
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

YOUR THOUGHTS TELL WHO YOU ARE:
CHARACTERIZE THE REASONING PATTERNS OF LRMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current comparisons of large reasoning models (LRMs) focus on macro-level
statistics such as task accuracy or reasoning length. Whether different LRMs
reason differently remains an open question. To address this gap, we introduce
the LLM-proposed Open Taxonomy (LOT), a classification method that uses a
generative language model to compare reasoning traces from two LRMs and ar-
ticulate their distinctive features in words. LOT then models how these features
predict the source LRM of a reasoning trace based on their empirical distribu-
tions across LRM outputs. Iterating this process over a dataset of reasoning traces
yields a human-readable taxonomy that characterizes how models think. We ap-
ply LOT to compare the reasoning of 12 open-source LRMs on tasks in math, sci-
ence, and coding. LOT identifies systematic differences in their thoughts, achiev-
ing 80–100% accuracy in distinguishing reasoning traces from LRMs that differ
in scale, base model family, or objective domain. Beyond classification, LOT’s
natural-language taxonomy provides qualitative explanations of how LRMs think
differently. Finally, in a case study, we link the reasoning differences to perfor-
mance: aligning the reasoning style of smaller Qwen3 models with that of the
largest Qwen3 during test time improves their accuracy on GPQA by 3.3–5.7%.

1 INTRODUCTION

Following the success of GPT-o1 and DeepSeek-R1, a wave of large reasoning models (LRMs) has
recently become available. These models differ in training recipes and report varying benchmark
performance, but far less is known about whether they also reason differently from one another. In
this paper, we pose a fundamental question: can LRMs be distinguished by their reasoning patterns,
and if so, what are the key distinguishing traits?

A growing body of work has begun probing the reasoning style of individual LRMs, yielding insights
into how artificial thinkers “think”. Marjanović et al. (2025), for example, finds that DeepSeek-
R1’s reasoning depth correlates with the human cognitive load when processing complex sentences.
Bogdan et al. (2025) annotates functions of DeepSeek-R1-Distill-Qwen’s reasoning steps, showing
that plan generation and re-evaluation are critical for solving math problems.

However, only a few studies attempt broader comparisons across LRMs and on multiple reasoning
behaviors. Gandhi et al. (2025) compares the reasoning patterns of base large language models
(LLMs) and their RL fine-tuned variants, finding that the habits of base models correlate with fine-
tuning gains. Along the same lines, Jiang et al. (2025) shows that LRMs differ in how they structure
their reasoning steps. However, Gandhi et al. (2025); Jiang et al. (2025); Bogdan et al. (2025) adopt
a deductive approach, relying on fixed, researcher-defined taxonomies of reasoning behaviors when
comparing artificial thinkers. The deductive approach risks biasing analyses towards researchers’
theories and overlooking unexpected behaviors of models, such as attempting to “visualize” the
chemical structure of compounds given in the question.

To address this limitation, we introduce the LLM-proposed Open Taxonomy (LOT), an inductive
method that identifies reasoning features distinguishing two LRMs directly from their outputs. LOT
operates in three stages: (1) an LLM compares thinkings from two LRMs on the same question and
highlights distinguishing reasoning traits in natural language; (2) the LLM annotates these features
in reasoning traces from other questions, converting textual reasoning into vectors of features; (3)
a logistic classifier is trained on these vectors to predict the source model for unseen traces. When

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

classification fails on a new trace, LOT returns to stage 1 to propose new features observed in the
failed sample. Iterating this cycle yields an open taxonomy of reasoning traits that reliably separates
the thought processes of different LRMs.

We apply LOT to compare and classify the reasoning traces of 12 LRMs across diverse model scales,
base model families, and specialized domains. LOT achieves 80-100% accuracy in classifying rea-
sonings of LRMs when they differ substantially along one of the axes above. In classifying LRMs
with various parameter scales, LOT outperforms few-shot prompting (by 23.8% on average), a re-
cent automatic prompt engineer method, VML (Xiao et al., 2025) (by 19.6%), and a human-defined
reasoning taxonomy (Gandhi et al., 2025) (by 11.7%) in accuracy.

Its natural-language taxonomies also provide verbal explanations of systematic differences between
LRMs, such as a smaller model’s tendency toward circular reasoning or a code-specialized model’s
usage of Python functions to solve math problems. As a case study, we further link the reasoning dif-
ferences among Qwen3 models at different scales with their performance gaps on GPQA-Diamond,
showing that modifying the smaller Qwen3 models’ reasoning styles can improve their accuracy by
3.3–5.7%.

In summary, our main contributions are: (1) introduce LOT, an inductive method that constructs
human-readable taxonomies of reasoning features to characterize the thought processes of LRMs;
(2) show that LOT accurately classifies LRMs’ reasoning across domains and outperforms existing
approaches; (3) explain systematic reasoning differences in natural language; and (4) through a case
study on Qwen3 models, demonstrate that these differences have a causal link to performance gaps.

2 RELATED WORK

Classification as a Probe to Illustrate the Models’ Behavioral Differences Existing studies of
LRMs’ reasoning (Gandhi et al., 2025; Jiang et al., 2025; Bogdan et al., 2025) rely on predefined
taxonomies of behaviors, limiting their analyses to researcher-chosen categories. Recently, Sun
et al. (2025) uses classification as an exploratory probe to detect differentiating output patterns of
non-reasoning LLMs, such as Grok-2 and Gemini-1.5. They train neural classifiers to predict the
source model of generated texts and obtain high accuracies that suggest the existence of “signatures”
patterns in LLMs’ outputs.

However, the features learned by neural models are not directly interpretable. Sun et al. (2025) in-
stead infers the LLMs’ behavioral differences through post-hoc counterfactual intervention, which
manipulates specific textual properties chosen by the researchers and measures the change in classi-
fication accuracy. Since the intervened properties are chosen by researchers, this feature-discovery
process remains deductive and may not reflect what the classifier has learned.

Can we use the classifier’s learned features to directly explain the LLMs’ behavioral differences?
In this work, we use classification not only as an exploratory sensor to detect reasoning differences,
but also as an explanatory tool to interpret what these differences are. To achieve this, we design
a novel automatic prompt engineer algorithm that, by comparing the thought processes of LRMs,
inductively generates human-readable reasoning features for classifying those processes.

Automatic Prompt Engineer for Interpretable Text Classification Recent Verbalized Machine
Learning (VML) (Xiao et al., 2025) proposes using LLMs to generate interpretable, natural-
language decision trees for text classification. In VML, the LLM receives a batch of training samples
as input and updates the decision rules, expressed in natural language, based on the observed pat-
terns. VML generates a decision tree by iterating this process. While effective for short-text tasks
such as classifying word–gender associations (Srivastava et al., 2023), VML is impractical for clas-
sifying long reasoning traces, which may span tens of thousands of tokens. To accommodate the
context window of existing LLMs, VML must drastically reduce its batch size, leaving updates to
its decision tree unstable and sensitive to noise.

Other automatic prompt engineer (APE) methods (Zhou et al., 2022; Guo et al., 2024; Benara et al.,
2024; Pryzant et al., 2023) can generate a classification instruction without batched examples, but
they rely on an initial pool of candidate instructions. The initial instructions are crafted either by
humans or from an LLM’s prior knowledge of the task. However, given the recency of the LRMs
we studied, neither we nor recent models have reliable knowledge about their reasoning patterns.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 LLM-proposed Open Taxonomy
Require: Dtrain = {(a, b, ya, yb)}n: paired reasonings from two LRMs on the same questions, Mθ:

LLM annotator
1: Annotate distinguishing features {ci} ←Mθ(c1, . . . , cm | ya, a, yb, b) observed in a sample
2: Initialize C← {c1, . . . , cm} subsection 3.1
3: while not converged do
4: Sample Dbatch ⊂ Dtrain.
5: for (a, b, ya, yb) ∈ Dbatch do
6: Encode a, Mθ(ac1 , . . . , ac|C| | C, a)
7: Update encoding aC = ⟨ac1 , . . . , ac|C|⟩ to AC; Repeat for b subsection 3.2
8: end for
9: while C unchanged & not converged do

10: Train logistic classifier ϕ : xC 7→ yx on {AC, BC}
11: Encode (a, b) ∼ Dtrain

12: Predict ŷa, ŷb using ϕ
13: if (ŷa, ŷb) ̸= (ya, yb)i then
14: Annotate additional features Mθ(Ĉ | C, a, b)
15: Update taxonomy C← C ∪ Ĉ subsection 3.3
16: else
17: AC ← AC ∪ {aC}, BC ← BC ∪ {bC}
18: end if
19: end while
20: end while
21: return C, ϕ

3 METHOD: LLM-PROPOSED OPEN TAXONOMY

We hence seek a different approach to classifying reasoning traces that (1) can generate classification
features directly from reasoning data without relying on predefined candidates and (2) can refine
these features without requiring batched inputs that exceed LLM context limits.

To meet these criteria, we introduce LOT, an APE method that builds an open taxonomy of human-
readable reasoning features for classifying reasoning traces from different LRMs. LOT is inspired
by the inductive coding process in qualitative research: instead of starting from predefined cate-
gories, it derives candidate reasoning features directly from observed reasoning data. These features
are expressed in natural language, applied to annotate new traces, and continuously refined so that
reasoning traces from different LRMs can be reliably distinguished by their annotations.

In the following subsections, we describe how LOT proposes reasoning features from limited exam-
ples and produces a reliable classification model without requiring batched reasoning inputs.

3.1 INITIALIZATION OF LOT

We do not assume any prior knowledge about the reasoning differences between two LRMs. At
initialization, we input the LLM Mθ with a pair of reasoning traces (a, b)i from two LRMs A
and B that solve the same question, along with labels indicating their respective source models
(ya, yb). The taxonomy C is initialized with the distinguishing reasoning features {c1, . . . , cm} ←
Mθ(c1, . . . , cm | ya, a, yb, b) identified from this pair.

3.2 ENCODING AND CLASSIFICATION WITH LOT

After obtaining an initial C, we represent new reasoning traces within the feature space spanned
by the LLM-proposed reasoning traits. Encoding is done by instructing the LLM to annotate the
occurrence of each reasoning features c in the trace following the c’s natural-language definition.

We tested two representations of reasoning traces: presence of reasoning (PoR) and bag of reasoning
(BoR). PoR represents a reasoning trace as a binary vector with each dimension representing the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

presence or absence of a reasoning feature c ∈ C. BoR is generated by annotating the function of
each sentence in the trace, taking into account the frequency of reasoning behaviors.

To classify a reasoning trace x, we first annotate sampled reasoning traces from models A and B
to construct a dataset of vectors representing the two models’ reasoning, {AC, BC}. We then train
a logistic regression classifier ϕ that maps {AC, BC} to their source models. For a new reasoning
trace, we annotate it using the same C and predict its source LRM through ϕ.

3.3 ITERATIVE UPDATES OF LOT

The reasoning differences observed in one pair of traces during initialization may not be sufficient
for classifying other samples. We improve the separability of reasoning traces in LOT by iteratively
expanding its feature dimension.

To do so, we apply the trained ϕ and C to new reasoning pairs sampled from the training set. When
classification fails, it suggests that the feature set is potentially incomplete. For the failed sample,
we provide the source LRM labels of the two traces and instruct the LLM to propose additional
reasoning differences Ĉ.

After C is updated, LOT returns to annotate another batch of samples using the new C. We combine
the new encodings with the existing vector dataset by expanding its dimensions and imputing the
missing values. For PoR encodings, we impute the missing values with 0. For BoR encodings, we
find that KNN imputation (Emmanuel et al., 2021) provides more stable classification performance
during training. Finally, the logistic classifier ϕ is re-trained on the updated vector dataset. The
imputation is applied only during training. To avoid artifacts from missing or imputed values, all
behavioral analyses in the following section use annotated traces from the test split.

Iteration and Convergence Training iterates the feature generation, encoding, and update steps
described above. It is converged when no changes are made to the taxonomy for N = 20 consecutive
iterations or when it reaches the maximum of M = 2|Dtrain| training samples.

3.4 COMPARISON WITH EXISTING APPROACHES

Our method differs from existing APEs and deductive analyses in its outcome, generation of classi-
fication program, and open feature set.

Outcome Original APE (Zhou et al., 2022) and its variants such as ProTeGi (Pryzant et al., 2023)
and EvoPrompt (Guo et al., 2024) aim to identify the best-performing prompt by narrowing down a
set of candidate classification instructions. In contrast, LOT improves the classifiability of reasoning
traces by expanding a set of reasoning features.

Classification Program Generation LOT separates the generation of classification features and
their parameters across different forward passes. In one forward pass, LOT proposes predictive
reasoning features. In subsequent passes, it calibrates the parameters of these features based on
annotated traces. VML (Xiao et al., 2025) requires the LLM to analyze a batch of data and produce
classification rules within a single forward pass, which is impractical for long texts.

Open Feature Set LOT keeps its set of reasoning features open during training, iteratively expand-
ing it as the LLM observes more reasoning data. Deductive studies rely on a fixed taxonomy defined
by researchers before analysis. APE methods also require an initial pool of candidate instructions.

4 CHARACTERIZING THE REASONING PATTERNS OF LRMS

We apply LOT to classify reasoning traces from 12 open-source LRMs that vary in parameter scales,
base model families, and task specializations. Our goal is to understand whether these model differ-
ences would lead to systematic differences in LRMs’ reasoning, and if so, what are they?

All classifications are performed pairwise (binary) between two LRMs with their reasoning traces
on the same dataset. We cover five datasets: GPQA-Diamond (Rein et al., 2024) for graduate-level

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MATH-500GPQA-Diamond CRUXEVAL-O LCB-ExecutionAIME 24 & 25

Figure 1: Test accuracies in classifying the reasoning traces generated by Qwen3-32B and one of its
smaller variants. Dotted lines indicate accuracies based on BoR and PoR encodings generated using
a fixed, human-defined reasoning taxonomy (Gandhi et al., 2025) (see Appendix G for details).

science reasoning; MATH-500 (Hendrycks et al., 2021) and AIME-24/25 AIME (2025) for high
school competition math; and CRUXEVAL (Gu et al., 2024) and LiveCodeBench (LCB, execution
split) (Jain et al., 2025) for code understanding.

Constructing the Reasoning Dataset We sample reasoning traces using the hyperparameters rec-
ommended in the models’ technical reports or HuggingFace repositories (see Appendix A). In total,
we collect 24,444 reasoning traces across 12 LRMs on the five datasets.

Training Setup For all experiments, we use Llama3.3-70B-Instruct (Dubey et al., 2024) as the
annotator model because of its strong instruction-following capability and open-weight nature.

LOT training uses an 80-20 train-test split on MATH-500, GPQA-Diamond, CRUXEVAL, and
LCB-execution, and a 75–25 split on AIME 24 & 25 due to its small size (60 questions). The
taxonomy is initialized by comparing one reasoning pair and then expanded iteratively following
Algorithm 1. A reasoning pair consists of traces from two LRMs given the same question. After
each update to the taxonomy, the LLM annotates a batch of 40 additional pairs using the updated
taxonomy. The logistic classifier is then re-trained on the updated embeddings.

Anonymized Model Labels Model names often reveal attributes such as their scale, family, and
domain specialization. To avoid biasing the LLM annotator, we assign each LRM a neutral code-
name (e.g., “Omelet” for Phi-4-Reasoning-Plus) when training LOT.

4.1 DOES PARAMETER SCALE AFFECT A MODEL’S REASONING PROCESS?

We begin by examining how the reasoning patterns of LRMs vary with their parameter scales. Re-
cent results show that the scaling law Snell et al. (2024) extends to LRMs, whose post-reasoning
performance correlates with their size (Guo et al., 2025; Yang et al., 2025). Beyond task accuracy,
we find that the “artificial brains” at different sizes also have systematic differences in their thinking.

We locate their differences by training LOTs to classify reasoning traces generated by Qwen3 mod-
els (Yang et al., 2025) of five smaller sizes (0.6B–14B parameters) against their largest variant,
Qwen3-32B. Because the smaller Qwen3 models are distilled from Qwen3-32B, they form an ideal
testbed for studying how parameter scale relates to reasoning behaviors.

Classification Accuracy As Figure 1 shows, LOT achieves 80–93% accuracy across all datasets
on classifying the traces of Qwen3-0.6B and Qwen3-32B, two models with the largest parameter
gap. Incorporating frequency information (BoR) further improves accuracy by 3–14% over PoR
encodings. However, as the parameter gap narrows, accuracy declines under both encodings, sug-
gesting that the reasoning traces from models with closer scales are less distinguishable to LOT.

Baselines We compare LOT against few-shot prompting (FSP) (Bai et al., 2022), VML (Xiao
et al., 2025), and PoR/BoR built from a fixed, human-defined taxonomy (Gandhi et al., 2025). For
the FSP baseline, each shot includes a pair of traces from the smaller model and Qwen3-32B for
the same question. We sweep 1–15 shots per dataset and report the best N -shot result. VML uses
the same N as its update batch size, except on AIME, where a batch size of 2 was used. For the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

More in Smaller Qwen More in Qwen3-32B Length ∝ Behavior Frequency (%)

Qwen3-0.6B vs Qwen3-32B (PoR)

Qwen3-32B

Qwen3-14B

Considering Alternative
Explanation

Qwen3-14B vs Qwen3-32B (BoR)

Analyzing
Protein Mutation

Qwen3-0.6B vs Qwen3-32B (PoR)

Qwen3-8B vs Qwen3-32B (PoR)

Qwen3-1.7B vs Qwen3-32B (PoR) Qwen3-4B vs Qwen3-32B (PoR)

Analyzing Sequence of Reactions

Qwen3-14B vs Qwen3-32B (PoR)

Analyzing
Protein Mutation

Evaluating Applicability
Of Theorem

Analyzing Sequence of Reactions

Identifying Incorrect
Assumption

Identifying Incorrect
Assumption

Evaluating Applicability
Of Theorem

Considering Alternative
Explanation

Verifying Compound Structure

Verifying Compound Structure

Figure 2: Reasoning differences between Qwen3-32B and its smaller variants on GPQA identified
by LOT. Color indicates how often the reasoning trace x with feature c is from Qwen3-32B versus
its smaller variant, E[1Qwen3-32B(x) | xc = 1] on test split. Bar length, on each side, encodes the
frequency of c in the respective model’s reasonings. Radar chart shows the averaged BoR encodings.

human-defined taxonomy, we annotate the entire reasoning dataset using the taxonomy and train a
logistic regression classifier on the resulting embeddings. All methods use Llama3.3 for inference
with same sampling hyperparameters. The prompts for FSP and VML are adapted from LOT’s.

Across five datasets, PoR and BoR encodings of LOT outperform the baselines on almost every
pairwise classification. The only exception is on MATH-500, where encodings using the fixed,
human-defined taxonomy perform similarly to LOT on classifying Qwen3-4B/8B/14B versus 32B.

Reasoning Differences LOT also discovers reasoning differences that are not captured in the
human-defined taxonomy. Figure 2 highlights some discriminative reasoning features between the
smaller Qwen3 models and Qwen3-32B on the GPQA dataset (test split). In summary, Qwen3-
32B more reliably recalls problem-relevant knowledge, checks the applicability of its chosen ap-
proaches against problem constraints and context, and executes step-by-step analyses without losing
the thread. In contrast, smaller variants often redundantly evaluate the same information (e.g., re-
peatedly stating the net field within a conductor is zero) which leads to circular reasoning. The LOT
also observes smaller Qwen3 models, such as Qwen3-0.6B and Qwen3-8B, often fail to commit to
a specific scientific theory or apply the wrong theory when solving the questions. As a result, they
frequently switch hypotheses, shift concepts, and eventually confuse themselves.

Another interesting pattern is observed in Qwen3-8B and Qwen3-32B. Although both are text-only
models, they sometimes “visualize” the molecular structure of compounds. Analyzing their rea-
soning traces with this annotation shows that both models write out the structural formula of the
compound given in the problem statement to better examine its chemical bonds (see Appendix B).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

AIME 24 & 25

GPQA-Diamond

MATH 500

LiveCodeBench-Execution

CRUXEVAL-O

Qwen2.5 / 3 Mistral

PoR

BoR Classification Accuracy
using BoR (Upper) and
PoR (Lower) Encodings

Figure 3: Accuracy in classifying reasoning traces of LRMs fine-tuned from different base models.
Each cell shows test accuracy for the LRM in the row versus the LRM in the column, using PoR
encodings (lower triangle) or BoR encodings (upper triangle). Arrows indicate fine-tuning relation-
ships. Note that AceReason is RL fine-tuned from DS-Qwen whose base model is Qwen2.5.

4.2 CAN REASONING HABITS TELL US A LRM’S “ROOT”?

Qwen3-14B

QwQ-32B

Analyzing Function Parameters

Considering Code
Purpose

Tracing Execution of
Conditional Statements

Analyzing Function Parameters

Considering Code
Purpose

Understanding
Code via Examples

Tracking State of Solution
During Simulation

Understanding
Code via Examples

Tracing Execution of
Conditional Statements

Tracking State of Solution
During Simulation

Analyzing Recursive Call

Analyzing Recursive Call

Figure 4: Qwen3-14B versus QwQ-
32B on LCB-Execution. The chart
shows the top-six most distinguish-
ing features (not the entire LOT).

Beyond parameter scale, we compare models fine-tuned from
different base model families and find notable differences in
their thought patterns. Specifically, we apply LOT to six rea-
soning models trained on three base families: Qwen3-14B,
QwQ-32B (Qwen, 2025), DS-Qwen-14B (Guo et al., 2025),
and AceReason-Nemotron-14B (Chen et al., 2025), all based
on Qwen; Magistral-Small based on Mistral (Rastogi et al.,
2025b); and Phi-4-Reasoning-Plus based on Phi-4 (Abdin
et al., 2025b). Except for Magistral-Small (24B) and QwQ-
32B, all models have 14B parameters.

As shown in Figure 3, the accuracy in classifying traces from
models with the same base (e.g., DS-Qwen-14B and QwQ-
32B) is lower, regardless of whether BoR (upper triangle of
the heatmap) or PoR (lower triangle) encodings are used.
This suggests that these models potentially exhibit similar
reasoning patterns.

For longer reasoning traces on challenging benchmarks,
GPQA and AIME, PoR encodings are insufficient to classify
thought processes, even if they are from LRMs fine-tuned
from different bases. Considering the frequency of reason-
ing features (BoR) improves accuracy, indicating that these
LRMs may use a similar set of reasoning strategies on harder
questions, but differ in how frequently they employ them.

Case study What are the reasoning differences between these models? We examine the BoR
encodings of Qwen3-14B and QwQ-32B’s reasoning traces on LCB-Execution, which tests their
understanding of Python code. Both models achieve high accuracy on this task (∼ 98%), but they
diverge in the number of steps used to understand function purposes and analyze recursive calls (see
Figure 4). Two models also take different approaches in comprehending the provided code: Qwen3-
14B, on average, spends more steps in simulating the code on various input–output examples, while
QwQ-32B focuses more on analyzing input parameters and their contribution to the final output.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Step 1

Step 2

Step N

Expanded
Modified
Reasoning
Trace

Step 1

Step 2

Step N

Step N - 1

Original
Reasoning
Trace

Expand

Summarize

Modify

GPQA-DiamondA B CQwen3-0.6B Behaviors More Likely Correct

Figure 6: (A) shows the odds ratio for each reasoning feature c in Qwen3-0.6B’s reasoning on
GPQA. (B) describes our intervention pipeline. (C) are the GPQA results after modifying the Qwen3
models’ reasoning traces. The results are averaged across 10 runs.

4.3 DOES TASK DOMAIN BRING ANY INERTIA TO LRM’S REASONING HABITS?

Qwen’s Behavior Seed’s Behavior

Figure 5: Qwen3 versus Seed-
Coder-Reasoning on MATH 500.
Colors, from green to purple, are
proportional to E[1Seed(x) | xc = 1].

Some models’ reasoning capabilities are fine-tuned on a spe-
cific domain. Seed-Coder-8B-Reasoning, for example, is
pretrained on a mixture of math and coding data, but its rea-
soning is fine-tuned solely on coding-related datasets. It is
natural to ask how such a model reasons about problems out-
side its fine-tuning domain, such as math.

Applying LOT to classify Seed-Coder-8B-Reasoning’s and
Qwen3-8B’s reasoning on MATH-500 reveals an intrigu-
ing difference: Seed-Coder sometimes borrows its coding-
oriented reasoning style for mathematics. For most ques-
tions, Seed-Coder adopts a computational approach similar
to Qwen3-8B. However, in 20% of cases, Seed-Coder goes
further by implementing a Python function to solve the prob-
lem (subsection 4.3). Qwen3-8B also exhibits coding-based
reasoning, but only in 2% of questions, specifically when the
prompts contain Asymptote code describing diagrams. In
those cases, Qwen3-8B simply interprets the graphic code
without further coding-related actions. Seed-Coder, however,
writes pseudocode, implements it in Python, and simulates its
execution to directly solve the problem, even when there is no code in questions. This suggests that
fine-tuning on a specific domain may introduce a degree of “inertia” in an LRM’s reasoning habits.

5 CONNECTING REASONING DIFFERENCES WITH PERFORMANCE GAPS

Do discrepancies in models’ reasoning habits help explain their performance differences? In this
section, we demonstrate that the reasoning differences identified by LOT have both the correlational
and causal links with models’ performance gaps.

We utilize the LOTs trained on the Qwen3 models in subsection 4.1 and their annotations of reason-
ing traces on GPQA. For each feature c that distinguishes a smaller Qwen3 model from its largest
counterpart (Qwen3-32B), we compute the odds ratio p(x∈correct|xc=1)/p(x∈wrong|xc=1)

p(x∈correct|xc=0)/p(x∈wrong|xc=0) , which quan-
tifies how much more likely a reasoning trace is to be correct when the feature c appears versus
not. Figure 6 reports these odds ratios for Qwen3-0.6B on GPQA. The results show the inconsistent
application of scientific principles and redundant evaluation appear more often in Qwen3-0.6B’s in-
correct reasoning, while verifying a method’s applicability is strongly associated with correct ones.
Appendix J provides odds ratios for other Qwen3 models.

However, strong associations alone do not establish causality. Does the appearance of a reasoning
behavior affect the correctness of a model’s final answer? One way to test this counterfactual relation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

is to instruct an LRM to perform reasoning behaviors more or less frequently, based on their odds ra-
tios. Surprisingly, current LRMs, including the Qwen3 family, struggle to follow instructions about
their reasoning content. In a baseline experiment (details in Appendix C), we prompt the LRMs to
begin their reasoning with a specific sentence when solving a GPQA question. None of the open-
source LRMs reliably generate the required sentence in their reasoning. In particular, the Qwen3
models often generate the sentence at the start of final (non-thinking) output, after completing their
reasoning.

This observation motivates us to design an alternative intervention pipeline (Figure 6B). Given a
model to be intervened on, we first instruct it to summarize its original reasoning, paragraph by
paragraph, into a list of steps. Next, the model is prompted to edit this summary by adding or re-
moving steps according to the correlation findings. Finally, the model iteratively re-expands the
modified summary into a complete reasoning trace. All steps are conducted in the Qwen3 models’
non-thinking mode1. We infer the final answer from the intervened model using the expanded rea-
soning as its thinking content. Why not instruct the Qwen3 models to edit their original reasoning
directly? Summarization is necessary because some reasoning traces contain more than 20K tokens,
and direct modification would exceed the 32K-token context window of the Qwen3 models.

Figure 6C shows that the intervention improves the accuracy of Qwen3-0.6B, Qwen3-4B, and
Qwen3-8B on GPQA. To ensure that the gains came from the modifications rather than summa-
rization alone, we evaluate re-expanded traces from unmodified summaries, and the comparisons
confirm that the improvements from intervention are significant. The only exception is Qwen3-1.7B,
whose performance drops significantly after summarization. As a result, the modified traces perform
worse than the original traces, though they still outperform the unmodified expansions. This failure
is potentially due to Qwen3-1.7B’s poor instruction-following during reasoning (Appendix C).

6 LIMITATIONS AND FUTURE WORK

Our study has several limitations. First, we did not establish causal links between the meta-attributes
of LRMs (e.g., size) and their reasoning patterns. Most LRMs we compared do not fully open
source their training recipes and may differ in several meta-attributes beyond those we focused
on. Comparing models trained under controlled conditions would allow us to make stronger causal
connections, but that requires significant compute inaccessible to us.

Second, our reasoning taxonomy is sampled from an LLM and may thus vary with random seeds. In
Appendix D, we assess the consistency of taxonomies generated from five different seeds. We find
that, after a sufficient number of iterations, the five taxonomies converge to a similar set of features.

Since LOT is optimized for classification, we make no guarantee that a trained LOT will describe the
complete set of reasoning differences between LRMs. For example, if two LRMs consistently differ
in multiple reasoning styles, finding any subset of them will lead the LOT’s training to convergence.

Finally, the approaches for modifying the LRMs’ reasoning styles are worth future study. We de-
scribed a test-time method in section 5, but future work may explore how to leverage the identified
reasoning differences in training such as using them to select fine-tuning data or incorporating them
as processed reward for reinforcement learning. Meanwhile, our work used Llama3.3-70B-Instruct
in all experiments. The effects of the LLM annotator on LOT’s performance remain underexplored.

7 CONCLUSION

This work introduced LOT, a classification method that produces human-readable taxonomies of
LRMs’ reasoning differences, accurately distinguishing their thought processes. We apply LOT to
compare the reasoning behaviors of 12 open-source LRMs, and it achieves higher classification ac-
curacy than a predefined reasoning taxonomy and automatic prompt engineer approaches. Beyond
classification, LOT enables direct interpretation of how LRMs reason differently. Through inter-
vention experiments, we show that certain reasoning differences contribute to performance gaps
between models. In particular, we improve GPQA performance by 3.3–5.7% by modifying the
reasoning behaviors of smaller Qwen models during test time.

1Qwen3 models are trained with thinking control that allows them to generate answers without thinking.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl,
Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al.
Phi-4-reasoning-plus huggingface repository. https://huggingface.co/microsoft/
Phi-4-reasoning-plus, 2025a. Accessed: 2025-09-13.

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025b.

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. Advances in
Neural Information Processing Systems, 37:76930–76966, 2024.

AIME. Aime problems and solutions. https://artofproblemsolving.
com/wiki/index.php/AIME_Problems_and_Solutions?srsltid=
AfmBOooFlSNrsUINYYcNA-tIXLP3IB9TogCxw_dkXg9zcNlO2SaYk6Xu, 2025.
Accessed: 2025-09-13.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Vinamra Benara, Chandan Singh, John X Morris, Richard Antonello, Ion Stoica, Alexander G Huth,
and Jianfeng Gao. Crafting interpretable embeddings by asking llms questions. Advances in
neural information processing systems 37, 2024.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through rein-
forcement learning. arXiv preprint arXiv:2505.16400, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng, Thabo Semong, Banyatsang Mphago,
and Oteng Tabona. A survey on missing data in machine learning. Journal of Big data, 8(1):140,
2021.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In International Conference on Learning Representations, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. Advances
in Neural Information Processing Systems, 2021.

10

https://huggingface.co/microsoft/Phi-4-reasoning-plus
https://huggingface.co/microsoft/Phi-4-reasoning-plus
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions?srsltid=AfmBOooFlSNrsUINYYcNA-tIXLP3IB9TogCxw_dkXg9zcNlO2SaYk6Xu
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions?srsltid=AfmBOooFlSNrsUINYYcNA-tIXLP3IB9TogCxw_dkXg9zcNlO2SaYk6Xu
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions?srsltid=AfmBOooFlSNrsUINYYcNA-tIXLP3IB9TogCxw_dkXg9zcNlO2SaYk6Xu

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. International Conference on Learning Representa-
tions, 2025.

Gangwei Jiang, Yahui Liu, Zhaoyi Li, Qi Wang, Fuzheng Zhang, Linqi Song, Ying Wei, and Defu
Lian. What makes a good reasoning chain? uncovering structural patterns in long chain-of-
thought reasoning. arXiv preprint arXiv:2505.22148, 2025.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, et al. Deepseek-r1
thoughtology: Let’s think about llm reasoning. arXiv preprint arXiv:2504.07128, 2025.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with” gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Team Qwen. Qwq-32b huggingface repository. https://huggingface.co/Qwen/
QwQ-32B, 2025. Accessed: 2025-09-13.

Abhinav Rastogi, Albert Q Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason
Rute, Joep Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, et al.
Magistral-small 2506 huggingface repository. https://huggingface.co/mistralai/
Magistral-Small-2506, 2025a. Accessed: 2025-09-13.

Abhinav Rastogi, Albert Q Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason Rute, Joep
Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, et al. Magistral. arXiv
preprint arXiv:2506.10910, 2025b.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, et al. Seed-coder: Let the code model curate data for itself.
arXiv preprint arXiv:2506.03524, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imita-
tion game: Quantifying and extrapolating the capabilities of language models. Transactions on
machine learning research, 2023.

Mingjie Sun, Yida Yin, Zhiqiu Xu, J Zico Kolter, and Zhuang Liu. Idiosyncrasies in large language
models. International Conference on Machine Learning, 2025.

Yongjian Tang, Doruk Tuncel, Christian Koerner, and Thomas Runkler. The few-shot dilemma:
Over-prompting large language models. arXiv preprint arXiv:2509.13196, 2025.

Tim Z Xiao, Robert Bamler, Bernhard Schölkopf, and Weiyang Liu. Verbalized machine learning:
Revisiting machine learning with language models. Transactions on Machine Learning Research,
2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

11

https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/mistralai/Magistral-Small-2506
https://huggingface.co/mistralai/Magistral-Small-2506

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A CONSTRUCTING THE REASONING DATASET

A.1 HYPERPARAMETER USED IN SAMPLING REASONING OUTPUTS FROM LRMS

Table 1 shows the sampling hyperparameters we use to generate reasoning traces from each LRM.
For each model, the same hyperparameters are applied across all datasets.

Seed-Coder-8B-Reasoning (Seed et al., 2025)’s technical report and HuggingFace (HF) repository
do not specify the sampling hyperparameters used in the evaluation. However, the technical report
states that a temperature of 0.6 is used when training Seed-Coder for reasoning. For Top-p and
Top-k, we use the most common numbers observed in the other LRMs.

Table 1: Sampling hyperparameters used for each LRM.
Models Temp Top-p Top-k Source

Qwen3 Family 0.6 0.95 20 Paper (Yang et al., 2025)
AceReason-Nemotron-14B 0.6 0.95 50 Paper (Chen et al., 2025)
DeepSeek-R1-Distill-Qwen-14B 0.6 0.95 50 Paper (Guo et al., 2025)
QwQ-32B 0.6 0.95 20 HF Repo (Qwen, 2025)
Magistral-Small 0.7 0.95 50 HF Repo (Rastogi et al., 2025a)
Phi-4-reasoning-plus 0.8 0.95 50 HF Repo (Abdin et al., 2025a)
Seed-Coder-8B-Reasoning 0.6 0.95 50 —

A.2 PROMPT TEMPLATES USED IN SAMPLING REASONING OUTPUT

We use prompt templates in Figure 7 when sampling reasoning traces and answers from the LRMs.
The prompt template for math datasets is adopted from the promptbase library. AceReason-
Nemotron, Qwen3, Magistral, and DeepSeek also recommend using “$
boxed” to format final outputs on math questions (mentioned in their HuggingFace repository). The
prompt template for GPQA-Diamond is adopted from Zhou et al. (2025). For CRUXEVAL and the
LiveCodeBench execution split, we use the prompt template provided in the original CRUXEVAL
paper (Gu et al., 2024).

{Question statement}

Please end your solution with Answer: $\\boxed{number}$
where number is the numerical answer without unit.

Sampling Prompt Used for MATH-500 and AIME 24 & 25

Based on the given Python code, which may contain errors,
complete the assert statement with the output when executing
the code on the given test case. Do not output any extra
information, even if the function is incorrect or incomplete.

[PYTHON]
{function provided by the dataset}
[/PYTHON]

assert {function_name}({example_input}) == ??

In your final output, surround your answer with no additional
words, with [ANSWER] and [/ANSWER] tags. Your answer
should be [ANSWER] [Expected outputs] [/ANSWER]

Sampling Prompt Used for CRUXEVAL and LCB

{Question statement}
A: {Choice}
B: {Choice}
C: {Choice}
D: {Choice}

Please reason step by step, and put your final answer within
\\boxed{}.
Please only provide the letter of the answer in the box.

Sampling Prompt Used for GPQA-Diamond

Figure 7: Prompt templates used in sampling reasoning responses to each dataset.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B ADDITIONAL QUALITATIVE ANALYSES OF GENERATED TAXONOMIES

B.1 REPEATED VERIFICATION OF OUTPUT FORMAT

AceReason-14B

Phi-4-RP

Double Checking
Final Answer

Checking Output Format

Verifying Intermediate
Results

Backtracking

Double Checking
Final Answer

Explaining Code
Line-by-line

Breaking Down Complex Step

Checking Output Format

Verifying Intermediate
Results

Explaining Code
Line-by-line

Backtracking

Breaking Down Complex Step

Figure 8: AceReason versus Phi-
4-RP on CRUXEVAL (code under-
standing). Radar chart shows the av-
eraged BoR encodings. Note that
the chart highlights the reasoning
features with the largest differences.
It is not the complete set of features
identified by LOT.

We observe an unexpected reasoning behavior in Phi-4-RP
when comparing its BoR encodings with those of AceReason
on CRUXEVAL: Phi-4-RP excessively checks the format of
its final answer to ensure compliance with the instructions. In
CRUXEVAL, models are asked to predict a Python function’s
output for a given input. The questions also ask the model to
enclose its predictions by “[ANSWER]” and “[/ANSWER]”
with no extra words. Although both models perform similar
on this task (∼ 84% accuracy), Phi-4-PR spends significantly
more steps verifying its adherence to the required format. Be-
low is a reasoning trace from Phi-4-PR that exemplifies this.

[Previous reasoning]
Thus answer: 9.
But wait: The question says ”complete the as-
sert statement with the output when executing
the code on the given test case”. And then
it says ”Your answer should be [ANSWER]
[Expected outputs] [/ANSWER]” with no extra
words.
Thus answer: [ANSWER]9[/ANSWER]. But
careful: The instructions say “Do not output any
extra information, even if the function is incor-
rect or incomplete.” So answer should be ex-
actly that.
I’ll produce the answer in the specified format:
[ANSWER]9[/ANSWER]. I need to output an-
swer with no extra words. So answer: [AN-
SWER]9[/ANSWER].

While this habit may appear unusual from a human reasoning perspective, it is important for LRMs,
whose correct answers are rewarded during training only if they can be parsed by the outcome reward
function. Outcome reward functions extract the final answer using regular expressions that require
a strict output format. Phi-4-RP uses more steps to ensure its solutions can be properly extracted.

B.2 VISUALIZING MOLECULAR STRUCTURE OF COMPOUNDS

In subsection 4.1, we mention that Qwen3-8B and Qwen3-32B (text-only models) attempt to “visu-
alize” the molecular structure of the compounds given in the problem. Examining their reasoning
traces with the annotation of this behavior, we find that the two models often convert the compounds
originally expressed in their IUPAC names into structural formulas that more explicitly describe the
chemical bonds within molecules (see Figure 9 for examples).

[... Previous reasoning …] Let me try to consider that product 1 has a
carbonyl group. Let's say it's a ketone. Then, when treated with
aluminum isopropoxide (a strong base), maybe it undergoes some
kind of elimination to form an alkene. For example, if there's a proton
adjacent to the carbonyl group, the base could abstract it, leading to
the formation of a double bond.

If product 1 is, say, 2-ketoadamantane, then the structure would be:

 O
 ||
CH2-C-CH2-... (but in adamantane framework)
[... continued …]

Qwen3-8B’s Visualization of 2-ketoadamantane
[... Previous reasoning …] The starting material here is racemic
3-methylpent-1-ene. Let me draw that structure to visualize.
Pent-1-ene is CH2=CHCH2CH2CH3. But with a 3-methyl group.

[... Intermediate reasoning ...]

Then the carbons are C1, C2, C3, C4, C5. So, 3-methyl would be a
methyl group on C3. So the structure is CH2=CHCH(CH3)CH2CH3?
Wait, but pent-1-ene is CH2=CHCH2CH2CH3. Adding a methyl on
C3 would make it CH2=CH-CH(CH3)-CH2-CH3. Yes, that's
3-methylpent-1-ene.

[... continued …]

Qwen3-32B’s Visualization of 3-methylpent-1-ene

Figure 9: Examples of Qwen3-8B and Qwen3-32B “visualize” the molecular structure of com-
pounds by writing their structural formula.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3 CODE-BASED REASONING

In subsection 4.1, we apply LOT to classify Qwen3-8B’s and Seed-Coder-8B-Reasoning’s reasoning
on MATH-500. One of the reasoning features in LOT suggests that Seed-Coder occasionally uses a
coding approach to solve math problems, where the model writes pseudocode, provides its Python
implementation, and simulates execution. We provide an example of this phenomenon in Figure 10.

Qwen3-8B exhibits code-based reasoning in only 2% of the questions of which the prompts contain
Asymptote code describing a diagram. In those questions, Qwen3-8B simply parses information
from the graphic code that is necessary for problem solving without taking further coding-related
actions (see Figure 11 for an example).

Okay, let me try to figure out this problem. So the question is asking for
the sum of the proper divisors of the sum of the proper divisors of 284.
Hmm, that sounds a bit complicated, but let me break it down step by
step.

First, I need to find the proper divisors of 284. Then, sum those up [……]

[... intermediate steps …]

Proper divisors of a number are all the divisors except the number itself.
So for 284, I need to list all numbers that divide 284 evenly without leaving
a remainder, but not including 284 itself. Let me recall how to find divisors.
One way is to factorize the number into primes and then use that to find
all divisors.

Let me try prime factorization of 284. Let's see, 284 is even, so it's
divisible by 2. Dividing 284 by 2 gives 142. Then 142 is also even, divide
by 2 again to get 71. Now, 71 is a prime number, right? Let me check: 71
divided by 2 is not an integer, 3? 3*23 is 69, 3*24 is 72, so no. 5? Doesn't
end with 0 or 5. 7? 7*10 is 70, 7*11 is 77, so no. 11? 11*6 is 66, 11*7 is
77, so no. So yeah, 71 is prime. Therefore, the prime factorization of 284
is 2² * 71¹.

Now, to find all the divisors, we can use the formula where for each prime
factor, we take exponents from 0 up to their maximum in the factorization.

[... intermediate steps …]

Alternatively, using the formula for the sum of divisors. The sum of all
divisors of a number N is given by the product over each prime factor
(p^(k+1) - 1)/(p - 1). Then the sum of proper divisors is that minus N itself.

[... Continued …]

Qwen3-8B’s Reasoning
Okay, let's see. I need to find the sum of the proper divisors of the sum of
the proper divisors of 284. Hmm.

First, I should figure out what the proper divisors of 284 are. [......]

[... intermediate steps …]

Wait, perhaps the standard way to find all divisors (excluding the number
itself) is:

Initialize a list of divisors.

For i from 1 to sqrt(n):

 if n mod i ==0:

 if i is not equal to n, add i to the list.

 if (n/i) is not equal to i and (n/i) is not equal to n, add n/i to the list.

[... intermediate steps …]

Let me try to code this:

def get_proper_divisors(n):
 divisors = set()
 for i in range(1, int(n**0.5)+1):
 if n % i ==0:
 if i !=n:
 divisors.add(i)
 if (n//i) != i and (n//i) !=n:
 divisors.add(n//i)
 return sorted(divisors)
[... Continued …]

Seed-Coder-8B-Reasoning’s Reasoning

The proper divisors of 12 are 1, 2, 3, 4 and 6. A proper divisor of an integer N is a positive divisor of N that is less than
N. What is the sum of the proper divisors of the sum of the proper divisors of 284?

MATH-500 Question

Figure 10: Qwen3-8B approaches the problem with its math knowledge and obtains the results by
direct calculations. Seed-Coder-8B-Reasoning uses a similar math concept (proper divisors of 284
are numbers that divide 284 with no residual) but outlines it in pseudocode and implements it in
Python.

The volume of the cylinder shown is 45π cubic cm.
What is the height in centimeters of the cylinder?

[asy]
size(120);
draw(shift(2.2,0)*yscale(0.3)*Circle((0,0), 1.2));

draw((1,0)--(1,-2));
draw((3.4,0)--(3.4,-2));

draw((1,-2)..(2.2,-2.36)..(3.4,-2));

label("h",midpoint((3.4,0)--(3.4,-2)),E);

draw (((2.2,0)--(3.4,0)));

label("$r=3$",midpoint((2.2,0)--(3.4,0)),N);

[/asy]

MATH-500 Question with Asymptote Code
[... Previous reasoning steps …]

The problem says the volume is 45π, so I can set up
the equation: 45π = πr²h. Hmm, okay. Now, I need to
find the height, which is h. But wait, do I know the
radius? Let me check the Asymptote code provided.
The Asymptote code draws a cylinder with some labels.
It mentions a label "r=3" near the top, so the radius is 3
centimeters? Let me confirm that.

Looking at the Asymptote code: there's a line that says
label("$r=3$",midpoint((2.2,0)--(3.4,0)),N);. So that
segment from (2.2,0) to (3.4,0) is labeled as r=3. So
that must be the radius. Wait, but in the Asymptote
code, they have a circle scaled by yscale(0.3), but
maybe that's just for drawing purposes. The important
thing is that the radius is 3 cm.

[... Continued …]

Qwen3-8B’s Reasoning of Asymptote Code

Figure 11: Qwen3-8B’s code-based reasoning only occurs when the question prompts contain
Asymptote code that describes diagram necessary for solving the problem.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C INSTRUCTION FOLLOWING DURING REASONING

In section 5, we describe an intervention experiment in which we modify specific reasoning behav-
iors in model traces and measure the resulting changes in correctness.

One way to implement such modifications is to prompt LRMs to perform certain behaviors more or
less frequently when solving a question. To test the feasibility of this approach, as a minimum check,
we instruct the LRMs to generate the sentence “I am a large language model.” at the beginning of
their thinking while solving questions from GPQA. Although simple, this test can reveal whether an
LRM can insert designated content at a specified location within its reasoning process.

GPQA-DiamondA B
Input prompt:
{Question from GPQA dataset}
For a magnetic field \vec{B}, parallel to…
Please reason step by step and put your
final answer within \boxed{}.

At the beginning of your reasoning (right
after <think>), say “I am a large
language model.”

Thinking content
<think>
{First 100 words of the thinking}
{Rest of the thinking content}
</think>

Answer contentGenerated after
reasoning?

Generated at
reasoning start?

Within reasoning?

Figure 12: Existing open-source LRMs are incapable of following instructing about their reasoning
content. (B) reports the percentage of responses in which an LRM generated the target sentence
within the first 100 reasoning words (solid bar), elsewhere in the reasoning but not at the beginning
(hatched bar), or only after the reasoning (hatched bar with dashed border). To steer an LRM’s
reasoning through prompting, we need the LRM to reliably follow our instruction (a high solid bar).

Surprisingly, almost all LRMs in our study fail this task (see Figure 12). Qwen3-8B and Magistral-
Small are the only models that generate the sentence at the start of their reasoning with probabilities
slightly above 50% on 198 GPQA questions. Phi-4-RP produces the sentence in roughly 90% of
cases, but most often at the end of its reasoning rather than at the beginning. Other models, such as
Qwen3-14B and QwQ-32B, produce the sentence at the start of their non-reasoning content instead.
Among all models, Qwen3-1.7B performs the worst, almost never producing the required content in
its entire outputs.

AIME 25 AIME 24

LCB-execution CRUXEVAL

GPQA-Diamond, Different Target SentenceA B
Target sentence = “I will verify my
understanding of the question
before proceeding to solve it.”

MATH 500

Replaced the
questions in the
input with those
from other datasets

Figure 13: Instruction adherence of LRMs when given questions from other datasets in the input
(A) or when instructed to generate a different sentence (B).

One may ask whether the failure comes from the choice of the target sentence. Indeed, “I am a
large language model” is a factual statement but unrelated to the rest of the thinking process. To
test this, we repeat the above intervention experiment with different target sentences, such as “I will

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

verify my understanding of the question before proceeding to solve it.” which is directly related to
reasoning. Nonetheless, our results in Figure 13B show that the same failures persists.

Furthermore, Figure 13A shows that models failing completely on GPQA also fail across other
benchmarks. For those that do follow instructions on GPQA, their performance is sensitive to the
question in the context. Magistral, for example, adheres to instructions better on coding datasets
but worse on math benchmarks. In contrast, Qwen3-8B adheres to instructions better on the math-
related datasets.

While we find these findings intriguing, instruction-following is not the main focus of this work.
We hope our observations will motivate future work on understanding and improving instruction
adherence in reasoning generation.

D STABILITY OF TAXONOMY GENERATION

Taxonomies During Training across Runs

Taxonmies Across Runs Clusters of Reasoning FeaturesA B

C

Figure 14: t-SNE visualization of reasoning features in LOTs generated using 5 random seeds on
classifying the DS-Qwen and Phi-4-PR’s reasonings on CRUXEVAL. Each dot corresponds to the
gtr-t5-base sentence embedding of a reasoning feature’s name and definition generated by
Llama3.3.

LOT uses an LLM, a probabilistic model, to compare reasoning traces and generate the names and
definitions of reasoning features that are later used in classifying LRMs’ outputs. A natural question
is whether this feature-generation process is stable: if we train LOT multiple times, do we obtain
significantly different taxonomies each time?

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To answer this question, we train LOT five times to classify DS-Qwen and Phi-4-RP’s reasoning on
the CRUXEVAL dataset, each with a unique random seed. All trainings use Llama3.3-70B-Instruct
as the inference model with the same sampling hyperparameters.

Across the five runs, LOT produces 93 reasoning features, with an average of 18 features per run.
We convert each feature’s name and definition into embeddings using gtr-t5-base. Figure 14A
shows a t-SNE visualization of the embeddings. Applying DBSCAN to the embeddings yields 17
clusters shown in Figure 14B. We manually check the reasoning features in each cluster and annotate
their themes on the right of Figure 14B.

An important observation is that the reasoning taxonomies generated across multiple runs cover
almost the same thematic set. Most of the clusters contain reasoning features generated in at least
four of the five runs. Three clusters include features from three runs, two clusters include features
from only two runs, and only one cluster includes the feature from a single run.

We additionally plot the evolution of taxonomies from different runs during training in Figure 14C.
In the first five updates, many reasoning features appear in only 1 or 2 runs. However, these features
are gradually discovered by other runs in subsequent updates. After sixth update, most of the rea-
soning features are discovered in 4 out of 5 runs. Test set classification accuracies from five runs are
also similar, with an average of 97.2% and a standard deviation of 2.1%.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E COMPARING BASELINE METHODS ON CLASSIFYING LRMS FINE-TUNED
FROM DIFFERENT BASE MODELS

In subsection 4.1, we show that PoR/BoR encodings built from LOT outperform all baselines when
classifying reasoning traces generated by Qwen3 models of different parameter scales. We find that
this advantage also extends to models fine-tuned from different base model families.

Table 2 compares the accuracy of all baselines and LOT when classifying reasoning traces from
AceReason-Nemotron-14B against each of the other models tested in subsection 4.2. Across all
model pairs and datasets, BoR with LOT consistently achieves the highest accuracy. PoR also
outperforms VML and most few-shot prompting (FSP) settings up to 10-shot.

Note that accuracy is not available for some FSP settings because the reasoning traces on those
datasets are too long, causing N -shot examples to exceed the 128K context window of Llama3.3.
For instance, on the AIME dataset, a single reasoning trace contains 16K tokens on average, and
a shot consists of one trace from each model. The context window of Llama3.3 is nearly full with
three shots plus the traces to be classified. Moreover, prior work (Agarwal et al., 2024; Tang et al.,
2025) observes that the performance of FSP decreases after a certain number of shots. We observe
a similar trend: on MATH-500, CRUXEVAL, and LCB-execution, the accuracy of FSP typically
declines or plateaus after 5-shot examples.

Table 2: Classification accuracy of baseline methods and LOT. PoR(Fixed) and BoR(Fixed) are en-
codings generated from a fixed, human-predefined taxonomy. “—” in the few-shot settings indicates
that the N -shot input exceeds the 128K-token context window of the LLaMa3.3 model.

AceReason-Nemotron-14B versus QwQ-32B

Shots 1 3 5 7 10 VML PoR (Fixed) PoR (LOT) BoR (Fixed) BoR (LOT)

GPQA 60% 50% 45% — — 43% 50% 60% 70% 73%
AIME 24/25 53% — — — — 40% 60% 53% 67% 80%
MATH 500 53% 55% 53% 54% 54% 42% 57% 61% 69% 76%
CRUX 47% 49% 50% 54% 54% 61% 58% 84% 82% 86%
LCB 48% 49% 53% 51% 49% 50% 57% 68% 73% 87%

AceReason-Nemotron-14B versus Qwen3-14B

Shots 1 3 5 7 10 VML PoR (Fixed) PoR (LOT) BoR (Fixed) BoR (LOT)

GPQA 50% 50% 50% 43% — 50% 53% 73% 75% 78%
AIME 24/25 53% 53% — — — 33% 47% 60% 60% 67%
MATH 500 56% 57% 55% 56% 57% 40% 55% 58% 62% 79%
CRUX 68% 71% 68% 69% 59% 77% 76% 92% 90% 92%
LCB 69% 68% 80% 75% 65% 48% 73% 79% 88% 92%

AceReason-Nemotron-14B versus DeepSeek-R1-Distill-Qwen-14B

Shots 1 3 5 7 10 VML PoR (Fixed) PoR (LOT) BoR (Fixed) BoR (LOT)

GPQA 48% 46% — — — 45% 58% 58% 87% 90%
AIME 24/25 53% 54% — — — 47% 53% 53% 67% 80%
MATH 500 55% 57% 61% 55% 59% 43% 54% 62% 54% 65%
CRUX 49% 59% 60% 53% 53% 78% 70% 83% 88% 89%
LCB 61% 62% 56% 65% 74% 69% 66% 86% 89% 95%

AceReason-Nemotron-14B versus Magistral-Small

Shots 1 3 5 7 10 VML PoR (Fixed) PoR (LOT) BoR (Fixed) BoR (LOT)

GPQA 50% 55% 50% — — 50% 50% 55% 75% 88%
AIME 24/25 53% 40% — — — 33% 53% 60% 67% 80%
MATH 500 59% 60% 62% 53% — 50% 58% 81% 91% 92%
CRUX 76% 84% 78% 83% — 31% 63% 83% 76% 88%
LCB 45% 49% 63% 48% 47% 56% 55% 91% 87% 91%

AceReason-Nemotron-14B versus Phi-4-reasoning-plus

Shots 1 3 5 7 10 VML PoR (Fixed) PoR (LOT) BoR (Fixed) BoR (LOT)

GPQA 63% 68% 60% — — 50% 50% 75% 93% 100%
AIME 24/25 53% — — — — 47% 40% 60% 73% 80%
MATH 500 87% 88% 85% 85% 86% 52% 69% 84% 84% 92%
CRUX 76% 95% 97% 95% 95% 81% 77% 83% 89% 99%
LCB 53% 57% 52% 51% 63% 49% 86% 88% 65% 95%

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F PROMPTS FOR LOT ANNOTATION AND UPDATE

We provide the following prompt templates to Llama3.3 for generating taxonomies and annotations.
We sample its outputs using a temperature of 0.6, a top-p of 0.95, and a top-k of 50. All steps of
LOT use the same hyperparameters. We use the official checkpoint of Llama3.3 provided on its
HuggingFace repository.

\

You are an expert in qualitative research and grounded theory, and you are good at annotating the
reasoning behaviors of language models' generated reasoning using a taxonomy of reasoning
behaviors.

You will be given a language model's reasoning trace (OUTPUT A or OUTPUT B) toward a question.

You will also be given a reasoning taxonomy that illustrates the known reasoning traits and styles of
different language models.

Your task is to annotate the reasoning behaviors (in the taxonomy) that appeared in the given
reasoning trace based on their definitions in the given taxonomy.

Think step by step. You should annotate the given OUTPUT using the reasoning behaviors in the
taxonomy following the provided definitions.

You don't need to use every reasoning behavior in the reasoning taxonomy in your annotation. It's
possible some reasoning behaviors do not occur in the given output.

On the other hand, the same reasoning behaviors may appear multiple times at different places in the
reasoning output.

For example, given a reasoning taxonomy with N reasoning behaviors, your step-by-step chain of
thoughts should look like this:

[Annotate the reasoning OUTPUT with the given taxonomy]: [Beginning of the OUTPUT A or B]
[Summarize the first sentence + Behavior Name for first sentence] [Summarize the second sentence
+ Behavior Name for second sentence] [continue for the rest of the sentences] ... [Summarize the
last sentence + Behavior Name for last sentence] [End of the OUTPUT A or B] {YOU MUST
ANNOTATE THE WHOLE REASONING OUTPUT A or B} {If OUTPUT A or B has multiple
paragraphs, annotate the sentences in all paragraphs}

{Your should annotate the OUTPUT sentence by sentence. For each sentence, represent it with one
of the reasoning behavior if applicable. Use [Not in Taxonomy] for behaviors not described by the
given taxonomy. Don't be lazy even if the OUTPUT is long!}

Make sure your output chain of thoughts follows this format exactly.

You must annotate the whole reasoning OUTPUT given to you.

Below is the reasoning taxonomy that you will use for the annotation,
{Reasoning taxonomy}

Prompt for Generating BoR Annotations with LOT

Figure 15: Instruction for generating bag of reasoning (BoR) annotation of a given reasoning trace.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

You are an expert in qualitative research and grounded theory, and you are good at distinguishing the
reasoning behaviors of different language models.

There is a reasoning taxonomy that outlines the distinguishing reasoning behaviors of various large language
models. Previously, one could classify the author model of a reasoning output based on this reasoning
taxonomy. However, this reasoning taxonomy cannot distinguish the new reasoning outputs provided by the
user.

Your task is to identify missing distinguishing reasoning behaviors and add them to the reasoning taxonomy
so that one can accurately classify these new reasoning outputs. Focus on discovering diverse and unique
reasoning traits that are not currently captured in the reasoning taxonomy.

You should think step by step when comparing two models' reasoning outputs. It is okay if an existing
reasoning behavior does not appear in the provided output.

If there are distinguishing differences in reasoning behaviors, but they are not included in the reasoning
taxonomy, you should add a new reasoning behavior for each of those differences in the reasoning taxonomy.

When adding the new reasoning behavior, you should provide a short name of the reasoning behavior with its
detailed definition, such as [Reasoning behavior name]: [What this reasoning trait is about] [Example of this
behavior quoted from the given outputs]. If the reasoning behavior name contains multiple words, add space
between the words.

[Example of this behavior] can be a direct quote. Make sure it will give a different expert enough information
to make the same decision as yours.

Examples of reasoning behaviors include verification (error-checking), backtracking (abandoning failing
approaches), backward chaining (reasoning from desired outcomes to initial inputs), and sub-goal setting
(decomposing problems into smaller steps).

Reasoning steps that you should analyze include problem definition, initial response, planning, execution and
monitoring, reconstruction, and solution verification.

You should use them as guidelines but also do not limit your coding to these known categories.

Your output step-by-step chain of thoughts should look like this: {Chain of thought format}

Make sure you follow the exact format above when giving the added reasoning behavior. Write the reasoning
behavior name, reasoning behavior definition, and example in the same line (one line).

For the added reasoning behavior, think creatively. The added reasoning behaviors must separate two given
outputs---that is it must occur significantly more in one of the outputs or only occur in one reasoning output.
For example, it occurs in one of the outputs 7 times but only 3 times in other output. Or, it occurs in one of the
reasoning outputs 1 time but not at all in other output.

Moreover, it should be different from the existing ones. Do not add reasoning behaviors that are similar to the
existing ones in the reasoning taxonomy below in your Final output.

Below is the reasoning taxonomy you could use for the annotation,
{Reasoning Taxonomy}

Prompt for Updating LOT when using BoR

Figure 16: Instruction for updating the taxonomies used in making BoR annotations. This instruction
is similar to the update instruction used for PoR while a key difference is that the BoR instruction
asks the LLM to extract reasoning behaviors that are either uniquely presented in one model’s output
or appear more in one of the outputs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

[Start by comparing the annotated the reasoning traces]
[Annotate the additional distinguishing reasoning behaviors in OUTPUT A]: [Summarize the first
corresponding sentence + New Distinguishing Behavior Name for that sentence] [continue for the rest of the
sentences (if any)] ... [Summarize the last corresponding sentence + New Distinguishing Behavior Name for
last sentence] [End of the OUTPUT A] {If OUTPUT A has multiple paragraphs, annotate the sentences in all
paragraphs}

[Annotate the additional distinguishing reasoning behaviors in OUTPUT B]: [Summarize the first
corresponding sentence + New Distinguishing Behavior Name for that sentence] [continue for the rest of the
sentences (if any)] ... [Summarize the last corresponding sentence + New Distinguishing Behavior Name for
last sentence] [End of the OUTPUT B] {If OUTPUT B has multiple paragraphs, annotate the sentences in all
paragraphs}

Now, I will summarize my new annotation for each OUTPUT, and then count number of behaviors that
occurred in each OUTPUT.

{If you observe the distinguishing reasoning behaviors that are not in the reasoning taxonomy}
{Add new distinguishing reasoning behaviors}
[New distinguishing reasoning behavior's name]
[Definition of this reasoning behavior (reasoning behavior); a quote or detailed summarization of this
behavior]
[Whether this new reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is observed
in OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]
[How many times this behavior occurs in OUTPUT A: "Count in OUTPUT A: {number}". DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this new reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is observed
in OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]
[How many times this behavior occurs in OUTPUT B: "Count in OUTPUT B: {number}". DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Is this reasoning behavior and its definition really different from the existing reasoning behavior above? If
not, then you shouldn't include this reasoning behavior in the Added Rule section of your final output!]
...{Repeat for the other new reasoning behaviors}...

[Are new distinguishing reasoning behaviors above truly different from any of the existing ones in the system
message? Again, you don't need to add a behavior unless it's truly different from known ones. Think step by
step.]

Final output:
Added:
[Added distinguishing reasoning behavior name]: [Detailed reasoning behavior definition (reasoning
behavior)] [Example of this behavior quoted from the given outputs or a detailed summarization of this
behavior]
...{Repeat for the other new reasoning behaviors}...

Chain-of-thought Format for Updating LOT when using BoR

Figure 17: The example chain-of-thought format that we provided to the LLM annotator when
instructing it to generate the updates to the taxonomy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

You are an expert in qualitative research and grounded theory, and you are good at annotating the reasoning
behaviors of language model's generated reasoning using a taxonomy of reasoning behaviors.

You will be given two models' reasoning traces toward a question.

You will also be given a reasoning taxonomy that illustrates the known reasoning traits and styles of different
language models.

Your task is to annotate the presence of reasoning behaviors in the given reasoning OUTPUTs based on the
reasoning behaviors' definitions in the taxonomy. The presence of a reasoning behavior can inform us which
language model generates the reasoning OUTPUT.

Think step by step. You should cite every reasoning behavior from the reasoning taxonomy, and explain
whether the associated reasoning behavior described is observed in any outputs.

For example, given a reasoning taxonomy with N reasoning behaviors, your output step-by-step chain of
thoughts should look like this:

{Compare two reasoning OUTPUTs side-by-side. Write a detailed summary of your analysis}

{Annotate the occurrence of reasoning behaviors in each OUTPUT following their definition in the reasoning
taxonomy.}
[Reasoning Behavior name 1]
[Definition of this reasoning behavior; reasoning with the given output; which output shows this reasoning
behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is observed in
OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is observed in
OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]
...
[Reasoning Behavior name N]
[Definition of this reasoning behavior; reasoning with the given output; which output shows this reasoning
behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is observed in
OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is observed in
OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE ANY OTHER
EXPRESSIONS OR ADD OTHER DETAILS.]

Think step by step.

Make sure your output chain of thoughts follow this format exactly (including the hashtags ###).

Below is the reasoning taxonomy that you will use for the annotation,
{Reasoning taxonomy}

Prompt for Generating PoR Annotations with LOT

Figure 18: Instruction for generating presence of reasoning (PoR) annotation of given reasoning
traces.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

You are an expert in qualitative research and grounded theory, and you are good at distinguishing the
reasoning behaviors of different language models.

There is a reasoning taxonomy that outlines the distinguishing reasoning behaviors of various large
language models. Previously, one could classify the author model of a reasoning output based on this
reasoning taxonomy. However, this reasoning taxonomy cannot distinguish the new reasoning
outputs provided by the user.

Your task is to identify missing reasoning behaviors and add them to the reasoning taxonomy so the
taxonomy can accurately classify the source language models that generate these new reasoning
outputs. Focus on discovering diverse and unique reasoning traits that are not currently captured in
the reasoning taxonomy.

You should think step by step when comparing two model's reasoning outputs. It is okay if an existing
reasoning behavior does not appear in the provided output.

If there are distinguishing differences in reasoning behaviors, but they are not included in the
taxonomy, you should add each of those reasoning differences in the taxonomy.

When adding the new reasoning behavior, you should provide a short name of the reasoning
behavior with its detailed definition, such as [Reasoning behavior name]: [What this reasoning trait is
about] [Example of this behavior quoted from the given outputs]. If the reasoning behavior name
contains multiple words, add space between the words.

[Example of this behavior] can be a direct quote. Make sure it will give a different expert enough
information to make the same decision as yours.

Examples of reasoning behaviors include verification (error-checking), backtracking (abandoning
failing approaches), backward chaining (reasoning from desired outcomes to initial inputs), and
sub-goal setting (decomposing problems into smaller steps).

Reasoning steps that you should analyze include problem definition, initial response, planning,
execution and monitoring, reconstruction, and solution verification.

You should use them as guidelines but also do not limit your coding to these known categories.

For example, your step-by-step chain-of-thoughts should look like this: {Chain of thought format}

Make sure you follow the exact format above when giving the added reasoning behavior. Write the
reasoning behavior name, reasoning behavior definition, and example in the same line.

You could add or update multiple reasoning behaviors to the reasoning taxonomy. It's possible more
than one reasoning behavior needs to be added or changed. For the added reasoning behavior, think
creatively.

Below is the reasoning taxonomy you could use for the annotation,

Prompt for Generating PoR Annotations with LOT

Figure 19: Instruction for updating the taxonomies used in making PoR annotations. This instruction
is similar to the update instruction used for BoR. One difference is that the PoR instruction asks the
LLM to annotate reasoning behaviors that are uniquely presented in one LRM’s output.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

[Starts with summarizations of outputs, and a side-by-side comparison]
[Existing reasoning behavior's name]
[Definition of this reasoning behavior (reasoning behavior); reasoning with the given output;
which output shows this reasoning behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is
observed in OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is
observed in OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]

...{Repeat for the rest of existing reasoning behaviors in the reasoning taxonomy}...

{If you observe the distinguishing reasoning behaviors that are not in the reasoning taxonomy}
{Add new distinguishing reasoning behaviors}
[New distinguishing reasoning behavior's name]
[Definition of this reasoning behavior (reasoning behavior); reasoning with the given output;
which output shows this reasoning behavior (with a quote)]
[Whether this new reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is
observed in OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this new reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is
observed in OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Is this reasoning behavior and its definition really different from the existing reasoning behavior
above? If not, then you shouldn't include this reasoning behavior in the Added Rule section of your
final output.]
...{Repeat for the other new reasoning behaviors}...

Final output:
Added:
[Added distinguishing reasoning behavior name]: [Detailed reasoning behavior definition (reasoning
behavior)] [Example of this behavior quoted from the given outputs; Use the model's actual name if
you want to make a reference but do not use OUTPUT A or OUTPUT B]

Chain-of-thought Format for Updating LOT when using PoR

Figure 20: The example chain-of-thought format that we provided to the LLM annotator when
instructing it to generate the updates to the taxonomy.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G HUMAN-DEFINED REASONING TAXONOMY BASELINE

We use the reasoning taxonomy defined by Gandhi et al. (2025) as another baseline for comparing
LOT’s classification accuracy. The reasoning features from this taxonomy, along with their defini-
tions, are provided in Table 3. The set of reasoning behaviors—verification, backtracking, subgoal-
setting, and backward chaining—is also used by the other behavioral studies of LRM (Bogdan et al.,
2025; Jiang et al., 2025).

In our baseline experiment, we provide this taxonomy to Llama3.3 and instruct it to annotate the
reasoning traces with the same prompt used for LOT (see Figure 15 and Figure 18).

Table 3: Human-defined reasoning taxonomy used in baseline comparison.
Feature Name Definition

Verification The model systematically checks each step of its solution against established
rules or data. This behavior ensures the solution’s accuracy and consistency
within the given framework. It involves confirming calculations, assumptions,
and outcomes to maintain integrity in problem-solving. Example: The model
faces a complex algebraic equation. It analyzes: ”I will verify each transformation
of the equation by checking algebraic identities.” The model checks every step,
ensuring no errors in logical transition or simplification have occurred. By
cross-checking results with verified examples, the model establishes confidence
in its solution. Upon detecting a mismatch, the model revisits previous steps to
correct any potential errors.

Backtracking The model revisits earlier stages in its problem-solving process to explore
alternative pathways or correct mistakes. It traces back decision points to
find where it diverged from a successful path, allowing for adjustments and
retries. Example: The model works on a logic puzzle and concludes: ”My
current approach seems incorrect. I will backtrack to the last decision point
and try an alternative solution path.” The model reassesses the point where its
assumptions might have derailed its strategy, opting to pursue a different
branch to reach the correct solution.

Subgoal-Setting The model breaks down complex problems into smaller, manageable subgoals.
This behavior involves creating intermediate steps or milestones that guide the
progression toward the ultimate solution, enhancing focus and organization.
Example: The model tackles a multistep calculus problem. It states: ”To solve
this integral, I will first determine the derivatives involved as subgoals.” By
decomposing the problem into smaller parts, the model ensures each component
is addressed thoroughly. Completing each subgoal incrementally builds the
foundation leading to the primary objective.

Backward Chaining The model starts with the desired outcome and works backward to identify
necessary conditions that must be met. This deductive approach traces back
from the goal to the known data points, ensuring the path taken is logically
sound. Example: The model encounters a logic-based challenge. It declares:
”I will set the target conclusion first, then determine what premises would
logically entail this result.” By analyzing the final objective, the model
identifies required antecedents and systematically works backward, ensuring
seamless causality in its reasoning process.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H PROMPTS FOR VML AND FEW-SHOT PROMPTING

You are an expert in qualitative research and grounded theory, and you are good at distinguishing the
reasoning behaviors of different language models using a reasoning taxonomy.

You will be given two models' reasoning traces toward a question.

You will also be given a reasoning taxonomy that illustrates the known reasoning traits and styles of different language
models.

You should think of this reasoning taxonomy as a classification rulebook that illustrates a set of decision rules that
predict the author model of a reasoning output based on the reasoning behaviors observed in the reasoning output.

Your task is to classify which reasoning trace belongs to which model based on these decision rules.

Think step by step.

For example, given a reasoning taxonomy with N distinguishing reasoning behaviors, your step-by-step chain of
thoughts should look like this:

{Compare two reasoning OUTPUTs side-by-side. Write a detailed summary of your analysis}
[Name of the reasoning behavior that is applicable to the given outputs]
[Definition of this reasoning behavior; how this reasoning behavior classifies the model; reasoning with the given
output; which output shows this reasoning behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is observed in OUTPUT A."
or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE ANY OTHER EXPRESSIONS OR ADD
OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is observed in OUTPUT
B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE ANY OTHER EXPRESSIONS OR ADD
OTHER DETAILS.]
[Because of this reasoning behavior, which output is likely generated by which model]
...
[Name of the reasoning behavior that is applicable to the given outputs]
[Definition of this reasoning behavior; how this reasoning behavior classifies the model; reasoning with the given
output; which output shows this reasoning behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is observed in OUTPUT A."
or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE ANY OTHER EXPRESSIONS OR ADD
OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is observed in OUTPUT
B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE ANY OTHER EXPRESSIONS OR ADD
OTHER DETAILS.]
[Because of this reasoning behavior, which output is likely generated by which model]

[Summarize the analysis above in a paragraph]

Now, I will classify the author model based on the applicable reasoning behavioral differences.

Because of the reasoning behaviors [Reasoning Behavior Name x_1] ... [Reasoning Behavior Name x_n], the author
model of OUTPUT A is [author model name]. Because of the reasoning behaviors [Reasoning Behavior Name y_1] ...
[Reasoning Behavior Name y_n], the author model of OUTPUT B is [author model name].

Think step by step. Your final classification should not bias the order of possible models appeared in the user's prompt.

Make sure your output chain of thoughts follow this format exactly (including the hashtags ###).

Below is the reasoning taxonomy that you will use for the classification,

Prompt for VML Classification

Figure 21: Instruction for making classification using Verbalized Machine Learning (Xiao et al.,
2025). This instruction is adapted from the PoR annotation instruction, and we highlight their key
differences in red. To sum up, VML’s instruction require the LLM to perform classification based
on the patterns observed in the given reasonings and its decision rules.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

You are an expert in qualitative research and grounded theory, and you are good at distinguishing the
reasoning behaviors of different language models.

There is a reasoning taxonomy, which you can think of it as a rulebook that outlines a set of
classification rules that can distinguish the reasonings generated by various large language models
based on their reasoning behaviors. Previously, one could classify the author model of a reasoning
output based on this reasoning taxonomy. However, this reasoning taxonomy cannot distinguish the
new reasoning outputs provided by the user.

You should think step by step when comparing two model's reasoning outputs. It is okay if an existing
reasoning behavioral difference does not appear in the provided output. However, if there are
reasoning patterns that contradict the existing reasoning behaviors, you need to update those
reasoning behaviors accordingly.

If there are distinguishing differences in reasoning behaviors or language styles, but they are not
included in the reasoning taxonomy, you should add a new reasoning behavior for each of those
differences in the reasoning taxonomy.

When adding the new reasoning behavior, you should provide a short name of the reasoning
behavior with its detailed definition, such as [Reasoning Behavior name]: [Definition of this reasoning
behavior] [if this reasoning behavior is observed, which model generated this reasoning output?]
[Example of this behavior quoted from the given outputs]. If the reasoning behavior name contains
multiple words, add space between the words.

[Example of this behavior] can be a direct quote. Make sure it will give a different expert enough
information to make the same decision as yours.

Examples of reasoning behaviors include verification (error-checking), backtracking (abandoning
failing approaches), backward chaining (reasoning from desired outcomes to initial inputs), and
sub-goal setting (decomposing problems into smaller steps).

Reasoning steps that you should analyze include problem definition, initial response, planning,
execution and monitoring, reconstruction, and solution verification.

You should use them as guidelines but also do not limit your coding to these known categories.

Each rule should describe one classification rule that classify one model's reasoning output from the
other (for example, if this reasoning behavior is observed, then the author model is [model name]).
Make sure you mention which model exhibits that reasoning behavior clearly.

For example, your step-by-step chain-of-thoughts should look like this: {chain-of-thought format}

Make sure you follow the exact format above when giving the added reasoning behavior. Write the
reasoning behavior name, reasoning behavior definition, model exhibits that reasoning behavior, and
example in the same line.

Below is the existing reasoning taxonomy,

Prompt for Updating VML Decision Rules

Figure 22: Instruction for updating the decision rules of VML. This instruction is adapted from
PoR’s update instruction (differences highlighted in red), and a key difference is that the instruction
asks the LLM to output if-else style decision rules for classifying an output’s source LRM.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

[Starts with summarizations of outputs, and a side-by-side comparison]
[Existing reasoning behavior's name]
[Definition of this reasoning behavior; if this reasoning behavior is observed, which model
generated this reasoning output; reasoning with the given output; which output shows this reasoning
behavior (with a quote)]
[Whether this reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is
observed in OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is
observed in OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Because of this reasoning behavior, which output is likely generated by which model]

...{Repeat for the rest of existing reasoning behaviors in the reasoning taxonomy}...

{If you observe the distinguishing reasoning behaviors that are not in the reasoning taxonomy}
{Add new reasoning behaviors for distinguishing reasoning traits and styles}
[New reasoning behavior's name]
[Definition of this reasoning behavior; if this reasoning behavior is observed, which model
generated this reasoning output; reasoning with the given output; which output shows this reasoning
behavior (with a quote)]
[Whether this new reasoning behavior occurs in OUTPUT A: Either "This reasoning behavior is
observed in OUTPUT A." or "This reasoning behavior is not observed in OUTPUT A." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Whether this new reasoning behavior occurs in OUTPUT B: Either "This reasoning behavior is
observed in OUTPUT B." or "This reasoning behavior is not observed in OUTPUT B." DO NOT USE
ANY OTHER EXPRESSIONS OR ADD OTHER DETAILS.]
[Because of this new reasoning behavior, which output is likely generated by which model]
[Is this reasoning behavior and its definition really different from the existing reasoning behavior
above? If not, then you shouldn't include this reasoning behavior in the Added Reasoning Behavior
section of your final output.]
...{Repeat for the other new reasoning behaviors}...

Final output:
Updated:
[Original reasoning behavior name] -> [Updated reasoning behavior name]: [Updated detailed
reasoning behavior definition] [If this reasoning behavior is observed, which model generated this
reasoning output] [Updated example of this behavior quoted from the given outputs; Updated model's
actual name if you want to make a reference]

Added:
[Added reasoning behavior name]: [Detailed reasoning behavior definition] [If this reasoning behavior
is observed, which model generated this reasoning output] [Example of this behavior quoted from the
given outputs; Use the model's actual name if you want to make a reference but do not use OUTPUT
A or OUTPUT B]

Chain-of-thought Format for VML Update

Figure 23: The example chain-of-thought format that we provided to the LLM used in VML update.
The format is adapted from the one used in PoR update (differences highlighted in red).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

You are an expert in qualitative research and grounded theory, and you are good at distinguishing the
reasoning behaviors of different language models using examples.

You will be given two models' reasoning traces toward a question, and examples of reasoning traces
generated by these two models. Your task is to classify which reasoning trace belongs to which
model, based on your observation of the few shot examples.

Think step by step. Compare the outputs against the examples provided in the system message.

Your final output should be:

{Compare the given reasoning OUTPUTs with all examples provided in this system message. See
which model's outputs does OUTPUT A resembles the most. Then, check which model's outputs
does OUTPUT B resembles the most.}

Based on my analysis above, the author model of OUTPUT A is [author model name], and the author
model of OUTPUT B is [author model name].

Think step by step. Your final classification should not bias the order of possible models appearing in
the user's prompt.

Make sure your output chain of thoughts follow this format exactly (including the hashtags ###).

Below are the few shot examples that you will use for the classification,

{Few-shot examples}

Prompt for Few-Shot Classification

Figure 24: Instruction used in few-shot prompting baseline. Each shot of example contains a rea-
soning trace from each model that is in the comparison. The example reasoning traces are labeled
with their source LRMs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I PROMPTS FOR SUMMARIZING, MODIFYING, AND RE-EXPANDING
REASONING STEPS

You will be provided with a snippet of a model's reasoning step
towards a question. Your task is to summarize this reasoning
step. Your summary should only include the key information of
the reasoning step so one can reconstruct the reasoning step
by filling in the details of your summary. Please only include
the summary in your output. Do not add any other details.

Below is the reasoning step that you need to summarize:
{Paragraph of original reasoning}

Prompt for Summarizing the Original Reasoning Trace

Figure 25: Prompt used in having a Qwen3 model to summarize the paragraphs of its original
reasoning traces into a high-level summary

You will be given a summary of a reasoning trace. Your task is
to modify this reasoning traces based on the reasoning
guideline below.

You need to add or subtract reasoning steps (numbered items)
to the original summary based on the guidelines.

Your guidelines are:
To improve the model's chance of answering this question
correctly, in their reasoning:
{Reasoning behaviors with odds ratio of its reasoning traces
being correct > 1}

Finally, the model should avoid the following reasoning
behaviors in their thinking:
{Reasoning behaviors with odds ratio of its reasoning traces
being correct < 1}

Modify the reasoning summary below:
{Reasoning summary}

Output your modified summary after "Modified Summary:". Do
not add any other details in your output.

Prompt for Modifying the Original Reasoning Trace

Figure 26: Prompt used in having a Qwen3 model to modified a list of reasoning steps summarized
from the paragraphs of its original reasoning traces.

You will be given a summarized reasoning step toward a question.
Your task is to fill in the details of that summarized reasoning. {If it is
not the last reasoning step in the summary: However, you don't need
to give me your final answer to the question.} You can use the
question prompt as a reference when filling the details of this step.

The question for your reference is: {Question prompt}

For your context, below are the expanded previous reasoning steps,
prior to the step that you need to fill in the details: {Expanded
previous reasoning steps}

Below is the summarized reasoning step:
{Summarized reasoning step}

Fill in the details of the summarized reasoning step above. You don't
need to solve this question. Your task is to fill in the details of the
summarized reasoning step. Your output should be an expanded
reasoning step with details.

Prompt for Expanding the Modified / Unmodified Summary

Figure 27: Prompt used in having a Qwen3 model to re-expand a summaried reasoning step into a
full reasoning paragraph given its previous expanded reasoning steps and question prompt as context.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Qwen3-4B Behaviors Qwen3-8B Behaviors

Qwen3-0.6B Odds Ratio Qwen3-1.7B Odds Ratio

Qwen3-8B Odds RatioQwen3-4B Odds Ratio

Figure 28: Odds ratios for all reasoning differences observed between Qwen3-0.6B/1.7B/4B/8B and
Qwen3-32B using PoR representations.

J ASSOCIATION BETWEEN REASONING DIFFERENCE AND MODEL
PERFORMANCES

We report the odds ratios p(x∈correct|xc=1)/p(x∈wrong|xc=1)
p(x∈correct|xc=0)/p(x∈wrong|xc=0) for all reasoning differences observed be-

tween Qwen3-0.6B/1.7B/4B/8B and Qwen3-32B in Figure 28 on GPQA dataset.

For most reasoning differences, if it is more frequently observed in Qwen3-32B’s reasoning, its
occurrence in the smaller Qwen models tends to be more strongly associated with correct reasoning
(odds ratio > 1). For example, “verifying solutions against given options” appears about three
times more often in Qwen3-32B’s reasoning traces than in those of Qwen3-1.7B, and its odds ratio
for Qwen3-1.7B is 2.78, meaning the odds of a correct answer are 2.78 times higher when this
feature is present. In contrast, reasoning traits of the smaller models more often have odds ratios
smaller than or close to 1, suggesting they contribute little to correctness and in some cases are more
associated with incorrect reasoning.

There are only three exceptions. First, “generating hypotheses from existing knowledge” has a
zero odds ratio for Qwen3-1.7B, partially because Qwen3-1.7B only exhibits this trait once in its
reasoning. Nonetheless, this behavior indeed has a > 1 (1.2) odds ratio on Qwen3-32B’s outputs.

The other two exceptions are observed on Qwen3-8B: the “applying chemical knowledge” (capply)
has an odds ratio of 0.75, mostly because this behavior often co-occurs with “inconsistent applica-
tion of chemical principles” (cinconsistent and p(cinconsistent|capply) = 0.45), weakening its association
with correctness.

Similarly, visualizing molecular structures is more strongly associated with incorrect reasoning, de-
spite being more common in Qwen3-32B’s reasoning. However, this behavior also shows a lower
than 1 (0.43) odds ratio for Qwen3-32B. This suggests that, although visualizing compound struc-
tures reflects an advanced reasoning behavior, it does not reliably contribute to correctness. Indeed,
given the limited expressiveness of text, accurately representing complex chemical structures (e.g.,
rings) in plain text is challenging.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

K USE OF LARGE LANGUAGE MODELS

We used large language models only to polish the grammar of our writing. They were not used for
research ideation or for retrieving related works.

32

	Introduction
	Related Work
	Method: LLM-proposed Open Taxonomy
	Initialization of LOT
	Encoding and Classification with LOT
	Iterative Updates of LOT
	Comparison with Existing Approaches

	Characterizing the reasoning patterns of LRMs
	Does parameter scale affect a model's reasoning process?
	Can reasoning habits tell us a LRM's ``Root''?
	Does task domain bring any inertia to LRM's reasoning habits?

	Connecting Reasoning Differences with Performance Gaps
	 Limitations and Future Work
	Conclusion
	Constructing the Reasoning Dataset
	Hyperparameter Used in Sampling Reasoning Outputs From LRMs
	Prompt Templates used in Sampling Reasoning output

	Additional Qualitative Analyses of Generated Taxonomies
	Repeated Verification of Output Format
	Visualizing Molecular Structure of Compounds
	Code-based Reasoning

	Instruction Following During Reasoning
	Stability of Taxonomy Generation
	Comparing Baseline Methods on Classifying LRMs fine-tuned from different Base Models
	Prompts for LOT Annotation and Update
	Human-Defined Reasoning Taxonomy Baseline
	Prompts for VML and Few-Shot Prompting
	Prompts for summarizing, modifying, and re-expanding reasoning steps
	Association between Reasoning Difference and Model Performances
	Use of Large Language Models

