone.

Average on 7 datasets SUN397 Flowers102 DTD
Shots  Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM
CLIP|Radford et al. ¥2021 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
Prompll E b, 88.93 88.95 75.36 83.09 71.73 71.71 72.96 76.07 97.37 97.06 63.62 82.66 80.23 80.21 45.29 63.81
FedPGP|Cu: 5 95.38 76.49 71.68 79.09 94.29 54.88 57.76 65.02 99.67 72.44 58.65 73.37 89.03 71.03 50.94 66.75
FedOTP|Li et al. 97.34 18.00 36.69 31.08 94.50 1151 14.86 18.21 99.65 14.62 30.49 2697 98.08 20.79 3536 34.65
pFedMokP] uo et al. £2025) 97.89 61.82 66.60 71.05 95.93 31.18 35.40 42.41 99.81 43.70 48.37 55.99 96.43 53.60 48.21 60.28
pFedMMA (Ours 97.17 77.40 81.49 84.15 94.06 70.99 76.37 79.34 95.58 71.54 76.00 79.79 97.45 55.44 61.55 67.35
A —0.74%  +1.19%  +13.69%  +6.4%  —1.95% +20.35%  +3222% +22.02% —4.24% —124%  +20.58%  +8.75% —0.64% —21.95% +20.83%  +0.9%
16 OxfordPets Caltech101 Food101 UCF101
Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
96.35 96.28 97.26 96.63 97.77 98.19 92.58 96.11 90.48 90.50 91.37 90.78 82.57 82.73 64.47 75.55
96.62 95.17 97.15 96.31 99.42 94.94 90.88 94.95 93.70 86.38 87.14 88.96 94.94 60.62 59.26 68.33
100.00 11.60 51.22 25.92 99.94 36.47 62.77 56.23 95.69 17.29 37.97 31.70 93.54 13.62 24.19 2391
99.92 77.61 92.05 88.87 99.92 94.07 92.43 95.37 97.49 69.86 83.51 82.09 95.79 62.74 66.23 72.33
100.00 88.50 96.60 94.78 100.00 96.53 94.29 96.88 97.45 89.15 90.77 92.32 95.63 69.61 74.88 78.58

0% —701% —0.57% —159% +0.06%  +1.67%  +2.01%  +158% —0.04%  +3.21%  +417%  +3.78% —0.17% +10.95% +13.06%  +8.64%
Average on 7 datasets SUN397 Flowers102 DTD
Method Local Base Novel Local Base Novel HM Local Base Novel HM Local Base Novel HM
CLIP|Radford et al ¥2021 76.36 76.81 81.21 69.41 69.38 71.32 67.89 69.23 76.88 7112 54.26 54.86 59.18 56.02
Prompt uo et al. 3b, 88.24 88.03 71.57 78.03 78.01 75.89 95.71 95.63 69.29 84.90 78.29 76.04 46.98 63.55
FedPGP|Cul et al. 93.41 83.36 70.89 93.95 54.50 64.73 94.84 92.49 71.07 84.68 85.42 71.47 5145 66.47
FedOTP, Lt 96.63 24.30 42.92 93.41 11.90 19.96 99.73 20.47 45.03 37.00 96.99 2333 42.48 39.11
pFedMoAP|Luo et al. 2025 97.04 71.31 71.73 95.16 45.80 57.06 99.75 66.88 61.99 72.98 94.44 58.11 52.10 63.84
pFedMMA (Ours, 96.66 79.29 81.61 92.71 70.90 78.94 95.52 7231 76.43 80.25 95.32 56.30 61.57 67.42
A —0.39% —4.88% +13.77%  +1.37% 57%  +30.09% +21.95% —4.24% —21.82%  +7.54%  —5.23% —1.72% —21.23% +18.18%  +1.43%
8 OxfordPets Caltech101 Food101 UCF101
Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM
CLIP|Radford et al. ¥2021 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
Prompt uo ef al. b, 95.53 95.43 97.32 96.09 97.31 98.26 94.43 96.64 90.44 90.46 90.67 90.52 82.39 82.37 72.36 78.75
FedPGP|Cui et al. 96.09 94.93 96.66 95.89 98.13 98.26 93.47 96.57 90.57 90.38 91.04 90.66 94.85 81.48 74.94 82.96
FedOTP, Lt 100.00 15.67 55.72 32.69 99.89 58.68 73.35 73.74 95.08 24.92 40.33 39.77 91.28 15.12 25.52 25.80
chdMoklec al.§2025 99.90 78.13 91.76 89.00 99.56 96.42 93.02 96.26 96.76 80.92 87.45 87.90 93.68 72.88 66.39 76.03
pFedMMA (Ours. 99.95 89.35 96.64 95.10 99.85 96.99 94.30 96.99 97.15 89.24 90.73 92.25 96.09 69.94 75.33 78.99
A —0.05% —5.88% —0.02% —0.82% —0.04% —1.29% +0.80%  +0.43%  +04%  —126% —0.34% +L.75% +1.31% —14.16%  +0.52%  —4.79%
Average on 7 datasets SUN397 Flowers102 DTD
Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM
CLIP|Radford et al. £2021 76.36 76.81 81.21 78.03 69.38 75.52 71.32 67.89 69.23 76.88 7112 54.26 54.86 59.18 56.02
Prompi o ct al. '3b 87.12 86.90 79.06 84.29 71.57 76.11 77.09 95.05 94.68 69.79 84.72 73.56 71.41 56.88 66.40
FedPGP|Cui et al. 90.23 85.18 78.15 83.73 71.91 69.78 74.66 94.48 9243 72.82 85.38 82.69 67.51 51.65 64.84
FedOTP|Li et al. 95.89 30.70 45.68 44.81 17.98 27.17 29.04 98.79 19.00 33.61 3243 95.28 25.12 41.23 40.24
pFedMokPl uo et al. 2025 95.89 7347 73.72 79.18 59.62 61.08 68.25 99.62 66.14 62.01 72,67 9241 51.78 49.90 59.79
pFedMMA (Ours’ 96.09 7197 81.62 84.20 70.79 76.12 78.51 95.35 71.89 76.06 79.90 93.75 56.46 61.91 67.37
A +0.21% 8.46%  +4.44%  +0.56% 5 1.56%  +9.09%  +5.16% 4.29%  -22.22%  +4.45% 6.42% 1.61% 16.37%  +19.86%  +3.9%
4 OxfordPets Caltech101 Food101 UCF101
Method Local Base Novel HM Local Base Novel HM Local Base Novel Local Base Novel HM
CLIP|Radford et al. ¥2021 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 68.00 68.15 75.18 70.29
Prompi uo et al. £l 95.84 95.96 97.76 96.51 97.17 98.00 93.34 96.13 89.93 89.95 90.53 80.67 80.71 75.99 79.06
FedPGP|Cui et al. 96.55 95.54 97.57 96.55 97.84 97.99 92.34 95.98 90.25 90.24 91.17 83.09 80.64 7173 78.17
FedOTP|Li et al. 99.95 41.83 70.13 62.28 99.73 65.97 71.59 78.79 94.49 29.38 46.57 91.20 15.60 2348 25.50
pFedMokPlﬁs al. 42025 99.75 85.69 94.08 92.81 99.08 95.95 92.73 95.85 95.49 81.68 86.57 92.40 73.42 69.67 77.33
pFedMMA (Ours’ 99.90 89.68 96.63 95.21 99.85 96.93 94.40 97.01 96.60 89.34 90.83 95.87 70.71 7537 79.28
A 0.05%  —6.13% 0.96% 1.39%  +0.12% 1.08%  +1.8% +1.07%  +1.16% 1% 0.37% +3.76% 1231%  +5.07%  +1.42%
Average on 7 datasets SUN397 Flowers102 DTD
Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
85.23 85.02 77.30 81.97 75.66 75.65 75.65 92.71 92.69 81.30 67.69 65.28 48.43 59.12
83.88 78.02 82.56 76.42 74.97 74.54 90.98 89.38 81.16 73.66 62.56 56.85 63.63
3334 42.49 46.54 87.53 26.06 36.95 91.77 18.57 40.34 91.71 26.94 37.97 40.34
74.45 73.66 79.16 85.87 70.76 74.13 98.81 65.00 72.84 82.64 53.28 46.23 57.14
78.13 71.37 83.68 89.23 71.48 77.58 94.42 72.67 79.16 89.72 56.48 61.92 66.67

—6.86% —0.83%  +1.36%  +1.94%  —4.66% +4.08%  —4.44%  —18.7%  +11.2%  —246% —217% —9.72%  +8.92% +4.78%
2 OxfordPets Caltech101 Food101 UCF101
Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
95.03 94.90 96.92 95.61 96.86 97.61 93.34 95.90 89.93 89.73 89.71 89.72 78.92 79.06 71.82 76.45
94.88 94.55 97.27 95.55 97.06 97.10 92.99 95.68 89.47 89.46 90.48 89.80 81.22 79.16 72.88 77.59
100.00 38.63 55.59 55.68 99.64 75.35 81.09 84.18 93.16 27.49 44.35 43.07 88.87 20.34 17.13 25.25
99.69 85.76 90.07 91.48 99.33 96.07 91.76 95.62 94.97 81.21 86.27 87.12 90.46 69.10 71.21 75.82
99.64 89.46 96.80 95.10 99.80 97.07 94.14 96.95 95.59 89.40 90.76 91.78 93.60 70.36 7512 78.52

—0.36% —538% —0.48% —047% +0.16%  —0.03%  +1.24% +1.33%  +0.65% —0.07%  +0.31% +22%  +34T%  —1112%  +3.07% +1.2%
Average on 7 datasets SUN397 Flowers102 DTD
Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
81.99 81.93 78.83 80.79 73.80 73.77 75.11 74.22 83.12 83.67 71.28 78.92 60.51 58.22 50.48 56.06
82.48 82.06 78.08 80.83 74.36 74.07 76.63 75.00 84.18 82.69 67.23 77.23 61.34 60.01 50.91 57.02
93.51 3272 47.55 47.24 86.48 27.51 34.68 39.09 95.88 22.83 4591 44.05 88.61 32.44 41.28 4522
87.65 75.82 76.35 79.30 81.90 68.22 68.14 72.21 82.70 70.37 76.55 75.69 75.56 55.00 50.71 58.67
92.40 77.66 81.70 83.50 84.42 70.92 76.38 78.50 92.76 70.37 76.55 79.23 86.67 56.31 61.30 65.77

—1.19% —5.36%  +3.64%  +3.3%  —2.38% —425% —033% +4.67% —3.25% —15.9%  +7.39%  +0.39% —219% —6.17% +2041% +15.35%
1 OxfordPets Caltech101 Food101 UCF101
Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
94.89 94.95 97.43 95.74 96.11 97.29 94.43 95.93 89.45 89.46 90.02 89.64 76.05 76.16 73.07 75.07
94.88 94.75 96.66 95.42 96.30 97.42 92.96 95.52 89.04 89.04 90.91 89.65 77.26 76.47 74.23 75.96
99.95 23.38 65.26 44.05 99.15 60.79 73.46 74.72 95.88 40.98 50.67 54.98 88.61 21.10 21.59 28.57
98.36 88.83 94.92 93.87 98.40 95.63 92.29 95.37 92.62 83.06 87.32 87.49 90.46 69.62 64.49 71.82
98.83 89.64 97.02 94.99 99.36 97.04 94.36 96.88 93.74 89.44 90.83 91.31 91.03 69.91 7547 77.84
—112% —539% —042% —0.78% +0.21% —0.39% —0.07%  +0.99% —2.23% —0.02% —0.09% +1.G8% +0.63%  —8.58%  +1.67%  +2.47%
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Table 9: Top-1 accuracy (%) of different methods across 7 datasets using ViT-B/32 as the backbone.

OxfordPets SUN397 DTD
Shots  Method Local  Base Novel HM Local Base Novel HM Local Base Novel HM
CLIPRadford et al. 86.40 86.87 96.09 89.57 69.81 69.78 72.99 7083 5227 53.13 54.47 5327
Prompt al 9378 9383 9653 9470 7538 7535 68.04 7275 7722 7685 57.00 68.96

FedPGP|Cui et 95.01  93.01 9431 94.10 9533 3876 4721 5220 8849 6199 41.74 58.38
FedOTP|Li et al 99.90 10.19 3280 21.64 90.06 9.03 579 10.18 9770 10.68 18.48 18.99
pFedMoA . 100.00 3045 63.43 51.19 9496 2498 2671 34.09  96.66 16.09 24.70 26.55
pFedMMA (Ours 94.05 87.92 9574 9245 92.09 70.65 73.77 71.78 7231 5462 5393 59.19
A —2.38% +6.91% —14.17%
16 Caltech101 Food 101 UCFI01
Local ~ Base Novel HM Local Base Novel Local Base Novel HM
92,63 94.00 94.00 93.54 8433 8427 8543 65.16 6536 71.28 67.15
9585 9729 93.01 95.35 86.29 8631 86.03 79.95 79.89 60.30 72.10
98.28 93.63 88.50 93.30 89.65 83.55 8585 94.64 5380 55.73 63.70
99.38 1146 23.17 2136 9221 9.63 14.03 8836 884  6.15 10.45
99.92  51.79 65.33 6723  96.41 31.56 5351 9528 2408 3124 35.70
9856 9474 9394 9570 9531 8459 85.59 87.80 6691 71.53 74.41
+0.37% +3.2%
OxfordPets SUN397 DTD
Method Local Base Novel HM Local Base Novel Local Base Novel HM
Radford et al. 86.40 86.87 96.09 8957 69.81 69.78 72.99 5227 53.13 5447 5327
mﬂ 9334  93.57 96.03 9430 7593 7591 73.61 75.05 7234 49.64 63.43
94.87  91.69 9294 93.15 93.15 5578 57.24 78.66 7276 45.61 62.01
99.85 11.08 37.61 23.65 87.18 878 4.64 95.84 10.11 19.37 18.64
100.00 33.19  63.15 53.61 94.79 26.54 2341 95.58 19.78 32.68 3274
9380 88.65 9586 92.67 89.77 70.19 73.41 68.01 55.68 5434 58.75
—1.73% —7.38%
8 Caltech101 Food101 UCFI01
Local ~ Base Novel HM Local Base Novel HM Local Base Novel HM
9263 94.00 9400 9354 8433 8427 8543 84.67 6516 6536 71.28 67.15
96.89 97.93 9225 95.63  86.16 86.18 87.63 86.65  80.58 8025 61.93 73.14
96.46  97.09 9132 9489 86.28 86.27 87.96 8683 8502 7841 66.56 75.87
99.03  11.99 2797 2321 89.94 9.44  18.90 17.65 8282 831 7.84 11.54
99.72  80.74 80.58 86.15 96.21 54.37 68.67 69.21 9498 40.58 37.06 48.27
97.87 94.88 93.64 95.43 95.17 8473 8572 8830 83.06 66.59 71.07 72.94
—0.21% +1.69% —3.86%
OxfordPets SUN397 DTD
Local ~ Base Novel HM Local Base Novel HM Local Base Novel HM
86.40 86.87 96.09 89.57 69.81 69.78 72.99 7083 5227 53.13 5447 5327
9373 9399 96.87 9484 7553 7550 7224 7439 7116 6887 46.38 59.84
9393 9323 9126 9279 8331 7090 66.64 7297 7470 6833 44.37 59.34
99.80 1021 31.68 21.50 81.32 838 793 11.64 9572 10.85 2277 20.47
100.00 33.13 6534 5407 9334 3849 37.64 4742 9477 1643 31.68 29.13
93.64 88.23 96.33 92.61 83.44 7092 73.66 75.64  67.64 5493 55.06 58.65
+1.68% —1.99%
4 Caltech101 Food 101 UCFI01
Local ~ Base Novel HM Local Base Novel HM Local Base Novel HM
92,63  94.00 94.00 93.54 8433 8427 8543 84.67 65.16 6536 71.28 67.15
9544 9690 93.12 95.13 85.59 85.61 8755 86.24  78.00 77.82 64.20 72.73
95.50  96.48 90.39 94.05 86.11 86.09 88.01 86.73 81.62 76.40 66.31 74.22
99.08 18.93 3924 3394 89.84 939 1842 1745 8332 834 7.10 11.00
99.77 81.21 8239 87.02 9575 5296 6593 6743 9552 4263 43.05 52.49
9732 9480 93.84 9530 9433 84.15 8533 8771 8453 68.04 71.68 74.11
+0.18% +1.13% —0.15%
OxfordPets SUN397 DTD
Local Base Novel HM Local Base Novel HM Local Base Novel HM
8640 86.87 96.09 8957 69.81 69.78 7299 7083 5227 53.13 54.47 5327
90.62 91.44 96.87 9290  74.08 7406 7381 73.98 6120 60.88 47.95 55.95
92.05 9241 91.80 92.09 7478 7436 73.70 74.28 67.13 6493 5477 61.78
99.43  13.86 4824 29.14  71.89 8.61 8.60 12.18 9227 1031 2219 19.62
100.00 28.97 6742 5055 89.80 5474 5758 64.14 9225 21.92 3249 34.39
93.18 88.30 95.73 9230 7927 7152 7410 7483 6218 5567 54.84 57.38
—0.65% +0.74% —7.12%
2 Caltech101 Food101 UCFI01

Local  Base Novel HM Local Base Novel HM Local Base Novel HM

9263 9400 9400 9354 8433 8427 8543 8467 6516 6536 71.28 67.15
9527 9645 91.59 9439 8509 8510 8697 8571 7588 7585 64.31 71.58
94.62 9553 9092 9365 8595 8594 87.81 86.56  79.23 7544 63.50 72.07
97.95 1481 3270 2770  88.58 10.78 18.58 19.00 82.00 936 839 12.59
99.62  81.01 80.41 86.16 9501 52.55 68.68  68.00 93.63 43.63 4339 52.96
97.89 9470 9373 9541 92.87 8498 8587 8777 8102 67.09 7178 72.85

+1.08% +1.4% +1.08%

OxfordPets SUN397 DTD

Local Base Novel HM Local Base Novel HM Local Base Novel HM
8640 86.87 96.09 89.57 69.81 69.78 7299 7083 5227 53.13 54.47 53.27
91.70 9229 97.04  93.62 72.86 72.82 73.56 73.08 5671 5729 44.93 5231
86.86 88.71 8798  87.84 7454 7434 8766 7838 60.76 5793 55.83 58.10
99.39  11.81 3494 2432 7075 7.69 675 1026 89.47 13.66 20.19 22.40
100.00 2632 5230 4470 8599 5237 5412 6097 89.77 2396 31.14 35.30
91.55 88.09 96.39 91.88 7586 71.02 73.87 73.53 59.72 5531 54.89 56.56
—1.86% —6.19% —2.65%
Caltech101 Food101 UCF101
Method Local ~ Base Novel HM Local Base Novel HM Local Base Novel HM

92.63 9400 94.00 9354 8433 8427 8543 8467 6516 6536 71.28 67.15
9435 9626 9258 9437 8568 8571 8791 8642  73.17 73.16 69.17 71.78
93.66 9534 91.74 9356 8550 8552 87.66 8621 7454 7424 70.64 73.10
97.88 1477 3007 2698 8538 11.43 2285 2098 78.14 786 9.14 12.03
99.14 7797 7775 8386  93.62 56.89 6839 69.96 90.57 35.69 40.75 47.17
94.77 94.18 9383 9426 91.67 8478 8584 8733 7928 6730 71.29 72.29
—0.12% +1.05% -1.11%
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D.2 MODEL EVALUATION ON FEATURE & LABEL SHIFTS

Table 10: Average test accuracy (%) of different methods on DomainNet and Office-Caltech10 with
lable shift and domain shift using Dirichlet partitioning.

Dataset Office DomainNet

#5 0.1 0.3 0.5 1 5 10 0.1 0.3 0.5 1 5 10
One domain for one client

CLIP Radford et al.|(2021) 824 7778 9.60 898 898 9.56 10.27 10.15 10.11 9.79 1037 10.52

PromptFL|Guo et al.|(2023b) 14.53 15.39 15.61 1432 1557 1436 12,52 11.77 11.81 1221 11.66 11.77

FedPGP|Cui et al.|(2024) 14.18 1688 14.17 12.39 16.13 13.07 1455 13.55 14.15 1429 14.18 1434

pFedMoAP|Luo et al.|(2025) 12.65 16.14 1227 14.19 1470 17.03 14.14 13.89 1430 14.14 1438 13.55

pFedMMA (Ours) 21.08 2238 19.06 2043 1842 18.73 36.18 37.06 4255 4331 46.13 34.69
One domain for two clients

CLIP Radford et al.|(2021) 883 910 9.11 9.67 6.61 1251 1059 10.29 10.11 9.81 9.24 10.00

PromptFL|Guo et al.|(2023b)  15.99 1529 1634 1485 16.14 1443 11.83 1258 11.24 11.27 11.57 11.55

FedPGP|Cui et al.|(2024) 22.55 1929 20.71 2196 19.63 15.19 26.08 2630 2490 21.22 16.14 15.07

pFedMoAP|Luo et al.|(2025) 22.73 23.06 19.55 21.67 16.57 19.02 2499 2479 24.65 2159 1643 1524

pFedMMA (Ours) 21.66 22.07 2133 1847 2096 17.73 4945 37.61 47.17 4895 4690 48.54

Table 11: Test accuracy (%) of different methods on DomainNet and Office-Caltech10 with lable
shift and domain shift using Dirichlet partitioning.

Method Office-Caltech10 DomainNet
Amazon Caltech DSLR Webcam Avg. Clipart Infograph Painting Quickdraw Real Sketch Avg.
B=05
One domain for one client
CLIP 10.42 5.33 12.50 10.17 9.60 8.37 10.50 12.12 10.40 8.79 1047 10.11
PromptFL 8.85 23.73 11.11 18.75 15.61 12.16 12.33 11.79 9.40 1325 1191 11.81
FedPGP 11.98 9.78 28.13 6.78 14.17  14.07 19.18 14.05 10.30 1339 1390 14.15
pFedMoAP 5.21 9.33 12.50 22.03 12.27  13.69 19.18 15.35 11.50 1290 13.18 14.30
pFedMMA (Ours) 10.71 17.81 17.46 30.26 19.06  50.38 48.82 0.00 32.56 3731 86.21 4255
One domain for two clients
CLIP 11.78 6.21 9.92 8.51 9.11 8.99 10.69 11.20 10.85 9.53 9.39  10.11
PromptFL 10.35 15.83  32.06 7.13 1634 11.02 1.65 11.20 8.95 13.89 2075 11.24
FedPGP 20.34 19.12 2085 2252 2071 2477 31.87 23.87 22.87 2240 23.64 2490
pFedMoAP 20.01 24.45 18.02 15.73 19.55 2477 30.93 26.09 20.46 2259 23.10 24.65
pFedMMA (Ours) 9.26 29.15 3326 13.64 2133 50.38 23.81 60.27 61.44 4035 46.79 47.17
B=03
One domain for one client
CLIP 8.33 12.89 3.13 6.78 7.78  10.08 9.44 10.82 10.30 10.68  9.57 10.15
PromptFL 11.86 10.94  25.00 13.78 1539  10.27 10.93 11.47 10.70 1191 1431 11.60
FedPGP 6.77 11.11 34.37 15.25 16.88  13.50 19.33 14.22 10.10 1339 14.08 14.10
pFedMoAP 13.02 14.67  25.00 11.86 16.14  13.31 19.33 14.86 9.60 11.99 1426 13.89
pFedMMA (Ours) 14.29 15.07  28.57 31.58 2238 49.12 53.21 58.44 12.38 19.83  29.37  37.06
One domain for two clients
CLIP 11.78 6.21 9.92 8.51 9.10 11.82 9.23 9.45 10.96 1052 9.79  10.29
PromptFL 10.50 1536  25.95 345 1529 11.55 12.80 13.40 8.67 20.16 526 1258
FedPGP 21.02 21.38 12.70 22.07 1929  25.61 33.52 26.51 23.62 23.62 24.89 2630
pFedMoAP 24.01 19.13 2540 23.68 23.06 2542 30.15 2291 20.83 2485 2459 2479
pFedMMA (Ours)  23.73 25.88  23.67 15.00 22.07 26.61 44.42 16.94 46.09 5411 3746 37.61
B=01
One domain for one client
CLIP 10.94 8.44 0.00 13.56 824 1122 9.28 10.18 11.00 9.12  10.83 10.27
PromptFL 10.42 18.75 12.00 16.95 1453 1553 14.70 11.22 9.00 10.60  14.08 12.52
FedPGP 12.50 13.33 15.63 15.25 14.18  15.59 19.18 14.38 12.00 13.15  13.00 14.55
pFedMoAP 10.42 12.44 12.50 15.25 12.65 1521 19.33 14.22 10.90 12.57 12.64 14.14
pFedMMA (Ours) 8.93 1233 30.16 32.80 21.08 44.19 28.35 0.00 24.03 3433 86.21 36.18
One domain for two clients
CLIP 4.13 7.57 10.83 12.79 8.83 9.46 10.80 10.48 11.30 11.51 999  10.59
PromptFL 7.13 2375  21.34 11.94 1599  9.63 13.07 0.50 24.98 1289  9.89 11.83
FedPGP 18.83 21.37  25.83 24.19 2255  24.69 32.29 28.89 19.70 2483  26.09 26.08
pFedMoAP 19.41 20.96  26.67 2390 2273 25.60 29.66 24.85 19.70 22.84 2732 2499
pFedMMA (Ours) 13.10 30.75  29.36 14.09  21.66 50.38 38.10 60.27 61.44 4035 46.14 4945
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D.3 LEARNING CURVES

To further examine the convergence behavior of pFedMMA, we plot the local accuracy over communi-
cation rounds across six representative datasets with five different shot settings in Fig. [3] All methods
are evaluated under the same federated setup with 2 local epochs and 50 communication rounds. As
shown, pFedMMA consistently achieves high accuracy and exhibits stable, fast convergence across
datasets. Notably, even while delivering superior generalization on both base and novel classes (Table
B), pFedMMA converges faster in local performance than pFedMoAP throughout training. These
results demonstrate that pFedMMA effectively balances personalization with generalization, ensuring

both rapid and reliable convergence.
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ucf101

Average

b

1-shot

—— FedOTP

2-shot

—— FedPGP

—— PromptFL

4-shot

—— pFedMoAP

—— pFedMMA (ours)

8-shot

16-shot

]

LN AL AR

B\ R

I Y
LA L

1-shot

2-shot

4-shot

8-shot

16-shot

]

b

]

1

o 20 30
Round

0 30
Round

0 30
Round

o 20 30 4 s
Round

o 2 30 40
Round

Figure 5: Accuracy learning curves of pFedMMA and baselines over 10 clients.
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D.4 ABLATION STUDY

Table 12: Ablation study on the dimension of the shared adapter for o = 0.001.

DTD Caltech101 UCF OxfordPets Average
Shots  Dimensions oo™ Base  New HM  Local Base New HM  Local Base New HM Local Base New HM Local Base New HM
8 6602 58.63 6225 G215 9849 9493 9297 9541 8381 6356 6827 7090 9373 6272 8412 7792 8551 6996 7690 76.59
16 6250 5662 6197 6024 9930 9519 9166 9528 8411 6320 6690 7032 9558 8097 9384 89.63 8537 7399 7859 78.87
Ishot 32 6523 5729 6223 6141 9804 9602 9321 9572 8729 6211 6920 7142 9571 8453 9206 9052 8657 7499 7918 79.77
64 65.14 5466 6347 6073 9833 9403 9281 9500 8591 6091 G67.09 6983 9396 8122 9174 8861 8584 7271 7878 78.54
128 6329 5861 6316 6161 9921 9500 9198 9531 8667 6535 71.02 7331 9511 8819 9383 9228 8607 7679 80.00 80.63
8 6972 5609 5751 6053 9963 9389 9106 9473 8611 6240 6667 7036 9341 8715 90.74 9036 8722 7488 7650 79.00
16 7023 5366 5795 5984 99.15 9393 9260 9514 8556 70.85 73.69 7620 9755 7482 9194 8697 8812 7332 7905 79.54
2shots 32 7079 4758 6127 5829 9970 9485 9105 9507 9122 67.09 7048 7489 9459 8541 9254 90.67 $9.08 7373 78.84 79.73
64 7505 5225 6104 6142 9946 9525 9277 9575 8775 6518 70.62 7335 98.66 77.67 9207 8857 9023 7259 7913 79.77
128 7356 5374 5938 6117 9958 9291 9271 9496 8893 6401 67.83 7210 9783 8261 9242 9051 $998 7332 78.09 79.69
8 7394 5764 6156 6367 9917 9487 9167 9514 9012 6071 6154 6847 9535 8724 9362 9193 8965 7512 77.10 79.80
16 7356 5501 4970 5781 9980 93.67 9085 9463 9099 6086 6539 7023 9681 8657 9405 9227 9029 7403 7500 78.74
dshots 32 7583 5436 6140 6267 9964 9389 9031 9446 9269 6670 71.86 7557 9699 8415 9452 9154 9129 7478 7952 81.06
64 7713 5786 6109 6435 9981 9347 9274 9524 9097 5974 6591 6992 9927 8102 9355 90.62 9180 7302 7832 80.03
128 8111 5260 57.36 6151 9971 8866 9058 9274 9262 6032 68.02 7130 9826 S8I.I1 9341 9033 9293 7067 7734 7897
8 7690 5653 5499 6138 9961 9535 9154 9539 8971 5778 6332 6780 9574 8174 9305 8975 9049 7285 7573 7858
16 7810 60.06 5989 6500 9974 9115 9134 9391 9026 6018 6565 6988 9959 7980 93.80 9027 9192 7280 77.67 79.77
§shots 32 8028 5495 5646 6203 9962 9258 9108 9428 9277 6162 6823 7200 99.64 7271 9549 8756 93.08 7047 77.82 7897
64 8532 5500 5723 6332 9991 9329 9281 9523 9144 5480 6674 6792 9975 7789 9290 8921 9411 7025 7742 78.92
128 8662 5497 5877 6417 10000 9211 9134 9433 9144 5983 68.00 70.83 9953 8198 9476 9147 0440 7222 7822 8020
8 8352 5022 5261 5895 10000 9099 9190 9413 9050 5548 6747 6834 9758 7665 9127 8759 9290 6834 7581 7725
16 8394 5071 5594 6059 10000 8771 9102 9263 9030 S419 6514 6685 9975 8108 9388 9088 9350 6842 7650 77.74
16 shots 32 8519 4784 5647 5958 9995 8651 8976 9173 9322 5767 6555 6925 9985 7631 9329 8866 9455 6708 7627 7731
64 9079 4531 5697 5924 10000 8425 9088 9126 9246 5904 68.03 70.67 9985 8444 9566 9285 9578 6826 77.89 7851
128 89.86 47.16 5560 59.62 9994 9225 9263 9481 9250 57.66 6702 69.65 9974 8198 9480 9154 9551 6976 77.51 7891

Table 13: Ablation study on the dimension of the shared adapter for o = 0.005.

DTD Caltech101 UCF OxfordPets Average

Shots  Dimensions o)™ Base  New HM  Local Base New HM  Local Base New HM Local Base New HM  Local Base New HM
16 6903 5649 6121 6182 9848 97.19 9384 9646 8467 (974 7452 7582 9347 9030 97.19 9357 8641 7843 8169 8192

. 2 7102 5603 6095 6207 9804 97.00 9377 9624 8332 6998 7500 7571 9564 8978 9687 9399 §7.00 7820 8165 $2.00
64 6685 5559 5984 6041 97.89 9697 9412 9630 8487 7070 7464 7629 9391 9029 9694 93.63 8588 7839 8139 8166

128 6898 5631 6039 6146 9890 9695 9410 9661 8501 7120 7578 7691 9376 9000 97.22 9357 8666 78.61 8187 8214

16 7565 5659 6087 6340 9959 97.09 9393 9681 8546 6985 7400 7589 9636 90.65 9701 9459 8926 7854 8145 8267

) 32 7130 5610 6171 6243 9908 9724 9362 9659 8$8.99 7082 7537 77.67 9669 9038 9687 9455 8902 7863 8189 8281
64 7352 5624 6070 6269 9892 9708 9376 9654 89.64 7071 7458 7751 9622 9014 9662 9423 8957 7854 8142 8274

128 7644 5617 6053 6328 9956 9702 9364 9668 9022 70.85 7459 7771 9480 9028 96.63 9383 9026 78.58 8135 82.88

16 8125 5738 6120 6511 9983 97.10 9418 9698 9062 7086 7420 77.67 9621 9047 9677 9440 9198 7895 8159 8354

. 32 7769 5780 6181 6472 9974 9720 9388 9688 9276 7151 7502 7875 9551 90.07 9663 9398 9142 7914 8183 8358
64 7616 5709 6150 6396 9981 9708 9394 9688 9121 7159 7487 7835 9832 90.51 9677 9508 9138 79.07 8177 8357

128 8125 5753 6134 6523 9948 9705 9370 9669 9205 7132 7489 7846 9699 90.18 9659 9443 9244 79.02 8163 8372

16 8426 5656 6095 6528 9957 9705 9393 9679 8985 7020 7449 7732 9701 8979 9673 9442 9270 7840 8153 8345

N 32 8162 5691 6178 6520 9923 97.06 9662 9273 7039 7485 7823 9847 9048 9679 9512 9301 7871 8178 8379
64 8162 5683 6099 6487 9980 97.14 9685 9104 71.04 7479 7806 9884 8994 9678 9503 9283 78.74 8159 8370

128 8463 5701 6091 6554 9983 9704 9379 9682 92.66 7038 7492 7823 9699 9020 96.67 9451 9353 78.66 8157 8378

16 8824 5674 6128 6626 9995 9698 9409 9695 9263 7030 7474 78.12 9953 9044 9672 9541 9509 7861 8171 8418

6 2 8644 5675 6132 6594 9984 9720 9388 9691 9293 6992 7474 7804 9963 90.36 9694 9548 9471 7856 8172 84.09
64 8403 5625 6056 6495 9995 9687 9360 9674 9328 70.16 7445 78.11 99.10 90.06 96.67 9512 9409 7834 8132 8373

128 8801 5729 6114 6641 10000 9693 9396 9690 9250 7002 74.59 77.92 9948 9094 9666 9556 9500 78.80 8159 8420

Table 14: Ablation study on adapter sharing strategies with scaling factor « = 0.001, adapter
dimension=32, and starting layer ¢ = 5).

Local Performance
DTD Caltech101 Flowers102 OxfordPets

Shots Method

No Local Param 57.41 96.04 72.27 91.75
1 shot Local Shared Adapter  58.15 96.49 74.27 92.13
pFedMMA 64.81 98.76 80.46 95.76
No Local Param 60.74 96.67 74.22 90.86
2 shots  Local Shared Adapter 60.74 98.33 78.24 91.31
pFedMMA 71.25 99.41 86.74 94.60
No Local Param 60.97 96.63 73.78 91.39
4 shots  Local Shared Adapter 61.72 97.85 77.30 92.82
pFedMMA 75.97 99.66 86.51 97.10
No Local Param 62.13 96.97 74.90 92.32
8 shots  Local Shared Adapter  62.73 98.12 76.20 94.53
pFedMMA 80.97 99.60 86.66 99.64
No Local Param 64.21 97.05 73.92 93.22
16 shots  Local Shared Adapter  71.11 99.89 79.17 92.95
pFedMMA 88.89 99.95 91.32 99.85
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Table 15: Ablation study on scaling factor a.

DTD Caltech101 UCF OxfordPets Average on 4 datasets
Shots  Scaling Factor /0™ "Base  Novel HM  Local Base Novel HM  Local Base Novel HM  Local Base Novel HM Local Base Novel HM
0.0001 6606 674 710 986 9852 351 733 695 8508 312 253 412 9719 973 836 1289 8671 578 633 846
0.0005 6458 4396 5418 5292 9876 89.05 8749 9151 8738 3493 4615 4859 9667 2781 5154 4566 8685 4894 5984 5967
1 0.001 6523 5729 6223 6141 9804 9602 9321 9572 8729 6211 6920 7142 9571 8453 9206 9052 8657 7499 79.8 79.77
0.005 7102 5603 60.95 6207 9804 9700 9377 9624 8332 6998 7500 7571 9564 $978 9687 9399 8701 7820 81.65 82.00
0.01 6551 5556 59.64 3996 9798 9697 9408 9631 8355 69.10 7484 7537 9568 8965 9692 9397 8568 77.82 8137 8140
0.0001 7630 497 582 777 9954 505 285 537 8942 292 264 410 9509 841 1462 1517 9009 534 648 8.10
0.0005 7130 3405 39.61 4371 99.64 8346 8457 8865 9040 3651 4409 4907 9508 2492 7676 47.12 8911 4474 6126 57.14
2 0001 7079 4758 6127 5829 9970 9485 9105 9507 9122 67.09 7048 7489 9450 8541 9254 90.67 89.08 7373 7884 7973
0.005 7130 5610 6171 6243 99.08 9724 93.62 9659 8899 7082 7537 77.67 9669 9038 9687 0455 $9.02 78.63 8189 8281
0.01 7556 5630 6082 6324 9899 O97.13 9400 96.66 8704 69.60 7493 7653 97.34 §993 9688 0450 8973 7824 81.66 8276
0.0001 8157 530 604 819 9900 337 332 493 9261 210 211 312 9781 828 1013 1306 9275 476 540 733
0.0005 7880 3876 4438 49.16 9907 7386 7326 8047 9354 2858 3536 4056 9543 5455 7823 7213 9171 4894 5781 60.58
4 000l 7583 5436 6140 6267 99.64 9389 9031 9446 9269 6670 7186 7557 9699 8415 9452 0154 9129 7478 80.30 81.06
0.005 7769 5780 6181 6472 9974 9720 9388 9688 9276 7151 7502 7875 9551 9007 9663 9398 9142 79.14 81.83 83.58
0.01 80.69 5661 6081 6451 9972 097.09 9398 9687 $9.89 6951 7475 7114 9743 9026 9692 9475 9193 7837 81.62 8332
0.0001 7903 819 758 1125 9951 415 221 426 9247 269 294 415 9763 552 643 865 0216 514 479 708
0.0005 86.94 3350 4284 4637 9968 6737 7670 79.13 9260 3895 4735 5209 9890 4892 7595 6862 9453 47.19 60.71 61.55
8 000l 8028 5495 5646 6203 9962 9258 O1.08 9428 9277 6162 6823 7200 99.64 7271 9549 8756 9308 7047 7782 78.97
0.005 8162 5691 6178 6520 9923 9706 9372 9662 9273 7039 7485 7823 9847 9048 9679 9512 930l 7871 8178 83.79
0.01 8588 5631 6065 6537 9980 O7.17 9396 9692 9609 6947 7455 7850 9588 8979 9699 041l 9441 7819 8154 83.73
0.0001 9079 623 809 10.16 9955 280 485 523 0173 228 218 330 9905 590 799 984 9528 430 578 7.3
0.0005 8736 3447 3874 4527 10000 $9.99 67.04 7214 9304 3473 5000 5038 99.85 3844 69.02 5938 9506 4191 5620 56.79
16 0001 85.10 4784 5647 5958 9995 8651 8976 9173 9322 57.67 6555 6925 9985 7631 9329 8866 9455 67.08 7627 77.31
0.005 8644 5675 6132 6594 9984 0720 0388 9691 9293 6992 7474 7804 99.63 9036 9694 9548 9471 78.56 81.72 84.09
0.01 8949 5628 60.57 6600 9989 0708 0401 9693 9563 6893 7479 7826 97.30 89.68 9699 9452 9558 77.99 8159 83.93

Table 16: Ablation study on scaling factor starting layer ¢ with scaling factor o = 0.005 and adapter
dimension=32.

DTD Caltech101 UCF OxfordPets Average
Shots Layers  Tocal Base Novel HM  Local Base Novel HM  Local Base Novel HM  Local Base Novel HM  Local Base Novel HM
12 9079 5435 60.10 6514 9934 9702 9417 9680 9104 69.03 7531 7742 9960 8954 9674 9510 9519 7749 8158 8362

10—12 86.67 5631 6130 6577 99.36 97.04 9436 9688 91.03 6991 7547 77.84 9883 89.64 97.02 9499 9397 7823 8204 83.87
1 812 7838 5620 61.06 6393 99.34 9689 94.17 96.75 87.60 70.09 7445 7670 9840 8991 96.94 9494 9093 7827 81.66 83.08
6—12 6843 5571 60.59 61.14 99.13 97.13 94.19 9677 81.83 70.09 7527 7543 93.03 89.83 9699 93.19 8561 78.19 81.76 81.63
5—12 7102 5603 6095 62.07 98.04 97.00 9377 9624 8487 7070 74.64 7629 9564 89.78 9687 9399 8739 7838 81.56 82.15

12 89.44 5340 5935 64.16 99.60 97.08 93.84 96.78 94.37 6834 7526 77.89 99.95 8874 9646 9481 9584 76.89 8123 8341
1012 8972 5648 6192 66.67 99.80 97.07 94.14 9695 93.60 7036 75.12 7852 99.64 89.46 96.80 95.10 9569 7834 82.00 84.31
2 8—12 8690 57.12 61.76 6636 99.69 97.19 9400 9690 9334 70.66 7488 7849 99.80 89.80 96.57 9520 9493 78.69 8180 84.24

6—12 7625 5634 61.61 6370 99.72 97.08 93.84 96.82 9040 69.94 7423 7726 9502 89.98 9649 9375 9035 7834 8154 82.88
5—12 7352 5610 6171 6298 99.08 97.24 93.62 9659 89.64 70.71 7458 77.51 96.69 90.38 96.87 9455 89.73 78.61 81.69 8291

12 9245 53.69 5977 6497 99.73 96.73 9425 96.85 9434 6821 7486 77.68 100.00 88.52 9631 9470 96.63 7679 81.30 83.55
1012 9375 5646 6191 67.37 99.85 9693 9440 97.01 9587 70.71 7537 7928 99.90 89.68 96.63 9521 97.34 7845 8208 84.72
4 812 9282 56.67 61.67 6721 100.00 97.08 94.17 97.02 9593 70.69 7498 79.14 99.79 89.81 96.92 9532 97.14 7856 8194 84.67

6—12 7829 5742 6199 6477 99.86 97.15 9381 96.88 9220 71.09 7456 7828 99.70 89.93 97.06 9538 9251 7890 81.86 83.83
5—12 7769 5780 61.81 6472 99.74 97.08 9394 96.86 9276 7151 7502 7875 9832 9051 9677 9508 92.13 79.23 81.89 83.85

12 94.40 5330 5998 65.18 99.75 9647 94.17 9674 9475 6825 75.11 77.88 100.00 88.16 9583 9440 9723 7655 81.27 83.55
1012 9532 5630 61.57 6742 99.85 9699 9430 9699 96.09 69.94 7533 7899 99.95 8935 96.64 9510 97.80 78.15 8196 84.62
8 8—12 9500 56.90 6146 67.61 9998 9697 94.07 9695 9576 70.51 7496 79.02 100.00 89.46 96.99 9527 97.69 7846 8187 84.71

6—12 8505 5751 6138 66.02 99.86 97.37 9395 97.00 90.75 70.48 7529 77.94 99.79 9023 97.05 9552 9386 7890 8192 84.12
5—12 8162 5691 61.78 6520 99.80 97.17 9396 9692 9273 7039 7485 7823 9847 9048 9679 95.12 93.16 7874 81.85 83.87

12 9491 5390 60.51 6577 99.90 9594 9412 9659 9545 6823 7505 78.01 100.00 88.14 9628 9454 9756 76.55 8149 83.73
1012 9745 5544 6155 67.35 100.00 96.53 9429 96.88 9563 69.61 7488 7858 100.00 88.50 96.60 9478 98.27 77.52 81.83 84.40
16 812 9630 56.66 6121 67.61 100.00 9672 94.19 9691 9586 70.14 75.11 7894 100.00 89.18 96.77 95.10 98.04 78.18 81.82 84.64
6—12 8870 5689 6129 6642 99.89 97.11 94.09 9697 9290 69.42 7458 77.77 99.85 89.89 9698 9539 9534 7833 81.74 84.14
5—12 8949 5628 60.57 66.00 99.89 97.08 9401 9693 9293 69.92 7474 78.04 99.63 9036 9694 9548 9549 7841 81.57 84.11
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Table 17: Comparison of FL aggregation variants (vision-only, text-only, and both-sides) for the
shared adapter.

Average on 4 datasets SUN397 Flowers102 DTD Food101
Local Base Novel HM Base Novel HM Local Base Novel HM  Local Novel HM  Local Base Novel HM
Vision Only 95.81 7119 76.07 79.31 70.73  76.08 79.12 95.79 69.62 76.31 79.14 97.31 61.10  67.04 96.13 89.17 90.80 91.94
Text Only 95.99 7119 13 79.38 70.80 76.10 79.20 96.40 9.53  76.30 79.24  97.08 61.32  67.12 96.27 89.17 90.80 91.98
Both Vision & Text .99 71.24 76.10  79.39 70.85 76.11 79.23 96.03 6 K 79.17  97.27 61.24 6713 96.44 89.17 90.80 92.03
pFedMMA (Ours) ~ 96.14 71.78 76.17  79.70 70.99 76.37 79.34 95.58 76.00 79.79 97.45 61.55 67.35 97.45 89.15 90.77 92.32

Shots  Layers

Table 18: Top-1 accuracy (%) of different methods across 7 datasets in the 16-shot setting using
Adam optimizer.

Average on 7 datasets SUN397 Flowers102 DTD
Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

7636 76.81 8121 78.03 69.41 69.38 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
86.80 86.87 79.36 84.19 77.44 T77.42 76.12 89.69 89.74 73.62 83.62 76.16 75.81 54.11 66.96
97.10 63.53 67.19 73.31 95.57 41.24 54.68  99.57 47.37 57.42 61.77 9546 48.77 44.69 56.23
97.96 61.35 67.59 72.63 96.17 33.01 43.99  99.86 36.36 51.83 5281 96.48 50.90 46.06 58.00
96.29 77.90 81.65 84.58 93.78 T1.17 79.40 95.79 70.93 76.85 79.89 92.82 5691 61.50 67.26
OxfordPets Caltech101 Food101 UCF101
Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM
89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
96.19 96.01 96.64 96.28 97.25 98.13 92.90 96.04 90.73 90.76 91.15 90.88 80.12 80.20 73.50 77.81
98.78 86.27 9447 9288 99.83 87.82 88.09 91.59 9596 78.62 7867 83.68 9456 54.64 57.36 64.78
99.90 7813 91.76 89.00 99.94 94.62 9247 9558 97.60 71.43 84.37 83.11 9576 64.98 70.26 74.88
99.08 89.84 96.74 95.05 100.0 97.10 94.18 97.04 97.24 89.42 90.75 9235 9531 69.90 75.02 78.68
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E TRAINING COST ANALYSIS

E.1 COMPARISON

Below, we briefly describe each method and provide parametric expressions for the number of
trainable parameters and per-round communication, together with instantiations for ViT-B/16; see
Table [[9 for notation.

PromptFL. Each client fine-tunes only a continuous text prompt (the backbone is frozen), and
the server aggregates the prompt via FedAvg and broadcasts the updated prompt. (1) Per-client
counts: The number of trainable parameters is Ld;. In each round, the client uploads Ld; parameters
and downloads Ld,; parameters. (2) ViT-B/16 example. With d; = 512 and L = 16, one prompt
has Ld; = 16 x 512 = 8,192 parameters, so each round the client uploads and downloads 8,192
parameters.

FedOTP. Each client learns a global prompt (to be aggregated) and a local prompt (kept private);
training couples them via optimal transport, and only the global prompt is communicated. (1) Per-
client counts: The number of trainable parameters is 2Ld;. In each round, the client uploads Ld;
parameters and downloads Ld, parameters. (2) ViT-B/16 example. With d; = 512 and L = 16, the
client trains 2 x 16 x 512 = 16,384 parameters in total, and in each round uploads and downloads
8,192 parameters.

FedPGP. Clients share a global prompt and add a low-rank personalized adapter U;V; locally; only
the global prompt is aggregated. (1) Per-client counts: The number of trainable parameters is
Ld; + b (d; + L). In each round, the client uploads Ld,; parameters and downloads Ld; parameters.
(2) ViT-B/16 example. With d; = 512, L = 16, and b = 8, the low-rank component contributes
8(512 + 16) = 4,224 parameters, giving 8,192 + 4,224 = 12,416 trainable parameters overall; in
each round the client uploads and downloads 8,192 parameters.

pFedMoAP. Each client learns a local prompt and downloads K non-local prompt experts (without
aggregation). A local multi-head attention gating network mixes local and non-local experts; the
gating network is trained on-device and not communicated. Features are pooled to width d, before
the MHA. (1) Per-client counts: The number of trainable parameters is Ld; + (4d3 + 4d,). In each
round, the client uploads Ld; parameters and downloads K Ld; parameters. (2) ViT-B/16 example.
With d; = 512, L = 16, dy = 128, and K = 9, the gating network has 4 - 1282 4 4 - 128 = 66,048
parameters, so the client trains 8,192 4 66,048 = 74,240 parameters; in each round the client uploads
8,192 parameters and downloads 73,728 parameters.

pFedMMA. Lightweight multimodal adapters are inserted in both vision and text blocks; in each
instrumented layer the adapter comprises a down-projection (d — r), a shared r X r projection
(aggregated globally), and an up-projection (r — d). The shared projection is communicated each
round, while the up/down projections are updated locally. (1) Per-client counts: The number of
trainable parameters per layer is 2r(d, + d;) + r?, so across m layers it is m [2r(d, + d;) + r?].
In each round, the client uploads mr? parameters and downloads mr? parameters. (2) ViT-B/16
example. With d,, = 768, d; = 512, r = 32, and layers 10-12 (m = 3), the per-layer trainable count
is 2 32 (768 + 512) + 322 = 82,944, for a total of 3 x 82,944 = 248 832 trainable parameters; in
each round the client uploads and downloads 3 x 322 = 3,072 parameters.

Table 19: Notation used in this part. Examples assume CLIP ViT-B/16.

Symbol Description Example (ViT-B/16)

dy CLIP text-encoder width 512

d, CLIP vision hidden size 768

L Number of prompt tokens e.g., 16

b Low-rank bottleneck (FedPGP) eg.,8

dg Internal width of the pFedMoAP gating MHA e.g., 128

K Number of non-local prompt experts downloaded per round eg.,9

(pFedMoAP)
T Adapter inner (shared) width (pFedMMA) e.g., 32
m Number of instrumented transformer layers (pFedMMA) eg.,3
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Table 20: Comparison of computation, communication, and accuracy for five personalized federated
learning methods under CLIP ViT-B/16. Columns report the number of local trainable parameters,
per-round communicated parameters (upload/down), end-to-end training time, peak GPU memory,
average local accuracy, and average harmonic-mean (HM) accuracy; notation follows Table

Methods # Local Trainable Param.  # Per-round Com. Param. (up/down) Train Time (s) GPU Mem. (MiB)  Avg. Local Acc.  Avg. HM Acc.
PromptFL |Guo et al.|(2023b} 8,192 8,192/8,192 1,645 5,116 88.93 83.09
FedPGP|Cui et al. |(2024] 12,416 8,192/8,192 3,980 13,374 95.38 79.09
FedOTP|Li et al. 2024 16,384 8,192/8,192 1,328 3,014 97.34 31.08
pFedMoAP|Luo et al. |(2025] 74,240 8,192/73,728 902 3.108 97.89 71.05
pFedMMA (Ours) 248,832 3,072/3,072 2,175 4,634 97.17 84.15

Table [20| summarizes the computational and communication costs together with accuracy. PromptFL
has the smallest footprint (8,192 trainable; 8,192/8,192 per round) but—most importantly—shows
a marked drop in local accuracy (88.93%), indicating weaker personalization under heterogeneity.
FedPGP increases local trainables to 12,416 without extra communication but incurs the highest
memory (13,374 MiB) and slower training, and its HM accuracy (79.09%) lags its strong local
accuracy (95.38%). FedOTP doubles prompt capacity (16,384 trainables; same 8,192/8,192 com-
munication) and attains very high local accuracy (97.34%) but suffers extremely low HM accuracy
(31.08%), suggesting poor cross-client generalization. pFedMoAP adds a local gating module,
raising local trainables (74,240) and the per-round download (73,728) while achieving the shortest
training time (902 s) and strong local accuracy (97.89%). pFedMMA (ours) communicates only
the shared adapter blocks (3,072/3,072) while keeping 248,832 parameters local, yielding the best
HM accuracy (84.15%) and competitive local accuracy (97.17%), thus offering the most favorable
accuracy—communication trade-off.

E.2 ON THE NECESSITY OF COMMUNICATING THE SHARED ADAPTER

We ablate adapter sharing to test whether exchanging a small parameter set is sufficient for federated
coordination (Table[2T). In pFedMMA, only the low-rank shared r x r adapter is globally synchro-
nized each round, while the up/down projections remain local. This design communicates just ms?
parameters per round, yet it is exactly these parameters that carry the essential cross-client signal:
they define a common low-dimensional subspace that aligns clients’ representations, while the much
larger local adapters capture client-specific variation. The comparison with the Local Only Param
variant (which updates all adapter parameters purely on-device without FL) demonstrates that global
synchronization of the shared subspace is crucial, even when the communicated set is small.

Table 21: Ablation study on adapter sharing strategies with scaling factor « = 0.005, adapter
dimension=32, and starting layer ¢ = 10).

Method DTD Caltechl01 Flowers102 OxfordPets Food UCF
Base Performance

Local Only Param ~ 31.37 80.83 49.69 57.68 85.04 62.11

pFedMMA 55.44 96.53 71.54 88.50 89.15 69.61
New Performance

Local Only Param  54.94 91.72 68.30 85.76 66.13 4547

pFedMMA 61.55 94.29 76.00 96.60 90.77 74.88
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