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Abstract
Human-labeled data is essential for deep learn-
ing models, but annotation costs hinder their use
in real-world applications. Recently, however,
models such as CLIP have shown remarkable
zero-shot capabilities through vision-language
pre-training. Although fine-tuning with human-
labeled data can further improve the perfor-
mance of zero-shot models, it is often imprac-
tical in low-budget real-world scenarios. In
this paper, we propose an alternative algorithm,
dubbed Unsupervised Open-Set Task Adaptation
(UOTA), which fully leverages the large amounts
of open-set unlabeled data collected in the wild
to improve pre-trained zero-shot models in real-
world scenarios. We validate our contributions
through extensive experiments on open-set do-
main adaptation benchmarks applicable to our
settings. Despite not using any source domain
model or data, our method achieves state-of-the-
art performance on the benchmarks.

1. Introduction
Large amounts of human-labeled data are crucial for the
performance of deep neural networks. However, collecting
such data is costly, posing a challenge for real-world appli-
cations. Solutions utilizing unlabeled data (Devlin et al.,
2019; Brown et al., 2020; He et al., 2022; Chen et al., 2020;
He et al., 2020) have been proposed, but human-labeled
data is still required for task-specific learning stages (i.e.,
task adaptation, fine-tuning, and transfer learning). Re-
cent studies have proposed a new learning paradigm (Rad-
ford et al., 2021; Gao et al., 2021; Jia et al., 2021b) that
achieves zero-shot capabilities by learning transferable rep-
resentations through vast amounts of image and text pairs,
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Figure 1. UOTA enhances the transfer performance of the zero-
shot model (CLIP) on a downstream target task by leveraging
open-set unlabeled data in the wild.

although task-specific human-labeled data is needed to im-
prove downstream performance (Radford et al., 2021; Zhou
et al., 2022; Gao et al., 2021). However, to the best of
our knowledge, no previous work in the literature has ex-
plored real-world scenarios where transfer performance can
be enhanced solely by utilizing open-set unlabeled data,
including both in-distribution (ID, task-relevant) and out-of-
distribution (OOD, task-irrelevant) data.

To address this problem, we begin by considering a sce-
nario in real-world situations where only unlabeled data is
available from a specific source (e.g., a camera at a spe-
cific location). This source will be the target domain of our
zero-shot model based on CLIP (Radford et al., 2021) for
a given downstream task, and we assume all data from it
shares some characteristics, such as style and texture. We
then assume the realistic, open-set setting (Scheirer et al.,
2012; Bendale & Boult, 2016; Kong & Ramanan, 2021;
Vaze et al., 2022), which does not impose any constraints on
the data, where data can be randomly collected from a partic-
ular source and may contain content related to known (i.e.,
in-distribution; ID) or unknown (i.e., out-of-distribution;
OOD) classes.

To improve zero-shot capabilities with these open-set un-
labeled data, we propose Unsupervised Open-Set Task
Adaptation (UOTA), a simple and practical algorithm that
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Figure 2. Left: Implementation details of Unsupervised Open-Set Task Adaptation (UOTA). For computational efficiency, we only
update the parameters of the adapters (Houlsby et al., 2019). Right: Architecture of the adapter module. The adapter in our framework
comprises two linear layers and two activation layers. During the training process, we update only this lightweight adapter, enabling
computationally efficient training.

operates within a unified framework based on the zero-shot
model. Our method to improve zero-shot capabilities con-
sists of three objectives: (1) a self-training objective and (2)
a negative learning objective (Kim et al., 2019) based on cur-
riculum learning (Soviany et al., 2022; Zhang et al., 2017;
Li et al., 2017; Huang et al., 2020; Zhou et al., 2020; Zhang
et al., 2021a;b), where class-wise thresholds for detecting
unknown class data and classifying known class data are
adaptively adjusted according to the training status, and (3) a
contrastive objective (Sohn, 2016; van den Oord et al., 2018)
to push data with unknown classes away from the space of
data with known classes and learn a more discriminative
representation space for OOD detection.

As shown in Figure 1, our proposed learning scheme enables
the model to implicitly acquire the ability to perform OOD
detection during the training process without the need for
additional explicit methods to detect OOD samples. It also
simultaneously enriches the model’s ability to perform pre-
cise image classification with known classes. Furthermore,
our proposed method is computationally efficient, as it only
updates a lightweight adapter inserted in the image encoder
while freezing the rest of the model. We validate our con-
tributions by conducting extensive experiments on various
open-set domain adaptation (OSDA) benchmarks that are
applicable to our settings. Despite not using any source
domain model or data, our method achieves state-of-the-art
performance on these benchmarks.

2. Method
UOTA fully exploits the pre-trained CLIP model that has
a dual-stream architecture with a text encoder Tϕ and an
image encoder Iθ, where ϕ and θ are the pre-trained pa-
rameters. For a given downstream task τ with a class set
Yτ = {yi}Kτ

i=1, where Kτ denotes the number of classes
to be classified, we first complete a set of class embed-
dings Cτ = {Tϕ(pi)}Kτ

i=1 by using natural language prompt-

ing pi = "a photo of a {class name of yi}".
When image data x is given, the corresponding embedding
Iθ(x) is compared with the class embeddings by measuring
the cosine similarity, and then we compute the task-wise
classification probability as:

p(y = yi|x;ϕ, θ) =
eα·D(Iθ(x),Tϕ(pi))∑N
j=1 e

α·D(Iθ(x),Tϕ(pj))
, (1)

where α is a learnable scaling factor (i.e., temperature) and
D(·, ·) denotes cosine similarity between two vectors. The
overall architecture is shown in Figure 2.

2.1. Self-training with open-set unlabeled data

Maximum Concept Matching (MCM) (Ming et al., 2022)
computes and utilizes the maximum value maxi p(y =
yi|x, ϕ, θ) (= smcm, MCM score) of the predicted prob-
ability (described in Equation 1) for detecting OOD samples
in the dataset D by using a CLIP model. we can confidently
identify an image as ID if its MCM score is above a certain
threshold for ID (i.e.,maxi p (y = yi|x, ϕ, θ) ≥ δin) and
as OOD if 1 − smcm is above another threshold for OOD
(i.e., 1−maxi p (y = yi|x, ϕ, θ) ≥ δout). Inspired by cur-
riculum learning strategies (Soviany et al., 2022), we pro-
pose a novel approach that adaptively adjusts both δin and
δout based on the model’s learning status for each class.

Adaptive class-wise threshold Our adaptive class-wise
thresholds for both ID and OOD are defined by scaling the
fixed thresholds δin and δout as:

δin(yi) = βin(yi) ·δin and δout(yi) = βout(yi) ·δout, (2)

where the class-wise scaling factors βin(yi) and βout(yi)
are computed in the same manner and updated regularly
(i.e., at each epoch). For example, we update the class-wise
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Table 1. Experiment results on Office-31, Office-Home, and VisDA. We utilize the HOS score (%) as an evaluation metric. Note that
models that can perform OSDA employ both the source data and the target data during the adaptation. Methods that can do source-free
OSDA (SF-OSDA) employ models pre-trained on source data but use only target data for the adaptation. In contrast with these methods,
UOTA only utilizes unlabeled target data and does not use either the source data or the model pre-trained on the source data.

METHOD
OFFICE-31 OFFICE-HOME VISDA

W D A D A W AVG. R C A P C A P R A P R C AVG. S
A W D P R C A R

OSDA (OPEN-SET DOMAIN ADAPTATION; USE LABELED SOURCE DOMAIN DATA)
DANN 72.6 73.7 68.1 86.7 71.5 82.5 75.9 68.4 60.9 65.2 69.8 66.7 71.0 44.6 50.9 51.2 56.3 65.4 57.6 60.7 -
CDAN 71.0 72.7 64.9 84.3 66.8 80.5 73.4 67.6 61.7 65.1 69.7 67.1 70.7 47.2 52.7 52.9 58.6 66.0 58.2 61.4 -

STA 66.1 73.2 75.9 69.8 75.0 75.2 72.5 64.5 60.4 54.0 69.5 66.8 68.3 53.2 54.5 55.8 61.9 67.1 57.4 61.1 72.7
OSBP 73.7 75.1 82.7 97.2 82.4 91.1 83.7 72.3 64.7 65.2 73.9 70.6 72.9 53.2 54.5 55.1 63.2 66.7 64.3 64.7 69.8
PGL 70.1 69.5 74.6 76.5 72.8 72.2 72.6 52.5 36.8 45.6 41.6 45.6 55.8 46.6 0.0 29.3 47.2 11.4 10.0 35.2 74.7
ROS 77.2 77.9 82.1 96.0 82.4 99.7 85.9 75.7 65.2 69.3 74.4 68.6 76.5 56.3 60.4 60.1 60.6 68.8 58.9 66.2 -

DANCE 70.2 65.8 66.9 80.0 70.7 84.8 73.1 44.0 45.9 49.8 41.2 30.2 39.4 55.7 48.3 53.1 54.2 27.5 40.9 44.2 -
DCC 84.4 85.5 87.1 91.2 85.5 87.1 86.8 62.7 66.6 67.4 64.0 67.0 80.6 52.8 76.9 52.9 59.5 56.0 49.8 64.2 70.7

OSLPP 78.7 79.3 89.0 92.3 91.5 93.6 87.4 74.4 66.9 72.8 74.0 70.4 74.3 59.3 59.0 61.0 63.6 67.2 60.9 67.0 -
UADAL 76.5 79.7 89.1 97.8 86.0 99.5 88.1 76.8 69.5 70.8 76.9 73.4 77.4 56.6 60.6 63.2 63.0 72.1 64.2 68.7 75.3

CUADAL 75.1 80.5 90.1 98.2 87.9 99.4 88.5 76.7 68.3 71.6 76.8 72.6 77.5 54.6 59.9 63.6 62.9 72.6 65.0 68.5 75.9
SF-OSDA (SOURCE-FREE OPEN-SET DOMAIN ADAPTATION; USE A PRE-TRAINED SOURCE DOMAIN MODEL)

SHOT 75.9 74.0 69.1 87.2 67.2 92.7 77.7 42.3 40.2 39.8 46.2 39.1 47.0 40.8 40.1 39.5 57.7 59.9 54.6 45.6 42.6
AAD 73.9 73.0 78.3 91.2 77.7 93.5 81.3 70.1 61.4 66.9 70.6 67.8 69.9 55.9 57.5 57.6 60.1 64.6 60.5 63.6 16.0

OUR SETTING (NEITHER USE A SOURCE DOMAIN MODEL NOR SOURCE DOMAIN DATA)
ZERO-SHOT 48.0 57.0 65.3 56.8 57.4 63.9 63.1 69.2 63.4 83.1

UOTA 93.8 94.7 99.3 96.0 92.8 92.2 85.4 83.7 88.5 93.7
ZERO-SHOT (ORACLE) 96.8 97.8 98.0 97.5 97.0 98.7 93.6 96.3 96.4 94.0

UOTA (ORACLE) 97.2 100 100 99.1 98.1 98.9 95.1 97.1 97.3 96.1

scaling factor βin(yi) for ID as:

βin(yi) =
nin(yi) + γ ·maxj nin(yj)

(1 + γ) ·maxj nin(yj)
, (3)

where nin(yi) denotes the number of samples in the dataset
D whose classes are predicted as yi while presenting smcm

(MCM scores) higher than δin. Here, γ is a smoothness
factor to reduce the variability of scaling factors between
classes. Similarly, we also update the class-wise scaling
factor βout(yi) for OOD using 1− smcm higher than δout.

Self-training with in-distribution data For each image
x, we formulate the sample-level self-training loss L′

in as:

L′
in(p1(x), p2(x)) = 1[max p1(x)≥δin(p̂1(x))]Lce(p̂1(x), p2(x)), (4)

where p1(x) and p2(x) are the predicted probabilities
p(y|A1(x), ϕ, θ) and p(y|A2(x), ϕ, θ), respectively. A1(x)
and A2(x) denote two randomly augmented views of x.
The hard pseudo-label p̂1(x) is obtained from p1(x). We
formulate the overall loss related to ID data as:

Lin =
1

2|B|
∑
x∈B

L′
in(p1(x), p2(x)) + L′

in(p2(x), p1(x)). (5)

Utilizing out-of-distribution data We propose to incor-
porate OOD samples during task adaptation by customizing
negative learning to explicitly reduce the MCM scores of
OOD samples. For each sample x, we define the sample-
level negative learning loss L′

out as: L′
out as:

L′
out(p1(x), p2(x)) = 1[1−max p1(x)≥δout(p̂1(x))]Lce(p̂1(x), 1− p2(x)). (6)

We formulate the overall loss related to OOD data as:

Lout =
1

2|B|
∑
x∈B

L′
out(p1(x), p2(x)) + L′

out(p2(x), p1(x)). (7)

Contrastive loss as an additional regularizer We adopt
the contrastive loss Lcont proposed in SimCLR (Chen et al.,
2020) and use it as a regularizer to enhance not only OOD
detection but also the adaptation performance.

Therefore, the overall loss is:

L = Lin + Lout + ω · Lcont, (8)

where ω is used as a balancing hyper-parameter. After the
task adaptation is finalized by optimizing the model with
this overall loss, we use a fixed threshold δood at test time
to detect OOD samples by simply comparing it with MCM
scores.

3. Experiments
UOTA is the first model to perform open-set task adap-
tation using only unlabeled data and without any source
domain model or data, but leveraging the pre-trained zero-
shot model (CLIP). As a result, there are no comparable
models or experimental protocols available. Therefore, we
compare our approach with the models that can perform
OSDA and SF-OSDA using benchmarks utilized in OSDA.
We evaluated the performance of UOTA by following the
experimental settings of UADAL (Jang et al., 2022) and
using a variety of benchmark datasets, including (i) Office-
31 (Saenko et al., 2010), (ii) Office-Home (Venkateswara
et al., 2017) and (iii) VisDA (Peng et al., 2017). We used
HOS metric (Bucci et al., 2020) as it considers both known
and unknown (ID and OOD) classification capabilities, pro-
viding a higher evaluation to models that excel in both.

3.1. Quantitative analysis

Tab. 1 shows that UOTA significantly improves “Zero-shot
(pre-trained CLIP)” across all benchmarks. It also outper-
forms OSDA and SF-OSDA baselines, despite the more
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Figure 3. Histogram and t-SNE visualization on Office-31. The visualization results for (a) domain A, (b) domain W, and (c) domain
D of the Office-31 dataset are shown with histograms and t-SNE plots. Across all domains, UOTA consistently exhibits improved
performance over “Zero-shot”, with OOD samples (red) appearing more tightly clustered and a clearer separation between ID (green) and
OOD samples.

Table 2. Ablation on the proposed training objectives. The result
demonstrates that the performance of the model is maximized when
all losses are jointly used.

METHOD
OFFICE-31

A W D AVG.
ZERO-SHOT 48.0 57.0 65.3 56.8

Lin DIVERGED
Lout 87.6 89.3 92.6 89.8
Lcont 66.9 64.2 68.1 66.4

Lin + Lcont 47.6 57.4 66.3 57.1
Lout + Lcont 89.2 89.9 92.9 90.7
Lin + Lout 92.9 94.7 94.6 94.1

Lin + Lout + Lcont (UOTA) 93.8 94.7 99.3 96.0

challenging setting assumed for it. Additionally, to evaluate
the effectiveness of the training strategy and determine the
maximum performance of UOTA, we utilize an oracle set-
ting that assumes perfect OOD detection performance, and
the HOS score increases only if ID classification accuracy
improves. UOTA consistently outperforms “Zero-shot” in
an oracle setting, although the effect of its loss functions
is largely offset since one of UOTA’s training objectives
mainly focuses on learning a discriminative representation
for ID and OOD separation.

3.2. Distinguishing OOD samples
In the histograms of Figure 3, the horizontal axis represents
the MCM score, while the vertical axis indicates the number
of samples. We observe that “Zero-shot” is unable to clearly
distinguish between ID (green) and OOD (red) samples. In
contrast, UOTA effectively separates ID and OOD samples
by predicting generally low MCM scores for OOD samples
and high scores for ID samples. In the next step, we present
the t-SNE visualizations of the learned features by “Zero-
shot” and UOTA in Figure 3. Each data point in the figure
represents the classification probability vector (as described
in Equation 1) for each sample. The figure illustrates that
the features for OOD samples (red) obtained by “Zero-shot”
are not well distinguished from the features for ID sam-
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(a) Different # of ID classes.
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(b) Different # of OOD classes.

Figure 4. Robustness on different number of ID and OOD
classes.

ples (green). In contrast, UOTA precisely segregates OOD
samples from ID data.

3.3. Effectiveness of the proposed training objectives
When all of the losses are used together (UOTA), the separa-
tion of ID and OOD samples becomes more precise, and the
performance of ID image classification greatly improves,
resulting in the highest performance as shown in Tab. 2.

3.4. Robustness on varying the ratio between ID and
OOD samples.

As shown in Figure 4, regardless of the varying number
of known or unknown classes, UOTA (green) consistently
outperforms “Zero-shot” (red) by a significant margin. We
use the average HOS scores of all domains in Office-31.
4. Conclusion
We address the challenge of building a reliable image classi-
fication model in real-world scenarios by leveraging large
amounts of unlabeled data in the wild, including both ID and
OOD classes. To achieve this, we propose UOTA that signif-
icantly improves the zero-shot capabilities of CLIP, without
requiring any task-specific human-labeled data. UOTA of-
fers a promising direction for utilizing unlabeled data and
enhancing zero-shot model transferability.
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- Supplementary Materials -

We provide supplementary materials for “UOTA: Unsupervised Open-Set Task Adaptation Using a Vision-Language
Foundation Model” in this document.

A. Related work
Multimodal zero-shot model The conventional approach to zero-shot learning involves training a model on base
classes (Xian et al., 2017; Wang et al., 2019) and using auxiliary information such as attributes (Huynh & Elhamifar, 2020)
or knowledge graphs (Wang et al., 2018) to recognize unseen classes. CLIP (Radford et al., 2021) introduced a new method
for open-vocabulary zero-shot image classification using natural language supervision on large datasets. ALIGN (Jia et al.,
2021a) is similar to CLIP, but it aligns the visual and language representations in a shared latent space and shows improved
performance, even with noisy image-text paired data. SLIP (Mu et al., 2022) proposed a combined pre-training objective that
consists of CLIP’s loss function and self-supervision. Some recent works have attempted to adapt CLIP to downstream tasks
using labeled data (Zhou et al., 2022; Gao et al., 2021) or unsupervised fine-tuning (Li et al., 2022). Moreover, MCM (Ming
et al., 2022) proposed a training-free OOD detection using pre-trained CLIP, but its limitations include relying solely on the
zero-shot transferability that pre-trained CLIP originally possesses and not improving its OOD detection ability through
training. Going beyond the existing works, we propose, for the first time in the literature, a novel method that significantly
and simultaneously improves the OOD detection and image classification capabilities of CLIP by utilizing only open-set
unlabeled data.

Open-set domain adaptation In real-world scenarios, the set of classes in the target distribution may expand to include
unknown classes, which leads to the field of open-set domain adaptation (OSDA) (Saito et al., 2018; Liu et al., 2019).
Previous OSDA methods have focused on aligning the features of known classes in the source and target domains through
domain adversarial learning (Saito et al., 2018; Liu et al., 2019). However, this approach may not be sufficient for learning
the feature space of unknown classes in the target domain as there is no alignment signal provided by target-unknown
instances. As a result, the classifier may not be able to learn an effective decision boundary for unknown classes as the
target-unknown instances are not well-separated in the aligned feature space. Some methods attempt to address this issue by
learning intrinsic target structures through self-supervised learning (Li et al., 2021; Saito et al., 2020). While conventional
OSDA methods allow access to source domain data during the adaptation stages, recently proposed source-free OSDA
(SF-OSDA) (Yang et al., 2022; Liang et al., 2020) methods utilize a model pre-trained on the source domain but do not
use source data during the adaptation stage. In this paper, we propose a more restrictive setting than previous SF-OSDA,
where the model uses neither source domain data nor a model pre-trained on source data. Despite being a more challenging
scenario, our model significantly outperforms all existing OSDA and SF-OSDA methods.

B. Implementation details
We evaluated the performance of UOTA by following the experimental settings of UADAL (Jang et al., 2022) and using a
variety of benchmark datasets, including (i) Office-31 (Saenko et al., 2010), (ii) Office-Home (Venkateswara et al., 2017),
and (iii) VisDA (Peng et al., 2017). The Office-31 dataset, described in (Saenko et al., 2010), consists of three distinct
domains named Amazon (A), Webcam (W), and DSLR (D), encompassing a total of 31 classes. The Office-Home dataset
presents a more challenging scenario with four different domains: Artistic (A), Clipart (C), Product (P), and Real-world
(R) with a total of 65 classes. The VisDA dataset is a large-scale dataset consisting of images from synthetic to real-world
scenarios with 12 classes.
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To quantitatively evaluate the performance of UOTA, we compare it with several existing methods that can perform OSDA,
including DANN (Ganin & Lempitsky, 2015), CDAN (Long et al., 2018), STA (Liu et al., 2019), OSBP (Saito et al., 2018),
ROS (Bucci et al., 2020), DANCE (Saito et al., 2020), DCC (Li et al., 2021), UADAL (cUADAL) (Jang et al., 2022).
Furthermore, we compare UOTA with state-of-the-art models capable of performing SF-OSDA, such as SHOT (Liang et al.,
2020) and AaD (Yang et al., 2022). We also demonstrate the effectiveness of UOTA by comparing it with a pre-trained CLIP
model (Radford et al., 2021), denoted as “Zero-shot”. In particular, it is used as our initialization, and the main goal of our
method is to further improve it. Hence, we can identify the effectiveness of UOTA through comparison with “Zero-shot”.
In addition, by adopting an oracle setting that assumes perfect OOD (Out-of-Distribution) detection performance, we can
verify the upper bound of UOTA’s performance. In this setting, we can also examine how much the UOTA can enhance the
ID (In-Distribution) classification ability of “Zero-shot”, even when the effect of one of its training objectives that aims to
improve the UOTA’s ability to separate ID and OOD data is largely offset.

To effectively evaluate the performance of UOTA, we utilized the HOS metric, which is commonly used as an evaluation
criterion by existing OSDA approaches (Bucci et al., 2020; Jang et al., 2022; Yang et al., 2022). The HOS metric is
calculated by taking the harmonic mean of OS* and UNK, where OS* represents the mean accuracy over known classes and
UNK represents the accuracy of the unknown class. This metric is particularly suitable for evaluating models in OSDA
tasks as it considers both known and unknown (ID and OOD) classification capabilities, providing a higher evaluation to
models that excel in both. Therefore, we follow the established protocols of OSDA and mainly employ the HOS score as the
evaluation metric.

C. Distance between ID and OOD feature distribution
We measure the distance between the ID and OOD feature distributions produced by “Zero-shot” and UOTA. For this, we
use Proxy A-Distance (PAD) (Ganin et al., 2016) and Maximum Mean Discrepancy (MMD) (Ghifary et al., 2014), and the
corresponding results are shown in Figure 5. Higher PAD and MMD values indicate clearer discrimination between ID and
OOD feature distributions. Our analysis reveals that UOTA (green) exhibits approximately 50% and 15% higher PAD and
MMD, respectively, compared to “Zero-shot (red)”. This suggests that UOTA is better able to distinguish between ID and
OOD feature distributions.

(a) MMD (b) PAD

Figure 5. MMD and PAD values between known and unknown feature distributions. UOTA (green) consistently exhibits a noticeable
improvement in both metrics over “Zero-shot” (pre-trained CLIP, red). Each metric value is an average result across all domains of
Office-31. This result demonstrates that UOTA more accurately distinguishes between ID and OOD distributions in comparison to
“Zero-shot”.



UOTA: Unsupervised Open-Set Task Adaptation Using a Vision-Language Foundation Model

D. Robustness on different backbones
We also conduct ablation on backbones (i.e., feature extractors) to observe if UOTA consistently improves “Zero-shot” when
given backbones with different scales. We compare three different backbones, denoted as (1) “ViT-B/16”, (2) “ViT-B/32”,
and (3) “ViT-L/14” (our default backbone). We use the Office-31, Office-Home, and VisDA datasets, with the HOS score
as the evaluation metric. As presented in Tab. 3, UOTA consistently shows improved average HOS scores compared to
“Zero-shot” and presents state-of-the-art performance, even when the backbone is changed.

Table 3. Ablation on different backbones. UOTA achieves higher HOS scores than “Zero-shot” for all datasets and target domains,
regardless of the scale of its backbone. The bold results represent the best scores, while the underlined one is the second-best score.

METHOD
OFFICE-HOME

P R C A AVG.
ZERO-SHOT-VIT-B/16 61.6 66.2 67.7 69.8 66.3
ZERO-SHOT-VIT-B/32 65.6 68.1 67.2 69.5 67.6
ZERO-SHOT-VIT-L/14 57.4 63.9 63.1 69.2 63.4

UOTA-VIT-B/16 87.0 87.4 79.1 79.1 83.2
UOTA-VIT-B/32 84.2 86.2 75.1 75.9 80.4

UOTA-VIT-L/14 (OURS) 92.8 92.2 85.4 83.7 88.5

METHOD
OFFICE-31 VISDA

A W D AVG. R
ZERO-SHOT-VIT-B/16 53.7 49.4 55.2 52.8 85.2
ZERO-SHOT-VIT-B/32 52.7 66.1 63.6 60.8 84.0
ZERO-SHOT-VIT-L/14 48.0 57.0 65.3 56.8 83.1

UOTA-VIT-B/16 89.6 96.0 98.1 94.6 89.7
UOTA-VIT-B/32 89.5 87.2 88.6 88.4 85.3

UOTA-VIT-L/14 (OURS) 93.8 94.7 99.3 96.0 93.7

E. Hyperparameters
Tab. 4 presents the hyperparameters utilized for “Zero-shot (pre-trained CLIP)” and UOTA in our experiment. While some
adjustments were made to a few hyperparameters for specific datasets, it is noteworthy that the experiment was mostly
conducted without any significant hyperparameter tuning. In fact, slight differences in hyperparameters did not have a
considerable impact on the experimental results. This demonstrates our model’s robustness on hyperparameters.

Table 4. List of hyperparameters.
Hyper-parameter Office-31 Office-Home VisDA Office-31 (Oracle) Office-Home (Oracle) VisDA (Oracle)

batch size 32 32 32 32 32 32
optimizer AdamW AdamW AdamW AdamW AdamW AdamW
learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
δin 0.95 0.95 0.95 0.95 0.95 0.95
δout 0.5 0.5 0.8 0.5 0.5 0.8
γ 4.0 4.0 4.0 4.0 4.0 4.0
ω 1.0 1.0 1.0 1.0 10.0 10.0
δood 0.6 0.6 0.6 0.6 0.6 0.6

F. Supplemental experiment results on Office-31, Office-Home, and VisDA
In Tab. 5, 6, and 7, we provide additional results measuring the performance of UOTA and other existing models using OS*
(accuracy over known classes) and UNK (accuracy of unknown classes). Note that, different from the HOS score, the OS*
and UNK are biased evaluation metrics that do not simultaneously consider a model’s ID classification and OOD detection
capabilities. We employ Office-31, Office-Home, and VisDA as datasets. We utilize methods that can perform OSDA
(DANN, CDAN, OSBP, STA, PGL, ROS, DANCE, DCC, OSLPP, UADAL, and cUADAL) and SF-OSDA (SHOT and AaD)
as comparison approaches. We conduct experiments using the best settings for each of these models on their respective
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datasets (e.g., use ResNet50 as a backbone for Office-31 and Office-Home, and use VGGNet as a backbone for VisDA).

Table 5. Additional results on Office-31.

METHOD

OFFICE-31
W D A D A W AVG.A W D

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
DANN 72.1 73.1 72.6 72.9 74.5 73.7 87.4 55.7 68.1 99.3 77.0 86.7 90.8 59.2 71.5 100.0 70.2 82.5 87.1 68.3 75.9
CDAN 72.8 69.3 71.0 74.9 70.6 72.7 90.3 50.7 64.9 99.6 73.2 84.3 92.2 52.4 66.8 100.0 67.3 80.5 88.3 63.9 73.4
OSBP 73.0 74.4 73.7 76.1 72.3 75.1 86.8 79.2 82.7 97.7 96.7 97.2 90.5 75.5 82.4 99.1 84.2 91.1 87.2 80.4 83.7
STA 66.2 68.0 66.1 83.1 65.9 73.2 86.7 67.6 75.9 94.1 55.5 69.8 91.0 63.9 75.0 84.9 67.8 75.2 84.3 64.8 72.5
PGL 80.8 61.8 70.1 80.6 61.2 69.5 82.7 67.9 74.6 87.5 68.1 76.5 82.1 65.4 72.8 82.8 64.0 72.2 82.7 64.7 72.6
ROS 69.7 86.6 77.2 74.8 81.2 77.9 88.4 76.7 82.1 99.3 93.0 96.0 87.5 77.8 82.4 100.0 99.4 99.7 86.6 85.8 85.9

DANCE 83.7 60.6 70.2 85.3 53.6 65.8 98.7 50.7 66.9 100.0 66.8 80.0 96.5 55.9 70.7 100.0 73.7 84.8 94.0 60.2 73.1
DCC - - 84.4 - - 85.5 - - 87.1 - - 91.2 - - 85.5 - - 87.1 - - 86.8

OSLPP 78.9 78.5 78.7 82.1 76.6 79.3 89.5 88.4 89.0 96.9 88.0 92.3 92.6 90.4 91.5 95.8 91.5 93.6 89.3 85.6 87.4
UADAL 67.4 88.4 76.5 73.3 87.3 79.7 84.3 94.5 89.1 99.3 96.3 97.8 85.1 87.0 86.0 99.5 99.4 99.5 84.8 92.1 88.1

CUADAL 65.6 87.8 75.1 74.2 87.8 80.5 85.5 95.1 90.1 98.7 97.7 98.2 85.6 90.4 87.9 99.3 99.4 99.4 84.8 93.0 88.5
SHOT 72.2 80.1 75.9 75.5 72.5 74.0 74.5 64.4 69.1 96.7 79.4 87.2 82.0 56.9 67.2 98.8 87.2 92.7 83.3 73.4 77.7
AAD 70.8 78.2 73.9 69.8 77.4 73.0 74.6 83.5 78.3 90.2 92.5 91.2 75.3 80.9 77.7 92.1 95.2 93.5 78.8 84.6 81.3

UOTA 89.6 98.5 93.8 89.6 98.5 93.8 90.0 100.0 94.7 90.0 100.0 94.7 98.7 100.0 99.3 98.7 100.0 99.3 92.8 99.5 96.0

Table 6. Additional results on Office-Home.

METHOD

OFFICE-HOME
R C A P C A

P R
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

CDAN 70.9 64.6 67.6 51.6 76.8 61.7 61.7 68.8 65.1 69.8 69.7 69.7 61.5 73.7 67.1 75.2 66.7 70.7
OSBP 76.3 68.6 72.3 67.0 62.7 64.7 71.8 59.8 65.2 76.2 71.7 73.9 72.0 69.2 70.6 79.3 67.5 72.9
STA 77.1 55.4 64.5 61.8 59.1 60.4 68.0 48.4 54.0 76.2 64.3 69.5 67.0 66.7 66.8 78.6 60.4 68.3
PGL 84.8 38.0 52.5 73.9 24.5 36.8 78.9 32.1 45.6 84.8 27.6 41.6 70.2 33.8 45.6 87.7 40.9 55.8
ROS 72.0 80.0 75.7 59.8 71.6 65.2 68.4 70.3 69.3 70.8 78.4 74.4 65.3 72.2 68.6 75.8 77.2 76.5

DANCE 86.2 29.6 44.0 76.3 32.8 45.9 84.0 35.4 49.8 86.5 27.1 41.2 83.9 18.4 30.2 89.8 25.3 39.4
DCC - - 62.7 - - 66.6 - - 67.4 - - 64.0 - - 67.0 - - 80.6
LGU 83.2 46.8 59.9 71.7 4.1 7.8 80.5 49.3 61.2 82.8 41.2 55.0 77.6 46.4 58.1 86.5 47.5 61.3

OSLPP 78.4 70.8 74.4 61.6 73.3 66.9 72.5 73.1 72.8 77.0 71.2 74.0 67.2 73.9 70.4 80.1 69.4 74.3
UADAL 77.4 76.2 76.8 62.1 78.8 69.5 69.1 72.5 70.8 71.6 83.1 76.9 69.1 78.3 73.4 81.3 73.7 77.4

CUADAL 77.8 75.6 76.7 61.1 77.4 68.3 69.4 73.9 71.6 71.2 83.4 76.8 69.3 76.3 72.6 82.2 73.3 77.5
SHOT 84.4 28.2 42.3 77.5 27.2 40.2 81.8 26.3 39.8 85.8 31.6 46.2 80.0 25.9 39.1 87.5 32.1 47.0
AAD 69.7 70.6 70.1 59.5 63.5 61.4 64.6 69.4 66.9 68.4 72.8 70.6 67.4 68.3 67.8 73.1 66.9 69.9

UOTA 88.2 97.9 92.8 88.2 97.9 92.8 88.2 97.9 92.8 88.6 96.1 92.2 88.6 96.1 92.2 88.6 96.1 92.2

METHOD

OFFICE-HOME
P R A P R C AVG.C A

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
DANN 30.1 86.3 44.6 37.1 80.9 50.9 37.1 82.7 51.2 42.4 83.9 56.3 56.8 77.1 65.4 43.8 84.3 57.6 52.6 77.1 60.7
CDAN 33.1 82.4 47.2 40.3 75.8 52.7 39.7 78.9 52.9 45.8 81.2 58.6 59.8 73.6 66.0 44.9 82.8 58.2 54.5 74.6 61.4
OSBP 44.5 66.3 53.2 48.0 63.0 54.5 50.2 61.1 55.1 59.1 68.1 63.2 66.1 67.3 66.7 59.4 70.3 64.3 64.1 66.3 64.7
STA 44.2 67.1 53.2 49.9 61.1 54.5 46.0 72.3 55.8 54.2 72.4 61.9 67.5 66.7 67.1 51.4 65.0 57.4 61.8 63.3 61.1
PGL 59.2 38.4 46.6 68.8 0.0 0.0 63.3 19.1 29.3 73.7 34.7 47.2 81.5 6.1 11.4 85.9 5.3 10.0 76.1 25.0 35.2
ROS 46.5 71.2 56.3 51.5 73.0 60.4 50.6 74.1 60.1 57.3 64.3 60.6 67.0 70.8 68.8 53.6 65.5 58.9 61.6 72.4 66.2

DANCE 48.2 67.4 55.7 60.1 41.3 48.3 54.4 53.7 53.1 70.7 43.9 54.2 79.2 16.7 27.5 72.9 28.4 40.9 74.4 35.0 44.2
DCC - - 52.8 - - 76.9 - - 52.9 - - 59.5 - - 56.0 - - 49.8 - - 64.2
LGU 54.5 18.1 27.2 63.4 29.6 40.4 58.6 32.6 41.9 69.1 50.9 58.6 77.5 48.9 60.0 67.2 30.8 42.2 72.7 38.9 50.7

OSLPP 53.1 67.1 59.3 54.4 64.3 59.0 55.9 67.1 61.0 54.6 76.2 63.6 60.8 75.0 67.2 49.6 79.0 60.9 63.8 71.7 67.0
UADAL 43.4 81.5 56.6 51.1 74.5 60.6 54.9 74.7 63.2 50.5 83.7 63.0 66.7 78.6 72.1 53.5 80.5 64.2 62.6 78.0 68.7

CUADAL 41.2 80.7 54.6 51.8 71.1 59.9 55.0 75.6 63.6 50.9 82.4 62.9 66.8 79.6 72.6 53.8 82.0 65.0 62.5 77.6 68.5
SHOT 59.3 31.0 40.8 65.3 28.9 40.1 67.0 28.0 39.5 66.3 51.1 57.7 73.5 50.6 59.9 66.8 46.2 54.6 74.6 33.9 45.6
AAD 45.4 72.8 55.9 49.0 69.6 57.5 50.7 66.4 57.6 47.3 82.4 60.1 54.5 79.0 64.6 48.2 81.1 60.5 58.2 71.9 63.6

UOTA 76.9 95.9 85.4 76.9 95.9 85.4 76.9 95.9 85.4 79.1 88.9 83.7 79.1 88.9 83.7 79.1 88.9 83.7 83.2 94.7 88.5
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Table 7. Additional results on VisDA.

METHOD
VISDA

OS* UNK HOS
STA 63.9 84.2 72.7

OSBP 59.2 85.1 69.8
PGL 82.8 68.1 74.7
DCC 68.0 73.6 70.7

UADAL 61.1 93.3 75.3
CUADAL 64.3 92.6 75.9

SHOT 44.6 40.7 42.6
AAD 13.8 23.3 16.0

UOTA 89.4 98.4 93.7
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G. Pytorch-style pseudocode for UOTA

Algorithm 1 UOTA: PyTorch Pseudocode

# img_1, img_2, img_encoder, txt_feat: View 1, view 2, image encoder, and text feature, respectively.
# alpha_1, alpha_2 : Learnable temperatures for sharpening the prediction.
# norm, batch_size, CE: Normalization, batch size, and cross-entropy loss, respectively.
# data_num, known_cls_num: Total number of images in a dataset and the number of known classes, respectively.

# count_in, count_out: Used for collecting pseudo-labels for each image. Initialized with -1s.
# omega, gamma: A balancing weight and a smoothness factor, respectively.
# delta_in, delta_out: Thresholds for IDs and OODs, respectively.

for (img_1, img_2, idx) in train_loader:

img_feat_1, img_feat_2 = img_encoder(img_1), img_encoder(img_2)
cos_sim_1 = alpha_1 * norm(img_feat_1, dim=1) @ norm(txt_feat, dim=1).T
cos_sim_2 = alpha_1 * norm(img_feat_2, dim=1) @ norm(txt_feat, dim=1).T
max_prob_1, max_idx_1 = max(softmax(cos_sim_1, dim=1), dim=1)
max_prob_2, max_idx_2 = max(softmax(cos_sim_2, dim=1), dim=1)

count_in, count_out, thres_in, thres_out = classwise_threshold(count_in, count_out, beta_in, beta_out)
mask_in_1, mask_in_2 = max_prob_1.ge(thres_in[max_idx_1]), max_prob_2.ge(thres_in[max_idx_2])
mask_out_1, mask_out_2 = (1-max_prob_1).ge(thres_out[max_idx_1]), (1-max_prob_2).ge(thres_out[max_idx_2])

loss_in = (CE(max_prob_2,max_idx_1) *mask_in_1 + CE(max_prob_1,max_idx_2) * mask_in_2) / 2.0
loss_out = (CE((1-max_prob_2),max_idx_1) * mask_out_1 + CE((1-max_prob_1),max_idx_2) * mask_out_2) / 2.0
loss_cont = contrastive_loss(img_feat_1, img_feat_2, batch_size)

loss = loss_in + loss_out + omega * loss_cont
loss.backward()
update(img_encoder.parameters())

count_in_temp, count_out_temp = ones(data_num))*(-1), ones(data_num)*(-1)
idx_in_1, idx_in_2 = max_prob_1.ge(delta_in), max_prob_2.ge(delta_in)
idx_out_1, idx_out_2 = (1-max_prob_1).ge(delta_out), (1-max_prob_2).ge(delta_out)
count_in_temp[idx[idx_in_1]], count_in_temp[idx[idx_in_2]] = max_idx_1[idx_in_1], max_idx_2[idx_in_2]
count_out_temp[idx[idx_out_1]], count_out_temp[idx[idx_out_2]] = max_idx_1[idx_out_1], max_idx_2[

idx_out_2]
count_in_temp, count_out_temp = Counter(count_in_temp), Counter(count_out_temp)

momentum = (batch_size*2 / data_num)
for i in range(known_cls_num):

count_in[i] = count_in[i]* (1-momentum) + count_in_temp[i]
count_out[i] = count_out[i]* (1-momentum) + count_out_temp[i]

def classwise_threshold(count_in, count_out, beta_in, beta_out):

for (img_1, img_2, idx) in train_loader:
img = cat([img_1,img_2], dim=0)
img_feat = img_encoder(img)
cos_sim = alpha_1 * norm(img_feat, dim=1) @ norm(txt_feat, dim=1).T
max_prob, max_idx = max(softmax(cos_sim, dim=1), dim=1)
idx_in, idx_out = max_prob.ge(delta_in), (1-max_prob).ge(delta_out)
count_in[idx[idx_in]], count_out[idx[idx_out]] = max_idx[idx_in], max_idx[idx_out]

count_in, count_out = Counter(count_in), Counter(count_out)
max_in, max_out = max(count_in.values()), max(count_out.values())

for i in range(known_cls_num):
if i in count_in:

beta_in = (count_in[i] + gamma*max_in) / (1+gamma)*max_in
if i in count_out:

beta_out = (count_out[i] + gamma*max_out) / (1+gamma)*max_out

return count_in, count_out, beta_in*delta_in, beta_out*delta_out

def contrastive_loss(feat_1, feat_2, batch_size):

feat_1, feat_2 = norm(feat_1, dim=1), norm(feat_2, dim=1)
label = arange(batch_size)
mask = eye(batch_size) * 1e9
matrix = feat_1 @ feat_2.T
matrix1 = feat_1 @ feat_1.T - mask
matrix2 = feat_2 @ feat_2.T - mask
matrix1, matrix2 = cat([matrix, matrix1], dim=0), cat([matrix.T, matrix2], dim=0)
loss = (CE(matrix1 / alpha_2, label) + CE(matrix2 / alpha_2, label)) / 2.0
return loss


