
CA-SSLR: Condition-Aware Self-Supervised Learning
Representation for Generalized Speech Processing

Yen-Ju Lu†, Jing Liu, Thomas Thebaud†, Laureano Moro-Velazquez†,
Ariya Rastrow, Najim Dehak†, Jesus Villalba†

†Center for Language and Speech Processing, Johns Hopkins University
{ylu125, tthebau1, laureano, ndehak3, jvillal7}@jhu.edu

Abstract

We introduce Condition-Aware Self-Supervised Learning Representation (CA-
SSLR), a generalist conditioning model broadly applicable to various speech-
processing tasks. Compared to standard fine-tuning methods that optimize for
downstream models, CA-SSLR integrates language and speaker embeddings from
earlier layers, making the SSL model aware of the current language and speaker
context. This approach reduces the reliance on the input audio features while
preserving the integrity of the base SSLR. CA-SSLR improves the model’s capa-
bilities and demonstrates its generality on unseen tasks with minimal task-specific
tuning. Our method employs linear modulation to dynamically adjust internal
representations, enabling fine-grained adaptability without significantly altering
the original model behavior. Experiments show that CA-SSLR reduces the number
of trainable parameters, mitigates overfitting, and excels in under-resourced and
unseen tasks. Specifically, CA-SSLR achieves a 10% relative reduction in LID
errors, a 37% improvement in ASR CER on the ML-SUPERB benchmark, and a
27% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.

1 Introduction

The emergence of Self-Supervised Learning Representations (SSLRs) models has revolutionized
speech processing, setting new standards in the field. Pioneering models like Wav2vec 2.0 Baevski
et al. [2020], HuBERT [Hsu et al., 2021], and WavLM [Chen et al., 2022a] leverage unlabeled audio
data to learn rich representations of spoken language. These models are pivotal in a wide range
of applications, including Speech Recognition (ASR) [Chang et al., 2021], Speaker Verification
(SV) [Chen et al., 2022b, Tak et al., 2022], Language Identification (LID) [Bartley et al., 2023], and
Speech Translation (ST) [Tang et al., 2022]. Benchmarks such as SUPERB [Yang et al., 2021] and
ML-SUPERB [Shi et al., 2023a] have been crucial in evaluating SSL model performance, providing
standardized tasks.

Although SSLR training approaches combine speech from various sources, these models learn
representations solely from unpaired audio-only data. When extending SSLR features to multilingual
scenarios and low-resource languages, unsupervised training limits the model’s ability to distinguish
between different languages, resulting in unified features for all languages. Additionally, labeling all
SSL training data with language and speaker information requires significant human effort and is
impractical. Thus, a post-training conditioning approach is more favorable. In other fields, methods
like [Zhang et al., 2023] and IP-Adaptor [Ye et al., 2023] in image processing, and CTRL [Keskar
et al., 2019] in NLP, have successfully integrated conditioning into pretrained models, demonstrating
potential applications for speech processing.

In response to these challenges, we propose Condition-Aware Self-Supervised Learning Representa-
tion (CA-SSLR), a generalist conditioning model applicable to various speech-processing tasks such

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

as language identification, multilingual speech recognition, and speaker verification. Unlike standard
adaptation methods that optimize the SSLR parameters for downstream models, CA-SSLR integrates
language and speaker embeddings from earlier layers, making the SSLR aware of the current language
and speaker context. This technique enables the creation of models that perform multiple tasks with a
single adapted SSL encoder by strategically injecting conditional adapters into each encoder block
while freezing the pretrained encoder weights. CA-SSLR follows a hierarchical self-adaptation
structure, where adapters at each layer are conditioned on intermediate task-specific embeddings
estimated from lower layers. Attention mechanisms and linear modulation dynamically adjust scaling
and biasing, tailoring the model’s response at each time step. The initialization techniques allow
the conditioning module to perform identity transformations, ensuring the existing model behavior
is maintained when incorporating new conditions. This approach reduces the number of trainable
parameters, mitigates overfitting, and avoids catastrophic forgetting. We conduct experiments on
three popular types of multilingual speech processing tasks—ASR, LID, and SV to demonstrate the
versatility and efficiency of CA-SSLR.

This work’s main contribution is introducing a novel method for conditioning the SSLRs with limited
supervised labels. This leads to generalized speech representation with improved performance using
minimal trainable parameters and maintains the model’s behavior. This includes:

• Hierarchical Dynamic Conditioning: We design attention-based conditional adapters and
integrate them into the SSL model. Our approach dynamically tailors the model’s behavior
to the input language and speaker characteristics at each time step, which are periodically
estimated from previous layers.

• Preservation of Pre-trained Weights with Efficient Parameter Utilization: The model
capitalizes on the knowledge of the foundational model pre-trained weights and introduces
lightweight adapters that modulate the encoder hidden representation by a scalar γ and bias
β, significantly reducing the trainable parameters. This strategy ensures more stable and
parameter-efficient training.

• Harmonized Task Compatibility with Notable Performance Improvements: Our experi-
ments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting,
and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves an 27%
relative reduction in LID errors, a 37% improvement in ASR CER on the ML-SUPERB
benchmark, and a 27% decrease in SV EER on VoxCeleb-1. These results highlight CA-
SSLR’s effectiveness in enhancing multilingual SSLRs while also lowering computational
costs for multitask fine-tuning.

2 Related Work

Self-supervised learning representation. Self-Supervised Learning (SSL) models, epitomized by
Wav2Vec 2.0 [Baevski et al., 2020], HuBERT [Hsu et al., 2021], and WavLM [Chen et al., 2022a],
have significantly advanced speech processing by leveraging vast amounts of unlabeled audio data.
These models excel in extracting rich speech representations, capturing its intricate acoustic, phonetic,
and semantic nuances. These models are fine-tuned on smaller, labeled datasets to adapt the generic
representations for specific tasks, achieving impressive results.

In the realm of cross-lingual speech representation, Wav2Vec 2.0-XLSR (Cross-Lingual Speech
Representation) [Babu et al., 2021] takes a significant leap forward. It builds on the robust architecture
of Wav2Vec 2.0 but is pre-trained on a diverse, multilingual dataset, learning universal representations
transferable across languages. Similarly, mHuBERT (Multilingual HuBERT) [Lee et al., 2021]
extends the foundational HuBERT model to process multiple languages effectively. This makes them
immensely powerful for multilingual speech recognition and understanding tasks. The benchmark
for the SSL models also extends from monolingual SUPERB [Yang et al., 2021] to multilingual
ML-SUPERB [Shi et al., 2023a], building new standards for the SSLR models.

Adaptation Methods. In many studies Yang et al. [2021], Shi et al. [2023a], Chen et al. [2023a],
the SSLR remains frozen while decoders are trained for a specific task. Since the encoder is shared
across all tasks, this approach offers the advantage that it allows us to evaluate multiple tasks on a
given speech signal with just one encoder run. However, systems of this kind often exhibit poorer
performance when compared to those incorporating some degree of adaptation of the SSLR to the
target task. The latter can involve fine-tuning the entire SSL encoder Chen et al. [2022a], a subset of

2

Language
Identification

Decoder

Conditioned-Aware
Speech Representation

Generalist
Encoder

SSL layers

Speaker
Verification

Decoder

Speaker
Conditioner

Language
Conditioner

Linear Proj. Linear Proj.

(a) CA-SSLR improves SSL features by integrat-
ing intermediate LID/SV conditions, keeping pre-
trained parameters frozen.

Scale
Projection

Bias
ProjectionCondition

Features Ti
m

e-
w

is
e

At
te

nt
io

n

Encoded
Speech

Channel-wise
modulation

: Attention Pathway

: Modulation Pathway

(b) The trainable time-channel attention conditioner for
integrating language and speaker prediction in CA-SSLR.
It predicts bias β̃ and scale γ̃ using condition feature z.

Figure 1: CA-SSLR scheme and its time-channel attention conditioner. Only the conditioner and
linear projections for the decoders are trainable, and all other parameters are frozen during adaptation.

its layers, or introducing lightweight adapters [Chen et al., 2023b] within its layers. Unfortunately,
this results in employing a distinct encoder per task, leading to a large increase in computational load
that scales linearly with the number of tasks to be assessed.

Conditioning Pre-trained Models. Image processing has successfully integrated conditioning
into pretrained models using methods like ControlNet [Zhang et al., 2023] and IP-Adaptor [Ye
et al., 2023]. ControlNet allows for precise control over generated images by incorporating additional
conditions such as edge maps or sketches, while IP-Adaptor uses small-scale adapter modules to
adjust the model’s behavior based on specific conditions without altering the pre-trained model’s
parameters. These techniques have achieved significant success and offer insights for potential
applications in speech processing. Similarly, in Natural Language Processing (NLP), models like the
Conditional Transformer Language Model (CTRL) [Keskar et al., 2019] have introduced conditioning
to improve model performance. CTRL uses control codes to guide text generation based on specified
attributes like style or domain, allowing for efficient adaptation without extensive retraining. The
successes in image processing and NLP highlight the potential for conditioning pre-trained SSLRs in
speech processing.

Hierarchical Conditioning. Hierarchical models have been used in previous speech models.
[Sanabria and Metze, 2018] proposes a multi-task ASR model that improves intermediate repre-
sentations by performing Connectionist Temporal Classification at different levels of the network
with targets of different granularity. Essentially, representations in lower layers are used to predict
character tokens, while higher layers predict subword units with growing vocabulary sizes–from
300 to 10k subword units in the last layer. [Chen et al., 2023a] further explored this by integrating
hierarchical conditional layers within the ASR decoder, using ASR tokens predicted from preceding
layers to inform subsequent layers.

3 Methodology

We propose Condition-Aware SSLR (CA-SSLR), designed to serve as a universal encoder for multiple
downstream speech tasks. CA-SSLR enhances pre-trained SSL models by integrating intermediate
LID and SV predictions to condition and adapt subsequent layers dynamically. This approach allows
the model to capture essential language and speaker characteristics, refining its outputs progressively
and making it particularly effective in multilingual and multispeaker scenarios.

Figure 1a illustrates the overall architecture of CA-SSLR. The model consists of a frozen SSL encoder
augmented with trainable conditioners and lightweight task-specific decoders. The conditioner

3

Layers Group i

Representation Features
Group 1 to i - 1

Linear
Projection

Weighted
Sum

Shared
LID/SV Decoder

LID/SV
Embeddings

Time-Channel
Attention Conditioners

Linear
w/ LayerNorm

Generalist
Encoder

Layer Group
i + 1

...

(a) Hierarchical conditioning with TCACs to generate feature z and modulate layers
with scale γ̃ and bias β̃.

FC

Layer-Norm

Attention

Layer-Norm

Encoder
Layer

TCA
Conditioner

(b) SSLR layer with
conditioning integration,
transforming S into S̃.

Figure 2: Architecture of the CA-SSLR model employing hierarchical self-conditioning with Time-
Channel Attention Conditioners (TCACs).

modulates the hidden representations of the SSL encoder layers based on conditioning features
derived from intermediate LID and SV embeddings. This hierarchical conditioning mechanism
enables the model to adapt dynamically to different input conditions while keeping the majority of
the pre-trained parameters fixed. In the following sections, we detail the components of CA-SSLR,
starting with the conditioner module and then explaining how it integrates into the overall architecture.
We also describe the incremental training strategy employed to incorporate conditioning information
without catastrophic forgetting.

3.1 Channel-wise and Time-wise Attention Conditioner

A central component of CA-SSLR is the channel-wise conditioner (CC) or the time-channel attention
conditioners (TCAC), which modulates the SSL encoder’s hidden representations based on condi-
tioning features. As depicted in Fig. 1b, the TCAC tasks the latent representations S(l) ∈ RC×T

from layer l of the SSL encoder and a conditioning feature vector z ∈ RR, derived from intermediate
LID or SV embeddings. The TCAC outputs modulated latent representations S̃(l) by applying
time-channel-dependent scaling and bias:

S̃
(l)
t,c = TCAC(S(l)

t,c, z) = γ̃
(l)
t,c(z,S

(l))S
(l)
t,c + β̃

(l)
t,c(z,S

(l)) (1)

where t and c index time and channel dimensions, respectively. The scales γ̃(l)
t,c and biases β̃(l)

t,c are
products of time-dependent and channel-dependent components:

γ̃
(l)
t,c(z,S

(l)) = α
(l)
t (z,S(l))× γ(l)

c (z) β̃
(l)
t,c(z,S

(l)) = α
(l)
t (z,S(l))× β(l)

c (z) (2)

The channel-dependent scales γ(l) ∈ RC and biases β(l) ∈ RC are computed via linear transforma-
tions of the conditioning feature, similar to feature-wise linear modulation [Perez et al., 2018]:

γ(l)(z) = W(l)
γ z+ b(l)

γ β(l)(z) = W
(l)
β z+ b

(l)
β with . (3)

The time-dependent scales α(l) ∈ RT are obtained with an additive attention mechanism as

α
(l)
t (z,S(l)) = vT

αf(W
(l)
α

[
S
(l)
t
z

]
+ b(l)

α) (4)

where f(.) is a ReLU non-linearity, W
(l)
α ∈ RC′×(C+R), b

(l)
α ∈ RC′

, and vα ∈ RC′
. The

conditioning feature z is obtained by processing the intermediate embeddings e ∈ RE from the
LID or SV decoders, as z = LayerNorm(We + b), where W ∈ RR×E and b ∈ RR are shared
linear transformation parameters, and LayerNorm(·) denotes layer normalization. In scenarios where
time-based modulation is unnecessary, the model can switch to the simpler Channel-wise Conditioner
(CC) by using only the channel-dependent components γ and β. This flexibility in conditioning

4

design enables the model to be tailored to various speech tasks with differing complexity requirements.
By integrating these conditioning methods, CA-SSLR dynamically adapts its internal representations
based on language and speaker characteristics. This mechanism enables the integration of conditioning
into the model’s latent representations without altering the pre-trained encoder’s original parameters.

3.2 Hierarchical Self-Conditioning in CA-SSLR

Building upon the TCAC module, CA-SSLR employs a hierarchical self-conditioning mechanism
within the SSL encoder layers. As shown in Figure 2, the SSL encoder is partitioned into layer groups,
with TCACs inserted after the attention module in each layer to modulate hidden representations
based on updated conditioning features. The model aggregates SSL features through a weighted sum,
combining outputs from all preceding layer groups. These aggregated features are then provided to
the LID and SV decoders, where LID and SV embeddings are extracted and processed through a
linear layer followed by layer normalization to create the conditioning feature z for the TCACs.

The conditioning feature z is re-estimated at intervals—every three layers for LID and every six
layers for SV—using the aggregated SSL features from previous groups. This hierarchical design
progressively refines the model’s representations, adapting to the input’s language and speaker
characteristics at different depths of the network. For example, the initial SSL layer group captures
basic language and speaker characteristics, generating embeddings that condition the next group
of layers via TCACs. This ongoing refinement allows the model to dynamically adapt based on
intermediate predictions, resulting in a context-aware and dynamic representation.

Each layer group uses distinct TCAC parameters, enabling tailored scaling and bias adjustments at
different stages of the model. Notably, only the TCACs and the linear projections for the decoders
are trainable, while all other SSL encoder parameters remain fixed during the conditioning insertion.
This design minimizes overfitting and accelerates training due to the smaller number of trainable
parameters. This hierarchical self-conditioning mechanism enables the model to dynamically capture
diverse aspects of input audio, making it a robust tool for comprehensive speech analysis.

3.3 Incremental Training Strategy

Incorporating new components into a pre-trained SSL encoder poses the risk of catastrophic forgetting,
where the model loses previously acquired knowledge. To mitigate this, we adopt an incremental
training strategy that gradually integrates the conditioning information. We initialize the TCAC
parameters to ensure that the initial modulated features are identical to the original SSL features.
Specifically, we set the initial values such that αt = 1 for all t, γc = 1, and βc = 0 for all c.
According to Eq. (1), this initialization means that S̃(l)

t,c = S
(l)
t,c at the start of training, allowing a

smooth transition from the pre-trained model to the conditioned model.

When multiple conditioning features are involved, such as both LID and SV, we compute separate
scaling and bias parameters for each:

αtotal = αLID × αSV, γtotal = γLID × γSV, βtotal = βLID + βSV . (5)

This approach allows the model to incrementally incorporate additional conditioning tasks without
disrupting the knowledge acquired from previous tasks.

4 Experimental Setup

4.1 Datasets

For the LID and ASR tasks, we utilized the ML-SUPERB benchmark [Shi et al., 2023a]. This
corpus comprises two distinct data configurations: 10-minute/language and 1-hour/language for
each of the 123 well-represented languages (Normal). Additionally, both configurations include five
training utterances for each of 20 selected low-resource languages (Few-shot)1. For the Few-shot
languages, we also considered an Extended Few-shot condition in which we augmented the amount
of data to match that of the Normal languages. However, the Extended Few-shots only included

1We discovered that a portion of the few-shot Lithuanian (lit) training and testing data was erroneously
substituted with Italian (it), leading us to omit the Lithuanian outcomes from the evaluation.

5

language labels but not ASR transcripts. This aims to analyze the behavior of few-shot languages with
improved language ID accuracy, as achieving satisfactory language accuracy with just five utterances
is challenging. This is also a reasonable assumption since obtaining data with language labels is easier
and cheaper than obtaining transcribed data. The moderate size of this dataset was ideal for testing
our approach, as it allowed us to conduct multiple ablation experiments with limited computing
resources. As ML-SUPERB lacks speaker labels, we combined it with VoxCeleb2 [Nagrani et al.,
2017] for training models incorporating the SV task. VoxCeleb2 contains 1,092 speech hours from
5,994 speakers, although it lacks LID labels and ASR transcripts. The SV task was tested on the
VoxCeleb1 original set. The speech was augmented with Musan noise Snyder et al. [2015] and
reverberation Ko et al. [2017] during SV training.

4.2 Model Architecture

SSLR Models. In our system, we employed the best multilingual SSL back-bones in the ML-
SUPERB benchmark: Wav2Vec2-XLSR with 300M parameters, trained on 128 languages2, and
the 100M parameter multilingual Hubert (mHuBERT) model [Lee et al., 2021], trained on English,
Spanish, French data from VoxPopuli [Wang et al., 2021] unlabeled speech as our foundational
acoustic encoders. These models have demonstrated their efficacy in processing a wide range of
linguistic inputs and form the backbone of our system. We experimented with the S3PRL [Yang et al.,
2021] and ESPnet [Watanabe et al., 2018] toolkits. Our training dataset combined data labeled for
ASR+LID labels, LID only, or SV only. Hence, we computed the losses only for the available tasks
for each sample. Detailed information on the remaining training hyperparameters is provided in the
appendix, and the code will be made available for reproducibility. A model’s training takes about one
day using 2 A100 GPUs.

Speaker and Language Decoders. The speaker and language decoders are based on the ECAPA-
TDNN architecture [Desplanques et al., 2020]. Initially, a convolutional layer projects SSL represen-
tation to the decoder dimension (512 for LID and 1024 for SV). This is followed by a sequence of
1-dimensional SE-Res2Net [Gao et al., 2021] layers (one for LID and three for SV). Next, channel-
wise attentive statistic pooling aggregates the frame-level features into a single utterance-level vector,
which is projected into lower-dimensional speaker embedding. The training loss was Additive An-
gular margin-softmax [Deng et al., 2019] with margin=0.3 for SV and margin=0.0 for LID. Large
margin helps to create highly compact speaker representations [Villalba et al., 2022], while being
detrimental in LID [Villalba et al., 2023]. The SV and LID decoders producing the final result
consume a weighted average of all SSL layers. Meanwhile, the ones estimating the conditioning
embeddings use a weighted average of the SSL layers evaluated up to that point in the chain. Note
that all SV and LID decoders share parameters, so the number of trainable parameters remains
independent of the frequency with which we re-compute the conditioning embeddings.

ASR decoder. The ASR decoder conforms to the framework set by the ML-SUPERB benchmark
[Shi et al., 2023a], facilitating comparable evaluations. A convolutional downsampling layer halves
the SSL feature sequence duration. These features are channeled into a two-layer Transformer with
256-dim self-attention, eight attention heads, and 1024-dim feed-forward layers. A linear output layer
with connectionist temporal classification (CTC) loss predicts multi-lingual character-level tokens.

5 Experiments and Results

5.1 Generalization Ability on Unseen Tasks

Experiment Setting. We conducted experiments to evaluate the generalization capabilities of the
adapted SSLR models on LID, ASR, and SV tasks. The SSLR models were adapted for one task
(either LID or ASR) and then evaluated on both the adapted task and an unseen task. For LID
adaptation, the SSLR was trained exclusively with LID labels. We compared three setups: full
fine-tuning (LID-FT), Houlsby adaptors Houlsby et al. [2019] (LID-Houlsby), and our proposed
condition-aware approach (LID-CA-XLSRL

dual). In this setup, we employed an additional LID decoder
using the pre-trained SSLR to pre-generate language embeddings, which were then used to condition
the SSLR model for a second inference pass. For ASR adaptation, the models were trained with
ASR loss using three setups: full fine-tuning (ASR-FT), Houlsby adaptors (ASR-Houlsby), and our

2https://huggingface.co/facebook/wav2vec2-xls-r-300m

6

Table 1: Evaluation of adapted XLSR models on the 10-min ML-SUPERB and VoxCeleb dataset for
LID, ASR, and SV tasks. These evaluations test the encoder’s generalizability across different tasks,
demonstrating effectiveness without further task-specific tuning.

(a) LID-adapted XLSR models evaluated on LID and ASR tasks.

LID
Adapted.

Bottleneck
Dims.

LID Acc ↑ ASR CER ↓
Normal Few-shots Normal Few-shots

XLSR - 89.1 83.9 29.0 39.0
+ LID-FT - 90.1 84.7 27.0 37.0
+ LID-Houlsby 256 90.1 85.3 23.6 35.1
+ LID-CA-XLSRL

dual (ours) 256 90.2 85.8 21.7 33.4

(b) ASR-adapted XLSR models evaluated on ASR and SV tasks.

ASR
Adapted.

Bottleneck
Dims.

ASR CER ↓ SV
Normal Few-shots EER ↓ DCF ↓

XLSR - 29.0 39.0 1.29 0.093
+ ASR-FT - 17.1 32.2 1.29 0.095
+ ASR-Houlsby 256 20.3 34.6 1.37 0.097
+ ASR-CA-XLSRL (ours) 256 18.6 31.6 1.15 0.088

proposed hierarchical conditioning method with TCAC layers integrated into the SSLR model with
single inference (ASR-CA-XLSRL). During ASR adaptation, the LID decoder is integrated into the
SSLR model to provide conditioning features, but SV information was not included during training.

Results. In LID adaptation (Table 1a), both LID-FT and LID-Houlsby improved LID performance
compared to the pre-trained SSL baseline. However, on the unseen ASR task, the fully fine-tuned
SSLR encoder improved ASR CER by only 2%, while LID-Houlsby showed limited generalization,
with CER improvements of 5.4% and 3.9% for normal and few-shot languages, respectively. Our
LID-CA-XLSRL

dual method achieved significantly better generalization, improving ASR CER by 7.3%
and 6.6% for normal and few-shot languages. In ASR adaptation (Table 1b), all models enhanced
ASR performance, but ASR-Houlsby and full fine-tuning degraded SV performance relative to
the baseline, highlighting their limited generalization. Our ASR-CA-XLSRL approach not only
preserved but improved SV performance, reducing EER by relative 10.9% and DCF by 5.4%,
showcasing strong generalization to the unseen SV task. These results demonstrate that CA-SSLR
significantly outperforms full fine-tuning and standard adaptation methods in terms of generalization.
By effectively leveraging conditioning information, CA-SSLR adapts across tasks while maintaining
performance on unseen ones. Our proposed conditioner offers both robust adaptations on training
tasks and superior generalization, making CA-SSLR a versatile and effective solution for multilingual
and multispeaker speech processing.

5.2 Condition-Aware SSLR Model

Experiment Setting. Table 2 investigates the CA-SSLR approach with hierarchical language
conditioning. The first block of the table refers to the baseline where the foundational models
are frozen, while the second block (CA-XLSRL

dual) utilizes a separate task-specific LID model to
pre-generate the language embedding. The third block presents our proposed approach, where we
re-estimate the language embedding every fourth or third layer (CA-XLSRL (4L, 3L)) within the
XLSR model, not required a separate LID system. The experiments utilized two types of conditioners:
TCAC, which incorporates attention, and a variant without attention—referred to as Channel-wise
Conditioners (CC)—where the same scale and bias are applied uniformly across all time frames. The
real-time factors (RTF) as proc-time/signal-length are provided for assessing efficiency3.

3The RTFs are computed on an NVIDIA T4 GPU.

7

Table 2: ASR CER(%) and LID Acc (%) in ML-SUPERB 10min. and 1h. sets, comparing different
layers to generate the language embedding to condition the following layers. We adapt the XLSR
model for LID and ASR tasks.

SSL Model RTF↓ REL.
RTF↓

10mins 1hr
LID (ACC ↑) ASR (CER ↓) LID (ACC ↑) ASR (CER ↓)

Normal Normal Few-shots Normal Normal Few-shots

XLSR [Shi et al., 2023a] 0.021 1.00 66.9 29.2 40.9 87.9 22.0 39.3
MMS-1b [Shi et al., 2023b] - - 84.8 21.3 30.2 86.1 18.1 30.8
XLSR (Ours) 0.021 1.00 89.0 29.0 39.0 90.9 22.7 36.9

CA-XLSRL
dual(CC) 0.037 1.75 89.0 18.6 32.2 90.9 14.1 31.5

CA-XLSRL
dual(TCAC) 0.037 1.75 89.0 17.8 31.8 90.9 13.5 31.4

CA-XLSRL(CC, 4L) 0.024 1.17 89.1 19.7 31.7 89.6 16.5 32.2
CA-XLSRL(CC, 3L) 0.027 1.27 88.6 19.4 31.5 90.0 16.0 32.4
CA-XLSRL(TCAC, 3L) 0.027 1.27 88.6 18.6 31.6 93.4 15.1 29.6

Table 3: Experiments on LID and LID + SV Hierarchical Conditioning. We adapt the XLSR and
mHuBERT models for LID and ASR tasks using CA-SSLRL, and for SV tasks using CA-SSLRL,S .
Results for Normal languages with 10-min and 1-hour datasets alongside VoxCeleb SV results.

SSL Model RTF↓ REL.
RTF↓

10min. ML-SUPERB + VoxCeleb 1h. ML-SUPERB + VoxCeleb
LID ASR SV LID ASR SV

ACC↑ CER↓ EER↓ DCF↓ ACC↑ CER↓ EER↓ DCF↓
mHuBERT 0.015 1.00 81.9 38.2 2.19 0.145 86.2 30.9 2.19 0.145
+ FT 0.015 1.00 73.0 36.5 5.85 0.350 87.7 32.3 4.01 0.251

CA-mHuBERTL(CC) 0.017 1.13 82.0 31.9 1.77 0.120 86.1 25.1 1.77 0.118
CA-mHuBERTL,S(CC) 0.018 1.16 82.2 31.7 1.79 0.117 87.3 24.8 1.78 0.121

XLSR 0.024 1.00 89.0 29.0 1.29 0.093 90.9 22.7 1.29 0.093
+ FT 0.024 1.00 81.5 35.6 7.23 0.353 83.2 28.7 6.72 0.330

CA-XLSRL(CC) 0.029 1.23 88.6 19.4 1.11 0.076 90.0 16.0 1.02 0.078
CA-XLSRL(TCAC) 0.029 1.23 88.6 18.6 1.15 0.088 93.4 15.1 1.06 0.077
CA-XLSRL,S(CC) 0.032 1.34 89.1 18.8 1.04 0.075 88.1 15.0 0.94 0.073
CA-XLSRL,S(TCAC) 0.032 1.34 89.0 18.3 1.11 0.086 93.5 14.4 1.01 0.077

Results. First, we observed that both CA-XLSRL
dual and CA-XLSRL systems with TCAC (with

attention) generally performed better than the CC (w/o attention) counterparts, reaffirming the
benefits of the time-wise attention design. In the second block, CA-XLSRL

dual slightly outperformed
CA-XLSRL in terms of CER for both the 10-minute and 1-hour datasets. However, its real-time
factor (RTF) is akin to the combined RTFs of separate LID and ASR models since it runs Wav2Vec2
twice—once for language embedding extraction and again for ASR conditioning—posing challenges
for streaming applications. On the other hand, CA-XLSRL(CC, 3L) excelled among the three
approaches, achieving a 35.9% and 19.0% relative improvement in Normal and few-shot languages,
respectively, compared to the baseline in the 10-minute setup, and 33.5% and 19.8% in the 1-hour
setup. LID accuracy remained comparable among the various CA-XLSR models, with a notable
performance improvement from 90.9% to 93.4% in 1-hour setup.

5.3 Generalist Condition-Aware SSLR Model

Experiment Setting. Table 3 presents results for general CA-SSLR models that combine Multi-
lingual ASR, LID, and SV tasks. The table compares the baselines, with frozen and fine-tuned SSL
models, to two different CA-SSLR Hierarchical models (CA-SSLRL and CA-SSLRL,S). We further
include another well-known multilingual SSLR model, mHuBERT, for a comprehensive comparison.
The LID conditioning systems (CA-SSLRL) are the same as from the previous section, conditioning
the SSL model only on LID embeddings, with the SV decoder added on top of SSL features without
further adaptation. The LID + SV conditioning system (CA-SSLRL,S) combines both LID and SV
embeddings and is jointly trained on ASR, SV, and LID losses. The intermediate LID embeddings
were recomputed every three layers as the best configuration in Table 2, and SV embeddings were
recomputed every six SSL layers. Apart from ASR CER and LID Acc on ML-SUPERB, we present
SV equal error rates (EER) and detection cost function (DCF), measured at target prior probability

8

p = 0.05 [Sadjadi et al., 2022], on VoxCeleb1. SV performance varied depending on whether we
trained the model combining 10min ML-SUPERB + VoxCeleb2 or 1h ML-SUPERB + VoxCeleb2.

Fine-tuning Baseline. In the fully fine-tuning experiment, we initialized the model with pretrained
ASR, LID, and SV decoders and fine-tuned for a few epochs. However, this approach resulted in
suboptimal performance compared to the frozen SSLR baseline. The "FT" experiments showed
degraded performance, with LID accuracy decreasing by 5.7%, ASR CER increasing by 3.1%, and
SV EER worsening by 4.2 in absolute values on average across the four settings. This decline
is unexpected, as fine-tuning typically improves performance. This suggests that simultaneous
adaptation of the SSL layers to multiple tasks causes conflicting adjustments, reducing the model’s
robustness. Consequently, catastrophic forgetting led to worse performance compared to the baseline.
Conversely, the condition-aware SSLR models exhibited superior performance comparing with the
frozen baseline, indicating that training the inserted condition layers does not alter the model’s
behavior for downstream tasks but improves its ability to represent the input speech data.

Language Conditioned SSLR. CA-SSLRL(CC) notably enhanced SV performance w.r.t. the
baseline, despite its encoder being solely tuned for ASR and LID tasks. For XLSR, the EER improved
by 14% and 20% relative for the 10-min. and 1-h. sets, respectively, while DCF improved by 16-18%.
Similarly, for mHuBERT, we observed comparable enhancements, with the EER improving by 17%
in both sets and the DCF improving by 17-18%. This demonstrates that the CA-SSLR approach offers
superior generalization capabilities compared to the original pre-trained SSL encoder, delivering
improved performance. CA-SSLRL(TCAC) performance in SV is comparable to its non-attention
counterpart with better performance in LID and ASR as discussed in Sec.5.2.

Language and Speaker Conditioned SSLR. Adding a speaker conditioner to CA-SSLRL,S fur-
ther improved its performance. In ASR tasks, incorporating the speaker conditioner to CA-XLSRL,S

reduced CER by 3.1% for the 10-min. set and 6.2% for the 1-hr set, relative to CA-XLSRL. For LID
task, CA-SSLRL,S shows similar performance to other models with relative differences below 3%.
For SV, CA-XLSRL,S using channel-wise conditioner (CC) reduced EER by 19.4-27.1%, outper-
forming CA-XLSRL. Switching from CC to TCAC yielded additional gains in ASR, adding a relative
improvement of 2.7-4.0%. In contrast, its impact on SV was more modest, with improvements in
EER by 14.0-21.7%. Overall, TCAC demonstrated better adaptation ability, while CC excelled in
generalization.

ASR and RTF Discussion. Generally, we observed the largest improvement for ASR when in-
cluding the language conditioner, as it enables the system to adapt to produce output tokens in
the correct language. Conversely, adapting the model to the input speaker provided fewer ASR
gains. The XLSR model benefitted from our approach better than mHuBERT, possibly because
mHuBERT is 3× smaller than XLSR, but more importantly, because mHuBERT was trained on just
four languages compared to 128 in XLSR. Therefore, the pre-trained mHuBERT has not encountered
enough diversity in terms of languages and speakers, thereby limiting its performance in multi-lingual
ASR and SV. In terms of RTF, while the conditioned models are 13-34% slower compared to sharing
the pre-trained SSL encoder for the three tasks, both CA-SSLRL and CA-SSLRL,S offer superior
performance while being much faster than running task-specific models separately, indicating a more
efficient use of computational resources while running the generalist model.

5.4 Analysis of the TCA Conditioner

Ablation study of Conditioning Approach. Table 4 conducts an ablation study for different
conditioning methods with CA-XLSRL

dual settings within the ML-SUPERB 10min dataset regarding
ASR CER. First, we used conditioners without attention (CC) on the ground truth LID predictions
(G.T.), serving as the upper bound for the performance of our proposed approach. This improved
the Normal languages from 29.0% to 17.2%, and Few-shot languages from 39.0% to 27.9%, w.r.t.
the pre-trained XLSR model. This showcases the potential of the condition-aware SSLR. Following,
we compared conditioning on hard-predicted language labels (Hard), soft-predicted language labels
(Soft), and language embeddings from the LID decoder bottleneck layer (Embed) for comparison.
Conditioning on Hard LID labels improved the most in Few-shot languages, improving by 26%
relative to the baseline. On the other hand, the Embed case outperformed the Soft case and provided
balanced performance for both Normals and Few-shots languages. Additionally, we compared CC to

9

Table 4: Ablation study of condition-aware
settings for ASR-adapted XLSR models on
10-min ML-SUPERB dataset, using CC or
TCAC. Conditioning is based on predicted
language labels or LID embeddings, ex-
cept in the ground truth (G.T.) experiment.

ASR
Adapted.

Normal Few-shots
CER ↓ CER ↓

XLSR 29.0 39.0
+ G.T. CC 17.2 27.9

+ Hard CC 19.8 28.6
+ Soft CC 19.3 32.5
+ Embed CC 18.6 32.2
+ Embed TCAC 17.8 31.8

Figure 3: CER versus trainable parameters on XLSR
model for Normal and Few-shots languages, demon-
strating the adaptation ability for the TCA conditioner.

TCAC. The TCAC provided the best overall results, improving Normals and Few-shots by 38.6% and
18.5%, respectively, w.r.t. baseline.

Parameter Efficiency in CER Reduction. Figure 3 compares CER versus the number of trainable
parameters for different adaptation methods, including our proposed Channel-wise Conditioner and
Time-Channel Attention Conditioner (CC-TCAC), the Houlsby adapter, LoRA [Hu et al., 2021], full
fine-tuning (FT), and the baseline XLSR model. The Houlsby adapters, with hidden dimensions of
256 and 512, have 18.4M and 30.9M trainable parameters. In comparison, the CC-TCAC approach,
conditioned on precomputed LID embeddings with 256 dimensions (18.7M for CC and 22.6M for
TCAC), achieves lower CERs with similar parameter counts. LoRA provided only marginal gains
over the baseline, aligning with findings from Chen et al. [2023b]. In contrast, FT required fine-tuning
16–24 layers (200–300M parameters) to achieve comparable CER reductions, making CC-TCAC
about ten times more efficient. As discussed in Sec 5.1, CC-TCAC’s key contribution is its superior
generalization ability. While the Houlsby adapter enhances task-specific adaptation, it falls short in
generalizing to unseen tasks. In contrast, CC-TCAC achieves both effective adaptation and robust
generalization, making it a versatile solution for diverse applications.

6 Conclusion

This paper introduces the CA-SSLR framework, an innovative approach that integrates conditioning
into pre-trained Self-Supervised Learning (SSL) models by adapting only the trainable conditioner.
Through a hierarchical self-conditioning mechanism, where intermediate language and speaker
features condition the upper layers of the SSL model, CA-SSLR achieves a 33% reduction in
Character Error Rate compared to the pre-trained baseline, matching the performance of single-task
fully fine-tuned models. Additionally, it improves Speaker Verification EER by 27% and reduce
Language Identification errors by relative 10% in average. The results indicate that condition-aware
SSLR models enhance the model’s interpretation of input speech data, providing superior performance
compared to traditional fine-tuning methods. This improvement is achieved by dynamically tailoring
the model’s response to the input language and speaker characteristics, ensuring robust generalization
across various tasks. In summary, CA-SSLR offers a versatile and efficient approach to integrating
conditioning information into pre-trained models. This method not only enhances performance across
multiple tasks but also ensures efficient parameter utilization, supported by an improved RTF that
facilitates its application in real-world scenarios.

Broader Impact and Limitations The CA-SSLR methodology improves the conditioning of pre-
trained Self-Supervised Learning (SSL) models for speech processing, improving performance with
minimal fine-tuning and reducing computational resource requirements. This advancement facilitates
the deployment of robust models in resource-constrained environments, promoting broader access to
advanced speech technology. However, there are potential risks. The conditioning mechanisms might
amplify biases in the training data, leading to unfair outcomes, particularly for underrepresented
languages and speaker groups. Ensuring diverse and balanced datasets, along with continuous
monitoring, is crucial to mitigate these risks and prevent perpetuating existing inequities.

10

References
Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika

Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, et al. Xls-r: Self-supervised cross-lingual
speech representation learning at scale. arXiv preprint arXiv:2111.09296, 2021.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

Travis M Bartley, Fei Jia, Krishna C Puvvada, Samuel Kriman, and Boris Ginsburg. Accidental
learners: Spoken language identification in multilingual self-supervised models. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023.

Xuankai Chang, Takashi Maekaku, Pengcheng Guo, Jing Shi, Yen-Ju Lu, Aswin Shanmugam
Subramanian, Tianzi Wang, Shu-wen Yang, Yu Tsao, Hung-yi Lee, et al. An exploration of self-
supervised pretrained representations for end-to-end speech recognition. In 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 228–235. IEEE, 2021.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training
for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):
1505–1518, 2022a.

Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Zhuo Chen, Peidong Wang, Gang Liu, Jinyu Li,
Jian Wu, Xiangzhan Yu, et al. Why does self-supervised learning for speech recognition benefit
speaker recognition? arXiv preprint arXiv:2204.12765, 2022b.

William Chen, Brian Yan, Jiatong Shi, Yifan Peng, Soumi Maiti, and Shinji Watanabe. Improving
massively multilingual asr with auxiliary ctc objectives. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023a.

Zih-Ching Chen, Chin-Lun Fu, Chih-Ying Liu, Shang-Wen Daniel Li, and Hung-yi Lee. Exploring
efficient-tuning methods in self-supervised speech models. In 2022 IEEE Spoken Language
Technology Workshop (SLT), pages 1120–1127. IEEE, 2023b.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4685–4694, 2019. doi: 10.1109/CVPR.2019.00482.

Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. Ecapa-tdnn: Emphasized chan-
nel attention, propagation and aggregation in tdnn based speaker verification. arXiv preprint
arXiv:2005.07143, 2020.

Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip Torr.
Res2Net: A New Multi-Scale Backbone Architecture. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(2):652–662, Feb 2021. ISSN 1939-3539.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev Khudanpur. A study on
data augmentation of reverberant speech for robust speech recognition. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5220–5224. IEEE, 2017.

11

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne, Holger Schwenk, Peng-Jen Chen, Changhan
Wang, Sravya Popuri, Yossi Adi, Juan Pino, Jiatao Gu, et al. Textless speech-to-speech translation
on real data. arXiv preprint arXiv:2112.08352, 2021.

Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale speaker identifica-
tion dataset. arXiv preprint arXiv:1706.08612, 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Seyed Omid Sadjadi, Craig Greenberg, Elliot Singer, Lisa Mason, and Douglas Reynolds. The 2021
NIST Speaker Recognition Evaluation. In Proc. The Speaker and Language Recognition Workshop
(Odyssey 2022), pages 322–329, 2022. doi: 10.21437/Odyssey.2022-45.

Ramon Sanabria and Florian Metze. Hierarchical multitask learning with ctc. In 2018 IEEE Spoken
Language Technology Workshop (SLT), pages 485–490. IEEE, 2018.

Jiatong Shi, Dan Berrebbi, William Chen, Ho-Lam Chung, En-Pei Hu, Wei Ping Huang, Xuankai
Chang, Shang-Wen Li, Abdelrahman Mohamed, Hung-yi Lee, et al. Ml-superb: Multilingual
speech universal performance benchmark. arXiv preprint arXiv:2305.10615, 2023a.

Jiatong Shi, William Chen, Dan Berrebbi, Hsiu-Hsuan Wang, Wei-Ping Huang, En-Pei Hu, Ho-Lam
Chuang, Xuankai Chang, Yuxun Tang, Shang-Wen Li, et al. Findings of the 2023 ml-superb
challenge: Pre-training and evaluation over more languages and beyond. In 2023 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 1–8. IEEE, 2023b.

David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise corpus. arXiv
preprint arXiv:1510.08484, 2015.

Hemlata Tak, Massimiliano Todisco, Xin Wang, Jee-weon Jung, Junichi Yamagishi, and Nicholas
Evans. Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and
data augmentation. arXiv preprint arXiv:2202.12233, 2022.

Yun Tang, Hongyu Gong, Ning Dong, Changhan Wang, Wei-Ning Hsu, Jiatao Gu, Alexei Baevski,
Xian Li, Abdelrahman Mohamed, Michael Auli, et al. Unified speech-text pre-training for speech
translation and recognition. arXiv preprint arXiv:2204.05409, 2022.

Jesús Villalba, Bengt J Borgstrom, Saurabh Kataria, Magdalena Rybicka, Carlos D Castillo, Jaejin
Cho, L. Paola García-Perera, Pedro A. Torres-Carrasquillo, and Najim Dehak. Advances in cross-
lingual and cross-source audio-visual speaker recognition: The jhu-mit system for nist sre21. pages
213–220. ISCA, 6 2022. doi: 10.21437/Odyssey.2022-30. URL https://www.isca-speech.
org/archive/odyssey_2022/villalba22b_odyssey.html.

Jesús Villalba, Jonas Borgstrom, Maliha Jahan, Saurabh Kataria, Leibny Paola Garcia, Pedro Torres-
Carrasquillo, and Najim Dehak. Advances in Language Recognition in Low Resource African
Languages: The JHU-MIT Submission for NIST LRE22. In Proc. INTERSPEECH 2023, pages
521–525, 2023. doi: 10.21437/Interspeech.2023-1094.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary
Williamson, Juan Pino, and Emmanuel Dupoux. Voxpopuli: A large-scale multilingual speech
corpus for representation learning, semi-supervised learning and interpretation. arXiv preprint
arXiv:2101.00390, 2021.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson
Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, et al. Espnet: End-to-end
speech processing toolkit. arXiv preprint arXiv:1804.00015, 2018.

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,
Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
universal performance benchmark. arXiv preprint arXiv:2105.01051, 2021.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3836–3847, 2023.

12

https://www.isca-speech.org/archive/odyssey_2022/villalba22b_odyssey.html
https://www.isca-speech.org/archive/odyssey_2022/villalba22b_odyssey.html

A Model/Dataset Details and Training Hyper-parameters

This appendix provides detailed configurations and hyper-parameters for the decoder models used in
our experiments, including ASR, LID, SV decoders, and the CA-SSLR models. The rationale behind
specific hyper-parameter choices and architectural details are also discussed to offer insights into the
experimental setup and model optimization strategies.

A.1 Decoder Models for ASR, LID, and SV

The ASR, LID, and SV decoder models were optimized for their respective tasks through careful
selection of hyper-parameters and architectural configurations. The ASR model directly follows the
setting in ML-SUPERB benchmark [Shi et al., 2023a] for comparison. Table 5 summarizes these
configurations. The “full” means one epoch is trained by passing all the training data.

Table 5: Hyper-parameters used for training ASR, LID, and SV decoder models
ASR LID SV

Feature Projection 80 80 80
Decoder Layers 2 1 3
Hidden Channels 256 512 1024
Dropout Rate 0.1 0.3 0.0
Loss CTC CE CE
Learning Rate 0.0001 0.0001 0.001
Warmup Steps - - 1000
Effective Batch Size 32 128 512
Iterations per Epoch 5000 5000 full
Epochs 20 10 20

Table 6: Training hyper-parameters for CA-SSLR models. The superscripts “Dec” and “Feat”
represent the decoder and the feature projection layer, respectively.

CA-SSLRL CA-SSLRL,S

Training Data ML-SUPERB VoxCeleb ML-SUPERB + VoxCeleb
Condition Embedding 256 (L) 256 (L) + 256 (S)
Condition Dropout Rate 0.5 0.5

Initialization ASRDec, LIDDec,
and SVDec CA-SSLRL

Trainable modules ASRDec, LIDFeat

, and Adapters SVDec ASRDec, LIDFeat,
SVFeat, and Adapters

Loss ASR + LID SV ASR + LID + SV
Learning Rate 0.0001 0.001 0.0001
Effective Batch Size 32 512 32
Iterations per Epoch 5000 full 5000
Epochs 20 20 20

A.2 CA-SSLR Hierarchical Models

Table 6 provides detailed configurations for the CA-SSLR model. In the CA-SSLRL,S setup, two 256-
dimensional embeddings are used to encapsulate language (L) and speaker (S) information, which
then determine the parameters (αL, γL, βL) and (αS, γS, βS) following the procedure outlined in Eq. 5.
The training adopts a stepwise approach, using initial parameters from an earlier phase to set up the
next. The pretrained ASR, LID, and SV decoders serve as the foundation for initializing CA-SSLRL;
the SV decoder is fine-tuned further on top of CA-SSLRL; and both CA-SSLRL and fine-tuned SV
decoder initialize CA-SSLRL,S . In the table’s “Trainable modules” row, the notations LIDFeat and
SVFeat indicate that the feature projection layers of the LID and SV decoders are adjustable during

13

the training process. We conduct the in Table 6 and Figure 3 multiple times, and the variation are all
within 0.2% CERs range.

A.3 Dataset License and Details

A.3.1 ML-SUPERB Dataset

The ML-SUPERB dataset is assembled from a wide collection of multilingual speech corpora, with
each contributing corpus being governed by one of a variety of open-source licenses, such as Creative
Commons, MIT, GNU, or Free-BSD. These licensing agreements guarantee that the dataset is openly
available and can be used freely for both commercial and scholarly research purposes. The 10-minute
training set encompasses 37.4 hours of data, and the 1-hour dataset increases the total to 222.4 hours
of data. Additionally, the dataset includes development and testing sets, containing 41.8 hours and
45.0 hours of data, respectively. This dataset is designed for multilingual speech recognition and
language identification, as used in our work.

In the original ML-SUPERB settings, there are two types of languages:

• Normal Languages: Each has 10 minutes or 1 hour of data per language, used for both LID
and ASR training with transcriptions.

• Few-Shot Languages: Each has only 5 utterances. In the original settings, these languages
are not presented in the results for LID training and are used for ASR training with available
transcriptions.

For the extended few-shot condition, we incorporate the language labels from these few-shot data
for LID training but continue using only 5 utterances with transcriptions for ASR training. Since
language labels are more accessible than transcriptions, especially in low-resource scenarios. Table 7
summarizes the data configurations for the original and extended few-shot conditions.

Table 7: Data configurations for the original and extended few-shot conditions in ML-SUPERB.
Data Per Language Language Type LID Training ASR Training

Original Settings Normal 10 min – 1 hr 10 min – 1 hr
Few-Shot Not presented in result 5 utts

Extended Few-Shot Few-Shot 10 min – 1 hr (language labels only) 5 utts

A.3.2 VoxCeleb Dataset

The VoxCeleb dataset is available under the Creative Commons Attribution 4.0 International license
and encompasses comprehensive training, development, and testing data collection. Specifically, it
contains 1092 hours of audio from 5,994 speakers for training, 110 hours from 4,933 speakers for
development, and 20 hours from 40 speakers designated for testing. Designed to facilitate speaker
verification and identification tasks, aligns with our usage in the speaker verification task. To ensure
privacy, speaker names within the dataset are anonymized and represented through unique speaker
IDs.

B CER vs. Trainable Parameters

Table 8 compares the mHuBERT model’s ASR performance against the number of trainable parame-
ters, where the XLSR counterpart is shown in Fig. 3. Both CA-mHubertLdual and CA-mHubertL,S

dual are
with 256 condition feature dimensions. Notably, the CA-mHubertLdual model excels in few-shots sce-
narios, while the CA-mHubertL,S

dual yields CERs for normal languages comparable to a fully fine-tuned
12-layer mHuBERT model using only 15.9M parameters. This efficiency demonstrates the TCA
conditioner’s capability in the CA-SSLR framework to deliver fine-tuned levels of ASR accuracy with
a significantly reduced parameter count, providing an optimal balance for practical ASR applications.

14

Table 8: Comparison of trainable parameters and CERs on ML-SUPERB 10min dataset, including
fine-tuning top layers, LoRA, and dual-inference condition aware mHuBERT model.

Approach Trainable
Params.

Normal Few-shots
CER ↓ CER ↓

mHuBERT 5.7M 38.2 42.9
LoRA 15.2M 38.3 42.7

FT (2L) 19.9M 36.0 42.3
FT (4L) 34.0M 35.0 42.3
FT (6L) 48.2M 33.1 41.4
FT (8L) 62.6M 32.0 40.5

FT (12L) 90.8M 30.8 40.5
CA-mHubertLdual 10.8M 31.6 40.0
CA-mHubertL,S

dual 15.9M 30.9 40.4

C Training Efficiency and Resource Usage

We compare the training speed and resource consumption of different adaptation methods, including
Houlsby Adapters, CA-SSLR, and full fine-tuning (FT). Table 9 summarizes the bottleneck dimen-
sions, training times, and peak memory usage for each method. We evaluate the training speech
for 10k iterations with batch size 8. We found that the CA-SSLR approach ranks second compared
to the Houlsby Adapter and a fully fine-tuning approach in speed and memory usage. However, it
is important to note that CA-SSLR surpasses the Houlsby Adapter in adaptation effectiveness and
generalization ability, as demonstrated in Table 1. These results indicate that although CA-SSLR
incurs a moderate increase in training resources, it provides benefits in performance and generaliza-
tion. We acknowledge that the current implementation of CA-SSLR is not yet optimized for speed
and memory efficiency. Future work will focus on optimizing the model to reduce training time and
memory consumption without compromising performance.

Table 9: Comparison of adaptation methods in terms of bottleneck dimensions, training speed, and
peak memory usage.

Method Bottleneck Dims. Training Speed Peak Memory Usage
Houlsby Adapter 256 76 mins 58 GB
CA-SSLRL (3L) 256 120 mins 68 GB
Fine-Tuning (FT) - 135 mins 79 GB

D RTF Analysis

Tables 10 and 11 present the real-time factor (RTF) for each individual component, as well as for the
combined systems. In Table 11, the term "separated tasks" refers to duplicating and fine-tuning the
SSLR for each task individually, along with the corresponding total RTF.

E Few-shots Results

Within the ML-SUPERB dataset’s 20 few-shots languages, we examined the performance of CA-
SSLR against the established SSL baselines, XLSR and mHuBERT, on models trained in the
10-minute ML-SUPERB set. The LID results indicate a close match between CA-SSLR and the
baseline, with approximately half of the few-shot languages exhibiting improvements or matching
their baseline performance. Section 5.4 reveals that SSL-based LID models are inherently effective,
and extending full fine-tuning does not necessarily enhance results. This observation aligns with the
outcomes of other classification tasks adeptly handled by SSL models, as documented in [Chen et al.,
2023b]. Furthermore, the CA-SSLR framework demonstrates subtle enhancements for the Normal
languages in the 10-minute set in Table 3, indicating that the LID performance remains robust despite
the encoder’s additional modifications.

15

Block RTF
ASR Decoder 0.004
LID Decoder 0.001
SPK Decoder 0.003
XLSR SSL 0.016
CA-XLSRS (6L) + 0.003
CA-XLSRL (4L) + 0.004
CA-XLSRL (3L) + 0.006
mHubert SSL 0.007
CA-mHubertS (6L) + 0.001
CA-mHubertL (3L) + 0.002

Table 10: RTF for different components.

XLSR Approach RTF mHubert Approach RTF

ASR + LID (Table 2)

XLSR + ASR + LID 0.021 mHubert + ASR + LID 0.013
CA-XLSRL(4L) 0.024 -
CA-XLSRL(3L) 0.027 CA-mHubertL(3L) 0.015
Separated 2 tasks (+XLSR) 0.037 Separated 2 tasks (+mHubert) 0.020

ASR + LID + SV (Table 3)

XLSR + ASR + LID + SV 0.024 mHubert + ASR + LID + SV 0.015
CA-XLSRL 0.029 CA-mHubertL 0.017
CA-XLSRL,S 0.032 CA-mHubertL,S 0.018
Separated 3 tasks (+2*XLSR) 0.055 Separated 3 tasks (+ 2*mHubert) 0.030

Table 11: Total RTFs for combined systems.

Table 12: Evaluation of LID and ASR performance in terms of Accuracy (Acc) and Character Error
Rates (CERs) for few-shot learning in low-resource languages using the ML-SUPERB 10-minute set,
comparing on XLSR and mHuBERT models.

Lang. XLSR CA-XLSRL,S mHuBERT CA-mHuBERTL,S

Acc ↑ CER ↓ Acc ↑ CER ↓ Acc ↑ CER ↓ Acc ↑ CER ↓
bos 82.0 21.3 70.0 11.7 30.0 29.0 28.0 26.0
ceb 97.6 20.5 97.6 12.4 92.9 27.2 97.6 25.4
dan 89.5 44.7 76.5 37.0 80.1 49.1 80.4 47.5
epo 81.7 15.3 76.9 14.5 46.2 24.8 52.9 25.4
frr 87.5 33.6 89.3 29.9 67.9 40.4 63.4 37.7
ful 55.0 27.1 67.5 28.2 37.5 34.7 62.5 32.0
kaz 98.0 32.6 99.3 21.5 91.4 37.8 88.7 36.0
kea 84.1 28.9 90.9 27.6 65.9 35.2 75.0 33.1
lit 87.3 52.0 87.7 45.2 79.3 52.4 82.5 49.3
luo 100.0 29.4 95.1 24.4 92.7 29.4 92.7 30.1
srp 64.8 57.4 50.9 48.1 53.5 56.7 45.7 56.2
sun 93.5 26.4 94.4 19.1 94.4 32.7 93.5 26.2
tok 98.5 15.4 98.5 13.1 98.5 23.2 98.5 19.2
tos 100.0 49.1 99.4 44.7 99.4 53.1 99.4 48.9
tso 84.0 25.4 81.3 21.7 83.3 29.4 81.3 26.0
tsn 87.1 22.7 85.7 17.3 83.6 27.3 84.3 23.9
tur 82.4 60.0 79.1 37.0 62.6 65.1 57.7 61.7
umb 64.0 24.6 40.0 23.3 44.0 29.8 36.1 30.1
vie 94.7 88.4 92.9 83.1 85.8 80.1 74.2 80.3
zul 60.6 20.4 62.3 14.4 53.7 24.3 52.0 20.4

16

Regarding the ASR results, most languages achieved significant CER reductions, ranging from
a modest few percent to over 30%, when compared with SSL baselines. Notably, the Bosnian
(bos) language experienced an impressive 45.1% relative improvement in CER, while Cebuano
(ceb) improved by 39.5% with the XLSR model. With the mHuBERT model, the most substantial
gains were observed in Sundanese (sun) and Toki Pona (took), with 19.9% and 17.2% CER relative
improvements, respectively. These results underscore the CA-SSLR framework’s profound effect
in bolstering ASR performance for few-shot languages, especially demonstrating more pronounced
improvements with the XLSR model.

When examining the correlation between LID accuracy and ASR performance, it is apparent that
a lower CER does not necessarily align with high LID accuracy. For instance, Serbian (srp) on
the XLSR model, despite having a modest LID accuracy of 50.9%, shows a CER improvement
from 57.4% to 48.1%. Conversely, Fulah (ful), the sole language to exhibit a CER increase in
the XLSR model, presents a higher LID accuracy of 67.5%. This indicates that the CA-SSLR
framework’s efficacy is not solely contingent on high LID prediction accuracy. CA-SSLR’s reliance
on embeddings instead of one-hot hard labels for predictions enables the model to maintain or
improve ASR performance despite suboptimal LID scores. This approach allows the model to utilize
embeddings to distinguish between easily confused languages, enabling the ASR model to predict
the correct language accurately.

F Decode Examples

Table 13 visualizes ASR outcomes for the XLSR and CA-SSLRL,S models on the ML-SUPERB
10-minute dataset, covering both few-shot and standard language scenarios. It highlights CA-SSLR’s
superior language recognition capabilities and success in rectifying the misclassifications encountered
with XLSR, often resulting in completely incorrect transcriptions. This is evident in languages
such as Lithuanian and Turkish, categorized as few-shot, and Bulgarian, which is better resourced
(normal). These findings demonstrate the TCA conditioner’s effectiveness in accurately managing
LID embedding features and distinguishing between languages for downstream tasks.

Moreover, the results from other samples suggest that CA-SSLR can achieve better outcomes during
training due to its incorporation of language information, even when the XLSR model correctly
predicts the language. This underscores the efficacy of the TCA conditioner in exploiting language-
specific data, thereby enabling CA-SSLR to achieve heightened accuracy across a diverse range of
languages.

G Ethical Statement

We affirm our commitment to ethical research practices, including respect for privacy and the re-
sponsible use of data. The proposed CA-SSLR model improves multi-lingual ASR in 143 languages,
including 20 low-resource ones with just five training utterances. In this manner, CA-SSLR con-
tributes to the democratization of speech technology, fostering inclusivity for previously underserved
communities. Furthermore, CA-SSLR prioritizes the reduction of computational costs at evaluation
time, thereby aiming to mitigate the environmental impact associated with speech applications. We
utilized publicly available datasets, namely ML-SUPERB and VoxCeleb, chosen for their moderate
size to minimize computing requirements. Our utilization of pre-trained models, specifically XLSR
and mHuBERT, aligns with their intended research purposes, as they are widely used within the
speech research community.

However, the capacity for conducting speech and speaker recognition in human conversations poses a
notable ethical concern linked to covert eavesdropping by nefarious entities. This capability could be
exploited by authoritarian government bodies seeking to suppress free speech and identify dissidents.
Therefore, it is imperative to promote public awareness and comprehension regarding the automated
analysis of spontaneous speech and its ramifications.

17

Language Group Ground Truth XLSR CA-XLSRL,S

Esperanto
(epo) Few-shots LI STUDVOJAĜIS

AL ITALIO HIS-
PANIO KAJ FRAN-
CIO

LESSTOS
VOLJAGIS AL
LITALIO HIS-
PANIO CKAI
FRANCIO

LI STUD VOJAGIS
AL ITALIO HIS-
PANIO KAJ
FRANZCIO

Lithuanian
(lit) Few-shots KARALIUS

NEIŠDRĮSO KALD-
INTI VARINIŲ
MONETŲ KAR-
ALIŠKOJOJE
MONETŲ KALYK-
LOJE

КАРАЛЮСS
НЕ ЖДРИСА
КАЛЬНЕН
ТЕ ВОАРИНУ
МОНЕТУ
КАРАЛЮШКОJOAE
Б МОНАТУ
КАЛIКЛОJA

KARALJUS
NE IŽDR I
SO KALNEN
TIE VORINIU
MONETU
KARALJUŠKOJO
JE MONETU
KALIKLOJE

Serbian
(srp) Few-shots OVO OTKRIĆE

TAKOÐE PRUŽA
UVID U EVOLU-
CIJU PERA KOD
PTICA

OVO ODKRIJČIE
TAKO ĆE PRUŽA
UVID UJEVOLUC
I JU PERA KOB
PTICT

OVO OD KRIČĆE
TAKO ÐE PRUŽA
UVID U EVOLUCI
JU PERA KOD
PTICT

Northern
Frisian

(frr)
Few-shots MEI IK TAKOM

WIKE DAT BOEK
FAN DY LIENE

MEA EK
TAKGKOMME
WIGGE DAT
BOEK VAN DIE IE
LIEËNE

MAA IK
TAKOMME WIKE
DAT BOEK VAN IE
LIENE

Turkish
(tur) Few-shots TÜM BUNLAR

ILGIMIZI ÇEKSE
DE UZUN KALA-
MAZDIK

ТҮМ БУНЛАР
ИЛГИМЗЕЙ ЧАК
СЕ ДЕ УЗУН
КАЛАМАСДЫК

TÜM BUNLAR
İLGİMİZİ Ç@KSE@
DE UZUN KALA-
MAZDIK

Belarusian
(bel) Normal НА ПЕРШЫМ

ПЛАНЕ
КАРЦIНЫ
НАМАЛЯВАНЫ
ГОСЦI
НАКРЫТЫЯ
ПЯЛЁСТКАМI
РУЖ

НА ПЕРШИМ
ПЛАНЕ
КАРЦИНЕ
НАМАЛЕВАНЫЙ
ГОСТЕ НА
КРЫТЫЕ
ПЕЛЁСТКЫМIЕ
РУЖ

НА ПЕРШЫМ
ПЛАНЕ
КАРЦIНЫ
НАМАЛЯВАНЫЙ
ГОСЦI
НАКРЫТЫЯ
ПЕЛЁСТКАМI
РУЖ

Bulgarian
(bul) Normal СЛЕД МАЛКО

ВАСИЛЕНА ПАК
ИЗЛЕЗЕ

SLED MAUKU
VASILENA PAKI
ИZLEZE

СЛЕД МАЛКО
ВАСЕЛЕНА ПАК
ИЗЛЕЗЕ

Basque
(eus) Normal KORRONTE

ETIKO HORREN
HELBURUA ZO-
RIONTASUNA
LORTZEA DA

KORRONTE
ETIKO HORREN
HELBURUA ZO-
RIOĄNTASUNA
LORTZEA DA

KORRONTE
ETIKO HORREN
HELBURUA ZO-
RIONTASUNA
LORTZEA DA

Ndebele
(nbl) Normal UMNQOPHO

WOMSEBENZI LO
UMNCOPHO
OWOMSEVENDZI
LOU

UMNCOPHO
WOMSEBENZI LO

Table 13: The ground truth, predictions from XLSR and CA-SSLR models. Deletions are shown with
red strikethrough text, insertions are underlined in blue, and substitutions are marked with yellow
highlighting.

18

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss the generalization ability for the condition-aware SSLR in Sec.
3, and it has been thoroughly evaluating in Sec. 5. We compare the generalization ability
across different tasks, which is unseen for the SSLR model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

19

Justification: We discussion the limitation in Sec.6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the dataset settings in Sec. 4.1, and Sec. 4.2 describes the model
architecture. The detail parameters settings is described in Sec. A.

Guidelines:

20

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Since the experiments are conducted with ESPnet and S3Prl, it is harder to
submit the whole package for the review, but we promise to release our branch after the
review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the dataset settings in Sec. 4.1, and Sec. 4.2 describes the model
architecture. The detail parameters settings is described in Sec. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Appendix A.2, we report the error bars results while running the experiments
different times. Also, we conduct different experiments with slightly different settings, and
provide consistant ASR and SV improvements, where the variation among these experiments
is much smaller than the improvement comparing with the baseline.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

22

Justification: We discuss the computation resource for training in 4.2, and RTF in Sec.5.2
and Sec.5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We include the code of ethics in Appendix G.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussion the broader impacts in Sec.6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

23

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model has been designed for ASR, SV, and LID, which has been welly
studied and have lower risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention the datasets and its license in Appendix A.3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We detail the dataset settings in Sec. 4.1, and Sec. 4.2 describes the model
architecture. The detail parameters settings is described in Sec. A. The model will be
released to public after the review process.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

24

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not research with human subject in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not research with human subject in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Methodology
	Channel-wise and Time-wise Attention Conditioner
	Hierarchical Self-Conditioning in CA-SSLR
	Incremental Training Strategy

	Experimental Setup
	Datasets
	Model Architecture

	Experiments and Results
	Generalization Ability on Unseen Tasks
	Condition-Aware SSLR Model
	Generalist Condition-Aware SSLR Model
	Analysis of the TCA Conditioner

	Conclusion
	Model/Dataset Details and Training Hyper-parameters
	Decoder Models for ASR, LID, and SV
	CA-SSLR Hierarchical Models
	Dataset License and Details
	ML-SUPERB Dataset
	VoxCeleb Dataset

	CER vs. Trainable Parameters
	Training Efficiency and Resource Usage
	RTF Analysis
	Few-shots Results
	Decode Examples
	Ethical Statement

