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ABSTRACT
In the transformative landscape of smart cities, the integration of the
cutting-edge web technologies into time series forecasting presents
a pivotal opportunity to enhance urban planning, sustainability,
and economic growth. The advancement of deep neural networks
has significantly improved forecasting performance. However, a
notable challenge lies in the ability of these models to generalize
well to out-of-distribution (OOD) time series data. The inherent
spatial heterogeneity and domain shifts across urban environments
create hurdles that prevent models from adapting and perform-
ing effectively in new urban environments. To tackle this problem,
we propose a solution to derive invariant representations for more
robust predictions under different urban environments instead of re-
lying on spurious correlation across urban environments for better
generalizability. Through extensive experiments on both synthetic
and real-world data, we demonstrate that our proposed method out-
performs traditional time series forecasting models when tackling
domain shifts in changing urban environments. The effectiveness
and robustness of our method can be extended to diverse fields in-
cluding climate modeling, urban planning, and smart city resource
management.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Informa-
tion systems→ Geographic information systems.
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1 INTRODUCTION
Time series data plays a pivotal role in analyzing, monitoring, and
simulating the development and design of smart cities. Extensive
research across various domains has leveraged this data for appli-
cations including weather forecasting [2], temperature monitoring
[13], and enhancing information systems [14]. Despite these ad-
vancements, analyzing time series data in urban environments
introduces significant challenges due to geographic domain shifts.
Such shifts represent a critical barrier in forecasting efforts, as mod-
els must not only capture temporal dependencies but also discern
and adapt to invariant relationships within diverse and changing
urban environments. This research seeks to address these chal-
lenges by developing a robust model capable of navigating the
complexities introduced by urban variability, thereby contributing
to the foundational technologies necessary for the smart cities of
the future [9].

As the field progressed, time series forecasting methods for smart
cities have evolved significantly. Vector Autoregression (VAR) mod-
els recognize the interdependencies among multiple variables in
time series and leverage them to predict future values, but they
were limited by their assumption of linearity and their inability to
handle non-linear relationships. Autoregressive Integrated Moving
Average (ARIMA) models [4], built upon the foundation of Autore-
gressive Moving Average (ARMA) models, address the challenges of
non-stationarity encountered by ARMA models. However, ARIMA
models can be limited by their strict assumptions about data proper-
ties and may face computational inefficiency when applied to large
datasets. Recurrent Neural Networks (RNNs) [11], including Long
Short-Term Memory (LSTM) [7] and Gated Recurrent Unit (GRU)
[6], revolutionized traditional methods by effectively capturing
temporal dependencies. However, they encountered challenges in
capturing long-range dependencies, were susceptible to vanishing
or exploding gradients, and were data hungry [3]. These limitations
alsomanifest in location-aware time series forecasting. Transformer
[12] has emerged as a significant advancement, effectively address-
ing the limitations of earlier methods by integrating a self-attention
mechanism. By capturing both short and long-range dependencies,
transformer excels in enhancing forecasting accuracy and surpass-
ing the constraints of previous approaches. While transformer and
other RNNs have demonstrated their effectiveness in time series
forecasting, they often struggle when confronted with geographic
domain shifts where the target urban environments differ signifi-
cantly from the source urban environments (See Figure 1). In such
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cases, these models tend to have unsatisfactory performance [8, 10].

Figure 1: Train a time series forecasting model (TSModel)
using observational data from city A and subsequently

applied it to forecast for city B and C.

Let’s delve into an illustrative example concerning urban dynam-
ics to highlight the complexities of predicting urban air pollution,
a critical task in time series forecasting. Traditional approaches of-
ten fall short by failing to recognize invariant causal relationships
between variables, relying instead on spurious correlations that
do not hold across different contexts. In this context, X represents
the level of traffic congestion, Y denotes the air pollution levels,
andZ indicates the prevalence of respiratory illnesses within the
same urban area. We establish a direct causal link between traffic
congestion (X) and air pollution (Y); as traffic congestion increases,
so does air pollution, primarily due to higher vehicle emissions and
engine idling. Moreover, there’s a consequential relationship be-
tween air pollution (Y) and respiratory health issues (Z). Increased
exposure to polluted air significantly raises the risk of respiratory
ailments, leading to a higher prevalence of such diseases. This inter-
play illustrates the critical need for air pollution forecasting models
that are precise, causally aware, and capable of identifying and
leveraging these invariant causal relationships. Our work specifi-
cally addresses the intricate dynamics of air pollution within urban
landscapes. By focusing on these dynamics, we aim to contribute
to the development of more sustainable urban environments. We
provide accurate predictions that are instrumental in informing
policy decisions and urban planning strategies, ultimately aiming
to reduce air pollution and mitigate its adverse health effects. Our
approach innovates by integrating advanced causal inference tech-
niques with time series forecasting, offering a novel perspective in
the fight against urban air pollution.

However, the correlation betweenY andZ may appear spurious
when considering different urban environments. Some urban areas
may have effective pollution control measures, ample green spaces,
or favorable air circulation patterns, which mitigate the impact of
air pollution on respiratory health. Consequently, the correlation
betweenY (level of air pollution) andZ (prevalence of respiratory
illness) may be weakened or even absent in such areas. To improve
its accuracy, it is essential to ensure themodel considers the underly-
ing causal factors and avoids being misled by spurious correlations.
To overcome this limitation, we propose InvarNet, an innovative
framework specifically designed to tackle the challenges of OOD
generalization in location-aware time series forecasting model for
smart cities. InvarNet consists of Invariant LSTM (Invar-LSTM)
and Invariant Transformer (Invar-Transformer) models, built upon
the LSTM and Transformer architectures, respectively. Integrating

the invariant risk minimization (IRM) [1] framework enables the
models to effectively handle geographic domain shifts, improving
their time series forecasting capabilities and ensuring robust per-
formance. In InvarNet, we begin by partitioning the time series
based on their respective geographic locations. This partitioning
allows us to isolate and analyze the data within specific urban en-
vironments. We then train our invariant time series forecasting
model with the data from the source environments. Our proposed
model is designed to encourage the learning of invariant relation-
ships, rather than relying on spurious correlations that may be
present across diverse environments. Therefore, it possesses the
ability to generalize effectively within the target geographic domain.
The development of InvarNet represents a significant contribution
to the field. It provides a solid foundation for further exploration
and advancements in OOD location-aware time series forecasting.
Through comprehensive evaluations on both synthetic and real-
world location-aware time series data, we have demonstrated the
effectiveness of our approach, which also opens up a new avenue
for research and development in smart cities.

2 PROBLEM FORMULATION
Consider a multivariate time series 𝑋 = ⟨𝑥1, 𝑥2, ..., 𝑥𝑇 ⟩, where mea-
surement 𝑥𝑇 ∈ R𝑑 is recorded at time step 𝑇 with 𝑑 attributes.
A set of location-aware multivariate time series is denoted as 𝑆 =

{(𝐿𝑛, 𝑋𝑛)}𝑁𝑛=1, where 𝑁 is the number of observed locations, 𝐿𝑛 =

(lat𝑛, lon𝑛) represents the geographic coordinates (latitude and
longitude) of a specific location, and 𝑋𝑛 ∈ R𝑑×𝑇 represents the
observed multivariate time series at 𝑛-th location.
Problem Statement: In the context of location-aware multivariate
time series, our objective is to develop a mapping function, denoted
as 𝑓 (·), on the training set 𝑆𝑡𝑟 ⊂ 𝑆𝑎𝑙𝑙 . This training set consists
of observations ⟨𝑋1, 𝑋2, ..., 𝑋𝑁 ⟩ from 𝑁 locations. The aim is to
predict 𝑥𝑇+𝑘 , where 𝑘 represents the desired number of time steps
into the future from the current time step, using the historical data
⟨𝑥1, 𝑥2, ..., 𝑥𝑇 ⟩. Furthermore, we aim to ensure that this mapping
function exhibits robust performance when applied to other geo-
graphic locations within 𝑆𝑎𝑙𝑙 that were not included in the training
set.

3 METHODOLOGY
In this section, we present our novel forecasting approaches by
developing IRM training algorithms on two deep neural network
architectures: Invariant Long Short-Term Memory (Invar-LSTM,
see Figure 2) and Invariant Transformer (Invar-Transformer, see
details in Subsection 3.2).

3.1 Invariant Long Short-Term Memory
First, we briefly introduce the application of LSTM in location-
aware time-series forecasting. Given a training set 𝑆𝑡𝑟 , which con-
tains a set of multivariate time series from a variety of locations, our
goal is to train an LSTMnetwork 𝑓 (·) that maps 𝑆1:𝑇𝑡𝑟 to 𝑆𝑇+𝑘𝑡𝑟 . We op-
timize the network by minimizing the loss function L(𝑆𝑇+𝑘𝑡𝑟 , 𝑆𝑇+𝑘𝑡𝑟 ),
where 𝑆𝑇+𝑘𝑡𝑟 denotes the ground truth, 𝑆𝑇+𝑘𝑡𝑟 is the predicted value.
It is often the modeling choice that L is a convex and differentiable
function, such as mean square error and cross-entropy. We observe
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that directly training the LSTM network in this traditional empir-
ical risk minimization manner leads to poor performance when
applied it to other locations that are not included in 𝑆𝑡𝑟 . We there-
fore explore the new IRM training paradigm for location-aware
time-series forecasting.

Figure 2: Invar-LSTM for Location-Aware Time Series
Forecasting.

Invar-LSTM shown in Figure 2 builds upon the well-established
LSTM architecture, integrating it with invariance properties derived
from the IRM framework. In our approach, we begin by splitting
the training set based on the locations from which the data was
collected. This results in a set of location-aware multivariate time
series pairs, denoted as (𝐿𝑖 , 𝑋𝑖 )𝑁𝑖=1, where 𝑁 represents the number
of locations. Each pair consists of a geographic location 𝐿 and a
corresponding multivariate time series 𝑋 = ⟨𝑥1, 𝑥2, ..., 𝑥𝑇 ⟩, where𝑇
denotes the number of timesteps. Here, 𝑥𝑡 ∈ R𝑑 represents a data
point at time 𝑡 with 𝑑 features.

To capture the temporal dependencies within the time series,
we employ the Long Short-Term Memory (LSTM) architecture. At
each timestep 𝑡 , the hidden state ℎ𝑡 ∈ Rℎ is computed using the
following equation:

ℎ𝑡 = 𝑓 (𝑊𝑖𝑛𝑝𝑢𝑡 · 𝑥𝑡 +𝑊ℎ𝑖𝑑𝑑𝑒𝑛 · ℎ𝑡−1 + 𝑏), (1)

here,𝑊𝑖𝑛𝑝𝑢𝑡 ∈ Rℎ×𝑑 is the weight matrix for inputs,𝑊ℎ𝑖𝑑𝑑𝑒𝑛 ∈
Rℎ×ℎ is the weight matrix for hidden states from the previous
timestep, and 𝑏 ∈ Rℎ represents the bias term.

In a traditional LSTM approach, the hidden state ℎ𝑡 is typically
passed through a dense layer to predict future timesteps, resulting
in 𝑌 = 𝑓 (𝑊𝑜𝑢𝑡𝑝𝑢𝑡 · ℎ𝑡 ), where 𝑌 ∈ R𝑑×𝑘 represents the 𝑑 features
and future 𝑘 time steps to be predicted.

To derive more generalizable prediction models, we integrate
IRM training scheme to enhance both the prediction accuracy and
robustness across different locations by encouraging the time-series
forecasting models to learn invariant representations in changing
urban environments.

In the case of Invar-LSTM, we introduce an additional step.
After obtaining the result from the dense layer, denoted as 𝐻 =

𝑓 (𝑊𝑙𝑜𝑔𝑖𝑡 · ℎ𝑡 ), where 𝐻 ∈ R𝑑×𝑘 and𝑊𝑙𝑜𝑔𝑖𝑡 ∈ R𝑑×𝑘×ℎ , we incor-
porate an invariant weight matrix𝑤𝑖𝑛𝑣 , which represents an all-1
matrix of size R𝑑×𝑘 . The output is calculated as 𝑌 = 𝐻 · 𝑤𝑖𝑛𝑣 ,
where (·) denotes the Hadamard product. To optimize the model,

the objective is defined as follows:

min
∑︁
𝑒∈E
R𝑒 (𝑤𝑖𝑛𝑣 · 𝐻 ) + 𝜆 · | |∇𝑤𝑖𝑛𝑣 |𝑤𝑖𝑛𝑣=1.0R

𝑒 (𝑤𝑖𝑛𝑣 · 𝐻 ) | |22 . (2)

In the equation (2), E represents urban environments in the train-
ing set, R𝑒 denotes the metric-specific loss function, and 𝜆 ∈ [0,∞)
is a regularization parameter. While also penalizing the deviation of
the gradients with respect to𝑤𝑖𝑛𝑣 from their values at𝑤𝑖𝑛𝑣 = 1.0.

3.2 Invariant Transformer
We also leverage the capabilities of the transformer architecture.
Unlike recurrent models, which face inherent limitations in paral-
lelization, especially when confronted with longer sequence lengths.
We mitigate the sequential nature’s hindrance, paving the way for
enhanced parallelization and improved performance.

In the training of Invar-Transformer, we also incorporate the
essential step of dividing the training set based on locations. Once
the data is separated, we input the respective subsets into the model.
Subsequently, we perform position encoding on the data 𝑥𝑡 posi-
tioned at time 𝑡 by following the steps outlined below:

PE(𝑡)𝑖 =
{
𝑠𝑖𝑛(𝜔𝑖𝑡) 𝑖%2 = 0
𝑐𝑜𝑠 (𝜔𝑖𝑡) 𝑖%2 = 1

In this context, PE represents the positional encoding, while 𝜔𝑖
signifies the manually designed frequency for each dimension. To
seamlessly integrate positional information, we perform the sum
of the input embedding and positional embedding, denoted as 𝑋𝑖𝑛 .
This operation effectively incorporates the positional encoding
within the input data.

To acquire the query matrix 𝑄 , keys matrix 𝐾 , and values ma-
trix 𝑉 , we utilize three separate weights:𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 , corre-
spondingly. Each weight is then multiplied by 𝑋𝑖𝑛 to generate the
respective matrices.

In the self-attention module, after obtaining𝑄 ,𝐾 , and𝑉 from the
input time series𝑋𝑖𝑛 , the computation involves a scaled dot product
self-attention mechanism. This mechanism can be mathematically
expressed as follows:

𝑧 = Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘
)𝑉 . (3)

where 𝑑𝑘 is the dimension of keys.
The Transformer utilizes multi-head attention (M-H Attention)

with𝑀 distinct sets of learned projections instead of a single atten-
tion function. This approach can be represented as:

M-H Attention(𝑄,𝐾,𝑉 ) = Concat(Attn1, ...,Attn𝑀 )𝑊 𝑜 (4)

Here, Attn𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) represents the 𝑖𝑡ℎ self-attention
module, and𝑊 𝑜 denotes the output weight matrix. Notably, the
dimension of the output 𝑧 from theMulti-Head Attention module
remains the same as the input𝑋𝑖𝑛 . The value of 𝑧 is subsequently fed
through the position-wise feed-forward layer, which comprises two
linear transformations with a ReLU activation applied in between.
This mathematical representation can be expressed as:

𝐹 (𝑧) = ReLU(𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2 . (5)

Moreover, it is important to note that the dimension of 𝐹 (𝑧) remains
consistent with the input 𝑋𝑖𝑛 . Subsequently, we proceed to map
the input 𝐹 (𝑧) to the output 𝐻 ∈ R𝑑×𝑘 for each location. In the
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context of the Invar-Transformer, after obtaining 𝐻 ∈ R𝑑×𝑘 , we
incorporate an invariant weight matrix𝑤𝑖𝑛𝑣 that is an all-1 matrix
of size R𝑑×𝑘 , similar to the approach used in LSTM. The output
is calculated as 𝑌 = 𝐻 ·𝑤𝑖𝑛𝑣 . To train the transformer model, we
optimize it using the same objective function (Equation 2) as used
in InvarLSTM.

4 EXPERIMENTS
4.1 Datasets
Synthetic Data: We first evaluate our methods using synthetic
data, employing a structural equation model represented as follows:

X𝑡 ← X𝑡−1 + N(0, 𝜎2)
Y𝑡 ← Y𝑡−1 + X𝑡−1 + N(0, 𝜎2)
Z𝑡 ←Z𝑡−1 + Y𝑡−1 + N(0, 1)

(6)

Here, we represent the temporal dependencies among variables as
recursive equations. Specifically, X𝑡 is influenced by its previous
value, Y𝑡 depends on its previous value as well as X𝑡−1, andZ𝑡 is
influenced by its previous value, Y𝑡−1, and a normally distributed
noise term with zero mean and unit variance. Moreover, in the
urban environment represented by 𝑒 ∈ E𝑡𝑟 , we consider that the
value of 𝜎2 varies with different urban environments.

Figure 3: Visualization of the Geographic Distribution of
Cities.

Real-world Data: We conducted our experiments using a real-
world dataset [15] consisting of air quality measurements collected
in Beijing (BJ), Shenzhen (SZ), and Guangzhou (GZ), China, which
are visualized in the Figure 3. The dataset covers the period from
May 1, 2014, to April 30, 2015. Within this real-world air quality
dataset, we have six attributes that are measured: 𝑃𝑀2.5, 𝑃𝑀10,
𝑁𝑂2, 𝐶𝑂 , 𝑂3, and 𝑆𝑂2. These attributes are monitored in multiple
stations where Beijing has a total of 36 stations, Guangzhou has
30 stations, and Shenzhen has 10 stations. Each station is associ-
ated with precise geographical coordinates in terms of latitude and
longitude. This information enables accurate spatial analysis of the
air quality data. The dataset provides a high temporal resolution,
with hourly measurements of pollutant concentrations. This level
of granularity allows for detailed analysis of temporal variations, fa-
cilitating the identification of daily fluctuations and seasonal trends
in air pollution.

4.2 Evaluation Metrics
Represent the predicted results and the ground truth in the testing
set across 𝑁 geographic locations as 𝑌𝑇+𝑘𝑛 and 𝑌𝑇+𝑘𝑛 , respectively.
The error metrics can be defined as follows:

Mean Absolute Error(MAE) =
1
|𝑁 |

|𝑁 |∑︁
𝑛=1
|𝑌𝑇+𝑘𝑛 − 𝑌𝑇+𝑘𝑛 |. (7)

Mean Squared Error(MSE) =
1
|𝑁 |

|𝑁 |∑︁
𝑛=1
(𝑌𝑇+𝑘𝑛 − 𝑌𝑇+𝑘𝑛 )2 . (8)

For theMAE andMSE, lower values indicate better accuracy and
prediction performance.

4.3 Main Results
Results of Synthetic Data Analysis: We conducted our exper-
iments initially on synthetic data. The purpose was to showcase
the superiority of the Invariance-based Time Series Forecasting
Model (Invar-TSModel) in learning invariant representations, in
comparison to the results obtained with the baseline TSModel
trained using empirical risk minimization.

Figure 4: Temporal Invariance (Left Solid Line) and Spurious
(Left Dotted Line) Relationship, Spatial Invariance (Right
Solid Line) and Spurious (Right Dotted Line) Relationship.

In our synthetic time series data as shown in Equation (6), there
are two distinct invariance relationships: The first invariance re-
lationship, denoted as X𝑡−1 → X𝑡 , originates from a temporal
perspective. This invariance relationship is primarily driven by
temporal dependence, where the historical data X𝑡−1 serves as the
causal factor, influencing the data observed at the current time step,
X𝑡 , as the effect. The second invariance relationship is from a spatial
perspective, where the attribute X serves as the cause andY as the
effect. Additionally, it is worth noting that the relationship between
Y andZ exhibits invariance only in a specific urban environment,
we refer to this as spurious correlation in other urban environments.
In our synthetic time series data, the invariant causal relationship
fromX toY remains invariant and unaffected by changes in the en-
vironments 𝜎2. However, the relationship between Y andZ exists
only when 𝜎2 = 1, indicating that for other urban environments
where 𝜎2 ≠ 1, this invariant relationship breaks down and is consid-
ered a spurious correlation. In such instances, the causal structure
can be depicted as shown in Figure 4. As a result, when attempting
to predict Y using both X and Z, the presence of the spurious
correlation betweenZ and Y can weaken the performance of the
model.

To be more specific, given the data in Equation (6), for the model
Y = 𝛼1X, the optimal solution is 𝛼∗1 = 1. Similarly, for the model
Y = 𝛼2Z, the optimal solution is 𝛼∗2 = 𝜎2

𝜎2+0.5 . When utilizing
both X and Z to predict Y with the model Y = 𝛼1X + 𝛼2Z, the
optimal solutions for 𝛼1 and 𝛼2 are found to be 𝛼∗1 = 1

𝜎2+1 and
𝛼∗2 = 𝜎2

𝜎2+1 , respectively. We have provided the derivation in the
Appendix A. These results highlight the impact of the varying
urban environments 𝜎2 on the coefficients when predicting Y. In
other words, when using X alone to predict Y, the coefficient
remains unaffected by changes in the urban environment. However,

1347



Towards Invariant Time Series Forecasting in Smart Cities WWW’24 Companion, May 13–17, 2024, Singapore, Singapore

when incorporatingZ (either alone or in combination with other
invariant variables) to predict Y, the coefficient is influenced by
the varying urban environment 𝜎2.

This theoretical analysis highlights a crucial insight: certain time-
series forecasting models may struggle to generalize effectively due
to their failure to capture the invariant relationship between X
and Y. Instead, these models tend to place greater emphasis on the
spurious correlation between Z and Y occurs in specific urban
environments, limiting their generalizability.

Table 1: Evaluation Results on Synthetic Data.

Methods Env-Type

2 3-1B 3-2G

MSE (TSModel) 3.614±0.002 4.735±0.002 1.425±0.002
MSE (Invar-TSModel) 2.327±0.002 2.992±0.001 1.155±0.002
MAE (TSModel) 1.513±0.003 1.735±0.003 0.955±0.001
MAE (Invar-TSModel) 1.214±0.001 1.376±0.001 0.863±0.002

To validate this idea, we conducted a comparative analysis of
the performance between a traditional TSModel and its Invariance-
based counterpart on the synthetic data. The results of this com-
parison are presented in Table 1. The training environments in-
cluded three distinct types. For the first type of environment (Env-
Type=2), with a total of two environments, in our experiments, we
set E𝑡𝑟𝑎𝑖𝑛 = {𝜎2𝑒1 = 0.1, 𝜎2𝑒2 = 1.0} and E𝑡𝑒𝑠𝑡 = {𝜎2𝑒𝑡 = 2.0}. Notably,
our proposed Invar-TSModel showcased a better forecasting perfor-
mance when compared to the traditional TSModel under this setting
(See Figure 5). Moving on to the second type of environment (Env-

Figure 5: Test Error Variation in Env-Type=2 Setting.

Type=3-1B), we introduced an additional data to the training set that
exhibited a larger domain shift compared to the target environments.
Here, we established E𝑡𝑟𝑎𝑖𝑛 = {𝜎2𝑒1 = 0.1, 𝜎2𝑒2 = 1.0, 𝜎2𝑒3 = 0.01}
and E𝑡𝑒𝑠𝑡 = {𝜎2𝑒𝑡 = 2.0}. In this scenario, the traditional TSModel
experienced a decline in performance, while the Invar-TSModel
demonstrated relatively better robustness in the face of domain
shifts, although its performance was not as strong as in the previ-
ous setting. Finally, in the third setting (Env-Type=3-2G), we added
data specifically from the target environment. The performance
of the traditional model witnessed an improvement. Under these

conditions, with E𝑡𝑟𝑎𝑖𝑛 = {𝜎2𝑒1 = 0.1, 𝜎2𝑒2 = 1.0, 𝜎2𝑒3 = 2.0} and
E𝑡𝑒𝑠𝑡 = {𝜎2𝑒𝑡 = 2.0}, our proposed Invar-TSModel continued to
outperform the traditional TSModel.

These findings on synthetic data illustrate the advantageous ca-
pabilities of the Invar-TSModel in effectively handling domain shifts
caused by varying training urban environments, as it consistently
outperforms the traditional TSModel in diverse settings.

Figure 6: Geographic Distribution of Monitoring Stations
used in Our Experiments.

Results of Real-World Data Analysis: Our experiments on real-
world data were designed with three different settings. Firstly, we
selected a station from Beijing, denoted it as BJ-0, to serve as the
test environment for all three settings. Then, in the first setting,
we chose two different stations from Beijing, denoted them as BJ-1
and BJ-2, as the training environments. Moving on to the second
setting, we selected two different stations from Shenzhen, namely
SZ-1 and SZ-2, as our training environments. In the third setting,
we included SZ-1 as part of the training environment, but instead
of SZ-2, we replaced it with a station from Guangzhou called GZ-1.

For all three settings, we utilized historical data from the previous
seven days to predict values for the following three days.We trained
LSTM, Invar-LSTM, Transformer, and Invar-Transformer models
on the respective training environments for each setting. Except for
the invariance mechanism, the backbone structure for LSTM and
Transformer models remained the same. The performance of these
models was then evaluated on the same BJ-0 test environment. The
results of these evaluations can be found in Table 2.

In our analysis of the results, we observed distinct patterns across
the different settings. In the first setting, where there was a small
geographic domain shift within Beijing, we found that Invariance-
based TSModel showed a slight improvement compared to the
traditional TSModel. This suggests that the invariance mechanism
helps mitigate the effects of geographic shifts, albeit to a limited
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extent. Moving to the second setting, which involved a larger ge-
ographic domain shift from Shenzhen to Beijing according to a
significant increase in mean square error generated by the model.
However, Invar-LSTM exhibited a notable improvement in per-
formance compared to the first setting. This improvement can be
attributed to the inherent ability of Invar-LSTM to learn invariant
representations, which proves beneficial in the face of larger geo-
graphic domain shifts. In the third setting, we also tested our model
with training data not only from one city but also from various
other cities, where we replaced SZ-2 with GZ-1, LSTM performed
better compared to the second setting. This indicates that the dis-
tribution of time series data from GZ-1 is more similar to BJ-0 in
comparison to SZ-2. In this scenario, Invar-LSTM showcased its
capability to handle the invariant relationship that arises in more
diverse urban environments, resulting in better performance than
using LSTM alone.

Table 2: Evaluation Results on Real-world Data (Metric:
Mean Square Error).

Method / Env-Type 2BJ-1BJ 2SZ-1BJ (SZ+GZ)-1BJ

LSTM 0.655±0.002 0.986±0.002 0.959±0.002
Invar-LSTM 0.652±0.002 0.942±0.011 0.896±0.025
Transformer 0.238±0.015 0.860±0.005 0.819±0.005
Invar-Transformer 0.228±0.017 0.785±0.002 0.654±0.005

Additionally, we extended our analysis to include popular Trans-
former models by integrating the invariance mechanism. We ob-
served that the combined approach exhibited better performance
than LSTM. By leveraging the advantages of the Transformer archi-
tecture and incorporating the invariance mechanism, we achieved
the best performance in addressing geographic domain shifts in
location-aware time series forecasting problems.

5 DISCUSSION
Our research was motivated by the causal invariance concept to ad-
dress the location-aware time series forecasting out-of-distribution
problem in smart cities. We started by exploring spatio-temporal
and causal analysis, recognizing that certain time series models
excel in capturing temporal invariance. However, many time series
models overlook this crucial aspect on the spatial domain, leading to
poor performance in such situations. Some models have proposed
changes to the inner architecture to enhance spatial considera-
tions but often at the cost of increased computational complexity.
In contrast, we aimed to develop an efficient and compact model
that could handle both spatial and temporal invariant relationships,
thereby improving robustness and accuracy.

Our experiments revealed the prevalence of geographic domain
shifts within the data, even within a single city. Another challenge
arose from uneven training data volume, where, for example, City 1
had 10,000 data points while City 2 had only 2,000. Such data imbal-
ance could cause models to favor fitting to City 1, resulting in poor
generalization to other locations. Leveraging the geo-location as-
pect in combination with time series data, we devised techniques to
encourage the model to identify and adapt to invariant relationships
present in each environment, despite the changing conditions.

6 CONCLUSION
In conclusion, this study introduced and evaluated a novel method
for city-level time series forecasting with the InvarNet framework,
offers a more promising and effective approach to address the ge-
ographic domain shifts caused by changing urban environments.
By incorporating both spatial and temporal invariance into LSTM
and transformer architectures, we successfully navigated the com-
plexities posed by geographic domain shifts. Our experiments, con-
ducted on both synthetic and real-world time-series data in urban
areas, showcased the superior performance and robustness of In-
varNet compared to traditional time-series forecasting models. The
choice of LSTM and Transformer as our base models was driven by
our primary focus on forecasting time series data. Moreover, this
methodology has the potential to be expanded to include regression
models such as linear regression and geographically weighted re-
gression [5] in future work. These results hold promising prospects
for applications across diverse domains, such as utilizing InvarNet
for climate modeling to forecast future climatic conditions and em-
ploying our proposed models in urban planning to anticipate traffic
patterns.
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A APPENDIX
To understand the impact of changing geographic environments
𝜎2 on the performance of the model, we first assumed a specific
data generation process that follows the structural equation model
outlined below:

X ← 𝜖1

Y ← X + 𝜖2
Z ← Y + 𝜖3

(9)

where 𝜖1, 𝜖2
𝑖 .𝑖 .𝑑∼ N(0, 𝜎2), and 𝜖3 ∼ N(0, 1). In different geographic

environments, 𝜎2 will change with the environments. Next, we will
provide empirical evidence to demonstrate the impact of changing
geographic environments on the predictive performance of the
model.

Given a model for predicting Y using variables X andZ, where
X, Y, and Z follow the structural equation model as shown in
equation (9):

Ŷ = 𝛼1X + 𝛼2Z.

Firstly, we assume that our objective is to find an optimal value
for 𝛼1 such that the estimator 𝑓 (X) = 𝛼1X provides a reliable
approximation of the variableY. In this case, our objective function
can be defined as follows:

min
𝛼1
E𝜖 [Y − 𝑓 (X)]2 .

Denoted E𝜖 (Y − 𝑓 (X))2 as 𝐹 (𝛼1); thus

𝐹 (𝛼1) = E𝜖1,𝜖2 [X + 𝜖2 − 𝛼1X]2

= E𝜖1,𝜖2 [(1 − 𝛼1)𝜖1 + 𝜖2]2

= E𝜖1,𝜖2 [(1 − 𝛼1)2𝜖21 + 2(1 − 𝛼1)𝜖1𝜖2 + 𝜖
2
2 ]

= (1 − 𝛼1)2E[𝜖21 ] + 2(1 − 𝛼1)E[𝜖1𝜖2] + E[𝜖
2
2 ]

= (1 − 𝛼1)2𝜎2 + 𝜎2 .

𝜖1 and 𝜖2 are independent random variables, so

E[𝜖1𝜖2] = E[𝜖1]E[𝜖2] = 0,

the objective function will be transformed into:

min
𝛼1

𝐹 (𝛼1) = min
𝛼1
(1 − 𝛼)2𝜎2 + 𝜎2,

the optimal solution is 𝛼∗1 = 1.
Then, we assume that our objective is to find 𝛼2 s.t. 𝑓 (Z) = 𝛼2Z

is a good estimator of Y, the objective function will be:

min
𝛼2
E𝜖 [Y − 𝑓 (Z)]2 .

Denote E𝜖 [Y − 𝑓 (Z)]2 as 𝐹 (𝛼2); thus,

𝐹 (𝛼2) = E𝜖1,𝜖2,𝜖3 [(𝛼2Z −X − 𝜖2)2]
= E𝜖1,𝜖2,𝜖3 [(𝛼2 (Y + 𝜖3) − 𝜖1 − 𝜖2)2]
= E𝜖1,𝜖2,𝜖3 [(𝛼2 (𝜖1 + 𝜖2 + 𝜖3) − (𝜖1 + 𝜖2))2] .

Here, denote 𝜖4 = (𝜖1 + 𝜖2) ∼ N (0, 2𝜎2), and thus:

𝐹 (𝛼2) = E𝜖3,𝜖4 [(𝛼2𝜖3 + 𝛼2𝜖4 − 𝜖4)2]
= E𝜖3,𝜖4 [(𝛼2𝜖3 + (𝛼2 − 1)𝜖4)2]
= E𝜖3,𝜖4 [𝛼22𝜖

2
3 + 2𝛼2𝜖3 (𝛼2 − 1)𝜖4 + (𝛼2 − 1)

2𝜖24 )]
= 𝛼22E[𝜖

2
3 ] + 2𝛼2 (𝛼2 − 1)E[𝜖3𝜖4] + (𝛼2 − 1)

2E[𝜖24 ]
= (𝛼2 − 1)2 · 2𝛼22 + 𝛼

2
2 ,

𝜖3 is a random variable, which independent of 𝜖4, so

E[𝜖3𝜖4] = E[𝜖3]E[𝜖4] = 0,

meanwhile, the objective function is:

min
𝛼2

𝐹 (𝛼2) = min
𝛼2
(𝛼2 − 1)2 · 2𝛼22 + 𝛼

2
2 ,

the optimal solution for the objective function is 𝛼∗2 = 𝜎2

𝜎2+0.5 .
At last, we assume that our objective is to find both 𝛼1 and 𝛼2

s.t. 𝑓 (X,Z) = 𝛼1X + 𝛼2Z is a good estimator of Y, the objective
function will be:

min
𝛼1,𝛼2

E𝜖 [Y − 𝑓 (X,Z)]2 .

Denote E𝜖 [Y − 𝑓 (X,Z)]2 as 𝐹 (𝛼1, 𝛼2); thus,
𝐹 (𝛼1, 𝛼2) = E[(𝛼1X + 𝛼2Z − (X + 𝜖2))2]

= E[((𝛼1 − 1)X + 𝛼2 (X + 𝜖2 + 𝜖3) − 𝜖2)2]
= E[((𝛼1 + 𝛼2 − 1)𝜖1 + (𝛼2 − 1)𝜖2 + 𝛼2𝜖3)2]
= E[(𝛼1 + 𝛼2 − 1)2𝜖21 + (𝛼2 − 1)𝜖

2
2 + 𝛼2𝜖

2
3

+ 2(𝛼1 + 𝛼2 − 1) (𝛼2 − 1)𝜖1𝜖2 + 2(𝛼1 + 𝛼2 − 1)𝛼2𝜖1𝜖3
+ 2(𝛼2 − 1)𝛼2𝜖2𝜖3]
= (𝛼1 + 𝛼2 − 1)2E[𝜖21 ] + (𝛼2 − 1)

2E[𝜖22 ] + 𝛼
2
2E[𝜖

2
3 ]

+ 2(𝛼1 + 𝛼2 − 1) (𝛼2 − 1)E[𝜖1𝜖2]
+ 2(𝛼1 + 𝛼2 − 1)𝛼2E[𝜖1𝜖3] + 2(𝛼2 − 1)𝛼2E[𝜖2𝜖3]
= ((𝛼1 + 𝛼2 − 1)2 + (𝛼2 − 1)2)𝜎2 + 𝛼22 ,

𝜖1, 𝜖2, and 𝜖3 are independent random variables, so

E[𝜖1𝜖2] = E[𝜖1]E[𝜖2] = 0,

E[𝜖1𝜖3] = E[𝜖1]E[𝜖3] = 0,
E[𝜖2𝜖3] = E[𝜖2]E[𝜖3] = 0,

and,
E[𝜖21 ] = 𝜎

2,

E[𝜖22 ] = 𝜎
2,

E[𝜖23 ] = 1,
we want to find 𝛼1, 𝛼2 to minimize the function 𝐹 (𝛼1, 𝛼2), thus:

𝜕𝐹

𝜕𝛼1
= 2(𝛼1 + 𝛼2 − 1)𝜎2 = 0,

𝜕𝐹

𝜕𝛼2
= [2(𝛼1 + 𝛼2 − 1) + 2(𝛼2 − 1)]𝜎2 + 2𝛼2 = 0,

the optimal solution for the objective functions are 𝛼∗1 = 1
𝜎2+1 and

𝛼∗2 = 𝜎2

𝜎2+1 .
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