
Under review as a conference paper at ICLR 2024

CAN GENERAL-PURPOSE LANGUAGE MODELS
EMULATE A GENERAL-PURPOSE COMPUTER IN-
CONTEXT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Several recent works have drawn parallels between modern Large Language Mod-
els (LLMs) and general-purpose computers, suggesting that language serves as
their programming interface. In this study, we test part of this analogy; specifi-
cally, we investigate whether a pretrained LLM can emulate a memory-bounded,
reduced instruction-set based computer by executing random programs through
looped inference calls. All this within the model’s own context window, and with-
out the aid of external mechanisms such as associative memory or interpreters.
The abstraction level of these programs is based on two general-purpose com-
putational models - the SUBLEQ One-Instruction Set Computer (OISC) and the
Minsky counter machine. Our prompts are carefully designed in a data-agnostic
manner, and we conduct studies to examine failure modes related to the emu-
lated computer functionality. Our findings indicate that certain models are capable
of efficiently executing general-purpose instructions, despite not being explicitly
trained for such a task. This suggests intriguing implications for AI alignment, as
some models demonstrate the ability to autonomously emulate the operation of a
general-purpose computer.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance in various general-
purpose downstream tasks, including language and code generation and translation, text classifica-
tion and sentiment analysis, question answering and dialogue, and different forms of compositional
reasoning (Devlin et al., 2018; Ouyang et al., 2022; OpenAI, 2023; Guo et al., 2022; Lu et al.,
2023). These impressive capabilities, which emerge as the scale of data and model increases, have
generated significant interest in understanding the underlying mechanisms and probing the overall
computational abilities of LLMs and their potential applications across diverse domains (Wei et al.,
2022a; Mialon et al., 2023; Qin et al., 2023; Imani et al., 2023; Dziri et al., 2023). Another line of
recent works have explored the abilities of interconnected LLMs to perform complex computational
tasks (Richards, 2023; Chase, 2022; Lee et al., 2023; Giannou et al., 2023).

In addition, it has recently been shown that LLMs, when equipped with auxiliary memory, are able
to emulate universal Turing machines (Schuurmans, 2023). Hence, we could also argue such models
could ultimately serve as “computers” that operate on human language, with prompting as a flexible
new form of programming language. However, to emulate such general-purpose computations and
decision making, it is necessary to properly incorporate interactions with external memory. There-
fore, a natural question that arises is the following:

“Can pretrained LLMs emulate, in-context, a general-purpose computer, without the use of
external mechanisms (such as memory or interpreters)?”

Motivated by this question, we conduct an investigation to determine whether modern LLMs can
demonstrate inherent general-purpose computing skills simply through recursive prompting, without
explicitly training or finetuning them to do so. By assessing various LLMs’ ability to simulate basic
computational models, we find evidence that certain models can almost-reliably emulate a general-
purpose computer in-context.

1

Under review as a conference paper at ICLR 2024

text-davinci-003 gpt-3.5-turbo gpt-4 claude-v1 claude-v1.3

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) Minsky: single-inference with
direct output prompting.

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Minsky: single-inference with
chain-of-thought prompting.

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Minsky: multiple-inferences.

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(d) SUBLEQ: single-inference with
direct output prompting.

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(e) SUBLEQ: single-inference with
chain-of-thought prompting.

5 10 15 20 25 30
Number of Instructions

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(f) SUBLEQ: multiple-inferences.

Figure 1: Instruction execution accuracy for the case of Minsky machines ((a) to (c)) and SUBLEQ
OISCs ((d) to (f)). In particular, we present the accuracy for the cases of (i) single-inference approach
with direct output prompting, (ii) single-inference approach with chain-of-thought prompting, and
(iii) multiple-inferences approach.

The emergence of this skill, despite not being part of the training objective, has noteworthy implica-
tions. It indicates that large pretrained models have latent potential for autonomous computation and
decision making absent external constraints. Understanding the origins and limits of this unintended
behavior is crucial, given its importance for safe AI deployment, and thus, we hope that our findings
will encourage more research into this area within the machine learning community.

1.1 OVERVIEW OF THE STUDY

In this work, we propose employing simple computational models as a testbed for examining some
of the algorithmic and computational capabilities of LLMs. In particular, we test two models: the
Minsky machine, and the SUBLEQ One Instruction-Set Computer (OISC). These models present a
balance between simplicity and generality, featuring a small set of arithmetic and branching oper-
ations, making them tractable for assessing in the context of LLM capabilities. The main question
we attempt to answer is whether moderm language models can simulate the operation of either of
these two general-purpose machines. Before delving into our methodology, let us provide a brief
overview of the two computational models under consideration.

Minsky Machine. A Minsky machine, also known as a counter machine, is a simple computa-
tional model proposed by Marvin Minsky (Minsky, 1967). It comprises a set of registers and in-
structions, with the i-th register denoted by reg[i] and the j-th instruction denoted by inst[j]
for non-negative integers i, j. Each register contains a non-negative integer. Instructions are either
of type A or B. Type A simply increments the value of reg[i] and moves on to the next instruction,
as shown in Algorithm 1, while type B performs a conditional decrement on reg[i] and jumps to
another instruction as shown in Algorithm 2. Note that each instruction inst[j] remains the same
as the program runs (no self-editing code), but the contents of the register reg[i] are updated. The
index of the instruction being executed is maintained in a program counter (pc), which changes as
the program runs. This simple model is powerful enough to emulate any Turing Machine.

2

Under review as a conference paper at ICLR 2024

Algorithm 1 Minsky Instruction A

Input: Non-negative integer i
reg[i] := reg[i]+1
goto the next instruction

Algorithm 2 Minsky Instruction B

Input: Non-negative integer i and j

if reg[i] ̸= 0 then
reg[i] := reg[i]−1
goto the next instruction

else
goto instruction j

end if

Algorithm 3 SUBLEQ Instruction

Input: Non-negative integers a, b, c

reg[b] := reg[b] − reg[a]
if reg[b] ≤ 0 then

goto instruction c
else

goto the next instruction
end if

SUBLEQ. A SUBLEQ OISC (Mavaddat & Parhami,
1988) utilizes a single instruction to execute general-
purpose programs. As shown in Algorithm 3, this instruc-
tion, called SUbtract and Branch if Less than or EQual
to 0, takes three non-negative integers (a, b, and c) as
input. The program first sets reg[b] := reg[b] -
reg[a]. If the resulting reg[b] is non-positive, the
program jumps to instruction c; otherwise, it proceeds
to the next instruction. Surprisingly, SUBLEQ defines a
language that is also Turing complete.

Why consider both? The primary distinction between
Minsky machines and SUBLEQ OISCs is their instruc-
tion set and execution logic. Minsky machines use two in-
structions with separate registers, while SUBLEQ OISCs
employ a single, more complex instruction involving sub-
traction, register update, and conditional jump. Emulat-
ing SUBLEQ OISCs may pose a greater challenge for
LLMs due to its requirement of performing signed inte-
ger subtraction and handling three input arguments. At
the same time, the abstraction level of Minsky machines
does not allow for a straightforward mapping of say a
Python program to that language, however, there does ex-
ists a C-like language compiling to SUBLEQ (Esolangs),
as well as OISCs designed on this language (Mazonka &
Kolodin, 2011), making it more interesting for more prag-
matic tests. Incorporating both computational models in
our evaluation enables a more comprehensive assessment
of LLMs’ capabilities, versatility, and adaptation to dif-
ferent instruction sets, providing perhaps better insights into their ability to emulate general purpose
machines.

Memory State
<memory>
<program counter>
pc=1
</program counter>
<registers>
reg{0}=0
reg{1}=53272
reg{2}=63371
reg{3}=0
</registers>
<instructions>
line{0}=A(reg{3})
line{1}=A(reg{3})
line{2}=B(reg{3},3)
line{3}=B(reg{3},0)
line{4}=B(reg{0},4)
</instructions>
</memory>

Figure 2: An example of the
memory state for a Minsky
Machine. We have three
distinct parts: program
counter, registers,
and instructions.

Proposed Methodology. Our assessment examines the capability
of a looped pretrained LLM to in-context simulate computational
models (either Minsky machine or SUBLEQ OISC), without hav-
ing access to an external memory1. Recall that three components
are crucial to run a program in these computational models: (i) the
set of instructions to run (i.e., the program), (ii) the register values,
and (iii) the program counter. Our prompt is designed to provide
this information (as in Fig. 2) and requires the LLM to execute a
single instruction and update the memory state (namely the program
counter and the register values) accordingly. By recursively calling
the LLM with the updated memory state in a looped manner, we
can assess its ability to accurately emulate the machine’s operation.
We should highlight that in our study, we exploit two different ap-
proaches: one that performs a single inference call per instruction,
and one that performs multiple inference calls per instructions2.
We also experiment with different prompting methodologies, in-
vestigating whether chain-of-thought (CoT) prompting (Wei et al.,
2022b) would yield better results.

Moreover, we generate random sets of instructions with bounded
numbers of lines of code and registers, and evaluate the LLM’s
ability to simulate the Minsky machine’s or SUBLEQ OISC’s op-
eration. We examine the point at which the model “breaks,” i.e.,

1See more details regarding the proposed methodology in Sec. 3.
2here we use inference calls to imply API calls to a base model, however the actual number of forward

passes, i.e., the true number of inference calls, depends on the output tokens

3

Under review as a conference paper at ICLR 2024

fails to produce correct output memory states. This allows us to assess some basic capabilities of
different LLMs and how they relate to their perceived performance in more general AI tasks.

1.2 MAIN RESULTS

Our main results indicate that many of the tested models, although exhibiting non-trivial perfor-
mance, struggle to execute arbitrary Minsky/SUBLEQ instructions with nearly-perfect accuracy.
However, there do exist pretrained models (like GPT-4 (OpenAI, 2023)), that are indeed able to
in-context emulate such functionality almost perfectly, without being explicitly trained to do so. As
we will discuss in later sections, the way that we design our prompts ensures that our tests are data-
agnostic. This means that the results are direct memorization of the specific data used during train-
ing, but rather reflect the inherent computational capabilities and limits of the models themselves. In
Fig. 1, we present our main experimental results regarding the instruction execution accuracy of an
arbitrary Minsky or SUBLEQ instruction, utilizing various approaches and prompting techniques,
which we discuss in detail in Sec. 3.

As we can observe, most models struggle to execute an arbitrary Minsky/SUBLEQ instruction with
full accuracy, especially when prompting does not employ CoT. The only model that can reliably
execute such commands is found to be GPT-4, which achieves almost perfect execution accuracy.
Although to argue that a model can in-context emulate a general-purpose computer, the execution
accuracy should ideally be 100%3, we believe that the near-perfect performance of GPT-4, coupled
with the non-trivial performance of other models, provides valuable insights. Specifically, it sug-
gests that some pretrained LLMs are particularly close to demonstrating general-purpose computing
capabilities, even without access to external mechanisms related to memory, calculation, or code
execution. This behavior is emergent, since the models are not explicitly trained for these tasks.
This hints at intriguing implications for AI alignment, as, when placed in a loop, they exhibit the
potential of autonomously executing general-purpose computational tasks, a capability that was not
an explicit objective during training.

2 BACKGROUND

Large Language Models A large number of LLMs have been proposed recently, which showed a
huge success in natural language processing (NLP) (Devlin et al., 2018; Radford et al., 2018; 2019;
Brown et al., 2020; Taori et al., 2023; Zhang et al., 2022; Touvron et al., 2023; Thoppilan et al.,
2022). It is reported that pretrained LLMs have interesting properties, e.g., in-context learning (ICL)
allows LLMs to perform a new task without any fine-tuning (Min et al., 2022; Garg et al., 2022) and
the reasoning task performance of LLMs is improved by prompting strategies (Zhou et al., 2022)
including chain-of-thought (CoT) (Wei et al., 2022b; Kojima et al., 2022; Wang et al., 2022), or the
most recent Tree-of-Thoughts (Yao et al., 2023) and Graph-of-Thoughts (Besta et al., 2023).

Learning to Execute Various recent works developed neural networks that learn how to execute a
program (Zaremba & Sutskever, 2014; Bieber et al., 2020; Wang et al., 2020; Dehghani et al., 2018;
Yan et al., 2020; Austin et al., 2021; Nye et al., 2021; Graves et al., 2014; Kurach et al., 2015; Kaiser
& Sutskever, 2015; Graves et al., 2016; Reed & De Freitas, 2015; Veličković et al., 2020; Lu et al.,
2022; Liu et al., 2023). In recent years, several studies have attempted to evaluate the algorithmic
reasoning abilities of neural networks and LLMs, investigating their ability to simulate general-
purpose computation. Some of these studies have demonstrated the computational abilities of LLMs
given access to external memory, highlighting their potential to perform complex computational
tasks (Schuurmans, 2023).

LLM evaluation Many of the standard LLM benchmarks focus on various aspects of reasoning,
text comprehension, and code generation. For example, natural language understanding benchmarks
such as GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) measure the performance of
LLMs on a collection of tasks including question answering, sentiment analysis, and textual entail-
ment. Common sense reasoning benchmarks such as BoolQ (Clark et al., 2019), PIQA (Bisk et al.,

3This is due to the fact that placing it in a loop would result in reliably executing consecutive commands in
large programs.

4

Under review as a conference paper at ICLR 2024

2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC (Chollet, 2019), and OpenBookQA (Mihaylov et al., 2018) evaluate LLMs on tasks
like Cloze-style completion, Winograd schema questions, and multiple-choice question answering.
Closed-book question answering benchmarks like Natural Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017) test LLMs’ abilities to answer questions without access to external
documents. Reading comprehension benchmarks, such as RACE (Lai et al., 2017), assess LLMs’
performance in understanding and answering questions related to written passages. Furthermore,
mathematical reasoning benchmarks like MATH (Hendrycks et al., 2021) and GSM8k (Cobbe et al.,
2021) evaluate LLMs on their abilities to solve arithmetic and algebraic problems, while code gen-
eration benchmarks, such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), test
the models’ capacity to generate code based on natural language descriptions. Finally, the massive
multitask language understanding (MMLU) benchmark (Hendrycks et al., 2020) measures LLMs’
performance across multiple domains of knowledge, including humanities, STEM, and social sci-
ences.

3 METHODOLOGY

Our investigation works in the following manner. Recall that in both Minsky Machine and SUBLEQ,
all we need to specify is the memory state consisting of three components: the program counter, the
register values, and the instructions. We first make a text file that lists up these three components,
an example of which is given in Fig. 2. In this example, we consider running a program using 4
registers and 5 instructions. The program counter (PC) is set to 1, meaning that we are running the
instruction written in line 1, which is line{1} = A(reg{3}).

Utilizing this memory configuration as a component of the prompt, the goal is to execute Minsky
or SUBLEQ instructions and assess whether the updated memory state aligns with the expected
outcome. To achieve this, we employ two approaches and two prompting techniques, details of
which can be found in Sec. 3.1 and Sec. 3.2, below.

3.1 TWO INFERENCE APPROACHES

Recall that the program we ask LLMs to run contains multiple instructions, either of Algorithm 1, 2
or 3. Our tests consider two approaches: run each instruction with a single inference, or with
multiple inferences on the tested LLM.

Input
memory

state

Output
memory

state
LLM

Inference call 1
“Read pc”

Inference call 2
“Fetch line{pc}”

Inference call 3
“Execute line{pc}”

Figure 3: Executing instructions using a multiple-inferences approach. In this case each instruction
is executed in 3 distinct calls: (a) one for reading the program counter (PC), (b) one for reading the
instruction that is pointed by the program counter and (c) one to execute this instruction. Then, the
model outputs an updated memory state, which is then used in the next prompt in order to execute
the next instruction, in a looped manner.

Multiple-inferences per instruction The first approach referred to as multiple-inferences, in-
volves making three distinct inference calls to the underlying model in order to execute the in-
struction pointed to by the current value of the program counter pc. The initial call is employed
to read the value of pc, while the second one utilizes this value to fetch the instruction located at

5

Under review as a conference paper at ICLR 2024

Input
memory

state

Output
memory

stateLLM
Inference call: “Execute current instruction”

Figure 4: Executing instructions using a single-inference approach. The model is instructed to
execute the current command (namely the one that is pointed by the program counter), and the
updated memory state is used to execute the next one, in an iterative manner.

line{pc}. Lastly, the third call serves to execute the aforementioned instruction. The outcome
is an updated memory state, which is subsequently used to execute the following instruction in the
program, in an iterative fashion. A graphical depiction of this process can be observed in Fig. 3. As
illustrated, the memory state is incorporated into the prompt, and the LLM is invoked three consec-
utive times. Upon completion of the current instruction’s execution, the updated memory state is
then employed to execute the subsequent instruction in a similar manner.

Single-inference per instruction The single-inference approach, which serves as the second
method, can be considered a constrained version of the multiple-inferences approach, as it essen-
tially consolidates the inference calls of the latter into a single, more complex call. In this method,
the model is invoked only once and instructed to execute the current instruction based on the under-
lying instruction set and the value of the program counter pc. The updated memory state is then
used to execute the subsequent instruction, and this process is iteratively repeated in a loop. A visual
representation of this concept can be seen in Fig. 4.

3.2 TWO PROMPTING TECHNIQUES

Evidently, it is crucial to investigate how various prompting techniques influence the models’ perfor-
mance. Therefore, an essential aspect of our evaluation is the implementation of diverse prompting
methods and the observation of their effects on the models. Specifically, we incorporate two distinct
prompting strategies: (i) the direct output strategy, where the models receive only the execution
instructions and must produce the updated memory state exclusively, and (ii) the chain-of-thought
(CoT) strategy, originally proposed in (Wei et al., 2022b), wherein the model is required to provide
intermediate results in addition to the updated memory state.

4 EXPERIMENTAL SETUP

Models In this series of experiments, we evaluate the performance of various LLMs
on the tasks that we described in the previous section. Our investigation includes
text-davinci-003 (Brown et al., 2020), gpt-3.5, and gpt-4 (OpenAI, 2023) from the
GPT family of models, trained and deployed by OpenAI, and claude-v1 and claude-v1.3 by
Anthropic (Anthropic, 2022). It is worth mentioning that we have access to these models through
their respective APIs, which allows us to perform inferences and evaluate their capabilities.

Emulating Memory Functionality As a first step, we begin our study by determining the extent
to which the examined models can effectively simulate basic memory functionality. In particular,
assuming memories with a structure like in Fig. 2, we test tasks such as reading and writing to a reg-
ister, and retrieving a desired instruction from the instructions section, using straightforward
prompting.

6

Under review as a conference paper at ICLR 2024

text-davinci-003 gpt-3.5-turbo gpt-4 claude-v1 claude-v1.3

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 10

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 20

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 30

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 10

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 20

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 30

Figure 5: Register reading accuracy for the case of Minsky Machines (top) and SUBLEQ OISCs
(bottom). This figure shows the accuracy of reading a register from a randomly chosen memory
state, as the number of registers increases. It also compares the accuracy for states with different
numbers of instructions.

Instruction Execution Accuracy Our primary evaluation metric is the instruction execution ac-
curacy, which quantifies the models’ ability to execute an instruction given an arbitrary Minsky
or SUBLEQ memory state with either the multiple-inference or the single-inference approach, as
discussed in the previous section.

This evaluation is conducted on numerous randomly generated memory states. In particular, we
fix the number of registers to 16, and then randomly generate 15 memory states with an increasing
number of instructions ninstr ∈ {5, 10, 15, 20, 25, 30}4. Then, we employ the multiple-inference
and single-inference approaches that we discussed in the previous section, asking the models to
generate the updated memory state, based on the current one. In addition, in the latter case, we
also investigate the behavior of the models under the direct output and chain-of-thought prompting
strategies that we also presented in the previous section.5

Furthermore, it is essential to highlight that in the context of Minsky machines, a branch operation
is executed solely if the instruction being executed is of type B and if the value of the corresponding
register is 0 (refer to Algorithm 2 for more details). Consequently, when we generate the value of
each register in a Minsky Machine randomly, with probability 1/2 we select the value to be 0. This
implies that approximately half of the evaluated instructions will involve a branch operation, thereby
providing a diverse set of test cases for the analysis.

Response Parsing It is important to emphasize that in our experimental evaluations, we assume
the existence of a basic parser that parses the updated memory state from a model’s response. This
aspect is of particular importance in the context of the chain-of-thought prompting strategy, where
the models’ responses also encompass intermediate steps. Consequently, it becomes necessary to
determine the updated memory state. In our experiments, this post-processing mechanism comprises
a simple regular expression designed to identify the portion of the response enclosed within the
<memory></memory> tags.

5 RESULTS

Emulating Memory Functionality Figs. 5, 6, and 7 demonstrate the performance of the tested
models when emulating basic memory functionality for either a Minsky Machine or a SUBLEQ
OISC, in the setup that we described in the previous section. Specifically, Fig. 5 presents the accu-
racy of the models in reading a random register value from a randomly generated memory state. In
Fig. 6, the accuracy of fetching a random instruction from memory is shown. Lastly, Fig. 7 displays
the accuracy of writing a randomly selected value to a randomly specified register in memory.

4In total 6× 15 = 90 memory states.
5The detailed prompts are provided in the Appendix.

7

Under review as a conference paper at ICLR 2024

text-davinci-003 gpt-3.5-turbo gpt-4 claude-v1 claude-v1.3

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 4

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 12

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 20

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 4

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 12

10 15 20 25 30
Number of Instructions

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_regs = 20

Figure 6: Fetching instruction accuracy for the case of Minsky Machines (top) and SUBLEQ OISCs
(bottom). This figure shows the accuracy of fetching an instruction from a randomly chosen memory
state, as the number of instructions increases. It also compares the accuracy for states with different
numbers of registers.

In all cases, we observe that the models achieve near-perfect accuracy, which appears to be unaf-
fected by the increase in the number of registers and instructions in the memory state. From these
results, we can conclude that the tested LLMs are capable of approximating simple memory func-
tionality, an essential component for executing simple Minsky or SUBLEQ instructions.

Instruction Execution Accuracy In Fig. 1, we present our results regarding the effectiveness
of the tested LLMs in executing the current (Minsky or SUBLEQ) instruction, given an arbitrary
memory state. As discussed in the previous section, we test both our multiple-inference and single-
inference approaches, and, especially for the latter case, both the direct output and CoT prompting
strategies.

As we can observe, it is evident that, in the single-inference experiments, the use of CoT prompting
leads to significantly better performance than the direct output strategy, which achieves nearly zero
accuracy in instruction execution in most settings.

Regarding the Minsky experiments, we can observe that OpenAI’s models (text-davinci-003,
gpt-3.5, and gpt-4) exhibit better performance compared to the claude models in the single-
inference approach. In fact, gpt-4 achieves 100% accuracy for any number of instructions, which
indicates its superiority compared to all the other models. In addition, we can observe that di-
viding the instruction execution into multiple API calls, namely the multiple-inferences approach,
seems to be beneficial for the claude models without significant improvements for the cases of
text-davinci-003 and gpt-3.5. However, in those experiments, gpt-4 still achieves 100%
accuracy, proving to be the most capable among all the models.

Similar observations can be drawn in the case of SUBLEQ experiments as well. Specifically, once
again, OpenAI’s models outperform Anthropic’s models, with gpt-4 achieving near-perfect ac-
curacy. Furthermore, the multiple-inferences approach enhances the performance of both claude
models without significantly affecting text-davinci-003, gpt-3.5, or gpt-4.

5.1 DISCUSSION

As we have previously discussed, the near-perfect performance of gpt-4 in executing arbitrary
Minsky and SUBLEQ instructions highlights the strong potential of the current state-of-the-art mod-
els for general-purpose in-context computation, an ability that is emergent. This unintended capabil-
ity suggests that such models have inherent skills to autonomously perform calculations similar to a
general-purpose computer when iteratively queried. This latent potential for reliable, unconstrained
in-context computation absent external mechanisms has important implications for understanding
risks related to AI alignment.

8

Under review as a conference paper at ICLR 2024

text-davinci-003 gpt-3.5-turbo gpt-4 claude-v1 claude-v1.3

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 10

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 20

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 30

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 10

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 20

4 8 12 16 20
Number of Registers

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n_instr = 30

Figure 7: Updating register accuracy for the case of Minsky Machines (top) and SUBLEQ OISCs
(bottom). This figure shows the accuracy of writing a value to a randomly chosen register to a
randomly generated memory state, as the number of instructions increases. It also compares the
accuracy for states with different numbers of registers.

6 CONCLUSION

In this work, we present a systematic study to evaluate the capability of LLMs to in-context emu-
late simple computational models without external memory or execution mechanisms. Our findings
demonstrate that certain models like GPT-4 can reliably execute arbitrary Minsky machine and SUB-
LEQ instructions with near perfect accuracy through iterative inference calls. This emergent ability,
despite not being an explicit objective during training, suggests that the model has developed some
inherent general-purpose computing capabilities.

While fully emulating a general-purpose computational model would require 100% accuracy, the
strong performance of GPT-4, along with the non-trivial performance of the other models, indicate
that they are close to demonstrating algorithmic reasoning abilities. Our prompts are carefully de-
signed to avoid exploiting specific training data. Hence, the model’s effectiveness highlights its
potential for executing any computational task when placed in an inference loop.

This has important implications for AI alignment, as the emergence of such autonomous computing
capabilities was not an objective during training. Our work shows that certain LLMs have intrinsic
skills for general-purpose computation, and can in effect become “universal computation engines”
when recursively invoked. Further research is crucial to deeply understand the roots, limits, and
controllability of such abilities for safe and reliable deployment of powerful LLMs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anthropic. Claude. https://www.anthropic.com/product, 2022. Accessed: 2023-05-
10.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.,
Terry, M., Le, Q., et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gianinazzi, L., Gajda, J., Lehmann, T., Pod-
stawski, M., Niewiadomski, H., Nyczyk, P., and Hoefler, T. Graph of thoughts: Solving elaborate
problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

Bieber, D., Sutton, C., Larochelle, H., and Tarlow, D. Learning to execute programs with instruction
pointer attention graph neural networks. Advances in Neural Information Processing Systems, 33:
8626–8637, 2020.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
7432–7439, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Chase, H. LangChain, October 2022. URL https://github.com/hwchase17/
langchain.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Chollet, F. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., and Toutanova, K. Boolq: Ex-
ploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, Ł. Universal transformers. arXiv
preprint arXiv:1807.03819, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jian, L., Lin, B. Y., West, P., Bhagavatula, C., Bras, R. L.,
Hwang, J. D., et al. Faith and fate: Limits of transformers on compositionality. arXiv preprint
arXiv:2305.18654, 2023.

Esolangs. Higher subleq. URL: https://esolangs.org/wiki/Higher_Subleq.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What can transformers learn in-context? A
case study of simple function classes. Advances in Neural Information Processing Systems, 35:
30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J., Lee, K., Lee, J. D., and Papailiopoulos, D. Looped transformers
as programmable computers. arXiv preprint arXiv:2301.13196, 2023.

Graves, A., Wayne, G., and Danihelka, I. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

10

https://www.anthropic.com/product
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://esolangs.org/wiki/Higher_Subleq

Under review as a conference paper at ICLR 2024

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Col-
menarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid computing using a
neural network with dynamic external memory. Nature, 538(7626):471–476, 2016.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin, J. Unixcoder: Unified cross-modal pre-
training for code representation. arXiv preprint arXiv:2203.03850, 2022.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. Measuring
massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Stein-
hardt, J. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Imani, S., Du, L., and Shrivastava, H. Mathprompter: Mathematical reasoning using large language
models. arXiv preprint arXiv:2303.05398, 2023.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Kaiser, Ł. and Sutskever, I. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228, 2015.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are zero-shot
reasoners. arXiv preprint arXiv:2205.11916, 2022.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neural random-access machines. arXiv preprint
arXiv:1511.06392, 2015.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D., Polo-
sukhin, I., Devlin, J., Lee, K., et al. Natural questions: a benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:453–466, 2019.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race: Large-scale reading comprehension dataset
from examinations. arXiv preprint arXiv:1704.04683, 2017.

Lee, G., Hartmann, V., Park, J., Papailiopoulos, D., and Lee, K. Prompted llms as chatbot modules
for long open-domain conversation. arXiv preprint arXiv:2305.04533, 2023.

Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkovskiy, A., Fu, S., Sundaresan, N., and Duan, N. Code
execution with pre-trained language models. arXiv preprint arXiv:2305.05383, 2023.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Frozen pretrained transformers as universal compu-
tation engines. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7628–7636, 2022.

Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y. N., Zhu, S.-C., and Gao, J.
Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint
arXiv:2304.09842, 2023.

Mavaddat, F. and Parhami, B. Urisc: The ultimate reduced instruction set computer. Interna-
tional Journal of Electrical Engineering & Education, 25(4):327–334, 1988. doi: 10.1177/
002072098802500408. URL https://doi.org/10.1177/002072098802500408.

Mazonka, O. and Kolodin, A. A simple multi-processor computer based on subleq. arXiv preprint
arXiv:1106.2593, 2011.

Mialon, G., Dessı̀, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick,
T., Dwivedi-Yu, J., Celikyilmaz, A., et al. Augmented language models: a survey. arXiv preprint
arXiv:2302.07842, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a suit of armor conduct electricity? a new
dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

11

https://doi.org/10.1177/002072098802500408

Under review as a conference paper at ICLR 2024

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L. Re-
thinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837, 2022.

Minsky, M. L. Computation. Prentice-Hall Englewood Cliffs, 1967.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D.,
Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., and Yang, D. Is chatgpt a general-purpose
natural language processing task solver? arXiv preprint arXiv:2302.06476, 2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. Improving language understanding
by generative pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Reed, S. and De Freitas, N. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Richards, T. B. AutoGPT, March 2023. URL https://github.com/
Significant-Gravitas/Auto-GPT.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y. Socialiqa: Commonsense reasoning about
social interactions. arXiv preprint arXiv:1904.09728, 2019.

Schuurmans, D. Memory augmented large language models are computationally universal. arXiv
preprint arXiv:2301.04589, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto,
T. B. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos,
T., Baker, L., Du, Y., et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Veličković, P., Buesing, L., Overlan, M., Pascanu, R., Vinyals, O., and Blundell, C. Pointer graph
networks. Advances in Neural Information Processing Systems, 33:2232–2244, 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. Glue: A multi-task bench-
mark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,
2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S.
Superglue: A stickier benchmark for general-purpose language understanding systems. Advances
in neural information processing systems, 32, 2019.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., and Zhou, D. Self-consistency improves chain
of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

12

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

Wang, Y., Wang, K., Gao, F., and Wang, L. Learning semantic program embeddings with graph
interval neural network. Proceedings of the ACM on Programming Languages, 4(OOPSLA):
1–27, 2020.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,
Zhou, D., Metzler, D., et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q. V., and
Zhou, D. Chain-of-thought prompting elicits reasoning in large language models. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Yan, Y., Swersky, K., Koutra, D., Ranganathan, P., and Hashemi, M. Neural execution engines:
Learning to execute subroutines. Advances in Neural Information Processing Systems, 33:17298–
17308, 2020.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., and Narasimhan, K. Tree of thoughts:
Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601, 2023.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,
X., Lin, X. V., et al. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Bousquet, O., Le, Q.,
and Chi, E. Least-to-most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625, 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Under review as a conference paper at ICLR 2024

A PROMPTS

A.1 SINGLE-INFERENCE PER INSTRUCTION

Below, we present the detailed prompts that were used in the single-inference per instruction exper-
iments.

A.1.1 MINSKY MACHINE

Direct output prompting
Below are the steps to execute the current instruction in <memory>:

STEPS:
1) Read the value of pc from the <program counter> section in memory.

2) Read the instruction at line{pc} from the <instructions> section in
memory.

3) Based on the instruction in line{pc}, choose only steps 3.a) or
3.b) (and not both). Explain why, and execute one of the following
operations:

a) If the instruction is of the form A(reg{i}):

i) Read the value of reg{i} from the <registers> sections in
memory.

ii) Increment reg{i} by 1.

iii) Update pc by adding 1.

b) If the instruction is of the form B(reg{i}, new pc):

i) Read the value of reg{i} from the <registers> sections in
memory.

ii) If reg{i} equals 0, set pc to new pc in <program counter>.

iii) Otherwise, I decrement reg{i} by 1 and increment pc by 1.

4) Output the new memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>
tags.

Execute steps 1) to 4) once. Output only the updated memory, as
described in step 4) within <memory></memory> tags, as the Answer.
Answer:

Chain-of-thought prompting
Below are the steps to execute the current instruction in <memory>:

STEPS:
1) Read the value of pc from the <program counter> section in memory.
[Intermediate answer]: "Searching in the <program counter> section, I
found that the current value of pc is , which points to the instruction
we need to execute."

2) Read the instruction at line{pc} from the <instructions> section in
memory.
[Intermediate answer]: "Searching in the <instructions> section, I
located the instruction at line{pc}, which is , and this specifies the
operation to be performed on the registers."

3) Based on the instruction in line{pc}, choose only steps 3.a) or
3.b) (and not both). Explain why, and execute one of the following
operations:

a) If the instruction is of the form A(reg{i}):

14

Under review as a conference paper at ICLR 2024

i) Read the value of reg{i} from the <registers> sections in
memory.
[Intermediate answer]: "Since the instruction is of the form
A(reg{i}), I searched in <registers> section and retrieved the
current value of (reg{i}), which is , and now I will increment
this register by 1."

ii) Increment reg{i} by 1.
[Intermediate answer]: "I incremented (reg{i}) by 1, and the
updated value is , as I added 1 to its original value."

iii) Update pc by adding 1.
[Intermediate answer]: "I updated the value of (pc) by adding
1, and now pc is "

b) If the instruction is of the form B(reg{i}, new pc):

i) Read the value of reg{i} from the <registers> sections in
memory.
[Intermediate answer]: "Since the instruction is of the form
B(reg{i}), I checked the current value of (reg{i}), which is ,
and this will determine our next action."

ii) If reg{i} equals 0, set pc to new pc in <program counter>.
[Intermediate answer]: "Since (reg{i}) is 0, I updated the
value of pc to (new pc), which is ." iii) Otherwise, I
decrement reg{i} by 1 and increment pc by 1.
[Intermediate answer]: "Since (reg{i}) is not 0, I decremented
(reg{i}) by 1 to get the updated value of , and incremented pc
to "

4) Output the new memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>
tags.
[Final answer]: "After executing the instruction, the final state of
<memory> is:"

Execute steps 1) to 4) once. Replace all placeholders ‘ ‘, and all the
[Intermediate answer] tags with the appropriate intermediate responses.
In step 3), output only the corresponding intermediate answer for the
chosen operation (3.a or 3.b).
In step 4), output the entire memory within <memory></memory> tags, as
the [Final answer].
Answer:

A.1.2 SUBLEQ OISC

Direct output prompting
Below are the steps to execute the current instruction A in <memory>:

STEPS:
1) Read the value of pc from the <program counter> section in memory.

2) Read the instruction at line{pc} from the <instructions> section in
memory.

3) Since the instruction is of the form A(reg{i}, reg{j}, new pc), execute
the following:

i) Read the value of reg{i} from the <registers> sections in memory.

ii) Read the value of reg{j} from the <registers> sections in memory.

iii) Do the calculation reg{j} = reg{j} - reg{i}.

4) Update the program counter (pc). Execute only one of the following
operations, based on the updated value of reg{j}:

i) If the updated value of reg{j} is <= 0, set pc to new pc.

15

Under review as a conference paper at ICLR 2024

ii) Otherwise, if the updated value of reg{j} is > 0, set pc to pc +
1.

5) Output the updated memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>
tags. [Final answer]: "After executing the instruction A, the final
state of <memory> is:"

Execute steps 1) to 5) once. Output only the updated memory, as
described in step 5) within <memory></memory> tags, as the Answer.
Answer:

Chain-of-thought prompting
Below are the steps to execute the current instruction A in <memory>:

STEPS:
1) Read the value of pc from the <program counter> section in memory.
[Intermediate answer]: "Searching in the <program counter> section, I
found that the current value of pc is , which points to the instruction
we need to execute."

2) Read the instruction at line{pc} from the <instructions> section in
memory.
[Intermediate answer]: "Searching in the <instructions> section, I
located the instruction at line{pc}, which is A(reg{i}, reg{j}, new pc),
and this specifies the operation to be performed on the registers."

3) Since the instruction is of the form A(reg{i}, reg{j}, new pc), execute
the following:

i) Read the value of reg{i} from the <registers> sections in memory.
[Intermediate answer]: "I searched in <registers> section and
retrieved the current value of (reg{i}) which is ."

ii) Read the value of reg{j} from the <registers> sections in memory.
[Intermediate answer]: "I searched in <registers> section and
retrieved the current value of (reg{j}) which is ."

iii) Do the calculation reg{j} = reg{j} - reg{i}.
[Intermediate answer]: "I did the calculation (reg{j}) = (reg{j})
- (reg{i}), and the updated value of (reg{j}) is () - () = ()."

4) Update the program counter (pc). Execute only one of the following
operations, based on the updated value of reg{j}:

i) If the new updated of reg{j} is <= 0, set pc to new pc.
[Intermediate answer]: "Since the updated value of (reg{j}) is
which is <= 0, I updated the value of (pc) to (new pc), which is
."

ii) Otherwise, if the updated value of reg{j} is > 0, set pc to pc +
1.
[Intermediate answer]: "Since the updated value of (reg{j}) is
which is > 0, I updated the value of (pc) to (pc + 1), which is
."

5) Output the updated memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>
tags.
[Final answer]: "After executing the instruction A, the updated state of
<memory> is:"

Execute steps 1) to 5) once. Replace all placeholders ‘ ‘, and all the
[Intermediate answer] tags with the appropriate intermediate responses.
In step 4), output only the corresponding intermediate answer for the
chosen operation (4.i or 4.ii).
In step 5), output the entire memory within <memory></memory> tags, as

16

Under review as a conference paper at ICLR 2024

the [Final answer].
Answer:

A.2 MULTIPLE-INFERENCES PER INSTRUCTION

Below, we present the detailed prompts that were used in the multiple-inferences per instruction
experiments. Recall that in this approach, the model is invoked 3 times for reading pc, fetching
line{pc} and executing line{pc}, respectively.

A.2.1 MINSKY MACHINE

Read pc

[Task]: Read pc and output only its value from the <program counter>
section in memory
[Answer]: value of pc=

Fetch line{pc} [given pc]

[Task]: Read and output the instruction at line{pc} from the
<instructions> section in memory
[Answer]: line{pc}=

Execute line{pc} [given pc , and line{pc}]
[Task]:
The current instruction is {instruction}, and the current value of pc is
{pc}. Below are the steps to execute {instruction} in <memory>:
STEPS:
1) Based on the instruction {instruction} and the current value pc={pc},
choose only one of the steps a) or b) (and not both). Explain why, and
execute one of the following operations:

a) If the instruction is of the form A(reg{i}):
i) Read the value of reg{i} from the <registers> sections in

memory.
[Intermediate answer]: "Since the instruction is of the form
A(reg{i}), I searched in <registers> section and retrieved the
current value of (reg{i}), which is , and now I will increment
this register by 1."

ii) Increment reg{i} by 1.
[Intermediate answer]: "I incremented (reg{i}) by 1, and the
updated value is , as I added 1 to its original value."

iii) Update pc by adding 1.
[Intermediate answer]: "I updated the value of (pc) by adding
1, and now pc is "

b) If the instruction is of the form B(reg{i}, new pc):

i) Read the value of reg{i} from the <registers> sections in
memory.
[Intermediate answer]: "Since the instruction is of the form
B(reg{i}), I checked the current value of (reg{i}), which is ,
and this will determine our next action."

ii) If reg{i} equals 0, set pc to new pc in <program counter>.
[Intermediate answer]: "Since (reg{i}) is 0, I updated the
value of pc to (new pc), which is ."

iii) Otherwise, I decrement reg{i} by 1 and increment pc by 1.
[Intermediate answer]: "Since (reg{i}) is not 0, I decremented
(reg{i}) by 1 to get the updated value of , and incremented pc
to "

2) Output the new memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>

17

Under review as a conference paper at ICLR 2024

tags.
[Final answer]: "After executing the instruction, the final state of
<memory> is:"

Execute steps 1) and 2). Replace all placeholders ‘ ‘, and all the
[Intermediate answer] tags with the appropriate intermediate responses.
In step 1), output only the corresponding intermediate answers for the
chosen operations (1.a or 1.b).
In step 2), output the entire memory within <memory></memory> tags, as
the [Final answer].
[Answer]:

A.2.2 SUBLEQ OISC

Read pc

[Task]: Read pc and output only its value from the <program counter>
section in memory
[Answer]: value of pc=

Fetch line{pc} [given pc]

[Task]: Read and output the instruction at line{pc} from the
<instructions> section in memory
[Answer]: line{pc}=

Execute line{pc} [given pc , and line{pc}]
[Task]:
The current instruction is {instruction}, and the current value of pc is
{pc}. Below are the steps to execute {instruction} in <memory>:
STEPS:
1) Since the instruction is of the form A(reg{i}, reg{j}, new pc), execute
the following:

i) Read the value of reg{i} from the <registers> sections in memory.
[Intermediate answer]: "I searched in <registers> section and
retrieved the current value of (reg{ }) which is ."

ii) Read the value of reg{j} from the <registers> sections in memory.
[Intermediate answer]: "I searched in <registers> section and
retrieved the current value of (reg{ }) which is ."

iii) Do the calculation reg{j} = reg{j} - reg{i}. [Intermediate
answer]: "I did the calculation (reg{ }) = (reg{ }) - (reg{ }),
and the updated value of (reg{ }) is () - () = ()."

2) Update the program counter (pc), whose current value is {pc}. Execute
only one of the following operations, based on the updated value of
reg{j}:

i) If the updated value of reg{j} is <= 0, set pc to new pc.
[Intermediate answer]: "Since the updated value of (reg{ }) is
which is <= 0, I updated the value of (pc) to (new pc), which is
."

ii) Otherwise, if the updated value of reg{j} is > 0, set pc to pc +
1.
[Intermediate answer]: "Since the updated value of (reg{ }) is
which is > 0, I updated the value of (pc) to (pc + 1), which is
."

3) Output the updated memory (all <program counter>, <registers>, and
<instructions>), after making the updates, within <memory></memory>
tags.

18

Under review as a conference paper at ICLR 2024

[Final answer]: "After executing the instruction A, the updated state of
<memory> is:"

Execute steps 1) and 2). Replace all placeholders ‘ ‘, and all the
[Intermediate answer] tags with the appropriate intermediate responses.
In step 2), output only the corresponding intermediate answers for the
chosen operations (2.i or 2.ii).
In step 3), output the entire memory within <memory></memory> tags, as
the [Final answer].
[Answer]:

19

	Introduction
	Overview of the Study
	Main Results

	Background
	Methodology
	Two Inference Approaches
	Two Prompting Techniques

	Experimental Setup
	Results
	Discussion

	Conclusion
	Prompts
	Single-inference per instruction
	Minsky Machine
	SUBLEQ OISC

	Multiple-inferences per instruction
	Minsky Machine
	SUBLEQ OISC

