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ABSTRACT

Cross-domain reinforcement learning (CDRL) aims to utilize the knowledge ac-
quired from a source domain to efficiently learn tasks in a target domain. Unsu-
pervised CDRL assumes no access to any signal (e.g., rewards) from the target
domain, and most methods utilize state-action correspondence or cycle consistency.
In this work, we identify the critical correspondence identifiability issue (CII) that
arises in existing unsupervised CDRL methods. To address this identifiability
issue, we propose leveraging pairwise trajectory preferences in the target domain
as weak supervision. Specifically, we introduce the principle of cross-domain
preference consistency (CDPC)-a policy is more transferable across the domains if
the source and target domains have similar preferences over trajectories—to provide
additional guidance for establishing proper correspondence between the source and
target domains. To substantiate the principle of CDPC, we present an algorithm
that integrates a state decoder learned through preference consistency loss during
training with a cross-domain MPC method for action selection during inference.
Through extensive experiments in both MuJoCo and Robosuite, we demonstrate
that CDPC enables effective and data-efficient knowledge transfer across domains,
outperforming state-of-the-art CDRL benchmark methods.

1 INTRODUCTION

Reinforcement Learning (RL) has shown impressive success on a wide range of tasks, encompassing
both discrete and continuous control scenarios, such as game playing (Mnih et al., [2015; Silver et al.,
2016; |Vinyals et al., 2019) and robot control (Levine et al., 2016}, [Tobin et al., 2017). However,
solving these tasks in a data-efficient manner has remained a significant challenge in RL, mainly
due to the need for extensive online trial-and-error interactions and the resulting prolonged training
periods. To alleviate the data efficiency issue, one natural and promising approach is to reuse the
control policies learned on similar tasks for fast knowledge transfer. Built on this intuition, cross-
domain reinforcement learning (CDRL) offers a generic formulation that extends the applicability of
transfer learning to RL, where the source domain and the target domain can have different transition
dynamics or distinct state-action spaces. With access to the source domain (e.g., the data samples or
the environment) and the pre-trained source-domain models (e.g., policies or value functions), CDRL
aims to transfer the knowledge acquired from the source domain to improve the sample efficiency
in the target domain. This adaptability of CDRL is crucial for overcoming the data inefficiency in
conventional RL, offering a more flexible and resource-efficient solution.

Several attempts on CDRL (Zhang et al., 2021a} |Gui et al.||2023) have demonstrated the possibility
of direct policy transfer by learning the state-action correspondence between domains, or essentially
inter-domain mapping functions, from unpaired trajectories in a fully unsupervised manner, i.e., no
reward signal available in the target domain. For example, (Zhang et al.,2021a) proposes to learn
the state-action correspondence (i.e., a target-to-source state decoder and a source-to-target action
encoder) by minimizing a dynamics cycle consistency loss, which aligns the one-step transition of the
unpaired trajectories from the two domains. These unsupervised approaches can serve as powerful RL
solutions in practice as it is widely known that reward design can require substantial efforts and hence
is rather time-consuming. However, we identify that this unsupervised approach can be prone to the
correspondence identifiability issue (CII). This phenomenon indicates that without any supervision
from the target domain, learning the state-action correspondence can be an underdetermined problem.
To illustrate this, we provide a toy example of a gridworld as shown in Figure|l| Motivated by this,
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we want to tackle this research question: How to address the correspondence identifiability issue in
cross-domain transfer for RL with only weak supervision?

In this paper, we answer the above question
from the perspective of cross-domain preference-

based RL (CD-PbRL). Specifically, we present a Source Domain Target Domain
new CDRL setting where the agent in the target T T N )
0.0 | 0.1 | 0.2} g (00, 00)| (00, 01) ((00, 10

domain can receive additional weak supervision
signal in the form of preferences over trajectory

H ¢t
@0  (1,1) (1,2)§ G— (01, 00| (01, 01) |(01, 10) T

pairs. In the context of RL, a weakly-supervised Hoogpt

setting refers to scenarios where the learners rely & o [BF et 10,00 [[T5Gy
on indirect supervision, such as human prefer- W YR

ences or rankings, rather than explicit reward Lace(6) = E [HTW (67 (5),0) , 67" (,s')||2]

labels, to learn well-performing policies (Lee
et al., 2020; Wang et al.| 2022). Inspired by
the classic preference-based RL (PbRL) (Wirth:
& Fiirnkranz, 2013} [Wirth et al.,[2017) and the
recent works on the fine-tuning of language mod-
els (Stiennon et al.| 2020j (Ouyang et al.,[2022),
we posit that preference feedback can serve as
feasible surrogate supervision to tackle the iden-
tifiability issue in CDRL. Our insight is that
pairwise preference implicitly encodes the un-
derlying goal of the task, and hence the consis-
tency in preference across the source and target
domains indicates their domain similarity. Ac-
cordingly, we propose the framework of Cross-
Domain Preference Consistency (CDPC), which
can better learn the state-action correspondence by enforcing the trajectory preferences to be aligned
across the two domains, based on the intuition that a policy is transferable across domains if the
source and target domains have better consensus on the preference over trajectories under some
inter-domain mapping.

Figure 1: An illustrative example of the corre-
spondence identifiability issue: In a 3 x 3 grid-
world, the source domain (decimal) and target do-
main (binary) share the same structure: the start is
the top-left, the treasure (+0.5) is on the bottom-
left, and the goal (+1, ends the episode) is on
the bottom-right. Two state decoders, (¢ !) and
(gbgl), map 7 into 7, and 75, both ensuring transi-
tions via 7g,. With zero dynamics cycle consistency
loss since ¢~ (s;) via 7y matches ¢~ (s;41) ex-
actly. However, identifying the better decoder
based only on dynamics cycle consistency loss ap-
pears infeasible, revealing an identifiability issue.
The detailed explanation is provided in Appendix.

The proposed CDPC framework consists of two major components: (i) Target-to-source state de-
coder: To enable the reuse of a source-domain pre-trained policy (denoted by m..), CDPC learns a
target-to-source state decoder (denoted by ¢~ 1). To learn ¢~ ! without suffering from CII, CDPC
utilizes a cross-domain pairwise preference loss (or equivalently the negative log-likelihood), which
is calculated with respect to the source-domain trajectories induced by ¢! with the target-domain
preferences as our labels. Compared to the existing unsupervised CDRL, this loss function offers
additional constraints for the state decoder such that the identifiability issue can be mitigated. (ii)
Cross-domain model predictive control for inference: During inference, we propose to leverage the
learned state decoder and determine the target-domain actions by planning via model-predictive
control (MPC). Specifically, at each time step, we generate multiple synthetic target-domain tra-
jectories of finite length (with the help of a learned dynamics model) and choose the first action
of the best trajectory. Different from the standard MPC, the proposed cross-domain MPC uses the
source-domain reward of the source-domain trajectory induced by the state decoder as the selection
criterion for MPC. With this design, there is no need to learn the action correspondence between
source and target domains. Moreover, this framework is general, i.e., that it can be integrated with
any enhancements of MPC.

We evaluate CDPC against various CDRL benchmark methods on various tasks in MuJoCo and
Robosuite. The main observations are: (1) Through preference consistency, CDPC achieves faster
and more stable learning curves in training the state decoder than the other CDRL methods. (2)
Additionally, CDPC enjoys superior sample efficiency across different dataset sizes, even when
compared to the baselines with true reward information. (3) We also provide several ablation studies,
confirming the significance of the preference consistency loss and examining the impact of the
proportions of expert data on CDPC. (4) Moreover, we perform additional experiments to investigate
the effect of the quality of preference labels on CDPC. Interestingly, by randomly perturbing a portion
of the preference labels, we found that CDPC can still achieve reliable cross-domain transfer under
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certain perturbation ratios. (5) Finally, we further corroborate the strong cross-domain transferability
of CDPC through experiments under various domain similarities.

2 RELATED WORK

Cross-domain transfer in RL (Taylor & Stone, [2009; Zhu et al., [2023}; |Serrano et al., [2024; Lyu
et al.} 2024; Wen et al., |2024; Tian, Hongduan and Liu, Feng and Liu, Tongliang and Du, Bo and
Cheung, Yiu-ming and Han, Bo, 2024) is an area of research within RL that specifically addresses the
challenge of transferring learned policies or value functions from one domain to another, even when
there are disparities in state-action dimensions between the domains. Cross-domain transfer learning
can be divided into imitation learning (Kim et al., [2020; [Fickinger et al., 2021} [Raychaudhuri et al.|
2021) and transfer learning. Transfer learning itself can be further categorized into single-source
transfer (Ammar & Taylor, |2012) and multiple-source transfer (Ammar et al., [2015a; |Qian et al.,
2020} Talvitie & Singhl 2007 [Serrano et al.l | 2021)). From the perspective of what is being transferred,
which means the known information, it can be generally divided into demonstrations (Ammar et al.,
2015bj Shankar et al., 2022; Watahiki et al., [2023)), policy (Wang et al., 2022} |Yang et al.| 2023}
Gui et al} 2023 |Chen et al.,2024), parameters (Devin et al.,|2017; Zhang et al.,|2021b)), and value
function (Torrey et al., [2008; [Taylor et al., 2008)).

Common practices to solve CDRL under different state and action representations include leveraging
cycle consistency and transition between states and actions across two domains to discover mapping
functions (Zhang et al., |2021a; [You et al., 2022} |Li et al., [2022; Wu et al., |2022; Raychaudhuri
et al.l 2021} |Gui et al., 2023), or employing adversarial training techniques to identify mapping
relationships between states and actions in the source and target domains (Gui et al.,[2023; [Li et al.|
2022; Wulfmeier et al., [2017; Mounsif et al.| 2020; Raychaudhuri et al., [2021; [Watahiki et al., 2022).

3 PRELIMINARIES

In this section, we describe the standard problem formulation of preference-based RL. Throughout
this paper, for any set X', we use A(X) to denote the set of all probability distributions over X.

Markov Decision Processes. As in typical RL, we model each domain as a Markov decision process
(MDP) denoted by M = (S, A, T, R, i1,7), where S and A denote the state space and action
space, T : S x A — A(S) is the transition kernel that maps each state-action pair to a probability
distribution over the next state, R : S x A — R denotes the reward function, u € AS is the initial
state distribution, and «y € (0, 1] is the discount factor. Let 7 : S — A(.A) denote the policy of the RL
agent and let 7 = (sp, ag, 1, - - - ) denote a trajectory generated under 7 in the domain M. Given a
trajectory 7, we slightly abuse the notation and use R(7) to denote the total expected reward accrued
along 7, i.e., R(T) := >4 R(st, ar). Let IT denote the set of all stationary Markov policies. We
define the expected total discounted reward under 7 as V7, (1) := E[>" .~ v R(s¢, at)|so ~ p, 7).
Let ), := argmaxrerr V{ (1) be an optimal policy for M in that it maximizes the expected total
discounted reward.

Preference-based RL. In the standard PbRL, the environment is modeled as an MDP M =
(S, A, T, R, u,) as usual. Moreover, the goal of PbRL remains the same as the standard reward-
based RL, i.e., finding an optimal policy 7}, that maximizes V(). Despite the existence of an
underlying true reward function (so that the RL objective function is well-defined), in the PbRL set-
ting, the reward function R is hidden and not observable to the learner during training. Nevertheless,
given two trajectories T and 7/, the learner can receive the (possibly randomized) preference over 7
and 7/, which is determined by the total expected reward R(7) and R(7’) along the trajectories. For
notional convenience, we use 7 > 7/ (or an equivalent expression 7/ < 7) to denote the event that 7 is
preferred over 7. Note that a probability preference model P (7, 7’; R) is typically needed to specify
the likelihood of the event 7 > 7’. For example, under the celebrated Bradley-Terry model (Bradley
& Terry, [1952), we have P(7,7"; R) := 1/(1 + exp(R(7') — R(7))). We assume that under the
preference model, for any pair of trajectories 7, 7/, either the event 7 > 7’ or 7" > 7 would happen at
each time.

To solve PbRL, one popular way is to adopt a two-stage approach, where we first learn the underlying
true reward function from the preference feedback and then apply an off-the-shelf RL algorithm



Under review as a conference paper at ICLR 2025

for policy learning. Under a preference model P(7, 7’; R), a reward model R can be learned by
maximizing the log-likelihood, i.e., given a dataset of trajectories D, as Equation ().

R =argmaxp.s x ar Errep,rmr [log P(7,7'; R')]. (1

This approach has been widely used in the fine-tuning of large language models with RLHF (Ouyang
et al., |2022). Additional related work on PbRL can be found in Appendix@}

4 PROBLEM FORMULATION

The proposed CD-PbRL problem extends the standard (unsupervised) CDRL problem, which aims to
achieve knowledge transfer from a source domain to another target domain, to the scenario where the
preferences over trajectories are available as weak supervision in the target domain. The source and
target domains are modeled as follows:

Source domain: The source domain is modeled as an MDP denoted by M. :=
(Ssics Asicy Tsicy Rstes Mstes v)ﬂ For efficient knowledge transfer, the source domain is typically an
environment that is cheap and easy to access, e.g., a simulator. Accordingly, we presume that the
learner has full access to the source-domain environment and hence can collect data samples and
obtain a pre-trained source-domain policy 7. This setting has been adopted by most of the existing
CDRL literature (Zhang et al.,[2021a; Xu et al., 2023} |Gui et al.|, [2023)).

Target domain: Similarly, the target domain is modeled as an MDP denoted by M, :=
(Stars Atars T tars Rtary fhar, 7). Notably, the target-domain MDP can differ from source-domain MDP
in transition dynamics, state-action spaces, etc., and we only assume that the two domains share
the same discount factor, which is a fairly mild condition. In the standard unsupervised CDRL
setting (Zhang et al.l2021a; |Gui et al., [2023)), the learner is given a set of target-domain trajectories
Dr = {7:};2, collected under some behavior policy. Due to the unsupervised setting, the reward
function Ry, is assumed to be unobservable to the learner, and hence Dy, only contains information
about the visited state-action pairs. Notably, this formulation can suffer from the identificability
issue by nature as described in Section [I] By contrast, built on the CDRL, our proposed CD-
PbRL formulation additionally includes that the learner can further receive preference information
about pairs of trajectories in the target domain, despite the unknown true rewards. The goal of
CD-PbRL is to find an optimal policy 7}, := argmaxyer, Vi () for the target domain.

Source Domain Target Domain
5 METHODOLOGY

state decoder,

In this section, we formally present the proposed ¢
algorithm for the CD-PbRL problem. We start by
describing the proposed CDPC principle and there- ¢ (@ (®)

after provide the implementation of the training and
inference procedure of the resulting CDPC algorithm.

[if 7; > Tj, then ¢~ (7;) > d)‘l(rj)J

Figure 2: The principle of cross-domain
preference consistency: Let 7; and 7; be two
target-domain trajectories. If 7; is preferred
over 7;, which means it has a higher total re-
turn, then the trajectories transformed through
a state decoder ¢! shall maintain the same
preference, i.e., ¢~1(7;) shall be preferred
over ¢~ ().

5.1 CROSS-DOMAIN
PREFERENCE CONSISTENCY

To mitigate the correspondence identifiability issue,
we propose to constrain the learning of state corre-
spondence by preference consistency, which is meant
to ensure that the preference ordering of the corre-
sponding trajectories in the two domains remains
consistent. An illustration of the CDPC principle is
provided in Figure 2] To better motivate this, we can think of an analogy in language modeling: We
can interpret 7; and 7; as two sentences written in German. The state decoder acts like a translator,
converting a German sentence into one in English. If 7; is more aligned with natural human language

"Throughout this paper, we use the subscripts “src” and “tar” to denote the objects of the source and the
target domain, respectively.
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in German than 7;, then after translation by the decoder, Til is expected to be also more natural and
fluent than T]f in English expression. The above characteristic can be used as an additional requirement
to identify the inter-domain state correspondence.

Based on the concept of CDPC, here we provide an overview of the proposed algorithm, which
consists of the following two major building blocks:

Training phase: Learning a target-to-source state decoder by preference consistency. As in
typical CDRL methods, our CDPC framework also learns a state decoder ¢! : Syur — S such that
actions taken in My, can be determined through knowledge transfer from a source-domain policy.
Recall from Section [T] that fully unsupervised CDRL methods, where the state decoder is learned
solely based on dynamics alignment (Gui et al., [2023) or reconstruction (Zhang et al.,[2021a), can
suffer from the identifiability issue. As a result, we propose to learn the state decoder based on
the CDPC principle, which serves as an additional criterion for learning the state correspondence
across domains. Specifically, to learn the state decodelﬂ (bgl : Star = S (parameterized by ), we
construct a cross-domain loss function based on the pairwise ranking idea in PbRL as follows:

Lowet(0) = Er, o [log (1 + eRSrc(da;l(n))—Rsm(%l(ﬂ)))}. 2

The preference loss function in Equation (2)) resembles Equation (1) of PbRL but with one major
difference: the preference consistency is captured through the state decoder ¢, ! This preference
loss function can be used in conjunction with any other off-the-shelf loss function for unsupervised
CDRL, such as dynamics cycle consistency or reconstruction loss (Zhang et al.l 2021a). More
implementation details of the state decoder are described in Section[5.2]

Inference phase: Selecting target-domain actions by MPC in target domain with cross-domain
trajectory optimization. With a properly learned state decoder, the next step is to transfer the pre-
trained source-domain policy 7y to the target domain. Notably, one naive approach is to simply learn
an additional action encoder v : Ag. — Ay, (e.g., similarly by preference consistency) such that
given any state s € Sy, a target-domain action can be induced by ¥(agc) With age ~ Tge (¢ 1(5)),
as also adopted by |Gui et al.[(2023)). However, this approach can suffer from inaccurate preference
correspondence. The details about this naive approach are provided in Appendix [B]

To better leverage the CDPC principle in selecting actions in the target domain, we propose to
enforce knowledge transfer from the perspective of planning. Specifically, we use MPC in the target
domain with the help of cross-domain trajectory optimization (CDTO). The detailed implementation
is provided in Section[5.3]

5.2 TRAINING PHASE OF CDPC: LEARNING A STATE DECODER

In the CD-PbRL setting, a well-trained state decoder ¢, ! should satisfy the following characteristics:
1 ¢>;1 shall be able to ensure preference consistency between trajectories and (ii) meet the original
cycle consistency conditions in both state construction and dynamics alignment. To learn the state
decoder, we use the preference consistency loss as described in Section[5.1]as well as the dynamics
cycle consistency loss and reconstruction loss.

Dynamics Cycle Consistency Loss: One common principle of learning state-action correspondence
is through dynamics alignment, i.e., the next state obtained by the state decoder shall be consistent
with that generated under the source-domain transition dynamics. Specifically, in this work, we use
the following loss function to capture dynamics cycle consistency:

_ _ 2
Edcc(o) =E { HTsrc (¢9 ! (5) s a) - ¢9 ! (SI)H :|a 3
where the expectation is over the randomness of s, 8" ~ Dy and a ~ Ty (-] 71(s)), and Ty is
directly accessible.

Reconstruction Loss: Additionally, the reconstruction loss (Zhang et al.||2021a} |Gui et al.| 2023}
Zhu et al., |2017) is widely used in cross-domain tasks for its several advantages: (i) It acts as a
regularization term, encouraging the decoder to produce outputs closely resembling the input data.

’Here we use the term “decoder” as this mapping function is typically learned based on an autoencoder
network architecture.
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Algorithm 1 Cross-Domain Preference Consistency  Algorithm 2 Cross-Domain Trajectory Opti-

(CDPC) mization (CDTO)
Require: Require:
A dataset of target-domain trajectories Dy, state sy, state decoder ¢!
for each episode k do Ensurg:
. action a,

// Training

1:

2 1: Initialize D@ « 0
3: Sample 75, 7j ~ Dy :

4.

5

2: Generate synthetic trajectories 7.y, us-
ing policy network 7, (s) and dynamics
model F, (s, a)

Obtain the preference label for 7;, 7;

Update state decoder (j);l by taking a gradient
step based on Lo () (Equation (3)

6: // Validation 3: DY DO U {7y, 7y, oo T }

7:  for each timestep ¢ do 4: Decode 7., using state decoder gbe_l

8: s, < current state in the target domain en-  5: Compute RL™ using source-domain re-

vironment ward function R,

9: Select optimal action a; using Algorithm[2] 6: Sort 1., by RI™ in descending order
10: Apply a; to the target-domain environment 7. 7 < DW|0)
11:  end for 8: a* < first action of 7*
12: end for 9: return a*

This enhances reconstruction quality and generalization across domains. (ii) The loss fosters model
stability by promoting consistency between input and reconstructed outputs, even in the presence
of noise or domain variations. Minimizing the reconstruction loss leads to a more compact and
meaningful data representation, facilitating better transfer learning and generalization capabilities.
The reconstruction loss is defined as

Erec(e) =K [H¢w ((bg_l (8)) - SH2:|7 )

where the expectation is over the randomness of the state s drawn from the target-domain dataset
Drar- Note that we presume the use of an autoencoder, where ¢ and w represent the parameters of the
state decoder and encoder, respectively. As we only need the decoder for inference, we ignore the
dependency of L.(#) on w in Equation (4) for brevity.

In summary, the total loss of the state decoder can be expressed as follows:
»Ctotal(e) = Lpref(a) + ﬂlﬁdcc(e) + ﬁZCrec(g)a (5)

where 31 > 0 and 2 > 0 are the weights for balancing the three loss terms. The overall pseudocode
is provided in Algorithm [I]

5.3 INFERENCE PHASE OF CDPC: CROSS-DOMAIN MPC

During the inference phase, given a well-trained state decoder, we propose to determine target-domain
actions through planning via cross-domain MPC, which consists of two major components:

Cross-domain trajectory optimization (CDTO): As in typical MPC, at each time step ¢, based on
the current observation s;, we determine the action a; by (i) generating multiple synthetic trajectories
of length h with s; as the starting state (denoted by D(t)) in the target domain, and then (ii) selecting
one trajectory 7 from D® based on some performance metric, and (iii) choosing the first action of
T as the action a;. Notably, to implement (ii), we propose to use the source-domain reward of the
source-domain trajectory induced by the state decoder as the selection criterion for MPC.

Generation of synthetic trajectories for cross-domain MPC: To implement the subroutine (i) in
CDTO, we also learn two helper models based on the target-domain dataset Dy,;, namely a target-
domain dynamics model (learned in a standard way by minimizing squared errors of next-state
prediction) and a target-domain policy by behavior cloning. This can be viewed as a variant of the
random shooting technique in the model-based RL literature (Nagabandi et al.|[2018;2020) but with
a behavior-cloned policy.
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Synthetic target-domain rollouts
for cross-domam MPC
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Figure 3: An illustration of cross-domain MPC: During inference, based on the current state s;,
we generate m synthetic trajectories of length h by using a learned target-domain dynamics model
and utilizing a behavior-cloned pohcy m, from Dy,.. These m trajectorles are then mapped into the
corresponding source traJectorles using the trained state decoder gb@ We compute the total return
for each trajectory separately using the source-domain reward function (available in the cross-domain
RL setting). Finally, the first action a] from the sequence with the highest total return is adopted.

The cross-domain MPC approach is illustrated in Figure [3] Note that here we choose the most
basic variant of MPC during inference mainly to show the effectiveness of CDPC framework. The
proposed framework can be readily enhanced and integrated with more sophisticated MPC methods,
such as the popular cross-entropy method (Botev et al.,[2013)) and the filtering and reward-weighted
refinement (Nagabandi et al., 2020). The overall pseudocode is provided in Algorithm

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL CONFIGURATION

Environment domains. We utilize MuJoCo and Robosuite to simulate robot locomotion and
manipulation, respectively. While MuJoCo and Robosuite already have pre-configured reward
functions, given the CD-PbRL problem setting, we will not utilize them during training; they will
only serve as performance metrics for evaluation.

* MuJoCo. We consider three MuJoCo tasks, namely Reacher, HalfCheetah, and Walker.
Regarding the cross-domain setting, we use the original MuJoCo environments as the source
domains and consider robots of more complex morphologies (and hence with higher state
and action dimensionalities) as the target domains, The detailed description about the source
domain and target domain can be found in Table[T|and Figure ]

* Robosuite. We set the source domain and target domain as two structurally different
robot arms, namely Panda and ITWA, which have distinct state-action representations. We
let the two types of robot arms perform the same set of tasks, including Lift, Door, and
Assembly. The detailed description of the source domain and target domain can be found
in Table[2|and Figure|4] All of the detailed information about the environments is provided
in Appendix

Benchmark methods. We compare CDPC with multiple benchmark algorithms, including:

* CAT-TR: CAT is a CDRL method proposed by [You et al.|(2022) that learns state-action
correspondence incorporating PPO using the true target-domain environmental reward. This
robust use of information is expected to lead to better performance compared to CDPC.

* Dynamics Cycle-Consistency (DCC): DCC is an unsupervised CDRL method (Zhang
et al.| 20214) that learns state-action correspondence by cycle consistency in dynamics and
reconstruction. We use DCC as a baseline since both DCC and CDPC learn without knowing
the true target-domain environmental rewards.

* Cross-Morphology Domain Policy Adaptation (CMD): CMD is a more recent unsu-
pervised CDRL method (Gui et al., 2023) specifically for transfer in cross-morphology
problems. CMD also serves as a suitable baseline since both CMD and CDPC are designed
to learn without knowing the true target-domain environmental rewards.
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Source
domain

Figure 4: Agent morphologies of the source domain and the target domam in MuJoCo and
Robosuite: The top row represents the source domain, which includes: Reacher, Halfcheetah, Walker,
Panda-Lift, Panda-Door, Panda-NutAssembleRound. The bottom row represents the target domain,
which includes: Reacher-3joints, Halfcheetah-3legs, Walker-head, IIWA-Lift, IWA-Door, and ITWA-
NutAssembleRound.

* SAC-Off-TR: This method employs offline SAC directly with target-domain data, without
using transfer learning. By leveraging true target-domain environmental rewards, it serves
as a natural and expectedly strong benchmark method, even without transfer learning.

¢ SAC-Off-RM: Compared to SAC-Off-TR, this method uses a reward model trained with
RLHF loss (Memarian et al., [2021) instead of the true target-domain environmental reward.
This approach allows us to directly compare the effectiveness of using preferences, as in
CDPC, with the alternative of learning a reward model from preferences first.

* % BC: Behavior cloning using the top X % of the trajectories in the dataset Dy,., where
X € {10%,20%,50%}. We will use this as a baseline because we can convert the concept
of pairwise preference into ranking within Dy,,.

Dataset. As described in the problem formulation of CD-PbRL, a target-domain dataset Dy, is
provided to the learner. To implement this, we follow the data collection method of D4RL
et al, 2020). Specifically, we mix the expert demonstrations (by an expert policy learned under
SAC (Haarnoja et al.,|2018))) and sub-optimal data generated by unrolling a uniform-at-random policy.
The size of Dy, for each task is provided in Appendix [E] For the main experiments, the proportion of
expert trajectories in the dataset is set to be 20%. For a fair comparison, this dataset is shared by all
algorithms in the experiments. An empirical study on the mixing proportion is provided in the sequel.

More details about the experimental configuration can be found in Appendix [C.2]

6.2 RESULTS AND DISCUSSIONS

Does CDPC achieve data-efficient cross-domain transfer in RL? The results of final total rewards
are shown in Figure 3] indicating that CDPC converges faster and performs better than the baselines.
The reason why DCC and CMD perform relatively poorly is that they suffer from the identifiability
issue as they only focus on learning the state-action correspondence between two domains. SAC-Off-
RM, on the other hand, needs to first learn a reward model, and if the reward model is inaccurate, it
greatly impacts the results. SAC-Off-TR converges more slowly as it does not involve any knowledge
transfer from the source domain.

Does CDPC learn an effective state decoder ¢—'? We compare CDPC with other CDRL benchmark
methods in the effectiveness of the learned state decoders. The results of final total rewards are shown
in Figure[f] indicating that CDPC converges faster and achieve higher total rewards than all the other
CDRL methods, even than CAT-TR with true reward signals.

Does CDPC learn a state decoder that can effectively achieve cross-domain preference consis-
tency? We provide an ablation study and investigate the significance of the preference consistency
loss. The results showed that the preference consistency loss has a highly significant effect. Without
using Epref(ﬁ) the decoder encounters identifiability issues, making it unable to decode good tra-
jectories into corresponding source trajectories. Consequently, it also becomes unable to utilize the
MPC module to select suitable actions. The results are shown in Figure[7] We also provide a Reacher
example for visualization (with the link provided in Appendix [E).
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Figure 5: Sample efficiency of CDPC and the benchmark methods: CDPC demonstrates greater
efficiency compared to the baseline methods across various dataset sizes, maintaining strong perfor-
mance even as the dataset scale increases.
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Figure 6: Decoder performance of CDPC and the benchmark methods: The learning curve of the
CDPC decoder demonstrates a consistent improvement over the baseline methods, particularly in
terms of convergence speed and final performance.
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Moreover, we also compare the state decoders learned by CDPC, DCC, and CMD in terms of their
capabilities to maintain preference consistency across domains. The results, as shown in Figure 8]
indicate that the CDPC decoder is significantly better in achieving preference consistency.

Does the quality of the target-domain data have a significant impact on CDPC? Recall that
CDPC learns from a target-domain Dy, with mixed samples collected by an expert policy and a
uniform-at-random policy. Let o € [0, 1] denote the mixture proportion of expert data. We evaluate
CDPC under four choices of mixture proportions and observe that CDPC is not very sensitive to the
data quality. The results are shown in Figure[9] Even without any expert data, the performance of
CDPC remains competitive compared to the baselines.

Does the quality of preference labels have
a significant impact on CDPC? We experi-
mented with flipping 10%, 20%, and 50% of
the preference labels and found that CDPC still
can learn successfully when only a certain pro-
portion of the preference labels are scrambled,
as shown in Figure [I0}

How is the cross-domain transferability of
CDPC under different domain similarities?
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Figure 9: Learning curves of CDPC under dif-
ferent mixing rates of expert data o: CDPC can
benefit from a higher proportion of expert data and
perform reliably with limited or no expert data.

main. From Figure[TT] we observe that CDPC
can still reliably achieve cross-domain transfer
despite the slight decrease in the transfer per-
formance with the number of joints. Notably,
without the true target-domain reward signal,
CDPC can still achieve comparable or better
cross-domain performance than CAT-TR, which
has access to the target-domain true reward. AR
Figure 10: Learning curves of CDPC under dif-
ferent flipping ratios of preference label 5: Even
with flipping applied to some preference labels,
CDPC can still achieve successful transfer.
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7 CONCLUSION

We study CD-PbRL, a new cross-domain RL

problem with preference feedback, and propose

a generic CDPC framework that enforces preference alignment between the source and target domains.
Based on this concept, we propose the CDPC algorithm that combines a state decoder learned by
preference consistency loss for training and a cross-domain MPC method for inference. Through
extensive experiments on various robotic tasks, we confirm that CDPC indeed serves as a promising
solution to achieving effective and data-efficient cross-domain transfer across domains.
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Figure 11: Learning curves of CDPC under different domain similarities: As the domain
dissimilarity between the source and target domains increases, successful transfer becomes more
difficult. Nevertheless, CDPC maintains a performance advantage over the baseline methods.
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A A DETAILED DESCRIPTION OF THE MOTIVATING EXAMPLE IN FIGURE[I]

Here, we explain the detailed steps of the gridworld example in Figure [T}

Problem setup: Consider one target domain trajectory 7, two state decoder ¢! and qbgl, one
well-trained source domain policy 74, source domain reward function R,,., which is defined as
follows: the top-left corner is the starting point, the bottom-left corner contains the treasure, which
provides a reward of +0.5 upon reaching it, and the bottom-right corner is the goal, which provides a
reward of +1 and terminates the episode. For simplicity, let us assume discount factor y equals to 1.

For ¢!, the process of decoding can be described as follows:

1. ¢,1(00,00) = (0,0), 75c(0,0) =—, go to (0, 1), reward = +0
2. ¢51(00,01) = (0,1), 75 (0,1) =—, go to (0, 2), reward = +0
3. ¢51(00,10) = (0,2), 75¢(0,2) ={, go to (1,2), reward = +0
4. $71(01,10) = (1,2), mere(1,2) =], go to (2,2), reward = +1
5. ¢51(10,10) = (2,2), total return = 1

For qﬁgl, the process of decoding can be described as follows:

1. gb/;l(O0,00) = (0,0), src(0,0) =], goto (1,0), reward = +0
2. ¢5'(00,01) = (1,0), mere(1,0) =1, go to (2,0), reward = +0.5
3. ¢5'(00,10) = (2,0), Tere(2,0) ==, go to (2, 1), reward = +0
4. gb/;l(OL 10) = (2,1), msre(2,1) =—, go to (2, 2), reward = +1
5. ¢5'(10,10) = (2,2), total return = 1.5

However, we cannot determine whether 7/, or Té is better, without considering total return. As a result,
it remains infeasible to distinguish between them if we only use dynamic cycle consistency loss.
Without a suitable mechanism for choosing between ¢! or iy 5 - the correspondence identifiability
issue could easily arise.
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B DISCUSSION: A NAIVE CD-PBRL APPROACH WITH AN ACTION ENCODER

The most naive approach to addressing inter-task mapping problems is to train mapping functions
for both state and action. A simple illustration and explanation are provided in Figure Initially,
we employed the concept of preference consistency to train an autoencoder for both state and action.
However, the results were highly unstable, and since there was no information available regarding
the target domain’s reward, we needed to additionally train a reward model in the target domain to
ensure both domains had preference information to maintain bidirectional mapping. A particularly
tricky aspect is that if the reward model is not well-trained easily, the preference labels provided by
the reward model will be incorrect, which will lead to poor performance of the action encoder. We
also included the training results of this naive method in Figure[12]

Finally, we cleverly combined the preference consistency state decoder with MPC, which only
required finding a decoder that could ensure consistent preferences, guaranteeing the effectiveness of
the MPC approach.

Reacher-2joints to Reacher-3joints

Source Domain Target Domain

state decoder

|
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o w
s o
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Y _—#— Naive method:state dec+action enc
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Iterations (1e4)
(a) Naive method (b) Total return of the naive method

Figure 12: Naive method: (a) (a.1)First, the target state is transformed into the corresponding source
state through the decoder. (a.2)Second, Using the known source domain policy, an action is selected
in the source domain. (a.3)Finally, the action encoder transforms this action into the corresponding
target action to complete one step. This process is repeated until termination. (b) Performance of
naive method is poor and unstable.

C DETAILED EXPERIMENTAL CONFIGURATIONS
C.1 DETAILED CONFIGURATIONS OF ENVIRONMENTS

Table 1: Differences between source and target domain in MuJoCo

Reacher HalfCheetah Walker
Source state dim 11 17 17
Domain action dim 2 6 6
Target state dim 12 23 19
Domain action dim 3 9 7

Table 2: Differences between source and target domain in Robosuite

Lift Door NutAssemblyRound
Source state dim 42 46 46
Domain action dim 7 7 7
Target state dim 50 54 54
Domain action dim 7 7 7

The detailed descriptions of the environments of our experiments are as follows:

* Reacher: MuJoCo Reacher is an environment commonly used in reinforcement learning
research. In this environment, an agent, typically a robotic arm, must learn to control its
movements to reach a target location. The agent receives observations such as position and
velocity of its joints, and its goal is to learn a policy that enables it to efficiently navigate its
arm to the target.
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* HalfCheetah: MuJoCo HalfCheetah is a simulated environment frequently utilized in
reinforcement learning research. In this environment, an agent, typically a virtual half-
cheetah, learns to navigate and control its movements in a physics-based simulation. The
primary objective for the agent is to achieve efficient locomotion while adhering to physical
constraints. The HalfCheetah environment offers a continuous control task, where the agent
must learn to balance speed and stability to achieve optimal performance.

* Walker: MuJoCo Walker is a simulated environment frequently utilized in reinforcement
learning research. In this environment, an agent, typically a virtual bipedal walker, learns to
navigate and control its movements in a physics-based simulation. The primary objective
for the agent is to achieve efficient and stable bipedal locomotion while adhering to physical
constraints. The Walker environment offers a continuous control task, where the agent
must learn to balance, walk, and sometimes recover from disturbances to achieve optimal
performance.

* Panda: RoboSuite Panda is a versatile robotic platform featuring a highly dexterous Panda
robot arm. It’s designed for research and development in robotics, offering flexibility
for various tasks like manipulation and assembly. With its user-friendly interface and
comprehensive software framework, it fosters innovation and collaboration in both academic
and industrial settings. Our experimental tasks include Block Lifting, Door Opening, and
Nut Assembly Round.

» ITWA: RoboSuite ITWA presents an advanced robotic platform centered around the highly
sensitive and versatile IWA robotic arm. Tailored for research and development, it excels
in precision tasks like assembly and pick-and-place operations. Its intuitive interface and
robust software framework support experimentation with cutting-edge robotics algorithms.
Whether in academia or industry, RoboSuite IIWA empowers users to explore the forefront
of robotic technology.

C.2 EXPERIMENTAL SETUP

Device. CPU AMD Ryzen 9 7950X 32 threads, GPU NVIDIA GeForce RTX 4080, RAM 64GB
DDRS, Storage 2TB NVMe SSD.

Codebase. For the implementation of SAC, we follow the GitHub codebase: https:
//github.com/quantumiracle/Popular-RL-Algorithms/tree/master.

For the implementation of Robosuite policy, we follow the GitHub codebase: |https:
//github.com/ARISE-Initiative/robosuite-benchmark/tree/master.

For the implementation of DCC and CMD, we follow the GitHub codebase: |https:
//github.com/sjtuzg/Cycle_Dynamics/tree/master. For the implementa-
tion of CAT, we follow the GitHub codebase:https://github.com/TJU-DRL-LAB/
transfer-and-multi-task-reinforcement-learning/tree/main/
Single—-agent%20Transfer%20RL/Cross—-domain%20Transfer/CAT.

Hyperparameters. We train source domain policy using SAC for 1e6 episodes, 128 for batch size,
3e-4 for Q network, policy and alpha learning rate. Target domain expert policy using SAC for 500
episodes, 128 for batch size, 3e-4 for Q network, policy and alpha learning rate. Decoder using LSTM
for batch size 32, le-3 for learning rate run for 5 random seeds. The size of Dy, is 5e5 transition
pairs for all tasks.

C.3 EVALUATION OF PREFERENCE ACCURACY IN FIGURE[§]

We provide the detailed procedure of the evaluation of preference accuracy used by CDPC and other
benchmark methods in Figure [8|as follows:

/
tar

e Step 1: Collect a target-domain dataset D|,. of trajectories with preference labels.

e Step 2: Randomly sample a batch of k trajectory pairs {(Tl(i), 72@) % _, and the correspond-
(4) (8

ing preference label y(*) from D/, . Feed each pair (r;7,75 ) into the learned state decoder

tar*
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¢~ ! and get the corresponding source-domain trajectories (7'1(1')'7 Téi)/). Accordingly, let z(*)

denote the source-domain preference label of (Tl(i)/, TQ(i)/).

. (), ()
» Step 3: Compute Accuracy = % x 100%.

D EXTENDED RELATED WORK

Preference-based RL (PbRL). PbRL (Wirth et al., 2017; Busa-Fekete & Hiillermeier, [2014
Kamishima et al., 2010}, Wirth & Fiirnkranz, [2013} [Choi et al.} 2024} Singh et al.| 2024} [Cheng et al.

2024) is a popular RL setting that focuses on learning policies or value functions from preferences
rather than explicit reward signals. One common approach is to model the preference feedback as a
binary classification problem (Lee et al., 2021afb; [Akrour et al.| 2011} [Pilarski et al., 2011} [Akrour]
let all 2012} [Wilson et al.} [2012; [Ibarz et al.,[2018)). PbRL has been applied to various real-world
domains, including personalized recommendation systems 2010), interactive learning from
human feedback (Knox & Stone} [2009)), and robot learning from human preferences
2018)). Besides, PBRL can also be employed for automatic summarization of articles
et al.,|2020). This approach enables the model to acquire sophisticated summarization techniques
through preference-based learning (Stiennon et al.| 2020} [Ouyang et al, 2022} [Achiam et al., 2023},
Lee et all, 2023} [Kirk et al} 2023}, [Sun et al.,|[2023a). Beyond its application in large language models,
preference-based techniques are also commonly utilized in training RL agents (Memarian et al.| 2021}
Liu et al, 2023} [Chakraborty et al.| 2023} [Sun et al, 2023b). By leveraging human feedback to
train reward functions, these techniques enable RL agents to approximate real-world rewards more
accurately, guiding the agents towards convergence to an optimal policy.

E VIDEOS

The link to the videois https://imgur.com/a/cdpc—decoder-visualization-KvzLOgA.
A clarification is warranted regarding the observation that the target point in the decoded trajectory
continues to shift, while the robotic arm exhibits minimal movement. This is because our decoder
takes the entire state as input, and the target point position is included in the state. Practically, it’s
challenging to ensure that the decoded target point position remains the same each time. However,

in the Reacher environment, a trajectory can be considered good if the total distance between the
fingertip position and the target point position is minimized throughout the episode. The decoder
ensures that the decoded trajectory maintains preference consistency, and we can leverage this
characteristic with MPC to select the optimal actions.

F ADDITIONAL EXPERIMENTS

F.1 AN EMPIRICAL STUDY ON THE EFFECT OF DYNAMICS MODEL QUALITY ON CDPC
PERFORMANCE

In this section, we conduct an additional empirical study to evaluate the robustness of CDPC to the
quality of the learned dynamics model. To showcase this, we add additional perturbation noise to the
predicted states output by the dynamics model. Intuitively, one shall expect that the decision made by
the MPC procedure can be affected by the perturbation noise. Specifically, we first generate Gaussian
random variables with zero mean and a standard deviation of . Based on the state representations
provided by the official MuJoCo and Robosuite documentation, the noise terms are further rescaled
according to the range of each dimension of the state. The experimental results are provided in the
table below. We can observe that despite the lowered quality of the dynamics model, the performance
of CDPC is only slightly affected and still remains fairly robust and superior to the strong benchmark
SAC-Off-TR, which learns directly from the true target-domain reward function.

19


https://imgur.com/a/cdpc-decoder-visualization-KvzLOqA

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of CDPC under a noisy dynamics model under different
perturbation magnitudes a: We can observe that despite the noisy dynamics model, the performance
of CDPC is only slightly affected and still remains fairly robust and superior to the strong benchmark
SAC-Off-TR, which learns directly from the true target-domain reward function.

« Reacher ITWA-Lift

0.0 7.9 +1.29 170.45 +21.49
0.1 -8.05+1.32 166.23 +20.09
0.2 -8.31+1.21 162.01 £22.06
04 -8.82+1.57 158.67 +18.35
0.8 921 +143 152.66+18.85

SAC-Off-TR -8.97+0.43 148.44 +£13.24

F.2 COMPARISON OF CDPC AND MPC-BASED BASELINES

In this section, we further demonstrate that the empirical strength of the CDPC algorithm indeed
mostly come from the design of cross-domain preference consistency. To address this, we further
compare CDPC in two environments, namely Reacher and ITWA-Lift, with three additional baselines
as follows:

e MPC: This method employs MPC directly in the target domain, without using transfer
learning. Here, we use the same dynamics model for both the pure MPC method and CDPC.
The purpose of including baseline is to verify whether CDPC performs well simply because
MPC itself is inherently strong.

o CAT-TR-MPC: Regarding CAT mentioned in Section [6} we remove
CAT’s original action encoder and instead use MPC to select actions, similar to CDPC. Here,
the main purpose is to verify whether the integration of MPC and other cross-domain RL
methods (like CAT) already achieves strong empirical performance.

* DCC-MPC: Similar to CAT-TR-MPC, DCC-MPC is another baseline that integrates
with the MPC subroutine for taregt-domain action selection. Again, the main
purpose here is to check whether the integration of MPC and other cross-domain method
like DCC already achieves good empirical performance.

We report the experimental results on the sample efficiency, decoder performance, preference accuracy
in Figure[I3] Figure[T4] and Figure[T3] respectively. We can make several observations from these
results:

e CDPC is indeed more sample-efficient that pure target-domain MPC: CDPC still
remains best after the three MPC-based baselines are included. Notably, using MPC directly
in the target domain can produce decent actions, resulting in a moderately high total return.
However, pure target-domain MPC still underperforms CDPC since CDPC, as a cross-
domain transfer method, nicely leverages the learned model from the source domain.

* CAT-TR-MPC and DCC-MPC suffer from low preference accuracy and hence do
not perform well: On the other hand, CAT-TR-MPC and DCC-MPC completely fail to
learn. This is because the state decoders of these methods are still not able to produce
correct trajectory rankings even under the integration with the MPC module. This issue is
particularly evident from the accuracy charts provided in Figure[T3]

Based on the above, we conclude that the empirical strength of CDPC does not rely solely on MPC;

rather, the key is the seamless integration of the preference-based state decoder with the cross-domain
trajectory optimization with MPC.
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Figure 13: Sample efficiency of CDPC and the benchmark methods: CDPC demonstrates
greater efficiency compared to the baseline methods across various dataset sizes, maintaining strong
performance even as the dataset scale increases.
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Figure 14: Decoder performance of CDPC and the benchmark methods: The learning curve of
the CDPC decoder demonstrates a consistent improvement over the baseline methods, particularly in
terms of convergence speed and final performance.
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Figure 15: Preference accuracy of the state decoders learned by CDPC, DCC, CMD, and CAT:
The integration of preference consistency loss enables CDPC to attain higher preference accuracy
than the baseline methods.
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F.3 TRANSFER BETWEEN DIFFERENT TASKS ON THE SAME ROBOT

To further showcase the wide applicability of CDPC, we further evaluate CDPC on the transfer
problems between different tasks within the same robotic environment. Specifically, we provide
additional results on two pairs of robotic tasks:

e MuJoCo: Halfcheetah (source domain) and Halfcheetah-stand (target domain).

* Robosuite: Panda-BlockStacking (source domain) and Panda-PickAndPlace (target do-
main).

We report the experimental results on the sample efficiency, decoder performance, preference accuracy
in Figure[I6] Figure[T7] and Figure[T8] respectively. We can observe that CDPC can still successfully
achieve cross-domain transfer between different tasks within the same robotic environment.
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Figure 16: Sample efficiency of CDPC and the benchmark methods: CDPC demonstrates
greater efficiency compared to the baseline methods across various dataset sizes, maintaining strong
performance even as the dataset scale increases.
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Figure 17: Decoder performance of CDPC and the benchmark methods: The learning curve of
the CDPC decoder demonstrates a consistent improvement over the baseline methods, particularly in
terms of convergence speed and final performance.

22



Under review as a conference paper at ICLR 2025

—#— CDPC  —#— CDPC (w/o prefloss) —&— DCC —+&- CMD CAT

Accuracy of Preference (HalfCheetah-Stand) ~ Accuracy of Preference (Panda-PickAndPlace)
70

~
o

(=)

o
(=2}
o

Accuracy (%)
3
Accuracy (%)
w
o

E
o

>ﬁ
]&

w
o

0 5 10 15 20 0 5 10 15 20
Iterations (1e4) Iterations (1e4)

Figure 18: Preference accuracy of the state decoders learned by CDPC, DCC, CMD, and CAT:

The integration of preference consistency loss enables CDPC to attain higher preference accuracy
than the baseline methods.
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