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Abstract

Test-time compute is emerging as a new001
paradigm for enhancing language models’002
complex multi-step reasoning capabilities, as003
demonstrated by the success of OpenAI’s o1004
and o3, as well as DeepSeek’s R1. Compared005
to explicit reasoning in test-time compute, im-006
plicit reasoning is more inference-efficient, re-007
quiring fewer generated tokens. However, why008
does the advanced reasoning capability fail009
to emerge in the implicit reasoning style? In010
this work, we train GPT-2 from scratch on a011
curated multi-step mathematical dataset and012
conduct analytical experiments to investigate013
how language models perform implicit rea-014
soning in multi-step tasks. Our findings re-015
veal: 1) Language models can perform step-016
by-step reasoning and achieve high accuracy in017
both in-domain and out-of-domain tests via im-018
plicit reasoning. However, this capability only019
emerges when trained on fixed-pattern data.020
2) Conversely, step-by-step implicit reason-021
ing emerging from training on unfixed-pattern022
data tends to overfit a specific pattern and fails023
to generalize further. Notably, this limitation024
is also observed in state-of-the-art large lan-025
guage models. These findings suggest that026
language models acquire implicit reasoning027
through shortcut learning, enabling strong per-028
formance on tasks with similar patterns while029
lacking generalization. All the resources will030
be released for future research.031

1 Introduction032

Chain-of-Thought (CoT; Wei et al. (2022)) has033

sparked the development of explicit reasoning in034

large language models (LLMs). The subsequent035

rise of large reasoning models (OpenAI, 2024b;036

Google, 2024; DeepSeek-AI, 2025) based on long037

CoT demonstrates impressive capabilities across038

various tasks (Rein et al., 2023; MAA, 2024;039

Jimenez et al., 2024). Recent works have shown040

that such reasoning capabilities can even be dis-041

tilled into smaller models (DeepSeek-AI, 2025).1 042

Different from explicit reasoning, implicit rea- 043

soning offers greater inference efficiency by re- 044

lying on fewer tokens to generate an answer (Deng 045

et al., 2023). Yet, it falls short of the performance 046

achieved by explicit reasoning (Deng et al., 2024; 047

Allen-Zhu and Li, 2024). Why can’t implicit rea- 048

soning develop advanced reasoning capabilities? 049

While recent advances in mechanistic inter- 050

pretability have aimed to demystify the implicit rea- 051

soning processes of language models (LMs), most 052

studies are limited to single-step reasoning (Meng 053

et al., 2022; Wang et al., 2023; Nanda et al., 2023), 054

which does not meet the expectation for handling 055

complex reasoning tasks, such as advanced math- 056

ematical problems. Meanwhile, for multi-step im- 057

plicit reasoning, previous work primarily focuses 058

on reasoning over factual knowledge (Yang et al., 059

2024a; Biran et al., 2024), which may be hindered 060

by issues such as inflated reasoning performance 061

due to memorizing entity co-occurrences in the pre- 062

training data (Elazar et al., 2023; Kang and Choi, 063

2023; Ju et al., 2024). 064

In this paper, to minimize the impact of mem- 065

orization and investigate the underlying reason- 066

ing mechanisms, we explore implicit reasoning 067

through the lens of mathematical problems. Mathe- 068

matical reasoning primarily depends on arithmetic 069

operations that follow strict logical rules, which re- 070

quire algebraic manipulation based on specific oper- 071

ators and operands rather than recalling pre-trained 072

knowledge like entity relationships. Given that the 073

strength of explicit reasoning stems from stepwise 074

rationales, the first question we seek to address is 075

RQ1: Can language models perform stepwise 076

reasoning internally? To investigate this, we 077

train GPT-2 from scratch on our synthetic multi- 078

step dataset composed of sequential mathematical 079

1In this paper, “smaller” is relative to super large LMs like
Deepseek R1, which has 671B parameters.
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Figure 1: A failure of generalization in auto-regressive
language models trained on data with unfixed patterns,
namely “Variable as Subtrahend Plight”. The shortcut
reasoner tends to chain numbers directly when perform-
ing implicit reasoning, while a stepwise reasoner traces
the variables and reasons step-by-step.

operations, which means premises are presented se-080

quentially. The experimental results and activation081

patching (Vig et al., 2020; Meng et al., 2022) plots082

show that LMs can fully learn to do stepwise083

reasoning internally and generalize to084

problems with more steps, provided they085

are trained on data where all premises086

are presented sequentially.087

However, the premises are not always presented088

sequentially in real-world reasoning tasks, requir-089

ing LMs to organize the information internally.090

Therefore, based on the findings from RQ1, this091

paper seeks to answer more general research ques-092

tions, RQ2: How do language models think093

internally if the premise order is not094

fixed? In contrast to the accuracy saturation095

in RQ1, accuracy drops significantly when the096

premise order is unfixed. We conduct further anal-097

ysis and find LMs fail to learn stepwise098

implicit reasoning when the premise order099

is not fixed, struggling with “Variable100

as Subtrahend Plight”. Specifically, as shown101

in Figure 1, models trained on an unfixed premise102

order overfit to an easy pattern in the data, relying103

on a shortcut that benefits from addition commuta-104

tivity. This shortcut allows the model to solve the105

problem by directly chaining numbers, while the106

presence of variables in the subtrahend position dis-107

rupts this shortcut. Additional mechanistic analysis108

validates our hypothesis.109

Previous work demonstrated that even current110

state-of-the-art (SoTA) LLMs also struggle with im-111

plicit reasoning (Yu, 2024). Based on our previous112

findings, we aim to investigate RQ3: How do LLMs113

perform multi-step implicit reasoning?114

We find “Variable as Subtrahend Plight”115

also persists in SoTA LLMs, indicating116

that these models, trained on diverse 117

unfixed premise corpora, are also relying 118

on shortcuts for multi-step implicit 119

reasoning. This further validates the correctness 120

and generalizability of our findings. 121

To summarize, in this paper, we investigate the 122

internal mechanisms of implicit reasoning in trans- 123

formers and uncover why the advanced reasoning 124

capabilities observed in explicit reasoning do not 125

emerge in implicit reasoning. While we reveal that 126

current LMs primarily rely on shortcuts for implicit 127

reasoning, a silver lining is that a stepwise reason- 128

ing pattern could indeed emerge through training. 129

Such a pattern underpins the advanced reasoning 130

capabilities of LMs, and we envision that future 131

advanced strategies could help form this pattern. 132

2 Related Work 133

2.1 Mechanistic Interpretability of Language 134

Models 135

Mechanistic interpretability (MI) aims to uncover 136

and explain the internal workings of models. The 137

research of mechanistic interpretability in language 138

models primarily focuses on three key areas: fea- 139

tures within model representations (nostalgebraist, 140

2020; Gurnee et al., 2023; Zhou et al., 2024), cir- 141

cuits connecting these features (Wang et al., 2023; 142

Hanna et al., 2023; Prakash et al., 2024), and uni- 143

versality across diverse models and tasks (Chughtai 144

et al., 2023; Gurnee et al., 2024). 145

Mathematical tasks, due to their significance in 146

representing the reasoning capabilities of language 147

models, have been widely studied in MI (Hanna 148

et al., 2023; Kudo et al., 2024; Zhou et al., 2024). 149

However, most of the existing studies (Stolfo et al., 150

2023; Yu and Ananiadou, 2024; Zhang et al., 2024; 151

Chen et al., 2024) focus on single-step mathemati- 152

cal reasoning. How LMs perform multi-step math- 153

ematical reasoning implicitly remains poorly un- 154

derstood. To bridge this gap, we employ activation 155

patching (Vig et al., 2020) to track the information 156

flow and reverse-engineer the behaviors of LMs in 157

multi-step arithmetic computations. 158

2.2 Multi-step Implicit Reasoning 159

As opposed to explicit reasoning, implicit reason- 160

ing is performed in the hidden states instead of 161

extra tokens. Previous studies typically investigate 162

implicit reasoning in two domains: factual reason- 163

ing (Wang et al., 2024; Yang et al., 2024a,b; Biran 164

et al., 2024) and mathematical reasoning (Stolfo 165
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et al., 2023; Nanda et al., 2023; Deng et al., 2024).166

However, progress in reasoning over factual knowl-167

edge risks being inflated by entity co-occurrence168

learned from pre-training data (Elazar et al., 2023;169

Kang and Choi, 2023; Ju et al., 2024). While math-170

ematical reasoning is less susceptible to this issue171

due to the variability of operands and operators,172

LMs may rely on shortcuts or shallow heuristics173

to predict the results (Liu et al., 2023; Nikankin174

et al., 2025; Xie et al., 2024), which are often over-175

looked in studies on multi-step implicit reasoning.176

In our study, we scrutinize the impact of shortcuts177

and represent the internal mechanisms driving the178

observed phenomenon to the investigation of the179

multi-step implicit mathematical reasoning abilities180

in Transformer-based LMs.181

3 General Setup182

Task Focusing on reasoning capability rather183

than other factors (e.g., factual knowledge memo-184

rization), we use mathematical problems as a lens.185

To further minimize the impact of natural language186

complexity, we shift our focus to mathematical for-187

mulas rather than problem statements in natural188

language. Specifically, we construct a synthetic189

dataset of multi-step sequential modular addition190

and subtraction as our testbed for analysis. As191

shown in Figure 1, except for the first step, each192

step of the computation involves a variable from193

the previous step, a number (we name it operand194

later), and an operator (i.e., “+” or “−”). Follow-195

ing Ye et al. (2024), we consider using arithmetics196

mod23 to avoid numbers being split into multiple197

tokens and prevent errors from large number calcu-198

lations, thereby focusing on reasoning itself rather199

than calculation.200

Data. For training data, we generate 25 000 dif-201

ferent multi-step calculation templates for ques-202

tions at each length (ranging from 2 to 5 steps) and203

then randomly use K different groups of variable204

names to instantiate each template.2 To prevent205

LMs from memorizing intermediate results from206

the training set rather than performing actual rea-207

soning to solve the math problems in our test set,208

we filter out all templates with preceding calcu-209

lations, apart from the first step, that overlapped210

with the templates of the training set during the211

test set generation. For example, if “f=1+2,s=3-212

f,s»?” appears in the training set, then “a=1+2,b=3-213

2K = 2 in this paper. Please refer to Appendix A for more
details about the data generation process.

a,c=b+5,c»?” is not allowed to appear in the test 214

set because the first two steps of the former are the 215

same as the latter regardless of variable names. 216

We evaluate both in-distribution (ID) and out- 217

of-distribution (OOD) performance, which are dis- 218

tinguished by the maximum reasoning steps of the 219

training set, with ID not exceeding the maximum 220

steps of the training set (i.e., 5-step) and OOD be- 221

ing one or two steps more than the maximum steps 222

of the training set (i.e., 6-step or 7-step). ID gener- 223

alization aims to evaluate whether the model learns 224

the latent rules of the training set, while OOD gen- 225

eralization is designed to assess whether the model 226

genuinely acquires some reasoning skills. 227

Model & Optimization. Following Ye et al. 228

(2024), we use a standard 12-layer GPT-2 229

model (Radford et al., 2019) and replace its 230

positional embeddings with rotary embeddings 231

(RoPE) (Su et al., 2024) to enable the model to 232

learn length generalization (i.e., to generalize its 233

ability to solve more steps in multi-step reason- 234

ing tasks than those seen during training). We use 235

AdamW (Loshchilov and Hutter, 2019) with learn- 236

ing rate 10−4, batch size 1600, weight decay 0.1 237

and 2000 warm-up steps. 238

Activation Patching. Activation patching (Vig 239

et al., 2020; Meng et al., 2022) is a strategy for 240

identifying the important modules that causally af- 241

fect the output by intervening on their latent acti- 242

vations. Specifically, if a module is important, the 243

alteration of its activation will significantly affect 244

the model’s output, whereas an unimportant one 245

will have little to no impact. Typically, the method 246

needs two inputs, an original one (e.g., “a=1+4,d=5- 247

a,c=1+d,c»?”) and another with a slight differ- 248

ence (e.g., “a=6+4,d=5-a,c=1+d,c»?”), and three 249

forward passes: The clean run and the corrupted 250

run take the above two inputs separately and cache 251

activations of the model’s components, such as at- 252

tention or MLP outputs. In the patched run, we 253

run the model on the original input but replace the 254

specific activation with the cached activation from 255

the corrupted run. Following previous work (Zhang 256

et al., 2024), we measure the changes in the out- 257

put logits of the ground truth tokens. Then, we 258

compute the patching effect (PE) as: 259

PE =
Pcl(r)− Ppt(r)

Pcl(r)
, (1) 260

where r is the correct answer of the original in- 261

put and cl, pt denote the clean and patched run 262
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separately. The experiments are conducted on 100263

randomly selected samples.264

We iterate activation patching over a set of acti-265

vations and compare how much they affect the final266

output, which allows us to localize which activation267

matters and ultimately reverse engineer the under-268

lying circuit. In practice, we utilize sliding window269

patching (Hase et al., 2023) with window size 2×2,270

where at each token position, the representations271

of the 2× 2 region formed by the current layer and272

the next layer, along with the current token and the273

next token, are substituted by the cached activation274

from the corrupted run.3275

4 Can Language Models Perform276

Stepwise Reasoning Internally?277

Previous work found that smaller LMs (∼7B) can278

hardly do multi-step mathematical reasoning cor-279

rectly without CoT, while a 70B level model can280

only achieve an accuracy of about 50% in 4-hop281

reasoning (Yu, 2024). Since previous work demon-282

strated that externalizing reasoning step by step283

enhances performance in mathematical tasks (Wei284

et al., 2022), a question is: does the poor perfor-285

mance of implicit reasoning arise from the inability286

to employ this step-by-step reasoning style? We be-287

gin our investigation by training our GPT-2 model288

on the synthetic dataset to learn implicit reasoning.289

4.1 Results290

Language models are able to perform implicit291

mathematical reasoning with near-complete ac-292

curacy when trained. We first analyze whether293

our model is capable of solving multi-step im-294

plicit mathematical reasoning. Figure 2 shows the295

model’s accuracy on both the ID and OOD test296

data throughout the optimization. The model not297

only achieves 100% accuracy on implicit reasoning298

tasks from the same distribution (ID set) but also299

generalizes effectively to tasks requiring longer300

reasoning steps in the OOD set. To be specific, the301

model achieves 99% accuracy in tasks that require302

an additional step of reasoning and nearly 90% ac-303

curacy in tasks that require two more. This implies304

that the model truly learns some implicit reasoning305

skills rather than simply memorizing answers since306

our model has never seen any training example of307

the same length as in the test time.308

3We study the choice of metrics in Appendix B.1 and
window sizes in Appendix B.2.
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Figure 2: Test accuracy during the training stage. We
find that Transformers are able to learn to reason im-
plicitly and generalize well to those that require longer
reasoning steps.

4.2 The Working Mechanism of Model 309

Setting. To investigate whether the language 310

model is based on understanding (i.e., gathering 311

all the information together first and then comput- 312

ing) or reasoning step by step, we use activation 313

patching to reveal the model’s internal thought pro- 314

cess. Two different experiment setups are used to 315

reveal how the information is transmitted and what 316

information is transmitted separately. 317

• Tracing the information flow. To gain insights 318

into the working mechanisms of the model, we first 319

need to know the path through which the token’s 320

information is transmitted to the output, i.e., how 321

the information of a specific token affects the out- 322

put. To this end, we change only one operand or 323

operator in the original input and identify the acti- 324

vations that have an influence on the final output 325

by replacing activations. 326

• Tracking result-related information. The first 327

setting explains how information is transmitted to 328

the output, yet what information is transmitted 329

is still unclear. Therefore, we formulate a vari- 330

ant of the first setting to track the information 331

related to intermediate results (i.e., the value of 332

an intermediate variable). Specifically, we mod- 333

ify a set of operands and compare the differences 334

in patching effects when the intermediate results 335

are either identical or distinct. For example, if 336

we aim to track the related information of “d” 337

in “a=6+4,d=a+5,c=1+d,c»?”, We need to mod- 338

ify the operands while keeping the value of “d” 339

fixed at 15 (e.g., “a=1+4, d=a+10,c=1+d,c»?”) and 340

compare it with a case where the result changes 341

(e.g., “a=1+4,d=a+4,c=1+d,c»?”, where d=9). If 342

the model is performing step-by-step reasoning, 343

the patching effect will be more pronounced in 344

the first two steps due to the change in “a” and 345

will then diminish from the third step onward in 346

the fixed-result setting, as the subsequent results 347
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Figure 3: Activation patching on residual stream across
layers and token positions when changing the first num-
ber in the problems. All the premise orders are forward.

remain unchanged.348

Language models are able to do step-by-step349

reasoning internally. To trace the information350

flow, we first examine the residual stream patching351

plot by only altering one operand.4 The patching352

effects across layers and positions are shown in353

Figure 3. We observe that a significant portion of354

the patching concentrates at the end of each step355

and exhibits a clear trend of gradually propagating356

along a diagonal line. This pattern forms the foun-357

dation of step-by-step reasoning, which implies358

that each intermediate result builds upon the last.359

To investigate the information behind these acti-360

vations, we further track result-related information361

and add constraints for the results to remain the362

same when changing the input. By comparing the363

results of the result-varied setting (Figure 4a) and364

the result-fixed setting (Figure 4d), we find: The365

region between Step 2 and Step 3, where the im-366

pact diminishes (highlighted by the green box in367

Figure 4d), aligns precisely with the segment be-368

tween the second and third steps in the information369

flow (Figure 3). This provides evidence that this370

area stores information related to the intermediate371

results. In the fixed-result setting, the substituted372

activations retain the same information, leading to373

a minor patching effect. However, in the unfixed374

setting, the patching effect is more pronounced.375

To sum up, the model computes the result of each376

step once it concludes, and this information is then377

utilized by the subsequent step in the next layers,378

establishing a step-by-step computation pattern.379

Attention mechanism propagates intermediate380

results, and MLP modules enhance features re-381

lated to inputs and outputs. Intervening on hid-382

4We show the information flow related to operators in
Appendix C.

den states only provides us with a glimpse of the in- 383

formation flow, but the roles of various components 384

within the model remain unclear. By decomposing 385

the causal effects of contributions of attention and 386

MLP modules (Figure 4b,4e and Figure 4c,4f), we 387

find a decisive role for attention modules in the 388

middle layers and MLPs in early and final layers. 389

In conjunction with the findings on information 390

flow, we infer that the attention layers are respon- 391

sible for extracting the information needed in the 392

current step and gradually transferring intermediate 393

computational information to deeper layers. There- 394

fore, a possible explanation of the model’s behav- 395

ior on this task is that the MLP modules enhance 396

features of operators and operands in early layers, 397

then the attention mechanism facilitates the step- 398

by-step propagation of intermediate results, and 399

finally, MLP modules at the last layers enhance the 400

correct predictions’ probabilities. In this setting, 401

the premise order is fixed to be forward; we further 402

test the backward order and reach the same conclu- 403

sion. For more details, please refer to Appendix D. 404

5 How Do Language Models Reason 405

Internally When the Premise Order is 406

Not Fixed? 407

Based on the above findings, we find that Trans- 408

formers are able to perform step-by-step reasoning 409

internally when the premise order is fixed. How- 410

ever, in complex reasoning tasks, the premises are 411

not always presented sequentially; they may appear 412

in a random order, requiring LMs to organize the 413

information internally. Can language models still 414

perform implicit reasoning step by step when the 415

premises are shuffled? 416

Setup. For consistency, we continue to use the 417

original data but randomly shuffle the order of 418

premises, excluding the question. To assess the 419

impact of premise order, we study three differ- 420

ent orders, including forward, reverse, and ran- 421

dom. Specifically, for the reverse order, we list 422

the premises in reverse order; for the random order, 423

we shuffle the premises randomly. 424

5.1 Result 425

Language models fail to learn implicit reason- 426

ing when the premise order is not fixed. In 427

contrast to the high accuracy scores achieved by 428

the model trained on fixed-order premises (Fig- 429

ure 2 and Figure 12), Table 1 shows that the model 430

trained on shuffled premises fails to perform multi- 431
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(d) Residual Stream
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(e) Attention
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(f) MLP

Figure 4: Patching effect of different components across layers and token positions. We change two operands in
the first two steps. The result of step2 is changed in sub-figure (a)(b)(c), while the result is kept unchanged in
sub-figure (d)(e)(f). A deeper color indicates the significance of activation at that position. We add two auxiliary
lines in the figure to better illustrate the information flow.

Order 2-Step 3-Step 4-Step 5-Step 6-Step

Forward 1.00 0.87 0.57 0.43 0.23
Reverse 1.00 0.81 0.51 0.38 0.19
Random 1.00 0.83 0.53 0.37 0.23

Table 1: The accuracy of the model trained on data
with unfixed premise order across different types of
problems. Each column represents problems with a
specific number of steps, and each row represents a
premise order used during testing.

step implicit reasoning correctly. Specifically, as432

the number of steps increases, the model’s accuracy433

gradually decreases, reaching only ∼40% accuracy434

when five steps of reasoning are required, contrast-435

ing the saturated accuracy of the model trained on436

fixed premise order.437

Language models struggle with “Variable as438

Subtrahend Plight.” To explore how LMs per-439

form implicit reasoning after being trained on an440

unfixed premise order, we conduct further analy-441

sis and find that the model is more prone to mak-442

ing mistakes when the premise contains multiple443

equations with a variable as the subtrahend. De-444

tailed statistics are provided in Table 2 on how445

the model’s accuracy varies with the number of446

variables being subtrahends for questions requiring447

three to five steps of reasoning. As the number of448

variables being subtracted increases, the model’s449

accuracy decreases drastically, which is consistent450

across different premise orders. We term this phe-451

nomenon as “Variable as Subtrahend Plight.” When452

almost all the variables in the premise are subtra-453

Order
#VARIABLE BEING SUBTRAHEND

0 1 2 3 4

3-Step Problems

Forward 1.00 0.83 0.35 - -
Reverse 1.00 0.73 0.15 - -
Random 1.00 0.73 0.26 - -

4-Step Problems

Forward 1.00 0.33 0.08 0.12 -
Reverse 1.00 0.15 0.08 0.10 -
Random 1.00 0.23 0.08 0.08 -

5-Step Problems

Forward 0.92 0.20 0.04 0.05 0.03
Reverse 0.90 0.10 0.04 0.03 0.03
Random 0.90 0.09 0.03 0.02 0.02

Table 2: Accuracy of the model on questions with dif-
ferent numbers of variables being subtrahends. The
accuracy is calculated on 100 instances. Since the first
step involves an operation between two numbers, the
maximum number of variables as subtrahends is one
less than the total number of steps.

hends, the model almost fails to solve any of the 454

problems correctly. To rule out the possibility of 455

a special case, we conduct experiments with in- 456

creased data volume and with different models, yet 457

the results remain consistent. Please refer to Ap- 458

pendix E for more details. 459

To explore why models struggle with the “Vari- 460

able as Subtrahend Plight”, we revisit arithmetic 461

expressions. While addition benefits from com- 462

mutativity (e.g., a+b=b+a), subtraction lacks this 463

property, as swapping the minuend and subtrahend 464

changes the outcome unless a=b. This asymmetry 465
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creates challenges for models. For instance, in the466

sequence “a=6+2,b=a-3,c=4+b”, the model might467

shortcut it as “c=6+2-3+4” (treating subtraction as468

addition). However, when subtrahends are vari-469

ables, such a shortcut fails. If “b=3-a”, the model470

can no longer chain terms directly and must com-471

pute intermediate results in sequence. As the num-472

ber of variable subtrahends increases, the model473

faces greater difficulty in determining the correct474

order of operations, requiring rigorous step-by-step475

reasoning instead of relying on shortcuts.476

Language models do not think step-by-step477

when the premise order is not fixed and overfit478

to an incorrect shortcut. Based on our analy-479

sis above, accuracy sharply declines if the model480

relies on shortcut computation. In contrast, step-by-481

step computation would result in minimal accuracy482

variation, as whether variables are subtrahends or483

not does not significantly affect sequential reason-484

ing. To validate our hypothesis, we plot the accu-485

racy trends against the number of equations with486

“Variable-as-Subtrahend” in our step-by-step com-487

putation models used in Section 4. As shown in488

Figure 5, there is only a slight variation in the ac-489

curacy of step-by-step computation models while490

the accuracy of the model trained on problems with491

varied premise order drops significantly, which ver-492

ifies our hypothesis.5493

To sum up, when the training data follows a fixed494

pattern, LMs can learn a fixed pattern to store each495

intermediate result upon completing a step. For496

instance, in a forward premise order, the model497

simply follows the operators to compute the results498

of operands sequentially (i.e., step-by-step reason-499

ing). There is no need to track the variables, as500

they must come from the previous step. However,501

when the premise order is shuffled, this shortcut502

pattern no longer exists, which necessitates the true503

reasoning capability: first tracking the variables504

and then performing the computation. More steps505

involve more complex tracking and computation,506

which explains why accuracy decreases as the num-507

ber of steps increases. This implies that when LMs508

perform implicit reasoning, they are relying on509

shortcuts rather than engaging in true reasoning.510

Furthermore, we find that the premise order does511

not significantly affect the model trained on an512

unfixed pattern. This further validates our hypothe-513

sis that such a language model relies on shortcuts514

5We also provide mechanistic analysis of “Variable-as-
Subtrahend” in Appendix F.
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Figure 5: Test accuracies with increasing number of
equations containing a variable as the subtrahend. The
step-by-step computation models (Forward & Reverse)
are evaluated on OOD 7-step problems since the accu-
racies of such models in both ID ones and OOD 6-step
are nearly 100%. The model trained from problems
with unfixed premise order (Unfixed) is evaluated on ID
5-step problems.

for reasoning, as there is no difference in reason- 515

ing through shortcuts like chaining the numbers 516

directly, whether in forward order (e.g., “c=6+2- 517

3+4”) or reverse order (e.g., “c=4-3+6+2”). 518

6 How Do LLMs Perform Multi-step 519

Implicit Reasoning? 520

In the previous section, we found that GPT-2 is 521

unable to perform implicit reasoning when there 522

is no fixed pattern to learn during training. Does 523

this phenomenon also apply to current SoTA LLMs, 524

given that their training data is not always presented 525

in a fixed order? Do these models reason step-by- 526

step, or rely on shortcuts to solve the problem? 527

Setup. We conduct zero-shot experiments using 528

both open-source and closed-source models, includ- 529

ing GPT-4o-2024-08-06 (OpenAI, 2024a), Claude- 530

3.5-sonnet-20241022-v2 (Anthropic, 2024), Llama- 531

3-70B-Instruct (AI@Meta, 2024) and Qwen2.5- 532

72B-Instruct (Qwen-Team, 2024). We instruct the 533

model to provide answers directly with the tempera- 534

ture set to 0. To ensure the consistency and fairness 535

of our evaluation: 1) We retain the original data 536

generation method but restrict instances to those 537

with intermediate computation results between 0 538

and 22, thus eliminating the impact of mod23 on ac- 539

curacy. 2) We focus on 3-step problems, as implicit 540

reasoning for 4-step problems proves too challeng- 541

ing for current LLMs, with low performance that 542

undermines the reliability of our experiments. 3) 543

To reduce randomness, we generate 100 problems 544

for each ratio of equations containing a variable as 545
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most two equations can have a variable as the subtrahend.
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Figure 7: The accuracy of GPT-4o on problems with
different step counts. The premise is in the forward
order without any subtrahend being a variable. The red
dashed line represents the accuracy of the same model
on 3-step problems, where there are two equations with
“Variable-as-Subtrahend”.

the subtrahend. For each question, we evaluate it546

with three premise orders, i.e., forward order, re-547

verse order, and shuffled order. 4) The accuracy is548

computed only in cases where the model does not549

output in CoT format. More details of the experi-550

ment setups are in Appendix G.551

6.1 Result552

Figure 6 shows the accuracy of LLMs on prob-553

lems with different ratios of equations containing554

a variable as the subtrahend. We find: 1) As the555

proportion of expressions with a variable as the556

subtrahend increases, the accuracy of the LLMs557

tends to decrease drastically. The accuracy of GPT-558

4o even drops from nearly 100% to approximately559

30% regardless of premise order. 2) All the models560

fail to do 3-step problems containing two equations561

with a variable as the subtrahend, and open-source562

LLMs still lag behind closed-source LLMs in im-563

plicit reasoning. 3) Compared to the influence of564

variables as the subtrahends, the impact of premise565

order is not that significant, which aligns with our566

models trained on unfixed premise order. 567

We further plot the accuracy of GPT-4o on prob- 568

lems stated in the forward order without any subtra- 569

hend being a variable but with different steps of cal- 570

culations. From Figure 7, we observe that though 571

the accuracy of GPT-4o decreases gradually, the 572

accuracy on 9-step problems even surpasses that 573

on 3-step problems containing two equations with 574

a variable as the subtrahend in Figure 6. 575

To sum up, the findings suggest that LLMs 576

likely rely on shortcuts for implicit reasoning 577

rather than performing step-by-step reasoning, 578

which aligns with our observations in the GPT-2 579

model. To speak further, while current LLMs can 580

perform implicit reasoning within a fixed pattern 581

and for a limited number of steps, they cannot gen- 582

eralize beyond these constraints. 583

7 Conclusion 584

In this paper, we investigate the implicit reasoning 585

mechanism to uncover why advanced reasoning 586

capabilities fail to emerge in the implicit reason- 587

ing style. We find that language models rely on 588

shortcuts for implicit reasoning, and these short- 589

cuts only work when the training data aligns with 590

a specific pattern that supports directly chaining 591

numbers. As a result, language models struggle 592

with the “Variable-as-Subtrahend Plight,” which 593

requires true reasoning capabilities, such as vari- 594

able tracking and step-by-step computation, where 595

shortcuts are no longer effective. Experiments with 596

current SoTA LLMs further validate our findings. 597

We hope this work deepens the understanding of 598

implicit reasoning limitations in LMs and sparks 599

future research to address LMs’ key challenges in 600

implicit multi-step reasoning. 601
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Limitations602

In this paper, we train GPT-2 from scratch rather603

than adopting pre-trained LLMs, as their train-604

ing methodologies and datasets remain proprietary.605

While LLMs benefit from better reasoning capabil-606

ities due to their large parameter scale, this lack of607

transparency makes it unclear and uncontrollable608

whether these models were exposed to synthetic609

computational tasks similar to those explored in our610

study. Additionally, in order to use activation patch-611

ing to identify the internal mechanisms of language612

models, all experiments must be fully controllable.613

Our further study, based on the findings from GPT-614

2, tests four current LLMs, including both open-615

source and closed-source models, and yields the616

same conclusion, thus validating our findings.617
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A More Details of the Data Generation834

Process835

We provide an overview of the data generation pro-836

cess in Figure 8. First, for the training set, we cre-837

ate 25 000 distinct multi-step calculation templates838

for questions of each length. Then, we use the839

same method for the test set, but an additional filter840

mechanism is employed to prevent LMs from uti-841

lizing intermediate results from the training set. As842

shown in Figure 8, the model may directly utilize843

the result of v1 from the training data to calculate844

v2 by just calculating v2 = 4+ v1. Therefore, only845

the templates whose preceding calculations, apart846

from the first step, do not overlap with the tem-847

plates of the training set are retained in the test set.848

This setting prevents LMs from relying on short-849

cuts where they memorize results during training850

and simply recall them during testing rather than851

performing actual reasoning.852

Since the variables in the template are sorted as853

v0, v1, ..., to prevent the model from learning the854

calculation order through the indices, we randomly855

replace them with the letters a-z. We use K dif-856

ferent groups of variable names to instantiate each857

template in the training set. For the choice of K,858

please refer to the subsequent subsection.859

Template Instance

v0=1+2
v1=3-v0
v1»?Training Set

Test Set

v0=1+2
v1=3-v0
v2=4+v1
v2»?

f=1+2
s=3-f
s»?

v0=1+2
v1=v0-3
v2=3+v1
v2»?

a=1+2
e=a-3
g=3+e
g»?

t=1+2
p=3-t
p»?

OVERLAP!

Figure 8: An overview of the data generation process.

A.1 Effect of the Number of Template860

Instantiations861

In our early experiments, we find that when K862

equals 1, the model trained from scratch struggles863

to generalize effectively to problems outside the864

training set, even when these problems share the865

same template but have different variable names.866

We attempt to adjust the training hyperparameters,867

including the learning rate and weight decay; how- 868

ever, the situation remained unchanged. After in- 869

creasing K to 2, the model successfully handles 870

problems with the same template but different vari- 871

able names, as well as those in the test set. So, we 872

continue to use K = 2 in our experiment to ensure 873

that the failure of generalization is caused by the 874

model rather than our data. 875

B Choice of Activation Patching Settings 876

In this section, we study the choice of metrics and 877

window sizes in the discovery of information flow. 878

B.1 Patching Metrics 879

Following the notations in Section 3, P denotes 880

the output logit, r and r′ are the correct answer 881

of the original input and corrupted input, and cl, 882

*, pt denote the clean, corrupted and patched run 883

separately. 884

In Figure 9, we compare the effect of several 885

commonly used metrics: 886

a) Logit of the clean run’s ground-truth token r: 887

Pcl(r)−Ppt(r). We normalize this by Pcl(r), and 888

obtain the normalized patching effect as shown 889

in Equation 1; 890

b) Logit of the corrupted run’s ground truth token 891

r′: Ppt(r
′)− Pcl(r

′). We do not normalize since 892

Pcl(r
′) can be very small, which may produce 893

noisy localization outcomes. So we use 894

PE = Ppt(r
′)− Pcl(r

′); (2) 895

c) Logit difference: LD(r, r′) = P(r)− P(r′). We 896

normalize this by LDcl(r, r
′) − LD∗(r, r

′), and 897

get 898

PE =
LDcl(r, r

′)− LDpt(r, r
′)

LDcl(r, r′)− LD∗(r, r′)
, (3) 899

so it typically lies in [0, 1]. 900

We find there is no significant difference in the 901

discovery of information flow, and we use a) in our 902

experiments for the following reasons: 903

1) Compared to c), a) can measure the patching 904

effect when the ground truth tokens of the clean 905

run and the corrupted run are the same. 906

2) Compared to b), the patching effect of a) can be 907

normalize to [0, 1] more stably. 908

B.2 Window Sizes 909

Following best practices of activation patch- 910

ing (Zhang and Nanda, 2024), we initially em- 911

ploy single-layer interventions to identify crucial 912

12
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Figure 9: Comparison of different patching metrics. (a) Logit of the clean run’s ground truth token r. (b) Logit of
the corrupted run’s ground truth token r′. (c) Logit difference between r and r′.

           Step1           Step2           Step3           Step4           Step5           Step6    Q
0

2

4

6

8

10

La
ye

r

0.0

0.2

0.4

0.6

0.8

(a) 1× 1

           Step1           Step2           Step3           Step4           Step5           Step6    Q
0

2

4

6

8

10

La
ye

r
0.0

0.2

0.4

0.6

0.8
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(d) 2× 2

Figure 10: Patching effect with different window sizes. A window size of m× n represents at each token position
the representations of the region formed by the current layer and the subsequent m− 1 layers, along with the current
token and the next n− 1 tokens, are copied from the corrupted forward pass.

model components. However, as illustrated in Fig-913

ure 10a, individual layer modifications produce914

only marginal effects, making it challenging to iso-915

late critical hidden states. We speculate that lan-916

guage models may use aggregations from multiple917

inference pathways (McGrath et al., 2023), using918

a region rather than one hidden state to perform919

computations and restore intermediate results. Not-920

ing that critical blocks in Figure 10a frequently921

often exhibit rectangular patterns, we implement922

a 2 × 2 window size to capture the joint effect of923

these regions. Our comparison of different patch-924

ing window sizes in Figure 10 reveals that different925

window sizes generally preserve similar informa-926

tion flow characteristics and our 2 × 2 configura-927

tion best captures information flow. We do not use928

larger window size since 2×2 is enough and larger929

window size may results in inflated localization930

plots.931
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Figure 11: Activation patching on hidden states across
layers and token positions when changing the first oper-
ator in the problems.

C Information Flow Related to Operators 932

We present the residual stream patching plot al- 933

tering the first operator in Figure 11. Similar to 934

changing the operand, the patching effect is still 935

pronounced at the end of each step, with informa- 936

tion still propagating downward along the diagonal. 937

938
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D How do Language Models Think939

Internally if the Premise is in Reverse940

Order?941

In human reasoning mode, backward reasoning942

is another well-established pattern. In Section 4,943

we have shown Transformers do the forward or-944

der reasoning task step-by-step internally, but do945

transformers utilize the same forward order reason-946

ing pattern (i.e., the reasoning process aligns with947

the original order) while the premise is in another948

order?949

Setup. We keep the data in Section 4 unchanged950

and only switch the order of the premises, which951

does not alter the final answer. For example, if952

“a=1+2,b=3-a,c=b+5,c»?” is in the original dataset,953

then the reversed one, “c=b+5,b=3-a,a=1+2,c»?”, is954

in the new dataset. Both the training and evaluation955

processes will be conducted in the same reversed956

order.957

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k100k
Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

ID OOD (6-step) OOD (7-step)

Figure 12: Test accuracy during training in the original
dataset but with reversed premise order. Despite the
reversed order, the model can still fully learn to think
implicitly.

Language models learn to do step-by-step sim-958

plification. We find that although the premise959

is in reverse order, the model can still perfectly960

generalize to both the ID test data and the OOD961

test data requiring one additional reasoning step962

as illustrated in Figure 12. To investigate model’s963

behavior when the premise is in reverse order, we964

change the later numbers in the original premise in-965

stead of earlier ones since later ones appear earlier966

in the reversed input. We present the information967

flow in Figure 13. Compared to the information968

flow of model in Section 4, we can find the layer969

where the information flow begins is obviously970

later than that of Section 4, which may indicate971

reverse order need more layer to enhance the fea-972

ture of input tokens since it is harder than forward973
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Figure 13: Information flow of the model trained from
reversed premise order.

order. We report the results in Figure 14a and Fig- 974

ure 14b. By comparing two figures, we can find 975

that the patching effect also diminishes after the 976

last changed number, which means the model also 977

compute information related to intermediate results. 978

We speculate the model learns to do step-by-step 979

simplification (e.g., c=1+b,b=3-a can be simplified 980

as c=4-a) rather than forward order step-by-step 981

reasoning when the premise is in reverse order. 982
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(a) Result-varying setting
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(b) Result-fixed setting

Figure 14: Patching effect when changing the number
in the last two steps of the original premise, i.e., Step5
and Step6. The final result is changed in (a), while the
result is kept unchanged in (b).
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E Extended Experiments on Increased983

Data Volume and Different Models984

E.1 Data Volume985

A potential explanation for this poor generalization986

could be the limited number of templates used dur-987

ing training. To investigate, we expand the dataset988

to include 50000 different templates for each step.989

However, this expanded experiment yields similar990

results, with models still failing to generalize to991

problems which requires more than three steps of992

reasoning.993

E.2 Model Size994

When training from scratch, we also test larger995

models, i.e., GPT2-RoPE-medium, by increasing996

the number of layers from 12 to 24, but the accuracy997

does not improve.998

E.3 Model Initialization999

In our experiment, we find that our GPT2-RoPE1000

model initiated from a pre-trained GPT-2’s weight1001

may have a higher performance, but we only ob-1002

serve this phenomenon on GPT2-RoPE-Medium.1003

As shown in Table 3, despite the increased accuracy,1004

the model still fails when almost all the variables1005

are subtrahends. In addition, investigating model1006

initialization is not our main focus.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

GPT2-RoPE-Medium-Pretrained

Forward 1.00 0.98 0.99 0.97 0.05
Reverse 1.00 0.99 0.84 0.06 0.02
Random 1.00 0.90 0.83 0.35 0.08

Table 3: Accuracy of the model on 5-step questions with
different number of variables being subtrahends.

1007

E.4 Model Architecture1008

We also test with other model architectures such1009

as Qwen2.5 and the original GPT-2.6 As shown1010

in Table 4, we find that they still do not escape1011

“Variable as Subtrahend Plight”.1012

F Mechanistic Insights into “Variable as1013

Subtrahend Plight”1014

Due to the low accuracy of the models trained1015

from scratch, we use the GPT2-RoPE-Medium-1016

6Since the performance of the pre-trained models are bet-
ter than those trained from scratch, we initiate from the pre-
trained weight.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

GPT2-Medium

Forward 0.96 0.76 0.71 0.23 0.04
Reverse 0.97 0.90 0.72 0.08 0.04
Random 0.98 0.71 0.59 0.22 0.03

Qwen2.5-1.5B-Base

Forward 1.00 0.98 0.79 0.62 0.40
Reverse 0.99 0.97 0.98 0.90 0.69
Random 1.00 0.89 0.81 0.74 0.61

Table 4: Accuracy of the models with different architec-
ture on 5-step problems.

Pretrained model from Section E.3 instead for anal- 1017

ysis. Since the model can not fully learn to do im- 1018

plicit reasoning on problems requiring more than 1019

3 steps of reasoning, we first restrict our analysis 1020

on 3-step problems. We use 1 × 1 patching for 1021

this model, since 1× 1 patching has already had a 1022

noticeable impact. 1023

To see why model fail to handle equations 1024

with variables being the subtrahends, we be- 1025

gin our mechanistic exploration by investigat- 1026

ing the impact of the position of the variables. 1027

Specifically, we analyze four distinct operator- 1028

variable combinations: “number+variable”, 1029

“variable+number”, “variable−number” and 1030

“number− variable”. As shown in Figure 15, the 1031

first three graphs exhibit similar patterns, with the 1032

exception of the fourth graph, which shows some 1033

differences. We can see that in the first three graphs, 1034

the darker-colored areas are exclusively distributed 1035

in the output and numerical tokens, which means 1036

that the information in the remaining positions has 1037

no effect on the output. This phenomenon holds for 1038

all premise orders (Figure 16), since premise order 1039

does not disturb implicit reasoning through chain- 1040

ing the numbers directly. In contrast, in Figure 15d, 1041

we find that the dark color appears on the variable 1042

token (i.e., v0), which means the model needs the 1043

variable value at the subtrahend position to handle 1044

subsequent calculations. We provide the patching 1045

plot on 4-step problems in Figure 17, where a clear 1046

difference can also be observed. 1047

These mechanistic findings show that LMs chain 1048

the numbers directly when there is no variable as 1049

the subtrahend, and explain why the premise order 1050

does not significantly affect accuracy, which val- 1051

idate our previous analysis on Section 5 that the 1052

model rely on shortcuts to solve the problems. 1053
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G More Details of the Experimental1054

Setup in Section 61055

In our preliminary tests, GPT-4o achieved less than1056

35% accuracy on 4-step problems containing only1057

one variable as the subtrahend, while other open-1058

source models performed only slightly above ran-1059

dom guessing. Thus, we only study 3-step prob-1060

lems to ensure meaningful evaluation and better1061

show the decreasing trend of the accuracy. Since1062

the first step of the operation is between numbers,1063

there are at most two equations containing a vari-1064

able as the subtrahend in 3-step problems.1065

As the random premise order may still contain1066

the forward order and the reverse order, we specify1067

a fixed shuffled order instead. Specifically, we rear-1068

range the original premise ([step1, step2, step3]) to1069

[step3, step1, step2]. The second step are delayed1070

until the end, so the model can only link all the1071

steps together at the last of the problem.1072

To prevent generic LLMs from using CoT to an-1073

swer the question, we carefully craft the prompt to1074

instruct the model to directly output the answer. An1075

example of the prompt used for instructing generic1076

LLMs to think internally in our task is shown be-1077

low.1078

For Qwen and Llama, we use1079 � �1080
a = 4 + 141081
c = a - 121082
s = 6 - c1083
What is the value of s? Please answer1084
directly with "s = xx".1085 � �1086

and for GPT-4o and Claude, we use1087 � �1088
a = 4 + 141089
c = a - 121090
s = 6 - c1091
What is the value of s? You must answer1092
directly. Only output the final result.1093
Begin your answer with "s = xx".1094 � �1095

to prevent the model from outputting CoT process.1096
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v0 = n0 + n1 \n v1 = v0 - n2 \n v2 = v1 - n3 \n v2>>

0
2
4
6
8

10
12
14
16
18
20
22

La
ye

r

0.0

0.2

0.4

0.6

0.8

(c) variable−number
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(d) number− variable

Figure 15: Patching effect with different combination of the operator and the position of the variable when changing
the first number in the problem.
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(a) Forward order
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(b) Reverse order
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(c) Shuffled order

Figure 16: Patching effect of different premise order averaged on the same set of problems when changing the first
number in the problem.
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(a) No variables in the problem are subtrahends
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(b) Only the variable in the second step is subtrahend

Figure 17: Patching effect on 4-step problems when changing the first number. Only the second steps of the
problems are different.
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