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ABSTRACT

Vision-Language Models (VLMs) like CLIP have demonstrated remarkable gener-
alization in zero- and few-shot settings, but adapting them efficiently to decentral-
ized, heterogeneous data remains a challenge. While prompt tuning has emerged
as a popular parameter-efficient approach in personalized federated learning, exist-
ing methods often sacrifice generalization in favor of personalization, struggling
particularly on unseen classes or domains. In this work, we propose pFedMMA,
a personalized federated learning framework that leverages multi-modal adapters
for vision-language tasks. Each adapter contains modality-specific up- and down-
projection layers alongside a globally shared projection that aligns cross-modal
features. Our optimization strategy allows clients to locally adapt to personalized
data distributions while collaboratively training the shared projection to improve
global generalization. This design is also communication-efficient, as only the
shared component is exchanged during communication rounds. Through extensive
experiments across eleven datasets, including domain- and label-shift scenarios, we
show that pFedMMA achieves state-of-the-art trade-offs between personalization
and generalization, outperforming recent federated prompt tuning methods.

1 INTRODUCTION

Vision-Language Models (VLMs) like CLIP Radford et al. (2021) have revolutionized multi-modal
learning by jointly embedding visual and textual data through massive contrastive pre-training Jia
et al. (2021); Li et al. (2022); Yao et al.. This paradigm empowers models to generalize effectively
in zero-shot and few-shot settings Zhang et al. (2022); Zhu et al. (2023); Ghiasvand et al. (2025);
Aghdam & Hu (2025). Among them, larger transformer-based variants Vaswani (2017) (e.g., CLIP
ViT-L/14) consistently outperform smaller counterparts such as ViT-B/16, with margins exceeding
6% on benchmarks like ImageNet Deng et al. (2009). However, the computational demands of fine-
tuning such large-scale models with billions of parameters pose significant challenges, particularly
for domain-specific tasks Oskouie et al. (2025). To mitigate this, Parameter-Efficient Fine-Tuning
(PEFT) techniques have emerged, especially in NLP. These methods, including adapters Chen et al.
(2022); Karimi Mahabadi et al. (2021); Rebuffi et al. (2017) and prompt tuning Jia et al. (2022); Li &
Liang (2021), introduce a lightweight set of trainable parameters or tokens, allowing the backbone
model to remain frozen.

While highly effective in centralized settings, these techniques fall short in scenarios involving
decentralized and privacy-sensitive data, such as healthcare, legal, or industrial domains Manoel
et al. (2023); Shoham & Rappoport (2023); Mahjourian & Nguyen (2025). Federated Learning (FL)
offers a promising alternative by enabling collaborative training without raw data sharing. In FL,
clients update their local models and transmit only intermediate model updates such as parameters or
gradients, which are aggregated into a global model by a central server McMahan et al. (2017).

In real-world scenarios, client data often exhibits variations in domain discrepancies (feature shift) Li
et al. or imbalanced class distributions (label shift) Li et al. (2021a). Simply applying standard
aggregation strategies, such as FedAvg McMahan et al. (2017), over prompts Guo et al. (2023b)
or other fine-tuning methods, such as LoRA, often leads to suboptimal performance due to data
heterogeneity Zhang et al. (2023); Borazjani et al. (2025). As a result, Personalized Federated
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Learning (PFL), particularly with prompt tuning, has gained increasing attention. pFedPrompt Guo
et al. (2023a) introduces personalization by coupling a global text prompt with local visual attention
modules to tailor predictions to each client’s data. FedOTP Li et al. (2024) uses Optimal Transport to
align local and global representations under label shift. FedPGP Cui et al. (2024) applies prompt-wise
contrastive learning to enhance inter-client generalization. Recently, pFedMoAP Luo et al. (2025)
proposes a Mixture-of-Experts framework, where prompts from other clients serve as non-local
experts, and each client learns an attention-based gating mechanism for selective adaptation. While
these methods achieve impressive personalization performance, they often struggle to generalize to
unseen classes or domains, limiting their applicability in out-of-distribution scenarios. For example,
as shown in Fig. 1, FedOTP achieves poor harmonic mean accuracy, even though it has been shown
to have strong personalization performance.
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Figure 1: Few-shot performance across datasets using the ViT-B/16 model. Each radar chart
illustrates accuracy (%) for a fixed shot count, with spokes representing the evaluation datasets.
Curves correspond to different methods, and values increase outward (20–100%). Accuracy is
reported as the harmonic mean (HM) over local, base, and novel classes for each dataset and shot.

Beyond prompt tuning, adapters offer another PEFT strategy by introducing small trainable modules
into frozen pre-trained models Cai et al. (2020); Chen et al. (2022; b); Gao et al. (2024); Hu et al.
(2021); Zhang et al. (2022). Unlike prompts, adapters operate independently of model architecture and
can be easily inserted into various backbones, such as ResNets He et al. (2016), ViTs Dosovitskiy et al.,
and Swin Transformers Liu et al. (2021). However, most adapter methods like AdaptFormer Chen
et al. (2022) and LoRA Hu et al. (2021) are uni-modal and do not account for the cross-modal
dependencies inherent in VLMs like CLIP Radford et al. (2021). Multi-modal adapters Yang et al.
(2024) address this by integrating both visual and textual signals via a shared projection layer that
promotes feature alignment across modalities while preserving modality-specific knowledge. Despite
their demonstrated advantages over prompt-based approaches Yang et al. (2024); Guo & Gu (2025),
their integration with PFL remains largely unexplored.

In this work, we introduce a Personalized Federated Multi-Modal Adapter (pFedMMA) architecture
that adopt a multi-modal adapter design with three components: a modality-specific down-projection,
a shared projection, and a modality-specific up-projection. During training, all components are
updated locally by each client, but only the shared projection is globally aggregated. This asymmetric
training scheme enables effective personalization through client-specific projections, while promoting
generalization via a shared modality-alignment space. Moreover, since only the shared adapter is
communicated during rounds, the method remains communication-efficient. As confirmed by our
experiments, this design achieves the strongest trade-off between personalization and generalization
under both feature and label shifts. As shown in Fig. 1, on average, our proposed pFedMMA delivers
the best harmonic mean performance compared to state-of-the-art federated prompt tuning methods.

Before delving into details, we summarize our contributions: (1) We observe that while most
state-of-the-art prompt tuning methods achieve strong personalization performance, they often
generalize poorly to unseen classes. To address this, we introduce a multi-modal adapter framework
that explicitly aims to balance personalization and generalization in federated vision-language
learning. (2) We propose pFedMMA, an adapter-based approach for PFL of VLMs. Our architecture
incorporates modality-specific up- and down-projection layers and a shared cross-modal projection.
All components are updated locally, but only the shared projection is aggregated globally, enabling
effective asymmetric optimization. (3) We conduct extensive experiments on widely used benchmarks
to evaluate pFedMMA’s performance on base-to-novel generalization across both category- and
domain-level tasks under heterogeneous data distributions. Results demonstrate the superiority of our
approach in harmonizing generalization and personalization.
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2 PRELIMINARIES

2.1 PERSONALIZED FEDERATED LEARNING

Traditional federated learning frameworks are designed around the principle of global consensus,
where the goal is to collaboratively train a single model that generalizes well across a federation of
clients. The canonical approach, FedAvg McMahan et al. (2017), formalizes this as the minimization
of a weighted average of local objectives: minθ F (θ) =

∑N
i=1 piFi(θ), where θ denotes the global

model, Fi(·) represents the local empirical loss of client i, and pi =
ni

n scales the contribution of
each client by its dataset size ni, with n =

∑
i ni. In this setup, each client’s local loss is computed

as the average over its data:
∑ni

k=1 Li(θ | (xk, yk)), where Li is the local loss function and (xk, yk)
is the k-th data point on client i.

In contrast, personalized federated learning (PFL) challenges the one-size-fits-all paradigm by
allowing each client to maintain its own model θi. This formulation acknowledges data heterogeneity
and aims to tailor learning to each client’s unique distribution. The objective for PFL becomes:

min
θ1,...,θN

F (θ1, . . . ,θN ) =

N∑
i=1

piFi(θi), (1)

offering a flexible alternative that prioritizes personalized performance over strict global consensus.

2.2 VISION-LANGUAGE CLASSIFICATION WITH FEW-SHOT ADAPTATION

In vision-language classification, predictions emerge from the powerful alignment between visual
and textual modalities established during pretraining. Given a label set with K classes, the model
begins by crafting natural language prompts Liu et al. (2023)—semantic descriptions like “a photo
of a [class name]”—for each class ck. These textual cues are passed through a frozen text encoder
θt, producing normalized text embeddings z

(T )
k = θt(ck) ∈ Rd. In parallel, each input image

xi is processed by a visual encoder θv, generating a corresponding normalized image embedding
z
(I)
i = θv(xi) ∈ Rd. Classification then hinges on comparing the cosine similarity between these

multimodal representations. The result is a set of logits transformed into class probabilities via
a temperature-scaled softmax: pi,k = exp

(
cos(z

(I)
i , z

(T )
k )/γ

)
/
∑K

j=1 exp
(
cos(z

(I)
i , z

(T )
j )/γ

)
,

where γ is the temperature parameter controlling distribution sharpness. The predicted label for
image xi corresponds to the class with the highest posterior probability: k̂ = argmaxk pi,k.

This zero-shot classification pipeline mirrors the contrastive training strategy employed in founda-
tional vision-language models like CLIP Radford et al. (2021), enabling impressive generalization to
novel tasks without requiring any target-domain fine-tuning.

To further tailor the model to downstream tasks, the few-shot setting introduces a small set of labeled
examples per class, typically fewer than 16. With M support samples per class and ground-truth
labels encoded as one-hot vectors yik (where yik = 1 if xi belongs to class k, and 0 otherwise),
classification proceeds identically to the zero-shot case. However, the model is now adapted by
minimizing the cross-entropy loss over the labeled support set: LCE = − 1

M

∑M
i=1

∑K
k=1 yik ln pi,k.

This fine-tuning step enables the model to better capture domain-specific semantics while maintaining
the efficiency and generalization capabilities of the pretrained architecture. Adaptation can be
achieved through various strategies. One approach is to directly optimize the input prompts {ck}Kk=1,
following the principles of prompt tuning Chen et al. (a). Alternatively, lightweight task-specific
modules such as adapter layers Gao et al. (2024) or low-rank parameterizations like LoRA Zanella &
Ben Ayed (2024) can be fine-tuned, while keeping the backbone encoders frozen.

2.3 FINE-TUNING VIA PARALLEL ADAPTERS

In contrast to the serial adapter architecture introduced by Houlsby et al. (2019), where adapter
modules are inserted sequentially after each sub-layer (e.g., attention or feed-forward), parallel
adapters He et al. adopt an alternative integration strategy. Rather than placing the adapter transfor-
mation after the main layer, the parallel formulation processes the input through the adapter module
concurrently with the frozen backbone transformation and combines their outputs additively.
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Let x ∈ Rd be the input to a transformer sub-layer, and let f(x) denote the frozen pre-trained
transformation. A parallel adapter layer computes the output as: Output(x) = f(x) + αA(x),
where α is a scaling factor and the adapter module A(x) uses the same bottleneck structure as in
the serial configuration: A(x) = U(δ(D(x))), where U is an up-projection affine map, D is a
down-projection affine map, and δ is a non-linear activation function such as ReLU. If the input x has
dimensionality d, then D ∈ Rr×d and U ∈ Rd×r, where r ≪ d. This bottleneck structure introduces
significantly fewer trainable parameters compared to the full model. As with serial adapters, only
the adapter parameters are trained during fine-tuning, and the base model remains frozen. Parallel
adapters preserve model expressiveness while enabling efficient adaptation with minimal architectural
modifications.

3 PROPOSED METHOD

In this section, we introduce pFedMMA, a novel framework that leverages multi-modal adapters to
efficiently and effectively adapt large pre-trained VLMs under federated learning settings. Our design
consists of two central components: (i) a multi-modal adapter architecture that bridges and enriches
representations across visual and textual modalities, and (ii) a hybrid personalization strategy that
promotes both generalization and personalization by decoupling local and shared adapter components.

3.1 MULTI-MODAL ADAPTER ARCHITECTURE

We build on the adapter-based design introduced in Yang et al. (2024) to incorporate a lightweight
and efficient tuning mechanism for vision-language models. This architecture has proven effective in
few-shot generalization settings, where pre-trained CLIP models are fine-tuned on a limited number
of base classes and tested on base and novel, unseen categories.

The motivation for this design stems from two empirical findings: (i) higher layers of both image
and text encoders in CLIP contain more discriminative and dataset-specific features, while lower
layers preserve general, transferable knowledge; and (ii) larger modality gaps between text and image
encoders are observed in the lower layers, making cross-modal alignment particularly challenging in
the early stages of the network Yang et al. (2024).

Based on these insights, the multi-modal adapter is inserted into the upper transformer blocks of both
encoders, starting from block ℓ, while the lower layers remain frozen. This helps preserve general
representations while enabling task-specific adaptation at the top layers.

Each adapter consists of: (i) A down-projection layer that reduces the input dimension, (ii) A shared
projection layer that facilitates interaction between the modalities, (iii) An up-projection layer that
restores the original dimension.

This three-part structure allows the adapter to first transform features into a low-dimensional space,
fuse them through a shared module, and then project them back. Formally, for the visual adapter
(indexed by (I)) and the textual adapter (indexed by (T )) at the j-th block:

A(o)
j (z

(o)
j ) = W

(o)
ju · δ(Wjs · δ(W (o)

jd · z(o)
j )), o ∈ {I, T}, j ∈ {ℓ, · · · , L}, (2)

where z(I)
j and z

(T )
j denote the input hidden states at the j-th transformer layer for the vision and text

encoders, W (I)
jd and W

(T )
jd are the down-projection matrices, Wjs is the shared projection matrix

used across both modalities, W (I)
ju and W

(T )
ju are the up-projection matrices, and δ(·) denotes the

non-linear activation function (e.g., GELU), applied element-wise.

This shared projection structure encourages information exchange across modalities, while still
maintaining modality-specific processing through separate up/down projections.

In contrast to methods that inject prompts or adapters across all layers Chen et al. (2022); Houlsby
et al. (2019); Hu et al. (2021) or some lower layers Khattak et al. (2023a;b); Zhou et al. (2022b;a), this
selective, top-layer insertion strategy reduces the number of trainable parameters while maintaining
cross-modal adaptability.
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Figure 2: An overview of the pFedMMA framework. Each client independently updates all trainable
components of the multi-modal adapters including client-specific up/down projections and the
shared projection over local epochs. After local training, only the shared adapter is uploaded and
aggregated by the server. This design promotes personalization through local adapters while enabling
generalization via a globally shared component.

3.2 GENERALIZATION AND PERSONALIZATION VIA PFEDMMA

To effectively balance generalization and personalization in federated vision-language learning, we
propose a hybrid training strategy within the multi-modal adapter framework. Each adapter consists
of three projection components: a modality-specific down-projection, a shared projection, and a
modality-specific up-projection. In our personalization scheme, clients update the down- and up-
projection components locally, while the shared projection matrix is synchronized globally via server
aggregation.

This selective update mechanism provides several key benefits: (i) Local personalization: By
allowing clients to optimize their own up- and down-projection matrices, each client can adapt the
representation space to their unique local data distribution. This is particularly effective under label
and feature heterogeneity. (ii) Global generalization: The shared projection matrix is collaboratively
trained across clients and is responsible for aligning the modalities in a consistent global space.
This facilitates transferability and enables the model to generalize well across diverse domains
and tasks. (iii) Communication efficiency: Since the shared projection layer is low-dimensional
compared to the full model or full adapter stack, transmitting only the shared component during
communication rounds results in significantly reduced communication cost. Extensive communication
and computational cost analysis are provided in Appendix E.

Specifically, for a client i in communication round t, all trainable parameters

W ∈
{
W

(I)
jd,i,W

(I)
ju,i,W

(T )
jd,i ,W

(T )
ju,i,Wjs,i

}
, j ∈ {ℓ, · · · , L}, i ∈ {1, · · · , N}, (3)

are updated for E local epochs using gradient descent: W t,e
i = W t,e−1

i − η∇Lce(W
t,e−1
i ), where

η is the learning rate, Lce is the cross-entropy loss, and e ∈ {1, · · · , E}.

After local updates, only the shared projection parameters W t,E
js,i are uploaded to the server. These

are aggregated across all participating clients to obtain the updated global shared adapter: W t+1
js =∑N

i=1 piW
t,E
js,i , where pi = ni

n scales the contribution of each client by its dataset size ni, with
n =

∑
i ni and N is the number of participating clients. In contrast, the up- and down-projection

parameters remain local and are not shared or averaged.

This asymmetric update design enables pFedMMA to effectively capture both shared and client-
specific information, resulting in an improved balance between personalization and generalization, as
demonstrated in our experiments on tasks involving domain and label shifts. The overall training and
communication flow of pFedMMA is illustrated in Fig 2.
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4 EMPIRICAL RESULTS

In this section, we conduct extensive experiments to evaluate the generalization and personalization
capability of pFedMMA in heterogeneous data distribution scenarios.

4.1 EXPERIMENTAL SETUP

Datasets and Data Heterogeneity. To evaluate the effectiveness of pFedMMA, we conduct ex-
periments across eleven public benchmark datasets that cover various types of data heterogeneity,
including label shift and feature shift. Following prior work such as Guo et al. (2023b), we use
seven visual classification datasets: SUN397 Xiao et al. (2010), OxfordPets Parkhi et al. (2012),
Flowers102 Nilsback & Zisserman (2008), DTD Cimpoi et al. (2014), Caltech101 Fei-Fei et al.
(2004), UCF101 Soomro et al. (2012), and Food101 Bossard et al. (2014). We refer to these as the
CLIP datasets. To simulate severe label heterogeneity, we apply a pathological non-IID setting in
which each client is assigned a distinct, non-overlapping set of classes. Clients are trained on their
local classes and evaluated on their own classes, on base classes held by other clients, and on novel
classes that are unseen during the training process.

To evaluate performance under feature shift, we utilize two widely adopted multi-domain datasets:
DomainNet Peng et al. (2019), which consists of six distinct domains, and Office-Caltech10 Gong
et al. (2012), which includes four domains. Following prior studies, each client is assigned data from
a single domain, ensuring that every domain is represented by a group of clients in the federation.
To introduce additional heterogeneity and simulate realistic federated learning scenarios, we further
partition the data within each domain using a symmetric Dirichlet distribution with concentration
parameter β. This setup introduces both feature shift across domains and label shift within domains.
All domains participate in both training and evaluation phases, allowing us to assess cross-domain
generalization and personalization performance in more realistic federated conditions.

For personalization evaluation, we include CIFAR-10 Krizhevsky et al. (2010) and CIFAR-
100 Krizhevsky et al. (2009). These datasets are partitioned among clients using a Dirichlet distribu-
tion, which creates varying degrees of label skew across clients. Additionally, we apply the same
pathological class split as used in the CLIP datasets to test robustness under extreme heterogeneity.
Further details on the dataset configurations and partitioning strategies can be found in Appendix C.1.

Baselines. We evaluate pFedMMA across all experimental settings, including generalization, person-
alization, and domain generalization, using a consistent set of five baselines. Zero-shot CLIP Radford
et al. (2021) serves as a non-adaptive reference model that uses fixed hand-crafted prompt templates
such as “a photo of a [class]” without any task-specific learning. PromptFL Guo et al. (2023b)
represents a standard federated prompt learning approach in which a shared prompt is collaboratively
learned across clients using FedAvg. FedPGP Cui et al. (2024) introduces prompt-wise contrastive
learning to encourage consistency between global and local prompts. FedOTP Li et al. (2024) applies
unbalanced Optimal Transport to align global knowledge with client-specific prompt representations.
Finally, pFedMoAP Luo et al. (2025) leverages a Mixture-of-Experts design that enables each client
to access both local and non-local prompt experts through a lightweight attention-based gating
mechanism. In addition to these prompt-based methods, we also consider adapter and LoRA-style
PEFT baselines by implementing federated CLIP-Adapter Gao et al. (2024) and federated CLIP-
LoRA Zanella & Ben Ayed (2024), where only the adapter or low-rank layers are updated and
aggregated across clients. These baselines cover a diverse range of federated adaptation strategies,
providing a strong benchmark for assessing the performance of pFedMMA across different types of
heterogeneity.

Implimentation Details. All methods, including pFedMMA and all baselines, are implemented on
top of a frozen CLIP model. We use two backbone architectures, ViT-B16 and ViT-B32 Dosovitskiy
et al., and default to ViT-B16 unless otherwise specified. For the CLIP datasets, each is split into
10 clients with non-overlapping classes, using 100 percent participation, 2 local epochs, and 50
communication rounds. For the CIFAR-10 and CIFAR-100 datasets, we simulate a large-scale
federated environment with 100 clients, using a varying Dirichlet distribution and a 10 percent client
participation rate per communication round. Training runs for 50 rounds with 1 local epoch per round.
In the case of DomainNet and Office-Caltech10, each domain of these two datasets is partitioned
to 1/2 clients, resulting in N = 6/12 for DomainNet and N = 4/8 for Office-Caltech10. We use
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Table 1: Top-1 accuracy (%) of different methods across 7 datasets in the 16-shot setting.

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 88.93 88.95 75.36 83.09 77.73 77.71 72.96 76.07 97.37 97.06 63.62 82.66 80.23 80.21 45.29 63.81
FedCLIP-Adapter Gao et al. (2024) 78.97 79.22 82.09 80.04 72.82 72.78 77.22 74.22 71.46 73.22 77.38 73.94 56.99 55.90 59.78 57.51
FedCLIP-LoRA Zanella & Ben Ayed (2024) 81.69 90.16 79.76 83.35 74.67 80.46 72.28 75.65 76.77 97.72 68.16 79.09 68.16 81.94 59.42 68.64
FedPGP Cui et al. (2024) 95.38 76.49 71.68 79.09 94.29 54.88 57.76 65.02 99.67 72.44 58.65 73.37 89.03 71.03 50.94 66.75
FedOTP Li et al. (2024) 97.34 18.00 36.69 31.08 94.50 11.51 14.86 18.21 99.65 14.62 30.49 26.97 98.08 20.79 35.36 34.65
pFedMoAP Luo et al. (2025) 97.89 61.82 66.60 71.05 95.93 31.18 35.40 42.41 99.81 43.70 48.37 55.99 96.43 53.60 48.21 60.28
pFedMMA (Ours) 97.17 77.40 81.49 84.15 94.06 70.99 76.37 79.34 95.58 71.54 76.00 79.79 97.45 55.44 61.55 67.35
∆ −0.74% +1.19% +13.69% +6.4% −1.95% +29.35% +32.22% +22.02% −4.24% −1.24% +29.58% +8.75% −0.64% −21.95% +20.83% +0.9%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 96.35 96.28 97.26 96.63 97.77 98.19 92.58 96.11 90.48 90.50 91.37 90.78 82.57 82.73 64.47 75.55
FedCLIP-Adapter Gao et al. (2024) 93.01 92.93 97.09 94.30 96.28 97.35 94.10 95.89 90.07 90.10 91.19 90.45 72.13 72.23 77.88 73.98
FedCLIP-LoRA Zanella & Ben Ayed (2024) 90.71 95.64 97.71 94.59 96.76 97.93 94.43 96.35 89.18 90.32 91.49 90.32 75.58 87.13 74.80 78.79
FedPGP Cui et al. (2024) 96.62 95.17 97.15 96.31 99.42 94.94 90.88 94.95 93.70 86.38 87.14 88.96 94.94 60.62 59.26 68.33
FedOTP Li et al. (2024) 100.00 11.60 51.22 25.92 99.94 36.47 62.77 56.23 95.69 17.29 37.97 31.70 93.54 13.62 24.19 23.91
pFedMoAP Luo et al. (2025) 99.92 77.61 92.05 88.87 99.92 94.07 92.43 95.37 97.49 69.86 83.51 82.09 95.79 62.74 66.23 72.33
pFedMMA (Ours) 100.00 88.50 96.60 94.78 100.00 96.53 94.29 96.88 97.45 89.15 90.77 92.32 95.63 69.61 74.88 78.58
∆ 0% −7.01% −0.57% −1.59% +0.06% +1.67% +2.01% +1.58% −0.04% +3.21% +4.17% +3.78% −0.17% +10.95% +13.06% +8.64%

70

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

Average (HM)

50

60

70

80
SUN397 (HM)

56

58

60

62

64

66

DTD (HM)

95.0

95.5

96.0

96.5

97.0
Caltech101 (HM)

82

84

86

88

90

92

Food101 (HM)

70.0

72.5

75.0

77.5

80.0

82.5

UCF101 (HM)

1 2 4 8 16
Shots

80

85

90

95

Ac
cu

ra
cy

 (%
)

Average (Local)

1 2 4 8 16
Shots

75

80

85

90

95

SUN397 (Local)

1 2 4 8 16
Shots

60

70

80

90

DTD (Local)

1 2 4 8 16
Shots

96

97

98

99

100
Caltech101 (Local)

1 2 4 8 16
Shots

90

92

94

96

Food101 (Local)

1 2 4 8 16
Shots

80

85

90

95

UCF101 (Local)

pFedMMA (Ours) FedOTP FedPGP PromptFL pFedMoAP

Figure 3: Local and harmonic mean (HM) accuracies of various methods across different shot settings.

SGD with a learning rate of 0.001, and batch sizes of 32 for training and 100 for testing. Further
implementation details are provided in the Appendix, where we also report additional results using
the Adam optimizer (Table 18), which exhibit similar trends to those obtained with SGD.

4.2 PERFORMANCE EVALUATION

Base-to-Novel Class Generalization.

We evaluate the performance of pFedMMA in terms of its ability to generalize from locally trained
classes to both base and novel classes. Following prior work, we report top-1 accuracy on each client’s
local classes, on the base classes seen by other clients, and on novel classes that are entirely unseen
during training. To capture overall effectiveness, we use the harmonic mean (HM) of these three
metrics, HM = 3/(Acc−1

local +Acc−1
base +Acc−1

novel), which penalizes methods that over-optimize one
component at the expense of the others and thus better reflects the balance between personalization
(local) and generalization (base and novel) than a simple arithmetic mean; this type of harmonic-mean
score is standard in generalized zero-shot learning and base-to-novel CLIP adaptation, and has also
been adopted in recent PFL work to jointly summarize local, base, and novel accuracies Verma
et al. (2020); Du et al. (2025); Cui et al. (2024). As summarized in Table 1 for the 16-shot setting,
pFedMMA consistently achieves strong performance across all evaluation categories and delivers the
best overall HM averaged across seven datasets, outperforming all baselines.

Zero-shot CLIP, PromptFL, federated CLIP-Adapter, and CLIP-LoRA suffer from poor local accuracy,
tending to favor generalization at the expense of personalization. We also report ∆, which denotes
the relative improvement of pFedMMA compared with the strongest non-baseline methods (FedPGP,
FedOTP, and pFedMoAP). While FedOTP sometimes achieves high local accuracy, its extremely low
base and novel class scores indicate poor generalization. pFedMoAP performs well on local classes
due to its MoE-based prompt sharing, but it lags behind pFedMMA in base and novel accuracy.
By contrast, pFedMMA achieves the highest base and novel accuracy, surpassing FedPGP and
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Table 2: Accuracy comparison (%) on the Dirichlet Non-IID setting in CIFAR-10 and CIFAR-100.

Dataset CIFAR-100 CIFAR-10

#β 0.1 0.3 0.5 1 5 10 0.1 0.3 0.5 1 5 10

CLIP Radford et al. (2021) 64.93 64.90 65.00 64.95 64.94 64.91 87.98 87.95 87.93 87.98 88.02 87.98
PromptFL Guo et al. (2023b) 75.34 73.48 72.85 72.83 72.21 72.41 92.80 92.95 94.34 93.89 93.31 93.02
FedPGP Cui et al. (2024) 74.72 72.89 74.85 74.18 74.07 73.90 91.69 93.19 93.21 92.98 93.04 92.91
FedOTP Li et al. (2024) 77.53 73.83 72.21 70.99 69.40 68.97 97.23 95.82 94.64 93.10 91.87 91.67
pFedMoAP Luo et al. (2025) 80.29 75.70 75.68 74.53 73.00 72.61 97.13 95.92 94.86 93.97 92.67 92.65
pFedMMA (Ours) 81.82 78.33 76.92 75.70 74.03 73.65 97.37 96.92 95.82 94.82 93.52 93.07
∆ +1.91% +3.47% +1.64% +1.57% −0.05% −0.34% +0.14% +1.04% +1.01% +0.9% +0.23% +0.05%

Table 3: Test accuracy (%) of different methods on DomainNet and Office-Caltech10 with lable shift
and domain shift using Dirichlet partitioning (β = 0.5).

DomainNet Office-Caltech10
Method Clipart Infograph Painting Quickdraw Real Sketch Avg. Amazon Caltech DSLR Webcam Avg.

CLIP Radford et al. (2021) 8.99 10.69 11.20 10.85 9.53 9.39 10.11 11.78 6.21 9.92 8.51 9.11
PromptFL Guo et al. (2023b) 11.02 1.65 11.20 8.95 13.89 20.75 11.24 10.35 15.83 32.06 7.13 16.34
FedPGP Cui et al. (2024) 24.77 31.87 23.87 22.87 22.40 23.64 24.90 20.34 19.12 20.85 22.52 20.71
pFedMoAP Luo et al. (2025) 24.77 30.93 26.09 20.46 22.59 23.10 24.65 20.01 24.45 18.02 15.73 19.55
pFedMMA (Ours) 50.38 23.81 60.27 61.44 40.35 46.79 47.17 9.26 29.15 33.26 13.64 21.33

demonstrating excellent generalization, while remaining competitive on local classes—only 0.74%
lower than pFedMoAP.

Fig. 3 illustrates local and HM accuracy across varying numbers of shots {1, 2, 4, 8, 16}, showing the
same performance pattern. Detailed results for all datasets are provided in Table 8 in the Appendix.

Evaluation on Personalization. We further evaluate the personalization capability of pFedMMA on
CIFAR-10 and CIFAR-100 under a challenging Dirichlet partitioning scheme, varying the concen-
tration parameter β across 100 clients with 10% client participation per communication round. The
results, summarized in Table 2, show that pFedMMA consistently achieves the highest accuracy on
both datasets, demonstrating its strong adaptability to highly non-IID data distributions.

Model Evaluation on Feature & Label Shifts. To evaluate the robustness of pFedMMA in realistic
federated learning scenarios, we examine its performance under both label shift and feature shift using
the DomainNet and Office-Caltech10 datasets. Following the standard protocol, each domain is split
into two clients via a Dirichlet distribution with β = 0.5, yielding 12 clients for DomainNet and 8
clients for Office-Caltech10. The results in Table 3 show that under these challenging heterogeneous
conditions, traditional methods such as CLIP and PromptFL struggle to generalize effectively.
In contrast, pFedMMA consistently achieves the highest average accuracy across both datasets,
highlighting its strong robustness to cross-domain shifts. Additional experiments with one or two
clients per domain and varying β are provided in Tables 10 and 11 in the Appendix.

4.3 ABLATION STUDY

Impact of model. To further examine the performance of pFedMMA under a different backbone, we
report results with ViT-B/32 on the average of six datasets across five shot settings, comparing against
three advanced baselines (Table 4). While pFedMMA shows slightly lower local accuracy than
FedOTP and pFedMoAP, this gap narrows as the number of shots increases. Importantly, pFedMMA
consistently achieves the best trade-off between personalization and generalization, demonstrating
stable improvements in the harmonic mean across all settings. Detailed results for all datasets are
provided in Table 9 in the Appendix.

Dimension of the Shared Layer. Table 5 (bottom-left) reports the average accuracies over four
datasets and five shot settings. As shown, using a larger 128-dimensional representation yields
slightly better performance than 32 dimensions. However, to keep the number of trainable parameters
low, we consistently adopt the 32-dimensional setting throughout the paper. Detailed results are
provided in Tables 12 and 13 in the Appendix.

Scaling Factor α. The scaling factor controls the balance between general features and task-specific
features. We systematically evaluate its effect, with results summarized in Table 5 (top-left). Our
pFedMMA achieves the best trade-off performance (HM) between local, base, and novel classes
at α = 0.005. A larger scaling factor enables faster adaptation to base classes but leads to weaker
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Table 4: Average performance across six datasets using the ViT-B/32 backbone under different shot
settings (1, 2, 4, 8, and 16).

Method 1 Shot 2 Shots 4 Shots 8 Shots 16 Shots

Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

FedPGP 79.31 79.35 80.25 79.53 82.29 81.43 77.08 80.07 85.86 81.91 74.50 79.68 89.07 80.33 73.61 79.63 93.57 70.79 68.89 74.66
FedOTP 86.84 11.20 20.66 19.50 88.69 11.29 23.12 20.04 91.51 11.02 21.19 19.33 92.44 9.95 19.39 17.25 94.60 9.97 16.74 16.46
pFedMoAP 93.18 45.53 54.08 56.99 95.05 47.14 58.33 59.37 96.53 44.14 54.34 56.26 96.88 42.53 50.93 53.83 97.21 29.83 44.15 44.86
pFedMMA (Ours) 82.14 76.78 79.35 79.31 84.40 77.04 79.34 80.09 86.82 76.85 79.32 80.67 88.07 76.79 79.01 80.83 90.02 76.57 79.75 81.29
∆ −0.28% +0.02% +1.24% +1.51% +8.88%

Table 5: Ablation study on pFedMMA design choices, including scaling factor, adapter dimension,
starting layer, and adapter sharing strategies.

α Local Base Novel HM

0.0001 91.40 5.06 5.76 7.62
0.0005 91.45 46.34 59.16 59.15
0.001 90.91 72.21 78.48 79.37
0.005 91.03 78.65 81.77 83.25
0.01 91.47 78.12 81.56 82.03

ℓ → L Local Base Novel HM

12 96.49 76.85 81.37 83.57
10 → 12 96.61 78.14 81.98 84.38
8 → 12 95.75 78.43 81.82 84.27
6 → 12 91.53 78.53 81.76 83.32
5 → 12 91.58 78.67 81.71 83.38

Dims Local Base Novel HM

8 89.15 72.23 76.41 78.24
16 89.84 72.51 77.36 78.93
32 90.91 72.21 78.33 79.37
64 91.55 71.37 78.31 79.15
128 91.78 72.55 78.23 79.68

Method DTD Caltech Flowers OxfordPets

Baseline 1 61.10 96.61 73.82 91.91
Baseline 2 62.19 98.14 77.04 92.75
pFedMMA 76.38 99.48 86.34 97.39

performance on novel and base classes, whereas a smaller scaling factor hinders effective tuning for
downstream tasks. Detailed results are provided in Table 15 in the Appendix.

Starting Layer ℓ. We evaluate different choices of encoder layers for integrating pFedMMA in Table
5 (top-right). As shown, updating the last three layers yields the best HM performance, which we
attribute to the limited amount of training data in few-shot settings. Accordingly, we consistently set
ℓ = 10 for CLIP datasets throughout the paper. For other datasets, updating additional layers leads to
better results, so we adopt ℓ = 5. Detailed results are provided in Table 17 in the Appendix.

Adapting Variant Options for Personalization. We evaluate the effectiveness of different design
choices of MMA in personalized federated learning. In Table 5 (bottom-right), we compare two
alternative baselines: treating all adapters as global (Baseline 1) and using the shared adapter as the
personalized component while treating the up- and down-projection adapters as global (Baseline 2).
As shown, pFedMMA achieves significantly higher local accuracy than both baselines. Moreover, it
achieves superior base and novel performance compared to state-of-the-art prompt learning methods,
as shown earlier, underscoring its ability to strike a strong balance between personalization and
generalization.

Table 6: Comparison of FL aggregation vari-
ants (vision-only, text-only, and both-sides)
for the shared adapter.

Methods Local Base Novel HM

Vision Only 95.81 71.19 76.07 79.31
Text Only 95.99 71.19 76.13 79.38
Both Vision & Text 95.99 71.24 76.10 79.39
pFedMMA (Ours) 96.14 71.78 76.17 79.70

Adapting Variant Options for FL Aggregation.
We next ablate how the shared adapter is aggre-
gated across clients to localize the main information-
sharing channel. In Table 6, we compare three vari-
ants that differ in which modality-specific shared
block is federated: Vision Only, where only the vision-
side shared block is aggregated; Text Only, where
only the text-side shared block is aggregated; and
Both Vision & Text, where separate shared blocks for
each modality are aggregated simultaneously. These
variants achieve very similar local accuracy, with
small but consistent differences in base, novel, and HM: aggregating text-only or both modalities
yields a slight edge in HM over aggregating vision-only. Our full pFedMMA, which uses a single
multi-modal shared projection rather than two separate modality-specific ones, further improves local,
base, novel, and HM over all three variants, suggesting that tying the modalities through a unified
shared adapter provides a slightly stronger and more stable information-sharing mechanism without
harming personalization.
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4.4 LEARNING CURVES

To further analyze the convergence behavior of pFedMMA, we plot the average local accuracy over
communication rounds across five different shot settings in Fig. 4. As shown, pFedMMA consistently
attains high accuracy and converges faster than the baselines. Detailed results are provided in Fig. 5
in the Appendix.
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Figure 4: Accuracy learning curves of pFedMMA and baselines.

5 CONCLUSION

In this work, we introduced pFedMMA, a novel personalized federated learning framework that
leverages multi-modal adapters to adapt large-scale vision-language models under heterogeneous data
conditions. The proposed architecture separates each adapter into modality-specific and shared projec-
tion components. Clients update all components locally, but only the shared projection is aggregated
globally. This asymmetric optimization strategy enables client-specific adaptation while maintaining
a globally aligned feature space for effective generalization. Moreover, the communication-efficient
nature of the framework makes it scalable to real-world federated deployments. Our extensive
experiments across diverse datasets demonstrate that pFedMMA consistently outperforms existing
prompt-based PFL methods in both domain- and category-level generalization, while retaining strong
personalization capabilities. This work can motivate further exploration of adapter-based architectures
for personalized federated learning in multi-modal settings.
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A PIPELINES OF THE PROPOSED ALGORITHM

For a better understanding of the steps of the designed algorithm, we present pFedMMA in Algorithm
1.

Algorithm 1 pFedMMA
1: Input: Step size η, number of communication rounds T , number of local epoch E, number of clients N .
2: for communication round t← 1 to T do
3: Select a subset of |St| clients, St
4: Send {W t

ℓs, · · · ,W t
Ls} to the selected clients

5: for clients i ∈ St in parallel do
6: for local update e← 1 to E do
7: for trainable parameters W ∈

{
W

(I)
jd,i,W

(I)
ju,i,W

(T )
jd,i ,W

(T )
ju,i,Wjs,i

}
, j ∈ {ℓ, · · · , L} :

8: W t,e
i = W t,e−1

i − η∇Lce(W
t,e−1
i )

9: end for
10: Client i sends W t,E

js,i to the server
11: end for
12: At server: W t+1

js =
∑N

i=1 piW
t,E
js,i , j ∈ {ℓ, · · · , L}

13: end for
14: Return:

{
W

(I)
jd,i,W

(I)
ju,i,W

(T )
jd,i ,W

(T )
ju,i,Wjs,i

}
, i ∈ {ℓ, · · · , L}, j ∈ {ℓ, · · · , L}

B RELATED WORK

B.1 PERSONALIZED FEDERATED LEARNING

Personalized Federated Learning (PFL) has emerged as a pivotal research direction to address the
limitations of conventional federated learning McMahan et al. (2017) when faced with heterogeneous
client data. Unlike standard FL, which learns a single global model, PFL aims to produce tailored
models for individual clients, thus better coping with statistical and systemic heterogeneity Tan et al.
(2022); Kulkarni et al. (2020). Several personalization strategies have been proposed, including
local fine-tuning Mansour et al. (2020); Tan et al. (2022); Wang et al. (2019), regularization-based
optimization Li et al. (2020; 2021b); T Dinh et al. (2020), and parameter decomposition into shared
and client-specific components Arivazhagan et al. (2019); Oh et al.; Collins et al. (2021). Other
methods pursue clustering of clients to exploit latent similarities Huang et al. (2021); Zhang et al.;
Sattler et al. (2020); Ziad et al. (2024), or leverage attention mechanisms and adaptive layers Liang
et al. (2020); Li et al. (2023a); Sun et al. (2023). To further improve adaptability, techniques like
FedBN Li et al. and PartialFed Sun et al. (2021) address feature shift via local normalization or
selective personalization. Hybrid global-local learning approaches have also been developed Deng
et al. (2020); Chen & Chao (2022). FedOT Farnia et al. (2022) proposes learning optimal transport
maps that align local distributions to a shared probability space, enabling a global classifier to be
trained more effectively; personalization is achieved by composing this shared model with each
client’s transport map. While these approaches have demonstrated success, they typically center on
traditional ML architectures and do not yet fully leverage the potential of large pre-trained models,
such as vision-language or foundation models, for personalization.

B.2 FEDERATED PROMPT LEARNING FOR VLMS

Federated Prompt Learning (FPL) extends the flexibility of prompt tuning for adapting large pre-
trained models such as CLIP Radford et al. (2021) to the FL settings, enabling efficient and person-
alized downstream task adaptation across decentralized clients. Early works like CoOp Zhou et al.
(2022b) and CoCoOp Zhou et al. (2022a) laid the foundation by introducing learnable continuous
prompt vectors, which sparked interest in federated extensions. PromptFL Guo et al. (2023b) and
FedPrompt Zhao et al. (2022) introduced FL-style prompt aggregation, performing FedAvg McMahan
et al. (2017) over client-specific prompt updates. FedPR Feng et al. (2023) explores visual prompt
learning within the null space of global prompts for MRI reconstruction, while FedAPT Su et al.
(2022) focuses on domain-adaptive prompt tuning for cross-domain image classification. To en-
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hance personalization, pFedPrompt Guo et al. (2023a) introduces a non-parametric attention module
over local few-shot memory, and pFedPG Yang et al. (2023) and FedTPG Qiu et al. design server-
side prompt generators to issue personalized prompts to each client. FedCLIP Lu et al. integrates
attention-based adapters to better exploit the pre-trained model’s knowledge. Furthermore, FedOTP Li
et al. (2024) leverages Optimal Transport to align global and local prompts, and FedPGP ? utilizes
prompt-wise contrastive losses to better capture diverse category-level traits across clients. Recently,
pFedMoAP Luo et al. (2025) rethinks prompt sharing by treating pre-aggregated prompts from other
clients as non-local experts in a Mixture-of-Experts framework, enabling effective personalization
via a lightweight, attention-based gating mechanism. Theoretical analysis of FPL Pan et al. (2024)
provides deeper understanding of its convergence properties.

B.3 EFFICIENT TRANSFER LEARNING FOR VLMS

Traditional transfer learning approaches typically fine-tune all parameters of pre-trained VLMs Devlin
et al. (2019); He et al. (2016), but this becomes increasingly impractical as model sizes scale up,
especially under computational or data constraints. To mitigate this, the community has embraced
parameter-efficient transfer learning strategies that modify only a small fraction of model parameters.
Among these, prompt learning techniques, briefly introduced in the previous section, optimize
lightweight vectors or tokens to steer the model without altering its backbone Zhou et al. (2022b;a); Lu
et al. (2022); Khattak et al. (2023b). Although effective, they are often limited in their expressiveness
or modality interaction. As a result, adapter-based methods have emerged as a powerful alternative.
CLIP-Adapter Gao et al. (2024) and Tip-Adapter Zhang et al. (2022) inject lightweight MLP layers
after the image encoder to refine visual representations. Tip-Adapter further improves efficiency by
caching training features for fast inference. However, these image-only approaches neglect the cross-
modal nature of VLMs. To address this, MMA Yang et al. (2024) introduces a multi-modal adapter
architecture that fuses features across the vision and language branches via a shared representation
space, enabling gradient flow between modalities. Similarly, other works explore deeper adapter
integration, such as inserting adapters within self-attention and MLP blocks Jiang et al. (2022),
allowing more granular control over the representation learning process. These advances mark a shift
from single-stream to multi-stream adaptation, aligning with the unique demands of multi-modal
tasks. In federated settings, where full model updates are prohibitive, adapter-based techniques offer a
compelling balance between personalization, generalization, and communication efficiency—making
them well-suited foundations for multi-model federated frameworks like ours.

B.4 FEDERATED OUT-OF-DISTRIBUTION AND DOMAIN GENERALIZATION

A complementary line of work studies federated domain generalization (FedDG), where the goal is
to train a single global model that generalizes to unseen target domains under client heterogeneity.
FedDAT Chen et al. (2024) tackles multi-modal heterogeneous FL for foundation vision-language
models via a dual-adapter teacher and mutual knowledge distillation, improving global performance
across diverse vision-language tasks under domain shift. PLAN Gong et al. (2024) introduces
a FedDG framework for pre-trained vision-language models based on visual and textual prompt
learning and attention-based prompt aggregation, explicitly using a leave-one-domain-out protocol
to adapt a global CLIP-style model to unseen domains. Other recent methods similarly design
adapter- or prompt-based FedDG algorithms to enhance out-of-domain robustness of federated
foundation models Li et al. (2023b); Yang et al. (2025); Lu et al. (2023). In contrast, our work
is formulated in the personalized federated learning (PFL) setting, where each client maintains
its own model (or adapter) and we explicitly optimize the personalization–generalization trade-
off; consequently, we treat FedDG methods as complementary rather than direct baselines, and
instead compare against personalized prompt- and adapter-based methods, while showing that our
approach achieves comparable personalized performance and substantially stronger cross-domain
generalization within this PFL protocol.
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C EXPERIMENTAL DETAILS

C.1 DATASET SETUP

For evaluation, we consider a broad set of eleven visual recognition benchmarks that span diverse
tasks and levels of granularity. Table 7 provides a comprehensive overview, detailing the task type,
number of classes, training and testing sizes, client splits, and the heterogeneity assumption used in
our experiments.

The pathological partition setting is adopted for datasets such as Caltech101, Flowers102, OxfordPets,
Food101, DTD, SUN397, and UCF101, where each client is assigned data corresponding to a limited
number of classes, creating strong non-IID conditions. This simulates realistic personalization
scenarios for fine-grained recognition, texture classification, scene recognition, and video action
recognition.

For CIFAR-10 and CIFAR-100, we follow the common Dirichlet partitioning scheme with varying β
values to control the label skew among 100 clients. This allows systematic evaluation under different
degrees of heterogeneity.

To capture the challenges of multi-domain learning, we also include Office-Caltech10 and DomainNet.
Office-Caltech10 contains four domains (Amazon, Caltech, DSLR, Webcam), reflecting variations
across acquisition devices and environments, while DomainNet consists of six domains (Clipart,
Infograph, Painting, Quickdraw, Real, Sketch), which are significantly diverse and large-scale.
For these benchmarks, we use 10 selected classes and evaluate both single-client-per-domain and
multi-client-per-domain partitions.

Table 7: Statistical details of datasets used in experiments.

Dataset Task #Classes #Clients Sample Rate Training Size Testing Size Domains Heterogeneity
Caltech101 Fei-Fei et al. (2004) Object recognition 100 10 100% 4,128 2,465 1 Pathological
Flowers102 Nilsback & Zisserman (2008) Fine-grained flowers recognition 102 10 100% 4,093 2,463 1 Pathological
OxfordPets Parkhi et al. (2012) Fine-grained pets recognition 37 10 100% 2,944 3,669 1 Pathological
Food101 Bossard et al. (2014) Fine-grained food recognition 101 10 100% 50,500 30,300 1 Pathological
DTD Cimpoi et al. (2014) Texture recognition 47 10 100% 2,820 1,692 1 Pathological
SUN397 Xiao et al. (2010) Scene recognition 397 10 100% 76,128 21,750 1 Pathological
UCF101 Soomro et al. (2012) Action recognition (video) 101 10 100% 9,537 3,783 1 Pathological

CIFAR-10 Krizhevsky et al. (2010) Image classification 10 100 10% 50,000 10,000 1 Dir(β)
CIFAR-100 Krizhevsky et al. (2009) Image classification 100 100 10% 50,000 10,000 1 Dir(β)

DomainNet Peng et al. (2019) Image recognition 10 4/8 100% 18,278 4,573 6 Dir(β)
Office-Caltech10 Gong et al. (2012) Image recognition 10 6/12 100% 2,025 508 4 Dir(β)

C.2 EXPERIMENTAL SETUP

All models are trained using the SGD optimizer with a learning rate of η = 0.001. Each experiment
is repeated three times with different random seeds, and we report the average performance. The final
results are obtained by averaging performance across all clients. All experiments are implemented in
PyTorch and run on NVIDIA A6000 GPUs.

Base-to-Novel Class Generalization. To evaluate generalization, we divide each dataset evenly into
base and novel classes. Base classes are distributed across clients without overlap, such that each
client only observes a subset during training. Clients train their local models on their own classes,
and evaluation is performed on three levels: (i) local classes (the client’s own training classes), (ii)
base classes (classes seen by other clients but unseen locally), and (iii) novel classes (completely
unseen during training). Accuracy is averaged across 10 clients.

Feature & Label Shifts. To evaluate robustness under realistic federated learning conditions, we
conduct experiments with both label shift and feature shift using the DomainNet and Office-Caltech10
datasets. Each domain is partitioned into one or two clients using a Dirichlet distribution with varying
β, resulting in 6 or 12 clients for DomainNet and 4 or 8 clients for Office-Caltech10. This setup
generates heterogeneous client distributions, effectively simulating domain shifts.

Personalization. For personalization analysis, CIFAR-10 and CIFAR-100 are partitioned among 100
clients using a symmetric Dirichlet distribution. In addition, for the CLIP datasets, we follow the
pathological partitioning strategy from the base-to-novel generalization setting, where classes are
non-overlapping across 10 clients.
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D ADDITIONAL EXPERIMENTS RESULTS

D.1 BASE-TO-NOVEL CLASS GENERALIZATION

Table 8: Top-1 accuracy (%) of different methods across 7 datasets using ViT-B/16 as the backbone.

Average on 7 datasets SUN397 Flowers102 DTD

Shots Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

16

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 88.93 88.95 75.36 83.09 77.73 77.71 72.96 76.07 97.37 97.06 63.62 82.66 80.23 80.21 45.29 63.81
FedPGP Cui et al. (2024) 95.38 76.49 71.68 79.09 94.29 54.88 57.76 65.02 99.67 72.44 58.65 73.37 89.03 71.03 50.94 66.75
FedOTP Li et al. (2024) 97.34 18.00 36.69 31.08 94.50 11.51 14.86 18.21 99.65 14.62 30.49 26.97 98.08 20.79 35.36 34.65
pFedMoAP Luo et al. (2025) 97.89 61.82 66.60 71.05 95.93 31.18 35.40 42.41 99.81 43.70 48.37 55.99 96.43 53.60 48.21 60.28
pFedMMA (Ours) 97.17 77.40 81.49 84.15 94.06 70.99 76.37 79.34 95.58 71.54 76.00 79.79 97.45 55.44 61.55 67.35
∆ −0.74% +1.19% +13.69% +6.4% −1.95% +29.35% +32.22% +22.02% −4.24% −1.24% +29.58% +8.75% −0.64% −21.95% +20.83% +0.9%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 96.35 96.28 97.26 96.63 97.77 98.19 92.58 96.11 90.48 90.50 91.37 90.78 82.57 82.73 64.47 75.55
FedPGP Cui et al. (2024) 96.62 95.17 97.15 96.31 99.42 94.94 90.88 94.95 93.70 86.38 87.14 88.96 94.94 60.62 59.26 68.33
FedOTP Li et al. (2024) 100.00 11.60 51.22 25.92 99.94 36.47 62.77 56.23 95.69 17.29 37.97 31.70 93.54 13.62 24.19 23.91
pFedMoAP Luo et al. (2025) 99.92 77.61 92.05 88.87 99.92 94.07 92.43 95.37 97.49 69.86 83.51 82.09 95.79 62.74 66.23 72.33
pFedMMA (Ours) 100.00 88.50 96.60 94.78 100.00 96.53 94.29 96.88 97.45 89.15 90.77 92.32 95.63 69.61 74.88 78.58
∆ 0% −7.01% −0.57% −1.59% +0.06% +1.67% +2.01% +1.58% −0.04% +3.21% +4.17% +3.78% −0.17% +10.95% +13.06% +8.64%

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

8

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 88.24 88.03 77.57 83.76 78.03 78.01 71.95 75.89 95.71 95.63 69.29 84.90 78.29 76.04 46.98 63.55
FedPGP Cui et al. (2024) 93.41 83.36 70.89 83.14 93.95 54.50 57.63 64.73 94.84 92.49 71.07 84.68 85.42 71.47 51.45 66.47
FedOTP Li et al. (2024) 96.63 24.30 42.92 38.30 93.41 11.90 18.00 19.96 99.73 20.47 45.03 37.00 96.99 23.33 42.48 39.11
pFedMoAP Luo et al. (2025) 97.04 71.31 71.73 77.58 95.16 45.80 49.43 57.06 99.75 66.88 61.99 72.98 94.44 58.11 52.10 63.84
pFedMMA (Ours) 96.66 79.29 81.61 84.28 92.71 70.90 76.25 78.94 95.52 72.31 76.43 80.25 95.32 56.30 61.57 67.42
∆ −0.39% −4.88% +13.77% +1.37% −2.57% +30.09% +32.31% +21.95% −4.24% −21.82% +7.54% −5.23% −1.72% −21.23% +18.18% +1.43%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 95.53 95.43 97.32 96.09 97.31 98.26 94.43 96.64 90.44 90.46 90.67 90.52 82.39 82.37 72.36 78.75
FedPGP Cui et al. (2024) 96.09 94.93 96.66 95.89 98.13 98.26 93.47 96.57 90.57 90.38 91.04 90.66 94.85 81.48 74.94 82.96
FedOTP Li et al. (2024) 100.00 15.67 55.72 32.69 99.89 58.68 73.35 73.74 95.08 24.92 40.33 39.77 91.28 15.12 25.52 25.80
pFedMoAP Luo et al. (2025) 99.90 78.13 91.76 89.00 99.56 96.42 93.02 96.26 96.76 80.92 87.45 87.90 93.68 72.88 66.39 76.03
pFedMMA (Ours) 99.95 89.35 96.64 95.10 99.85 96.99 94.30 96.99 97.15 89.24 90.73 92.25 96.09 69.94 75.33 78.99
∆ −0.05% −5.88% −0.02% −0.82% −0.04% −1.29% +0.89% +0.43% +0.4% −1.26% −0.34% +1.75% +1.31% −14.16% +0.52% −4.79%

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

4

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 87.12 86.90 79.06 84.29 77.60 77.57 76.11 77.09 95.05 94.68 69.79 84.72 73.56 71.41 56.88 66.40
FedPGP Cui et al. (2024) 90.23 85.18 78.15 83.73 83.72 71.91 69.78 74.66 94.48 92.43 72.82 85.38 82.69 67.51 51.65 64.84
FedOTP Li et al. (2024) 95.89 30.70 45.68 44.81 91.88 17.98 27.17 29.04 98.79 19.00 33.61 32.43 95.28 25.12 41.23 40.24
pFedMoAP Luo et al. (2025) 95.89 73.47 73.72 79.18 92.49 59.62 61.08 68.25 99.62 66.14 62.01 72.67 92.41 51.78 49.90 59.79
pFedMMA (Ours) 96.09 77.97 81.62 84.20 91.33 70.79 76.12 78.51 95.35 71.89 76.06 79.90 93.75 56.46 61.91 67.37
∆ +0.21% −8.46% +4.44% +0.56% −1.25% −1.56% +9.09% +5.16% −4.29% −22.22% +4.45% −6.42% −1.61% −16.37% +19.86% +3.9%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 95.84 95.96 97.76 96.51 97.17 98.00 93.34 96.13 89.93 89.95 90.53 90.14 80.67 80.71 75.99 79.06
FedPGP Cui et al. (2024) 96.55 95.54 97.57 96.55 97.84 97.99 92.34 95.98 90.25 90.24 91.17 90.55 83.09 80.64 71.73 78.17
FedOTP Li et al. (2024) 99.95 41.83 70.13 62.28 99.73 65.97 77.59 78.79 94.49 29.38 46.57 45.39 91.20 15.60 23.48 25.50
pFedMoAP Luo et al. (2025) 99.75 85.69 94.08 92.81 99.08 95.95 92.73 95.85 95.49 81.68 86.57 87.55 92.40 73.42 69.67 77.33
pFedMMA (Ours) 99.90 89.68 96.63 95.21 99.85 96.93 94.40 97.01 96.60 89.34 90.83 92.15 95.87 70.71 75.37 79.28
∆ −0.05% −6.13% −0.96% −1.39% +0.12% −1.08% +1.8% +1.07% +1.16% −1% −0.37% +1.77% +3.76% −12.31% +5.07% +1.42%

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

2

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 85.23 85.02 77.30 81.97 75.66 75.65 75.64 75.65 92.71 92.69 65.25 81.30 67.69 65.28 48.43 59.12
FedPGP Cui et al. (2024) 86.24 83.88 78.02 82.56 76.42 74.97 72.34 74.54 90.98 89.38 68.33 81.16 73.66 62.56 56.85 63.63
FedOTP Li et al. (2024) 94.10 33.34 42.49 46.54 87.53 26.06 31.85 36.95 97.77 18.57 29.49 40.34 91.71 26.94 37.97 40.34
pFedMoAP Luo et al. (2025) 93.11 74.45 73.66 79.16 85.87 70.76 68.06 74.13 98.81 65.00 61.84 72.84 82.64 53.28 46.23 57.14
pFedMMA (Ours) 94.57 78.13 77.37 83.68 89.23 71.48 76.46 77.58 94.42 72.67 75.98 79.16 89.72 56.48 61.92 66.67
∆ +0.5% −6.86% −0.83% +1.36% +1.94% −4.66% +5.7% +4.08% −4.44% −18.7% +11.2% −2.46% −2.17% −9.72% +8.92% +4.78%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 95.03 94.90 96.92 95.61 96.86 97.61 93.34 95.90 89.93 89.73 89.71 89.72 78.92 79.06 71.82 76.45
FedPGP Cui et al. (2024) 94.88 94.55 97.27 95.55 97.06 97.10 92.99 95.68 89.47 89.46 90.48 89.80 81.22 79.16 72.88 77.59
FedOTP Li et al. (2024) 100.00 38.63 55.59 55.68 99.64 75.35 81.09 84.18 93.16 27.49 44.35 43.07 88.87 20.34 17.13 25.25
pFedMoAP Luo et al. (2025) 99.69 85.76 90.07 91.48 99.33 96.07 91.76 95.62 94.97 81.21 86.27 87.12 90.46 69.10 71.21 75.82
pFedMMA (Ours) 99.64 89.46 96.80 95.10 99.80 97.07 94.14 96.95 95.59 89.40 90.76 91.78 93.60 70.36 75.12 78.52
∆ −0.36% −5.38% −0.48% −0.47% +0.16% −0.03% +1.24% +1.33% +0.65% −0.07% +0.31% +2.2% +3.47% −11.12% +3.07% +1.2%

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

1

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 81.99 81.93 78.83 80.79 73.80 73.77 75.11 74.22 83.12 83.67 71.28 78.92 60.51 58.22 50.48 56.06
FedPGP Cui et al. (2024) 82.48 82.06 78.08 80.83 74.36 74.07 76.63 75.00 84.18 82.69 67.23 77.23 61.34 60.01 50.91 57.02
FedOTP Li et al. (2024) 93.51 32.72 47.55 47.24 86.48 27.51 34.68 39.09 95.88 22.83 45.91 44.05 88.61 32.44 41.28 45.22
pFedMoAP Luo et al. (2025) 87.65 75.82 76.35 79.30 81.90 68.22 68.14 72.21 82.70 70.37 76.55 75.69 75.56 55.00 50.71 58.67
pFedMMA (Ours) 92.40 77.66 81.70 83.50 84.42 70.92 76.38 78.50 92.76 70.37 76.55 79.23 86.67 56.31 61.30 65.77
∆ −1.19% −5.36% +3.64% +3.3% −2.38% −4.25% −0.33% +4.67% −3.25% −15.9% +7.39% +0.39% −2.19% −6.17% +20.41% +15.35%

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 94.89 94.95 97.43 95.74 96.11 97.29 94.43 95.93 89.45 89.46 90.02 89.64 76.05 76.16 73.07 75.07
FedPGP Cui et al. (2024) 94.88 94.75 96.66 95.42 96.30 97.42 92.96 95.52 89.04 89.04 90.91 89.65 77.26 76.47 74.23 75.96
FedOTP Li et al. (2024) 99.95 23.38 65.26 44.05 99.15 60.79 73.46 74.72 95.88 40.98 50.67 54.98 88.61 21.10 21.59 28.57
pFedMoAP Luo et al. (2025) 98.36 88.83 94.92 93.87 98.40 95.63 92.29 95.37 92.62 83.06 87.32 87.49 90.46 69.62 64.49 71.82
pFedMMA (Ours) 98.83 89.64 97.02 94.99 99.36 97.04 94.36 96.88 93.74 89.44 90.83 91.31 91.03 69.91 75.47 77.84
∆ −1.12% −5.39% −0.42% −0.78% +0.21% −0.39% −0.07% +0.99% −2.23% −0.02% −0.09% +1.68% +0.63% −8.58% +1.67% +2.47%
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Table 9: Top-1 accuracy (%) of different methods across 7 datasets using ViT-B/32 as the backbone.

OxfordPets SUN397 DTD

Shots Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

16

CLIP Radford et al. (2021) 86.40 86.87 96.09 89.57 69.81 69.78 72.99 70.83 52.27 53.13 54.47 53.27
PromptFL Guo et al. (2023b) 93.78 93.83 96.53 94.70 75.38 75.35 68.04 72.75 77.22 76.85 57.00 68.96
FedPGP Cui et al. (2024) 95.01 93.01 94.31 94.10 95.33 38.76 47.21 52.20 88.49 61.99 41.74 58.38
FedOTP Li et al. (2024) 99.90 10.19 32.80 21.64 90.06 9.03 5.79 10.18 97.70 10.68 18.48 18.99
pFedMoAP Luo et al. (2025) 100.00 30.45 63.43 51.19 94.96 24.98 26.71 34.09 96.66 16.09 24.70 26.55
pFedMMA (Ours) 94.05 87.92 95.74 92.45 92.09 70.65 73.77 77.78 72.31 54.62 53.93 59.19
∆ −2.38% +6.91% −14.17%

Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 92.63 94.00 94.00 93.54 84.33 84.27 85.43 84.67 65.16 65.36 71.28 67.15
PromptFL Guo et al. (2023b) 95.85 97.29 93.01 95.35 86.29 86.31 86.03 86.21 79.95 79.89 60.30 72.10
FedPGP Cui et al. (2024) 98.28 93.63 88.50 93.30 89.65 83.55 85.85 86.28 94.64 53.80 55.73 63.70
FedOTP Li et al. (2024) 99.38 11.46 23.17 21.36 92.21 9.63 14.03 16.13 88.36 8.84 6.15 10.45
pFedMoAP Luo et al. (2025) 99.92 51.79 65.33 67.23 96.41 31.56 53.51 49.39 95.28 24.08 31.24 35.70
pFedMMA (Ours) 98.56 94.74 93.94 95.70 95.31 84.59 85.59 88.24 87.80 66.91 71.53 74.41
∆ +0.37% +2.27% +3.2%

OxfordPets SUN397 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

8

CLIP Radford et al. (2021) 86.40 86.87 96.09 89.57 69.81 69.78 72.99 70.83 52.27 53.13 54.47 53.27
PromptFL Guo et al. (2023b) 93.34 93.57 96.03 94.30 75.93 75.91 73.61 75.13 75.05 72.34 49.64 63.43
FedPGP Cui et al. (2024) 94.87 91.69 92.94 93.15 93.15 55.78 57.24 65.03 78.66 72.76 45.61 62.01
FedOTP Li et al. (2024) 99.85 11.08 37.61 23.65 87.18 8.78 4.64 8.80 95.84 10.11 19.37 18.64
pFedMoAP Luo et al. (2025) 100.00 33.19 63.15 53.61 94.79 26.54 23.41 32.99 95.58 19.78 32.68 32.74
pFedMMA (Ours) 93.80 88.65 95.86 92.67 89.77 70.19 73.41 76.91 68.01 55.68 54.34 58.75
∆ −1.73% +2.37% −7.38%

Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 92.63 94.00 94.00 93.54 84.33 84.27 85.43 84.67 65.16 65.36 71.28 67.15
PromptFL Guo et al. (2023b) 96.89 97.93 92.25 95.63 86.16 86.18 87.63 86.65 80.58 80.25 61.93 73.14
FedPGP Cui et al. (2024) 96.46 97.09 91.32 94.89 86.28 86.27 87.96 86.83 85.02 78.41 66.56 75.87
FedOTP Li et al. (2024) 99.03 11.99 27.97 23.21 89.94 9.44 18.90 17.65 82.82 8.31 7.84 11.54
pFedMoAP Luo et al. (2025) 99.72 80.74 80.58 86.15 96.21 54.37 68.67 69.21 94.98 40.58 37.06 48.27
pFedMMA (Ours) 97.87 94.88 93.64 95.43 95.17 84.73 85.72 88.30 83.06 66.59 71.07 72.94
∆ −0.21% +1.69% −3.86%

OxfordPets SUN397 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

4

CLIP Radford et al. (2021) 86.40 86.87 96.09 89.57 69.81 69.78 72.99 70.83 52.27 53.13 54.47 53.27
PromptFL Guo et al. (2023b) 93.73 93.99 96.87 94.84 75.53 75.50 72.24 74.39 71.16 68.87 46.38 59.84
FedPGP Cui et al. (2024) 93.93 93.23 91.26 92.79 83.31 70.90 66.64 72.97 74.70 68.33 44.37 59.34
FedOTP Li et al. (2024) 99.80 10.21 31.68 21.50 81.32 8.38 7.93 11.64 95.72 10.85 22.77 20.47
pFedMoAP Luo et al. (2025) 100.00 33.13 65.34 54.07 93.34 38.49 37.64 47.42 94.77 16.43 31.68 29.13
pFedMMA (Ours) 93.64 88.23 96.33 92.61 83.44 70.92 73.66 75.64 67.64 54.93 55.06 58.65
∆ −2.35% +1.68% −1.99%

Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 92.63 94.00 94.00 93.54 84.33 84.27 85.43 84.67 65.16 65.36 71.28 67.15
PromptFL Guo et al. (2023b) 95.44 96.90 93.12 95.13 85.59 85.61 87.55 86.24 78.00 77.82 64.20 72.73
FedPGP Cui et al. (2024) 95.50 96.48 90.39 94.05 86.11 86.09 88.01 86.73 81.62 76.40 66.31 74.22
FedOTP Li et al. (2024) 99.08 18.93 39.24 33.94 89.84 9.39 18.42 17.45 83.32 8.34 7.10 11.00
pFedMoAP Luo et al. (2025) 99.77 81.21 82.39 87.02 95.75 52.96 65.93 67.43 95.52 42.63 43.05 52.49
pFedMMA (Ours) 97.32 94.80 93.84 95.30 94.33 84.15 85.33 87.71 84.53 68.04 71.68 74.11
∆ +0.18% +1.13% −0.15%

OxfordPets SUN397 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

2

CLIP Radford et al. (2021) 86.40 86.87 96.09 89.57 69.81 69.78 72.99 70.83 52.27 53.13 54.47 53.27
PromptFL Guo et al. (2023b) 90.62 91.44 96.87 92.90 74.08 74.06 73.81 73.98 61.20 60.88 47.95 55.95
FedPGP Cui et al. (2024) 92.05 92.41 91.80 92.09 74.78 74.36 73.70 74.28 67.13 64.93 54.77 61.78
FedOTP Li et al. (2024) 99.43 13.86 48.24 29.14 71.89 8.61 8.60 12.18 92.27 10.31 22.19 19.62
pFedMoAP Luo et al. (2025) 100.00 28.97 67.42 50.55 89.80 54.74 57.58 64.14 92.25 21.92 32.49 34.39
pFedMMA (Ours) 93.18 88.30 95.73 92.30 79.27 71.52 74.10 74.83 62.18 55.67 54.84 57.38
∆ −0.65% +0.74% −7.12%

Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 92.63 94.00 94.00 93.54 84.33 84.27 85.43 84.67 65.16 65.36 71.28 67.15
PromptFL Guo et al. (2023b) 95.27 96.45 91.59 94.39 85.09 85.10 86.97 85.71 75.88 75.85 64.31 71.58
FedPGP Cui et al. (2024) 94.62 95.53 90.92 93.65 85.95 85.94 87.81 86.56 79.23 75.44 63.50 72.07
FedOTP Li et al. (2024) 97.95 14.81 32.70 27.70 88.58 10.78 18.58 19.00 82.00 9.36 8.39 12.59
pFedMoAP Luo et al. (2025) 99.62 81.01 80.41 86.16 95.01 52.55 68.68 68.00 93.63 43.63 43.39 52.96
pFedMMA (Ours) 97.89 94.70 93.73 95.41 92.87 84.98 85.87 87.77 81.02 67.09 71.78 72.85
∆ +1.08% +1.4% +1.08%

OxfordPets SUN397 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

1

CLIP Radford et al. (2021) 86.40 86.87 96.09 89.57 69.81 69.78 72.99 70.83 52.27 53.13 54.47 53.27
PromptFL Guo et al. (2023b) 91.70 92.29 97.04 93.62 72.86 72.82 73.56 73.08 56.71 57.29 44.93 52.31
FedPGP Cui et al. (2024) 86.86 88.71 87.98 87.84 74.54 74.34 87.66 78.38 60.76 57.93 55.83 58.10
FedOTP Li et al. (2024) 99.39 11.81 34.94 24.32 70.75 7.69 6.75 10.26 89.47 13.66 20.19 22.40
pFedMoAP Luo et al. (2025) 100.00 26.32 52.30 44.70 85.99 52.37 54.12 60.97 89.77 23.96 31.14 35.30
pFedMMA (Ours) 91.55 88.09 96.39 91.88 75.86 71.02 73.87 73.53 59.72 55.31 54.89 56.56
∆ −1.86% −6.19% −2.65%

Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 92.63 94.00 94.00 93.54 84.33 84.27 85.43 84.67 65.16 65.36 71.28 67.15
PromptFL Guo et al. (2023b) 94.35 96.26 92.58 94.37 85.68 85.71 87.91 86.42 73.17 73.16 69.17 71.78
FedPGP Cui et al. (2024) 93.66 95.34 91.74 93.56 85.50 85.52 87.66 86.21 74.54 74.24 70.64 73.10
FedOTP Li et al. (2024) 97.88 14.77 30.07 26.98 85.38 11.43 22.85 20.98 78.14 7.86 9.14 12.03
pFedMoAP Luo et al. (2025) 99.14 77.97 77.75 83.86 93.62 56.89 68.39 69.96 90.57 35.69 40.75 47.17
pFedMMA (Ours) 94.77 94.18 93.83 94.26 91.67 84.78 85.84 87.33 79.28 67.30 71.29 72.29
∆ −0.12% +1.05% −1.11%
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D.2 MODEL EVALUATION ON FEATURE & LABEL SHIFTS

Table 10: Average test accuracy (%) of different methods on DomainNet and Office-Caltech10 with
lable shift and domain shift using Dirichlet partitioning.

Dataset Office DomainNet

#β 0.1 0.3 0.5 1 5 10 0.1 0.3 0.5 1 5 10

One domain for one client
CLIP Radford et al. (2021) 8.24 7.78 9.60 8.98 8.98 9.56 10.27 10.15 10.11 9.79 10.37 10.52
PromptFL Guo et al. (2023b) 14.53 15.39 15.61 14.32 15.57 14.36 12.52 11.77 11.81 12.21 11.66 11.77
FedPGP Cui et al. (2024) 14.18 16.88 14.17 12.39 16.13 13.07 14.55 13.55 14.15 14.29 14.18 14.34
pFedMoAP Luo et al. (2025) 12.65 16.14 12.27 14.19 14.70 17.03 14.14 13.89 14.30 14.14 14.38 13.55
pFedMMA (Ours) 21.08 22.38 19.06 20.43 18.42 18.73 36.18 37.06 42.55 43.31 46.13 34.69

One domain for two clients
CLIP Radford et al. (2021) 8.83 9.10 9.11 9.67 6.61 12.51 10.59 10.29 10.11 9.81 9.24 10.00
PromptFL Guo et al. (2023b) 15.99 15.29 16.34 14.85 16.14 14.43 11.83 12.58 11.24 11.27 11.57 11.55
FedPGP Cui et al. (2024) 22.55 19.29 20.71 21.96 19.63 15.19 26.08 26.30 24.90 21.22 16.14 15.07
pFedMoAP Luo et al. (2025) 22.73 23.06 19.55 21.67 16.57 19.02 24.99 24.79 24.65 21.59 16.43 15.24
pFedMMA (Ours) 21.66 22.07 21.33 18.47 20.96 17.73 49.45 37.61 47.17 48.95 46.90 48.54

Table 11: Test accuracy (%) of different methods on DomainNet and Office-Caltech10 with lable
shift and domain shift using Dirichlet partitioning.

Method Office-Caltech10 DomainNet

Amazon Caltech DSLR Webcam Avg. Clipart Infograph Painting Quickdraw Real Sketch Avg.

β = 0.5
One domain for one client

CLIP 10.42 5.33 12.50 10.17 9.60 8.37 10.50 12.12 10.40 8.79 10.47 10.11
PromptFL 8.85 23.73 11.11 18.75 15.61 12.16 12.33 11.79 9.40 13.25 11.91 11.81
FedPGP 11.98 9.78 28.13 6.78 14.17 14.07 19.18 14.05 10.30 13.39 13.90 14.15
pFedMoAP 5.21 9.33 12.50 22.03 12.27 13.69 19.18 15.35 11.50 12.90 13.18 14.30
pFedMMA (Ours) 10.71 17.81 17.46 30.26 19.06 50.38 48.82 0.00 32.56 37.31 86.21 42.55

One domain for two clients
CLIP 11.78 6.21 9.92 8.51 9.11 8.99 10.69 11.20 10.85 9.53 9.39 10.11
PromptFL 10.35 15.83 32.06 7.13 16.34 11.02 1.65 11.20 8.95 13.89 20.75 11.24
FedPGP 20.34 19.12 20.85 22.52 20.71 24.77 31.87 23.87 22.87 22.40 23.64 24.90
pFedMoAP 20.01 24.45 18.02 15.73 19.55 24.77 30.93 26.09 20.46 22.59 23.10 24.65
pFedMMA (Ours) 9.26 29.15 33.26 13.64 21.33 50.38 23.81 60.27 61.44 40.35 46.79 47.17

β = 0.3
One domain for one client

CLIP 8.33 12.89 3.13 6.78 7.78 10.08 9.44 10.82 10.30 10.68 9.57 10.15
PromptFL 11.86 10.94 25.00 13.78 15.39 10.27 10.93 11.47 10.70 11.91 14.31 11.60
FedPGP 6.77 11.11 34.37 15.25 16.88 13.50 19.33 14.22 10.10 13.39 14.08 14.10
pFedMoAP 13.02 14.67 25.00 11.86 16.14 13.31 19.33 14.86 9.60 11.99 14.26 13.89
pFedMMA (Ours) 14.29 15.07 28.57 31.58 22.38 49.12 53.21 58.44 12.38 19.83 29.37 37.06

One domain for two clients
CLIP 11.78 6.21 9.92 8.51 9.10 11.82 9.23 9.45 10.96 10.52 9.79 10.29
PromptFL 10.50 15.36 25.95 3.45 15.29 11.55 12.80 13.40 8.67 20.16 5.26 12.58
FedPGP 21.02 21.38 12.70 22.07 19.29 25.61 33.52 26.51 23.62 23.62 24.89 26.30
pFedMoAP 24.01 19.13 25.40 23.68 23.06 25.42 30.15 22.91 20.83 24.85 24.59 24.79
pFedMMA (Ours) 23.73 25.88 23.67 15.00 22.07 26.61 44.42 16.94 46.09 54.11 37.46 37.61

β = 0.1
One domain for one client

CLIP 10.94 8.44 0.00 13.56 8.24 11.22 9.28 10.18 11.00 9.12 10.83 10.27
PromptFL 10.42 18.75 12.00 16.95 14.53 15.53 14.70 11.22 9.00 10.60 14.08 12.52
FedPGP 12.50 13.33 15.63 15.25 14.18 15.59 19.18 14.38 12.00 13.15 13.00 14.55
pFedMoAP 10.42 12.44 12.50 15.25 12.65 15.21 19.33 14.22 10.90 12.57 12.64 14.14
pFedMMA (Ours) 8.93 12.33 30.16 32.89 21.08 44.19 28.35 0.00 24.03 34.33 86.21 36.18

One domain for two clients
CLIP 4.13 7.57 10.83 12.79 8.83 9.46 10.80 10.48 11.30 11.51 9.99 10.59
PromptFL 7.13 23.75 21.34 11.94 15.99 9.63 13.07 0.50 24.98 12.89 9.89 11.83
FedPGP 18.83 21.37 25.83 24.19 22.55 24.69 32.29 28.89 19.70 24.83 26.09 26.08
pFedMoAP 19.41 20.96 26.67 23.90 22.73 25.60 29.66 24.85 19.70 22.84 27.32 24.99
pFedMMA (Ours) 13.10 30.75 29.36 14.09 21.66 50.38 38.10 60.27 61.44 40.35 46.14 49.45
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D.3 LEARNING CURVES

To further examine the convergence behavior of pFedMMA, we plot the local accuracy over communi-
cation rounds across six representative datasets with five different shot settings in Fig. 3. All methods
are evaluated under the same federated setup with 2 local epochs and 50 communication rounds. As
shown, pFedMMA consistently achieves high accuracy and exhibits stable, fast convergence across
datasets. Notably, even while delivering superior generalization on both base and novel classes (Table
8), pFedMMA converges faster in local performance than pFedMoAP throughout training. These
results demonstrate that pFedMMA effectively balances personalization with generalization, ensuring
both rapid and reliable convergence.
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Figure 5: Accuracy learning curves of pFedMMA and baselines over 10 clients.
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D.4 ABLATION STUDY

Table 12: Ablation study on the dimension of the shared adapter for α = 0.001.

Shots Dimensions
DTD Caltech101 UCF OxfordPets Average

Local Base New HM Local Base New HM Local Base New HM Local Base New HM Local Base New HM

1 shot

8 66.02 58.63 62.25 62.15 98.49 94.93 92.97 95.41 83.81 63.56 68.27 70.90 93.73 62.72 84.12 77.92 85.51 69.96 76.90 76.59
16 62.50 56.62 61.97 60.24 99.30 95.19 91.66 95.28 84.11 63.20 66.90 70.32 95.58 80.97 93.84 89.63 85.37 73.99 78.59 78.87
32 65.23 57.29 62.23 61.41 98.04 96.02 93.21 95.72 87.29 62.11 69.20 71.42 95.71 84.53 92.06 90.52 86.57 74.99 79.18 79.77
64 65.14 54.66 63.47 60.73 98.33 94.03 92.81 95.00 85.91 60.91 67.09 69.83 93.96 81.22 91.74 88.61 85.84 72.71 78.78 78.54
128 63.29 58.61 63.16 61.61 99.21 95.00 91.98 95.31 86.67 65.35 71.02 73.31 95.11 88.19 93.83 92.28 86.07 76.79 80.00 80.63

2 shots

8 69.72 56.09 57.51 60.53 99.63 93.89 91.06 94.73 86.11 62.40 66.67 70.36 93.41 87.15 90.74 90.36 87.22 74.88 76.50 79.00
16 70.23 53.66 57.95 59.84 99.15 93.93 92.60 95.14 85.56 70.85 73.69 76.20 97.55 74.82 91.94 86.97 88.12 73.32 79.05 79.54
32 70.79 47.58 61.27 58.29 99.70 94.85 91.05 95.07 91.22 67.09 70.48 74.89 94.59 85.41 92.54 90.67 89.08 73.73 78.84 79.73
64 75.05 52.25 61.04 61.42 99.46 95.25 92.77 95.75 87.75 65.18 70.62 73.35 98.66 77.67 92.07 88.57 90.23 72.59 79.13 79.77
128 73.56 53.74 59.38 61.17 99.58 92.91 92.71 94.96 88.93 64.01 67.83 72.10 97.83 82.61 92.42 90.51 89.98 73.32 78.09 79.69

4 shots

8 73.94 57.64 61.56 63.67 99.17 94.87 91.67 95.14 90.12 60.71 61.54 68.47 95.35 87.24 93.62 91.93 89.65 75.12 77.10 79.80
16 73.56 55.01 49.70 57.81 99.80 93.67 90.85 94.63 90.99 60.86 65.39 70.23 96.81 86.57 94.05 92.27 90.29 74.03 75.00 78.74
32 75.83 54.36 61.40 62.67 99.64 93.89 90.31 94.46 92.69 66.70 71.86 75.57 96.99 84.15 94.52 91.54 91.29 74.78 79.52 81.06
64 77.13 57.86 61.09 64.35 99.81 93.47 92.74 95.24 90.97 59.74 65.91 69.92 99.27 81.02 93.55 90.62 91.80 73.02 78.32 80.03
128 81.11 52.60 57.36 61.51 99.71 88.66 90.58 92.74 92.62 60.32 68.02 71.30 98.26 81.11 93.41 90.33 92.93 70.67 77.34 78.97

8 shots

8 76.90 56.53 54.99 61.38 99.61 95.35 91.54 95.39 89.71 57.78 63.32 67.80 95.74 81.74 93.05 89.75 90.49 72.85 75.73 78.58
16 78.10 60.06 59.89 65.00 99.74 91.15 91.34 93.91 90.26 60.18 65.65 69.88 99.59 79.80 93.80 90.27 91.92 72.80 77.67 79.77
32 80.28 54.95 56.46 62.03 99.62 92.58 91.08 94.28 92.77 61.62 68.23 72.00 99.64 72.71 95.49 87.56 93.08 70.47 77.82 78.97
64 85.32 55.00 57.23 63.32 99.91 93.29 92.81 95.23 91.44 54.80 66.74 67.92 99.75 77.89 92.90 89.21 94.11 70.25 77.42 78.92
128 86.62 54.97 58.77 64.17 100.00 92.11 91.34 94.33 91.44 59.83 68.00 70.83 99.53 81.98 94.76 91.47 94.40 72.22 78.22 80.20

16 shots

8 83.52 50.22 52.61 58.95 100.00 90.99 91.90 94.13 90.50 55.48 67.47 68.34 97.58 76.65 91.27 87.59 92.90 68.34 75.81 77.25
16 83.94 50.71 55.94 60.59 100.00 87.71 91.02 92.63 90.30 54.19 65.14 66.85 99.75 81.08 93.88 90.88 93.50 68.42 76.50 77.74
32 85.19 47.84 56.47 59.58 99.95 86.51 89.76 91.73 93.22 57.67 65.55 69.25 99.85 76.31 93.29 88.66 94.55 67.08 76.27 77.31
64 90.79 45.31 56.97 59.24 100.00 84.25 90.88 91.26 92.46 59.04 68.03 70.67 99.85 84.44 95.66 92.85 95.78 68.26 77.89 78.51
128 89.86 47.16 55.60 59.62 99.94 92.25 92.63 94.81 92.50 57.66 67.02 69.65 99.74 81.98 94.80 91.54 95.51 69.76 77.51 78.91

Table 13: Ablation study on the dimension of the shared adapter for α = 0.005.

Shots Dimensions
DTD Caltech101 UCF OxfordPets Average

Local Base New HM Local Base New HM Local Base New HM Local Base New HM Local Base New HM

1

16 69.03 56.49 61.21 61.82 98.48 97.19 93.84 96.46 84.67 69.74 74.52 75.82 93.47 90.30 97.19 93.57 86.41 78.43 81.69 81.92
32 71.02 56.03 60.95 62.07 98.04 97.00 93.77 96.24 83.32 69.98 75.00 75.71 95.64 89.78 96.87 93.99 87.00 78.20 81.65 82.00
64 66.85 55.59 59.84 60.41 97.89 96.97 94.12 96.30 84.87 70.70 74.64 76.29 93.91 90.29 96.94 93.63 85.88 78.39 81.39 81.66
128 68.98 56.31 60.39 61.46 98.90 96.95 94.10 96.61 85.01 71.20 75.78 76.91 93.76 90.00 97.22 93.57 86.66 78.61 81.87 82.14

2

16 75.65 56.59 60.87 63.40 99.59 97.09 93.93 96.81 85.46 69.85 74.00 75.89 96.36 90.65 97.01 94.59 89.26 78.54 81.45 82.67
32 71.30 56.10 61.71 62.43 99.08 97.24 93.62 96.59 88.99 70.82 75.37 77.67 96.69 90.38 96.87 94.55 89.02 78.63 81.89 82.81
64 73.52 56.24 60.70 62.69 98.92 97.08 93.76 96.54 89.64 70.71 74.58 77.51 96.22 90.14 96.62 94.23 89.57 78.54 81.42 82.74
128 76.44 56.17 60.53 63.28 99.56 97.02 93.64 96.68 90.22 70.85 74.59 77.71 94.80 90.28 96.63 93.83 90.26 78.58 81.35 82.88

4

16 81.25 57.38 61.20 65.11 99.83 97.10 94.18 96.98 90.62 70.86 74.20 77.67 96.21 90.47 96.77 94.40 91.98 78.95 81.59 83.54
32 77.69 57.80 61.81 64.72 99.74 97.20 93.88 96.88 92.76 71.51 75.02 78.75 95.51 90.07 96.63 93.98 91.42 79.14 81.83 83.58
64 76.16 57.09 61.50 63.96 99.81 97.08 93.94 96.88 91.21 71.59 74.87 78.35 98.32 90.51 96.77 95.08 91.38 79.07 81.77 83.57
128 81.25 57.53 61.34 65.23 99.48 97.05 93.70 96.69 92.05 71.32 74.89 78.46 96.99 90.18 96.59 94.48 92.44 79.02 81.63 83.72

8

16 84.26 56.56 60.95 65.28 99.57 97.05 93.93 96.79 89.85 70.20 74.49 77.32 97.11 89.79 96.73 94.42 92.70 78.40 81.53 83.45
32 81.62 56.91 61.78 65.20 99.23 97.06 93.72 96.62 92.73 70.39 74.85 78.23 98.47 90.48 96.79 95.12 93.01 78.71 81.78 83.79
64 81.62 56.83 60.99 64.87 99.80 97.14 93.80 96.85 91.04 71.04 74.79 78.06 98.84 89.94 96.78 95.03 92.83 78.74 81.59 83.70
128 84.63 57.01 60.91 65.54 99.83 97.04 93.79 96.82 92.66 70.38 74.92 78.23 96.99 90.20 96.67 94.51 93.53 78.66 81.57 83.78

16

16 88.24 56.74 61.28 66.26 99.95 96.98 94.09 96.95 92.63 70.30 74.74 78.12 99.53 90.44 96.72 95.41 95.09 78.61 81.71 84.18
32 86.44 56.75 61.32 65.94 99.84 97.20 93.88 96.91 92.93 69.92 74.74 78.04 99.63 90.36 96.94 95.48 94.71 78.56 81.72 84.09
64 84.03 56.25 60.56 64.95 99.95 96.87 93.60 96.74 93.28 70.16 74.45 78.11 99.10 90.06 96.67 95.12 94.09 78.34 81.32 83.73
128 88.01 57.29 61.14 66.41 100.00 96.93 93.96 96.90 92.50 70.02 74.59 77.92 99.48 90.94 96.66 95.56 95.00 78.80 81.59 84.20

Table 14: Ablation study on adapter sharing strategies with scaling factor α = 0.001, adapter
dimension=32, and starting layer ℓ = 5).

Shots Method Local Performance

DTD Caltech101 Flowers102 OxfordPets

1 shot
No Local Param 57.41 96.04 72.27 91.75
Local Shared Adapter 58.15 96.49 74.27 92.13
pFedMMA 64.81 98.76 80.46 95.76

2 shots
No Local Param 60.74 96.67 74.22 90.86
Local Shared Adapter 60.74 98.33 78.24 91.31
pFedMMA 71.25 99.41 86.74 94.60

4 shots
No Local Param 60.97 96.63 73.78 91.39
Local Shared Adapter 61.72 97.85 77.30 92.82
pFedMMA 75.97 99.66 86.51 97.10

8 shots
No Local Param 62.13 96.97 74.90 92.32
Local Shared Adapter 62.73 98.12 76.20 94.53
pFedMMA 80.97 99.60 86.66 99.64

16 shots
No Local Param 64.21 97.05 73.92 93.22
Local Shared Adapter 71.11 99.89 79.17 92.95
pFedMMA 88.89 99.95 91.32 99.85
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Table 15: Ablation study on scaling factor α.

Shots Scaling Factor
DTD Caltech101 UCF OxfordPets Average on 4 datasets

Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

1

0.0001 66.06 6.74 7.10 9.86 98.52 3.51 7.33 6.95 85.08 3.12 2.53 4.12 97.19 9.73 8.36 12.89 86.71 5.78 6.33 8.46
0.0005 64.58 43.96 54.18 52.92 98.76 89.05 87.49 91.51 87.38 34.93 46.15 48.59 96.67 27.81 51.54 45.66 86.85 48.94 59.84 59.67
0.001 65.23 57.29 62.23 61.41 98.04 96.02 93.21 95.72 87.29 62.11 69.20 71.42 95.71 84.53 92.06 90.52 86.57 74.99 79.18 79.77
0.005 71.02 56.03 60.95 62.07 98.04 97.00 93.77 96.24 83.32 69.98 75.00 75.71 95.64 89.78 96.87 93.99 87.01 78.20 81.65 82.00
0.01 65.51 55.56 59.64 59.96 97.98 96.97 94.08 96.31 83.55 69.10 74.84 75.37 95.68 89.65 96.92 93.97 85.68 77.82 81.37 81.40

2

0.0001 76.30 4.97 5.82 7.77 99.54 5.05 2.85 5.37 89.42 2.92 2.64 4.10 95.09 8.41 14.62 15.17 90.09 5.34 6.48 8.10
0.0005 71.30 34.05 39.61 43.71 99.64 83.46 84.57 88.65 90.40 36.51 44.09 49.07 95.08 24.92 76.76 47.12 89.11 44.74 61.26 57.14
0.001 70.79 47.58 61.27 58.29 99.70 94.85 91.05 95.07 91.22 67.09 70.48 74.89 94.59 85.41 92.54 90.67 89.08 73.73 78.84 79.73
0.005 71.30 56.10 61.71 62.43 99.08 97.24 93.62 96.59 88.99 70.82 75.37 77.67 96.69 90.38 96.87 94.55 89.02 78.63 81.89 82.81
0.01 75.56 56.30 60.82 63.24 98.99 97.13 94.00 96.66 87.04 69.60 74.93 76.53 97.34 89.93 96.88 94.59 89.73 78.24 81.66 82.76

4

0.0001 81.57 5.30 6.04 8.19 99.00 3.37 3.32 4.93 92.61 2.10 2.11 3.12 97.81 8.28 10.13 13.06 92.75 4.76 5.40 7.33
0.0005 78.80 38.76 44.38 49.16 99.07 73.86 73.26 80.47 93.54 28.58 35.36 40.56 95.43 54.55 78.23 72.13 91.71 48.94 57.81 60.58
0.001 75.83 54.36 61.40 62.67 99.64 93.89 90.31 94.46 92.69 66.70 71.86 75.57 96.99 84.15 94.52 91.54 91.29 74.78 80.30 81.06
0.005 77.69 57.80 61.81 64.72 99.74 97.20 93.88 96.88 92.76 71.51 75.02 78.75 95.51 90.07 96.63 93.98 91.42 79.14 81.83 83.58
0.01 80.69 56.61 60.81 64.51 99.72 97.09 93.98 96.87 89.89 69.51 74.75 77.14 97.43 90.26 96.92 94.75 91.93 78.37 81.62 83.32

8

0.0001 79.03 8.19 7.58 11.25 99.51 4.15 2.21 4.26 92.47 2.69 2.94 4.15 97.63 5.52 6.43 8.65 92.16 5.14 4.79 7.08
0.0005 86.94 33.50 42.84 46.37 99.68 67.37 76.70 79.13 92.60 38.95 47.35 52.09 98.90 48.92 75.95 68.62 94.53 47.19 60.71 61.55
0.001 80.28 54.95 56.46 62.03 99.62 92.58 91.08 94.28 92.77 61.62 68.23 72.00 99.64 72.71 95.49 87.56 93.08 70.47 77.82 78.97
0.005 81.62 56.91 61.78 65.20 99.23 97.06 93.72 96.62 92.73 70.39 74.85 78.23 98.47 90.48 96.79 95.12 93.01 78.71 81.78 83.79
0.01 85.88 56.31 60.65 65.37 99.80 97.17 93.96 96.92 96.09 69.47 74.55 78.50 95.88 89.79 96.99 94.11 94.41 78.19 81.54 83.73

16

0.0001 90.79 6.23 8.09 10.16 99.55 2.80 4.85 5.23 91.73 2.28 2.18 3.30 99.05 5.90 7.99 9.84 95.28 4.30 5.78 7.13
0.0005 87.36 34.47 38.74 45.27 100.00 59.99 67.04 72.14 93.04 34.73 50.00 50.38 99.85 38.44 69.02 59.38 95.06 41.91 56.20 56.79
0.001 85.19 47.84 56.47 59.58 99.95 86.51 89.76 91.73 93.22 57.67 65.55 69.25 99.85 76.31 93.29 88.66 94.55 67.08 76.27 77.31
0.005 86.44 56.75 61.32 65.94 99.84 97.20 93.88 96.91 92.93 69.92 74.74 78.04 99.63 90.36 96.94 95.48 94.71 78.56 81.72 84.09
0.01 89.49 56.28 60.57 66.00 99.89 97.08 94.01 96.93 95.63 68.93 74.79 78.26 97.30 89.68 96.99 94.52 95.58 77.99 81.59 83.93

Table 16: Ablation study on scaling factor starting layer ℓ with scaling factor α = 0.005 and adapter
dimension=32.

Shots Layers
DTD Caltech101 UCF OxfordPets Average

Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

1

12 90.79 54.35 60.10 65.14 99.34 97.02 94.17 96.80 91.04 69.03 75.31 77.42 99.60 89.54 96.74 95.10 95.19 77.49 81.58 83.62
10 → 12 86.67 56.31 61.30 65.77 99.36 97.04 94.36 96.88 91.03 69.91 75.47 77.84 98.83 89.64 97.02 94.99 93.97 78.23 82.04 83.87
8 → 12 78.38 56.20 61.06 63.93 99.34 96.89 94.17 96.75 87.60 70.09 74.45 76.70 98.40 89.91 96.94 94.94 90.93 78.27 81.66 83.08
6 → 12 68.43 55.71 60.59 61.14 99.13 97.13 94.19 96.77 81.83 70.09 75.27 75.43 93.03 89.83 96.99 93.19 85.61 78.19 81.76 81.63
5 → 12 71.02 56.03 60.95 62.07 98.04 97.00 93.77 96.24 84.87 70.70 74.64 76.29 95.64 89.78 96.87 93.99 87.39 78.38 81.56 82.15

2

12 89.44 53.40 59.35 64.16 99.60 97.08 93.84 96.78 94.37 68.34 75.26 77.89 99.95 88.74 96.46 94.81 95.84 76.89 81.23 83.41
10 → 12 89.72 56.48 61.92 66.67 99.80 97.07 94.14 96.95 93.60 70.36 75.12 78.52 99.64 89.46 96.80 95.10 95.69 78.34 82.00 84.31
8 → 12 86.90 57.12 61.76 66.36 99.69 97.19 94.00 96.90 93.34 70.66 74.88 78.49 99.80 89.80 96.57 95.20 94.93 78.69 81.80 84.24
6 → 12 76.25 56.34 61.61 63.70 99.72 97.08 93.84 96.82 90.40 69.94 74.23 77.26 95.02 89.98 96.49 93.75 90.35 78.34 81.54 82.88
5 → 12 73.52 56.10 61.71 62.98 99.08 97.24 93.62 96.59 89.64 70.71 74.58 77.51 96.69 90.38 96.87 94.55 89.73 78.61 81.69 82.91

4

12 92.45 53.69 59.77 64.97 99.73 96.73 94.25 96.85 94.34 68.21 74.86 77.68 100.00 88.52 96.31 94.70 96.63 76.79 81.30 83.55
10 → 12 93.75 56.46 61.91 67.37 99.85 96.93 94.40 97.01 95.87 70.71 75.37 79.28 99.90 89.68 96.63 95.21 97.34 78.45 82.08 84.72
8 → 12 92.82 56.67 61.67 67.21 100.00 97.08 94.17 97.02 95.93 70.69 74.98 79.14 99.79 89.81 96.92 95.32 97.14 78.56 81.94 84.67
6 → 12 78.29 57.42 61.99 64.77 99.86 97.15 93.81 96.88 92.20 71.09 74.56 78.28 99.70 89.93 97.06 95.38 92.51 78.90 81.86 83.83
5 → 12 77.69 57.80 61.81 64.72 99.74 97.08 93.94 96.86 92.76 71.51 75.02 78.75 98.32 90.51 96.77 95.08 92.13 79.23 81.89 83.85

8

12 94.40 53.30 59.98 65.18 99.75 96.47 94.17 96.74 94.75 68.25 75.11 77.88 100.00 88.16 95.83 94.40 97.23 76.55 81.27 83.55
10 → 12 95.32 56.30 61.57 67.42 99.85 96.99 94.30 96.99 96.09 69.94 75.33 78.99 99.95 89.35 96.64 95.10 97.80 78.15 81.96 84.62
8 → 12 95.00 56.90 61.46 67.61 99.98 96.97 94.07 96.95 95.76 70.51 74.96 79.02 100.00 89.46 96.99 95.27 97.69 78.46 81.87 84.71
6 → 12 85.05 57.51 61.38 66.02 99.86 97.37 93.95 97.00 90.75 70.48 75.29 77.94 99.79 90.23 97.05 95.52 93.86 78.90 81.92 84.12
5 → 12 81.62 56.91 61.78 65.20 99.80 97.17 93.96 96.92 92.73 70.39 74.85 78.23 98.47 90.48 96.79 95.12 93.16 78.74 81.85 83.87

16

12 94.91 53.90 60.51 65.77 99.90 95.94 94.12 96.59 95.45 68.23 75.05 78.01 100.00 88.14 96.28 94.54 97.56 76.55 81.49 83.73
10 → 12 97.45 55.44 61.55 67.35 100.00 96.53 94.29 96.88 95.63 69.61 74.88 78.58 100.00 88.50 96.60 94.78 98.27 77.52 81.83 84.40
8 → 12 96.30 56.66 61.21 67.61 100.00 96.72 94.19 96.91 95.86 70.14 75.11 78.94 100.00 89.18 96.77 95.10 98.04 78.18 81.82 84.64
6 → 12 88.70 56.89 61.29 66.42 99.89 97.11 94.09 96.97 92.90 69.42 74.58 77.77 99.85 89.89 96.98 95.39 95.34 78.33 81.74 84.14
5 → 12 89.49 56.28 60.57 66.00 99.89 97.08 94.01 96.93 92.93 69.92 74.74 78.04 99.63 90.36 96.94 95.48 95.49 78.41 81.57 84.11
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Table 17: Comparison of FL aggregation variants (vision-only, text-only, and both-sides) for the
shared adapter.

Shots Layers
Average on 4 datasets SUN397 Flowers102 DTD Food101

Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

16

Vision Only 95.81 71.19 76.07 79.31 94.02 70.73 76.08 79.12 95.79 69.62 76.31 79.14 97.31 55.22 61.10 67.04 96.13 89.17 90.80 91.94
Text Only 95.99 71.19 76.13 79.38 94.20 70.80 76.10 79.20 96.40 69.53 76.30 79.24 97.08 55.28 61.32 67.12 96.27 89.17 90.80 91.98
Both Vision & Text 95.99 71.24 76.10 79.39 94.23 70.85 76.11 79.23 96.03 69.61 76.25 79.17 97.27 55.32 61.24 67.13 96.44 89.17 90.80 92.03
pFedMMA (Ours) 96.14 71.78 76.17 79.70 94.06 70.99 76.37 79.34 95.58 71.54 76.00 79.79 97.45 55.44 61.55 67.35 97.45 89.15 90.77 92.32

Table 18: Top-1 accuracy (%) of different methods across 7 datasets in the 16-shot setting using
Adam optimizer.

Average on 7 datasets SUN397 Flowers102 DTD

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 76.36 76.81 81.21 78.03 69.41 69.38 75.52 71.32 67.89 69.23 76.88 71.12 54.26 54.86 59.18 56.02
PromptFL Guo et al. (2023b) 86.80 86.87 79.36 84.19 77.44 77.42 73.63 76.12 89.69 89.74 73.62 83.62 76.16 75.81 54.11 66.96
FedPGP Cui et al. (2024) 97.10 63.53 67.19 73.31 95.57 41.24 49.61 54.68 99.57 47.37 57.42 61.77 95.46 48.77 44.69 56.23
pFedMoAP Luo et al. (2025) 97.96 61.35 67.59 72.63 96.17 33.01 36.36 43.99 99.86 36.36 51.83 52.81 96.48 50.90 46.06 58.00
pFedMMA (Ours) 96.29 77.90 81.65 84.58 93.78 71.17 76.51 79.40 95.79 70.93 76.85 79.89 92.82 56.91 61.50 67.26

OxfordPets Caltech101 Food101 UCF101

Method Local Base Novel HM Local Base Novel HM Local Base Novel HM Local Base Novel HM

CLIP Radford et al. (2021) 89.45 89.42 96.81 91.77 96.14 97.22 94.21 95.84 89.40 89.42 90.70 89.84 68.00 68.15 75.18 70.29
PromptFL Guo et al. (2023b) 96.19 96.01 96.64 96.28 97.25 98.13 92.90 96.04 90.73 90.76 91.15 90.88 80.12 80.20 73.50 77.81
FedPGP Cui et al. (2024) 98.78 86.27 94.47 92.88 99.83 87.82 88.09 91.59 95.96 78.62 78.67 83.68 94.56 54.64 57.36 64.78
pFedMoAP Luo et al. (2025) 99.90 78.13 91.76 89.00 99.94 94.62 92.47 95.58 97.60 71.43 84.37 83.11 95.76 64.98 70.26 74.88
pFedMMA (Ours) 99.08 89.84 96.74 95.05 100.0 97.10 94.18 97.04 97.24 89.42 90.75 92.35 95.31 69.90 75.02 78.68
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E TRAINING COST ANALYSIS

E.1 COMPARISON

Below, we briefly describe each method and provide parametric expressions for the number of
trainable parameters and per-round communication, together with instantiations for ViT-B/16; see
Table 19 for notation.

PromptFL. Each client fine-tunes only a continuous text prompt (the backbone is frozen), and
the server aggregates the prompt via FedAvg and broadcasts the updated prompt. (1) Per-client
counts: The number of trainable parameters is Ldt. In each round, the client uploads Ldt parameters
and downloads Ldt parameters. (2) ViT-B/16 example. With dt = 512 and L = 16, one prompt
has Ldt = 16 × 512 = 8,192 parameters, so each round the client uploads and downloads 8,192
parameters.

FedOTP. Each client learns a global prompt (to be aggregated) and a local prompt (kept private);
training couples them via optimal transport, and only the global prompt is communicated. (1) Per-
client counts: The number of trainable parameters is 2Ldt. In each round, the client uploads Ldt
parameters and downloads Ldt parameters. (2) ViT-B/16 example. With dt = 512 and L = 16, the
client trains 2× 16× 512 = 16,384 parameters in total, and in each round uploads and downloads
8,192 parameters.

FedPGP. Clients share a global prompt and add a low-rank personalized adapter UiVi locally; only
the global prompt is aggregated. (1) Per-client counts: The number of trainable parameters is
Ldt + b (dt + L). In each round, the client uploads Ldt parameters and downloads Ldt parameters.
(2) ViT-B/16 example. With dt = 512, L = 16, and b = 8, the low-rank component contributes
8(512 + 16) = 4,224 parameters, giving 8,192 + 4,224 = 12,416 trainable parameters overall; in
each round the client uploads and downloads 8,192 parameters.

pFedMoAP. Each client learns a local prompt and downloads K non-local prompt experts (without
aggregation). A local multi-head attention gating network mixes local and non-local experts; the
gating network is trained on-device and not communicated. Features are pooled to width dg before
the MHA. (1) Per-client counts: The number of trainable parameters is Ldt + (4d2g + 4dg). In each
round, the client uploads Ldt parameters and downloads K Ldt parameters. (2) ViT-B/16 example.
With dt = 512, L = 16, dg = 128, and K = 9, the gating network has 4 · 1282 + 4 · 128 = 66,048
parameters, so the client trains 8,192+66,048 = 74,240 parameters; in each round the client uploads
8,192 parameters and downloads 73,728 parameters.

pFedMMA. Lightweight multimodal adapters are inserted in both vision and text blocks; in each
instrumented layer the adapter comprises a down-projection (d → r), a shared r × r projection
(aggregated globally), and an up-projection (r→d). The shared projection is communicated each
round, while the up/down projections are updated locally. (1) Per-client counts: The number of
trainable parameters per layer is 2r(dv + dt) + r2, so across m layers it is m [ 2r(dv + dt) + r2 ].
In each round, the client uploads mr2 parameters and downloads mr2 parameters. (2) ViT-B/16
example. With dv = 768, dt = 512, r = 32, and layers 10–12 (m = 3), the per-layer trainable count
is 2 · 32 (768 + 512) + 322 = 82,944, for a total of 3× 82,944 = 248,832 trainable parameters; in
each round the client uploads and downloads 3× 322 = 3,072 parameters.

Table 19: Notation used in this part. Examples assume CLIP ViT-B/16.

Symbol Description Example (ViT-B/16)
dt CLIP text-encoder width 512
dv CLIP vision hidden size 768
L Number of prompt tokens e.g., 16
b Low-rank bottleneck (FedPGP) e.g., 8
dg Internal width of the pFedMoAP gating MHA e.g., 128
K Number of non-local prompt experts downloaded per round

(pFedMoAP)
e.g., 9

r Adapter inner (shared) width (pFedMMA) e.g., 32
m Number of instrumented transformer layers (pFedMMA) e.g., 3
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Table 20: Comparison of computation, communication, and accuracy for five personalized federated
learning methods under CLIP ViT-B/16. Columns report the number of local trainable parameters,
per-round communicated parameters (upload/down), end-to-end training time, peak GPU memory,
average local accuracy, and average harmonic-mean (HM) accuracy; notation follows Table 19.

Methods # Local Trainable Param. # Per-round Com. Param. (up/down) Train Time (s) GPU Mem. (MiB) Avg. Local Acc. Avg. HM Acc.

PromptFL Guo et al. (2023b) 8,192 8,192 / 8,192 1,645 5,116 88.93 83.09
FedPGP Cui et al. (2024) 12,416 8,192 / 8,192 3,980 13,374 95.38 79.09
FedOTP Li et al. (2024) 16,384 8,192 / 8,192 1,328 3,014 97.34 31.08
pFedMoAP Luo et al. (2025) 74,240 8,192 / 73,728 902 3,108 97.89 71.05
pFedMMA (Ours) 248,832 3,072 / 3,072 2,175 4,634 97.17 84.15

Table 20 summarizes the computational and communication costs together with accuracy. PromptFL
has the smallest footprint (8,192 trainable; 8,192/8,192 per round) but—most importantly—shows
a marked drop in local accuracy (88.93%), indicating weaker personalization under heterogeneity.
FedPGP increases local trainables to 12,416 without extra communication but incurs the highest
memory (13,374 MiB) and slower training, and its HM accuracy (79.09%) lags its strong local
accuracy (95.38%). FedOTP doubles prompt capacity (16,384 trainables; same 8,192/8,192 com-
munication) and attains very high local accuracy (97.34%) but suffers extremely low HM accuracy
(31.08%), suggesting poor cross-client generalization. pFedMoAP adds a local gating module,
raising local trainables (74,240) and the per-round download (73,728) while achieving the shortest
training time (902 s) and strong local accuracy (97.89%). pFedMMA (ours) communicates only
the shared adapter blocks (3,072/3,072) while keeping 248,832 parameters local, yielding the best
HM accuracy (84.15%) and competitive local accuracy (97.17%), thus offering the most favorable
accuracy–communication trade-off.

E.2 ON THE NECESSITY OF COMMUNICATING THE SHARED ADAPTER

We ablate adapter sharing to test whether exchanging a small parameter set is sufficient for federated
coordination (Table 21). In pFedMMA, only the low-rank shared r × r adapter is globally synchro-
nized each round, while the up/down projections remain local. This design communicates just mr2

parameters per round, yet it is exactly these parameters that carry the essential cross-client signal:
they define a common low-dimensional subspace that aligns clients’ representations, while the much
larger local adapters capture client-specific variation. The comparison with the Local Only Param
variant (which updates all adapter parameters purely on-device without FL) demonstrates that global
synchronization of the shared subspace is crucial, even when the communicated set is small.

Table 21: Ablation study on adapter sharing strategies with scaling factor α = 0.005, adapter
dimension=32, and starting layer ℓ = 10).

Method DTD Caltech101 Flowers102 OxfordPets Food UCF

Base Performance
Local Only Param 31.37 80.83 49.69 57.68 85.04 62.11
pFedMMA 55.44 96.53 71.54 88.50 89.15 69.61

New Performance
Local Only Param 54.94 91.72 68.30 85.76 66.13 45.47
pFedMMA 61.55 94.29 76.00 96.60 90.77 74.88
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