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Abstract

Implicit neural representation gains popularity in modeling the continuous 3D
surface for 3D representation and reconstruction. In this work, we are motivated
by the fact that the local 3D patches repeatedly appear on 3D shapes/surfaces
if the factor of poses is removed. Based on this observation, we propose the
3D patch-level equivariant implicit function (PEIF) based on the 3D patch-level
pose-invariant representation, allowing us to reconstruct 3D surfaces by estimat-
ing equivariant displacement vector fields for query points. Specifically, our
model is based on the pose-normalized query/patch pairs and enhanced by the
proposed intrinsic patch geometry representation, modeling the intrinsic 3D patch
geometry feature by learnable multi-head memory banks. Extensive experi-
ments show that our model achieves state-of-the-art performance on multiple
surface reconstruction datasets, and also exhibits better generalization to cross-
dataset shapes and robustness to arbitrary rotations. Our code will be available at
https://github.com/mathXin112/PEIF.git.

1 Introduction

Surface reconstruction aims at generating continuous surfaces from discrete point clouds. It is a
fundamental and challenging task in current robotics and vision applications [1, 2, 3]. Recently,
deep learning-based implicit neural representations (INRs) have emerged as a powerful tool for this
task, such as signed distance fields (SDFs) [4, 5], unsigned distance fields (UDFs) [6, 7, 8], and
neural vector fields (NVF) [9]. INRs benefit from its continuity, and the ability to handle complicated
topology, showing promising performance on surface reconstruction.

Although current INRs-based methods have achieved promising performance in reconstructing
surfaces, they suffer from two main challenges. First, most methods [9, 10, 11] deal with the distinct
local regions as geometry elements to estimate the query point values, e.g., signed/unsigned distance.
However, different local regions may exhibit different poses but with similar intrinsic geometry. The
extrinsic poses of these 3D patches prevent the models from capturing the intrinsic geometry of
3D shape patches. Second, INRs [5, 6, 7, 9, 12] without considering equivalence commonly learn
the representation of the points using a fixed coordinate frame, implying that if the input points are
rotated, the original coordinate mapping may no longer accurately predict the desired output, leading
to distortions or inaccuracies. These properties of INRs hinder their applicability to complex 3D
scenarios, in particular with regard to their cross-domain generalization ability and robustness to
arbitrary transformations like rotations.

To tackle these challenges, we try to eliminate the redundant factor of poses and more focus on
the learning of the intrinsic geometric representation of local regions, yielding a patch-level pose-
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invariant representation (PPIR) of 3D objects. Based on this representation, we develop a patch-level
equivariant implicit function (PEIF), allowing us to achieve the equivariance patch-wisely while
effectively encoding arbitrary topology. Specifically, in the PEIF framework, the query/patch pairs
are first normalized via a unique pose normalization. Then the query/patch features are extracted
and processed via learnable multi-head memory banks to acquire the intrinsic patch geometry
representation, which is aggregated with the spatial relation representation, resulting in the patch-
level pose-invariant representation. PPIR is then utilized for displacement prediction, which can be
proven to be equivariant for SE(3) transformations. These designs enhance the expressive power of
INRs with PPIR and enable the PEIF to flexibly adapt to 3D domain gaps as well as arbitrary SE(3)
transformations.

Our contributions can be summarized as follows. First, we propose a patch-based equivariant implicit
function based on the pose-invariant feature learning, facilitating 3D reconstruction robust to 3D
shapes SE(3) transformations. Second, we design an intrinsic patch geometry representation module
encoding rich patch-level pose-invariant features leveraging similar geometric patches. Third, the
effectiveness of PEIF for surface reconstruction is demonstrated on four datasets including two
CAD object datasets, a synthetic scene-level dataset, and a real scan dataset. Experiments show that
our method outperforms baseline methods and can effectively reconstruct fine geometric structures,
particularly performing well in cross-dataset generalization and the robustness to arbitrary rotations.

2 Related Work

2.1 Implicit Representation for 3D Shape Reconstruction

Deep learning-based implicit representations have achieved significant advancements, due to their
continuity and ability to handle complex geometry structures. Implicit representation for 3D surface
reconstruction commonly learns to assign specific values for query points in 3D space. For example,
occupancy field (occ) based methods [13, 14, 15, 16, 17, 18] enable the 3D reconstruction as a binary
classification problem. The Occupancy Network [14] introduces predictions of spatial point occu-
pancy, while advancements like ConvONet [19] and POCO [10] integrate grid-oriented convolutional
or transformer frameworks to enhance performance. Recently, ALTO [20] iteratively refines features
from both points and grids, deploying attention-driven interpolation from adjacent grids to decode
occupancy values for query points. GridFormer [11] introduces transformer architecture to integrate
the advantages of both points and grids for the prediction of occupancy.

SDF/UDF provides a continuous value to each spatial point, indicating the corresponding signed
or unsigned distance to the surface. UDF with unsigned distance overcomes the limitations of SDF
in handling non-watertight geometries. DeepSDF [4] leverages Multi-Layer Perceptron (MLP) to
globally model SDF for entire 3D shape, while DeepLS [5], Instant-NGP [21] and NKSR [22] design
more detailed operations to predict the SDF / UDF locally or hierarchically with MLP, kernel function
or transformers, etc. GIFS [12] represents general shapes with multi-layer surfaces based on the
spatial relationship between points. CAP-UDF [8] employs a field consistency constraint to get
consistency-aware UDF. GeoUDF [7] adaptively approximates the UDF and its gradient of a point
cloud by leveraging local geometry in a decoupled manner. However, separate learning of UDF
values and gradients for points may result in accurate UDF but with the inverted direction problem.
To address this issue, NVF [9] proposes an explicit approach to learning implicit representations
based on displacement vectors, which ensures both accuracy and correct directional information.
In this paper, we adopt this representation, predicting a displacement vector for each point in 3D
space. Compared to NVF [9], we design our PEIF over the pose-normalized 3D patches and obtain
the SE(3)-equivariant implicit function.

2.2 SE(3)-Equivariant Network

SE(3)-equivariance has been extensively studied in both 2D images [23] and 3D point clouds [24, 25,
26, 27, 28]. Given 3D point cloud X and transformation ∀ζ ∈ SE(3), a model f is said to be SE(3)-
equivariant when it satisfies f ◦ ζ(X) = ζ ◦ f(X). Various works have been proposed to achieve
SE(3)-equivariance based on PCA [29, 30, 25], spherical harmonics [31, 32, 33], equivariant message
passing [34, 35, 36], or Vector Neuron [26, 27, 28]. SE(3)-equivariant networks are particularly
useful for 3D point analysis tasks, such as molecular property or trajectory modeling [34, 35, 36, 37],
protein structure prediction [38, 39, 40], 3D shape recognition [26, 27, 28], and robotics [41, 42, 43].
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Figure 1: Local 3D patches may exhibit geometric similarity, but with different poses. When the pose
is removed, these local regions appear repeatedly.

Introducing SE(3)-equivariance to build an orientation-robust implicit field is one of the motivations
of this work. There are few works involving equivariance in the implicit field. EFEM [44] uses Vector
Neuron [27] to learn equivariant shape representations before shape segmentation. E-GraphONet [24]
utilizes basic Vector Neuron [27] layers to design graph networks, achieving locally SO(3)-invariant
features for implicit function learning. E-GraphONet [24] is the most related work to ours, which
extends neurons from 1D scalars to 3D vectors for each point. In comparison, our PEIF employs
lightweight PCA to achieve pose-invariant patch-level representation and leverages a multi-head
memory bank for intrinsic geometry representation, achieving state-of-the-art 3D reconstruction
performance.

3 Problem Statement for Equivariant Neural Vector Field

In this section, we first introduce the implicit representation, namely the neural vector fields (NVF)
[9], and then introduce the equivariant implicit function of this representation.

Given a sparse point cloud X ∈ RNx×3 sampled on a shape X , and a query set Q ∈ RNq×3 sampled
near the surface of X , where Nx and Nq represent the number of input points and query points
respectively. A shape X is defined as the zero displacement of the implicit function F

X =
{
x ∈ R3

∣∣F(x) = 0⃗
}
, (1)

where x is a point in point cloud X , containing its spatial coordinate. 0⃗ represents the zero displace-
ment of the point x. For a query point q ∈ R3, the implicit function F is formulated by

F(q) = ∆q = x̂− q, where x̂ = argminx∈X ∥x− q∥, (2)

and x̂ is the nearest point of query q on the X .

Definition 1 (Equivariant Implicit Function). Given an abstract group G, the implicit function F
based on NVF is equivariant with regard to G, if

F(ζ ◦ q) = ζ ◦ (F(q)) = ∆q, ∀ζ ∈ G, (3)

where q is a query point near or on the surface of shape X . In this work, the group G is SE(3).

4 Equivariant Neural Implicit Function

In this work, we aim to develop an equivariant implicit function model grounded on neural vector
field representations. We achieve this goal by firstly learning patch-level pose-invariant representation
(PPIR), and then designing shape-level equivariant implicit representation. The overview of our
method is introduced in Section 4.1, with the detailed designs presented in Sections 4.2 and 4.3.

4.1 Overview of the Basic Idea

Given point cloud X , implicit representations conventionally involve sampling a set of query points
Q and employing an implicit function F to compute their associated implicit values. Typically, the
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Figure 2: Overview of the proposed PEIF. Given query points, the local patches are selected using
KNN. The query/patch pairs are normalized by pose transformations τ . The displacements of query
points to the surface are predicted by displacement predictor D. The implicit function is equivariant
under the SE(3) transformations of the input. Finally, the mesh is generated by marching cubes [1]
algorithm.

depiction of a query point q ∈ Q depends on its K-nearest neighbors (KNN) in X . As shown in
Figure 1, it is observed that some local KNN patches exhibit identical geometric structures if ignoring
their pose variations in SE(3), and the local patches across 3D objects also repeatedly appear. Based
on this observation, we design an equivariant implicit function based on patch-level pose-invariant
representation, capturing recurring geometric patterns invariant to pose transformation.

Before delving into the specific details of our approach, we present the overall framework as shown
in Figure 2. Given query set Q = {qi}, the corresponding patch for qi on point cloud X is
Pi = {pi,k}Kk=0, i.e., the KNN of qi based on Euclidean distance. The point patch Pi and query
point qi are firstly normalized by patch-based pose normalization τi, achieving invariant ones under
SE(3) transformation of patch Pi. We then feed {τi(Pi), τi(qi)} to the displacement predictor D
for SE(3)-invariant representation learning and displacement prediction. Finally, this predicted
displacement is transformed back to the pose of Pi with τ−1

i . The overall displacement prediction
can be written as

∆qi = F(qi) = τ−1
i ◦D ◦ {τi(Pi), τi(qi)}. (4)

This framework is SE(3)-equivariant for patch Pi and point cloud X . The detailed design of the
patch-based pose-normalization τ and displacement predictor D are presented in the following
Sections 4.2 and 4.3 respectively. We remove index i for brevity and denote the query point, point
patch, and pose-normalization as q ∈ R3, P ∈ RK×3 and τ respectively in the following paragraphs.

4.2 Pose Normalization

Geometrically identical patches are expected to maintain consistency across various pose transfor-
mations, enabling their representations to complement and reinforce each other. Accordingly, we
employ Principal Component Analysis (PCA) to extract the pose-invariant information for patch P .

We first decenter the patch P by subtracting the points center µ, then obtain the rotation matrix U by
computing the Singular Value Decomposition (SVD) [45] over the covariance matrix (P−µ)⊤(P−µ).
The pose-normalized patch P̄ and query point q̄ are derived as

P̄ ≜ τ(P ) = (P − µ)U, q̄ ≜ τ(q) = (q − µ)U. (5)
The pose-normalized patch P̄ and query point q̄ are invariant under SE(3) transformation of P , and
we take them as input to our displacement predictor D. The prediction D ◦ {τ(P ), τ(q)} is also
invariant as proven in following Lemma 1. Note that we uniquely determine U as [46] to solve the
direction uncertainty problem brought by PCA.

Lemma 1 With τ as our pose normalization, and D as displacement predictor, D ◦ {τ(P ), τ(q)} is
invariant under SE(3) transformation of P .
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Please refer to the Appendix for proof. The displacement predictor will be introduced as follows.

4.3 Displacement Predictor Design on Normalized Patches

Taking the pose-normalized patch P̄ and query q̄ as input, the displacement predictor D is designed
to predict the displacement ∆q̄. As shown in Figure 2, predictor D comprises a pose-invariant feature
extractor Φ and a MLP γθd . Specifically, the feature extractor Φ is composed of three modules: the
Spatial Relation Module (SRM) for query point feature learning, which models the spatial relative
relationship between q̄ and P̄ ; the Patch Feature Extraction Module (PFEM) for patch feature learning,
which extracts patch feature leveraging correlation in feature space; the Intrinsic Patch Geometry
Extractor (IPGE), which learns memory-augmented patch representation.

Spatial Relation Module. We design SRM to learn query point features based on spatial relation
within query q̄ and patch P̄ = {p̄i}Ki=1. Specifically, the point-wise representation zi of point p̄i ∈ P
is firstly computed as

zi = γθs(p̄i, p̄i − q̄), i = 1, 2, . . . ,K, (6)
γθs(·) is set as MLP. Taking query point position and relative offset as inputs, zi is expected to directly
capture the geometric patterns. Then we aggregate zi with simple concatenation operator ⊕ by

hq̄ = z1 ⊕ · · · ⊕ zK . (7)

Feature hq̄ ∈ RK×D contains the relative feature of query point q̄ to the patch P̄ . We take it as a
representation for the query point q̄.

Patch Feature Extraction Module. We further design PFEM to learn the patch feature for P̄ . Taking
the point positions of q̄ and P̄ = {p̄i}Ki=1 as inputs, we first lift them from Euclidean space to feature
space via two MLPs γθp(·) and γθq (·) as

fq̄ = γθq (q̄), fp̄i
= γθp(p̄i), i = 1, 2, . . . ,K, (8)

where fq̄, fp̄i ∈ R1×D are the learned point-wise features. Then, a transformer is designed to obtain
the patch feature, by encoding the feature attention between point p̄i and query point q̄ as

fP̄w
≜

K∑
i=1

ai · (fp̄i
WV ), where {ai}Ki=1 = Softmax

(
{(fq̄WQ)(fp̄i

WO)
⊤}
)
, (9)

where ai represents the attention score between query point q̄ and patch points p̄i. The matrices
WQ,WO,WV ∈ RD×D are learnable parameters. Patch feature fP̄w

is aggregated from all the points
features in patch P , while different patches may have diverse point distributions. To mitigate the
effects of point density in patches, we further design the importance-aware patch feature fP̄s

by
selecting the top-Kd important points, and aggregating their features as

fP̄s
≜

Kd∑
i=1

bifp̄i
, (10)

where {bi}Kd
i=1 is the selected top-Kd attention scores from {ai}Ki=1. The final patch feature fP̄ from

this PFEM is
fP̄ = λ1fP̄w

+ λ2fP̄s
, (11)

where λ1, λ2 are learnable combination coefficients.

Figure 3: Feature enhancement with IPGE.

Intrinsic Patch Geometry Extractor. As dis-
cussed in Section 4.1, the normalized point
patches can be grouped into different geometric
patterns across patches or shapes. To learn the
intrinsic features hidden behind those geometric
patterns, we propose IPGE to enhance the patch
features. Specifically, a learnable multi-head
memory bank M = {Mi}NM

i=1 is constructed,
and it is shared across the whole dataset to im-
plicitly model the patch patterns. Then the patch
feature fP̄ is enhanced by querying and aggregating each memory item as

gP̄ =

NM∑
i=1

wiMi, wi = Softmax(fP̄M⊤
i ). (12)
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The memory weight wi is defined as softmax-normalized similarity vectors between query feature
fP̄ and the entries of Mi ∈ RC×D. Figure 3 illustrates the procedures of this module.

Displacement Prediction. Based on query point features {hq̄, fq̄}, point-wise patch feature {fp̄i
}Ki=1,

enhanced patch feature gP̄ , the patch-level pose-invariant (PPIR) representation is achieved by

fPPIR = γθa (hq̄ ⊕ fq̄ ⊕ {fp̄i
})⊕ gP̄ . (13)

Then the displacement for query point q̄ can then be derived by

∆q̄ = γθd (fPPIR) . (14)

Both γθd and γθa are set as MLPs. Finally, ∆q̄ is transformed back with pose denormalization,
i.e., the inverse transformation of τ , achieving the final SE(3)-equivariant displacement estimation
∆q = τ−1(∆q̄). The SE(3)-invariance of fPPIR can be found in Lemma 1, and the SE(3)-
equivariance of learned implicit representation can be found in the following Theorem 1, please refer
to Appendix for proof.

Theorem 1 Given query point q and patch P , implicit function F(q) is SE(3)-equivariant.

4.4 Network Training and Inference

Sections 4.2 and 4.3 illustrate how to obtain the displacement for a query point, where the trained
parameters include the parameters θs, θp, θq, θa, θd of five MLPs, the multi-head memory bank M
and parameters λ1, λ2. To optimize the implicit function F , we design a joint loss function over the
query set Q to train our method in an end-to-end manner.

Displacement Optimization Loss. We compute L1-loss between the predicted displacement ∆qi for
each query point qi ∈ Q and its ground-truth displacement ∆q̂i as

Ld =
1

Nq

Nq∑
i=1

|∆qi −∆q̂i|. (15)

Patch Discrimination Loss. The items in memory should be apart from each other to enhance the
representativeness of the memory items. To ensure this, we design the patch discrimination loss as

Lm =

NM∑
i=1

NMi∑
m ̸=m′

max(⟨Mi[m],Mi[m
′
]⟩, 0)

NMi
(NMi

− 1)
, (16)

which is similar to cosine embedding loss [47] with a margin set to 0. NMi
is the number of the items

in memory bank Mi. The overall loss function is finally written as L = Ld + βLm, where β is a
hyper-parameter for balancing the two terms.

3D Reconstruction in Inference Stage. We employ the Marching Cubes (MC) algorithm proposed
by MeshUDF [48], which can reconstruct surfaces on UDFs. We first discretize the 3D volume into
a 3D grid with a resolution of NR, resulting in N3

R grid points as the query set Q. Then, we use
the implicit function F to predict the displacement ∆q of each query point q. Similar to [9], we get
the UDF value and gradient of q as d = ∥∆q∥2 and ∇q = ∆q

∥∆q∥2
. Based on d and ∇q, the MC in

MeshUDF [48] can reconstruct the surface of the input point cloud as mesh.

5 Experiments

Implementation Details. We implement our PEIF in Pytorch [49] using Adam optimizer [50]. The
learning rate is 8× 10−4. For each query point, the size of the neighborhood is set as K = 32 for
ShapeNet [51] and ABC [52] datasets, K = 54 for Synthetic Rooms [19] dataset. We set β = 0.1 in
the training loss and Nm = 4 for the memory bank. Please refer to the Appendix for details on the
structures of involved MLPs, and the effect of different values of β. We conducted all experiments on
one NVIDIA RTX 4090 GPU.

Datasets. We experiment on four datasets including ShapeNet [51], ABC [52], Synthetic Rooms [19],
MGN [53]. (1) ShapeNet [51], as pre-processed by [7], contains watertight meshes of shapes in
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Table 1: The reconstruction results of ShapeNet [51]. All models are trained on the base classes
and evaluated on both the base classes and novel classes. Note that E-GraphONet is the equivariant
version of GraphONet.

Method
Base Novel

CD ↓ EMD ↓ NC ↑ F-Score ↑ CD ↓ EMD ↓ NC ↑ F-Score ↑

POCO [10] 0.395 3.937 0.929 0.970 0.520 4.941 0.906 0.954
GIFS [12] 0.385 3.859 0.932 0.962 0.422 4.923 0.917 0.942
ALTO [20] 0.352 3.851 0.930 0.963 0.357 4.924 0.920 0.929
NVF [9] 0.255 3.766 0.938 0.983 0.266 4.721 0.921 0.982
GeoUDF [7] 0.225 3.761 0.957 0.997 0.219 4.735 0.934 0.997
GridFormer [11] 0.284 3.768 0.942 0.984 0.289 4.725 0.928 0.985

GraphONet [24] 0.389 3.868 0.921 0.932 0.461 4.733 0.917 0.952
E-GraphONet [24] 0.479 3.834 0.917 0.927 0.508 4.743 0.911 0.942
PEIF(Ours) 0.215 3.755 0.956 0.998 0.209 4.725 0.941 0.997

POCO GIFS ALTO NVF GeoUDF GridFormer PEIF GT

Figure 4: The qualitative results of ShapeNet [51] dataset. The object is selected from meshes used
for class-unseen reconstruction (novel classes in Table 1).

13 classes. Following the experimental setting in [9], we select cars, chairs, planes, and tables
as base classes in Table 1, and speakers, bench, lamps, and watercraft as novel classes in Table 1
for category-unseen reconstruction, only for testing. (2) ABC [52] has one million CAD models,
mainly mechanical objects. We use the splits from [54] and select watertight meshes for experi-
ments: 3599/883/98 shapes for training/validation/testing. (3) Synthetic Rooms [19] contains 5k
synthetic room scenes composed of random walls, floors, and ShapeNet objects. We adopt the
same train/validation/test division in [19]. (4) MGN [53] is a real scanned dataset containing 5
clothing categories. To generate watertight surfaces, we employ the method [55] for preprocessing.
Specifically, we sample 3k points on the surface as input points for ShapeNet and ABC datasets,
while 10k input points for Synthetic Rooms. Then 2048 query points are sampled near the surface for
ShapeNet, ABC, and Synthetic Rooms. All experiments are tested on 10k points.

Evaluation Metrics. We use the Chamfer-L1 distance (CD, ×10−2), Earth Mover Distance (EMD,
×10−2), Normal Consistency (NC), and F-Score (with threshold value 1%) metrics for our evaluation.

Baselines. To evaluate the effectiveness of our methods, baselines used for comparison include the
equivariant network E-GraphONet [24], and six non-equivariant networks, including POCO [10],
GIFS [12], ALTO [20], NVF [9], GeoUDF [7], GridFormer[11]. For fairness, we trained these
networks from scratch under the same training/validation/testing dataset splitting.

5.1 Results and Comparisons

3D Object Datasets Reconstruction. We first report the results of the 3D object reconstruction
on the object datasets: ShapeNet [51] and ABC [52]. The quantitative results on base and novel
classes of ShapeNet [51] are shown in Table 1, our PEIF achieves better results both in base and novel
classes, especially in terms of the CD and F-Score metrics. Qualitative comparisons are provided in
Figure 4. Compared with other competitors, our method can capture fine-grained details, and the
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Table 2: Comparison of different methods on ABC [52] and Synthetic Rooms [19] datasets.

Method
ABC SyntheticRoom

CD ↓ EMD ↓ NC ↑ F-Score ↑ CD ↓ EMD ↓ NC ↑ F-Score ↑

POCO [10] 0.475 2.785 0.957 0.941 0.512 2.624 0.896 0.973
GIFS [12] 0.339 2.765 0.950 0.985 0.425 2.658 0.913 0.984
ALTO [20] 0.451 2.739 0.943 0.958 0.492 2.426 0.901 0.975
NVF [9] 0.245 2.685 0.963 0.996 0.504 2.052 0.925 0.979
GeoUDF [7] 0.245 2.688 0.964 0.997 0.383 2.182 0.921 0.988
GridFormer [11] 0.299 2.662 0.964 0.981 0.465 2.252 0.913 0.978

E-GraphONet [24] 0.432 2.688 0.910 0.906 0.485 2.534 0.903 0.980
PEIF (Ours) 0.241 2.672 0.969 0.998 0.314 2.045 0.925 0.994

overall topology of the shape is more consistent. Additional instances are provided in the Appendix
(Figure 8). We further evaluate the compared methods on the ABC [52] dataset. The quantitative
results in Table 2 demonstrate that our PEIF achieves competitive performance compared to both
equivariant and non-equivariant methods. Visualizations are provided in Figure 9 of the Appendix.

3D Scene Datasets Reconstruction. Table 2 shows the quantitative results on the Synthetic Rooms
dataset. Our PEIF shows state-of-the-art performance under all quantitative metrics. The competitive
competitors such as GridFormer [11] and POCO [10] produce smooth but incomplete surfaces.
Other methods like GeoUDF [7] and NVF [9] produce results with rough surfaces. In contrast, our
method reconstructs relatively smooth surfaces with fewer issues of completeness and consistency.
Visualizations are provided in Figure 10 of the Appendix.

GT GeoUDF NVF GridFormer Ours

Figure 5: The visual example of cross-domain evaluation on the real scanned dataset MGN [53],
where the model is pre-trained on Synthetic Rooms dataset [19].

Table 3: The cross-domain evaluation on MNG dataset [53].

Method CD ↓ EMD ↓ NC ↑ F-Score ↑
NVF [9] 0.272 4.329 0.847 0.991
GeoUDF [7] 0.249 4.269 0.891 0.995
GridFormer [11] 0.281 4.675 0.916 0.969
E-GraphONet [24] 0.433 3.817 0.863 0.920
PEIF (Ours) 0.241 2.672 0.969 0.998

Cross-domain Evaluation on Real-
world Dataset. We test and com-
pare our method with the state-of-
the-art methods NVF, GoeUDF, and
GridFormer on MGN [53] dataset us-
ing the trained models on Synthetic
Rooms [19]. Table 3 shows that the
compared methods generally exhibit
a declined performance in the pres-
ence of a synthetic-real domain gap. However, in the presence of such a domain gap, our PEIF
still achieves notable performance under all metrics. Figure 5 displays the visual comparison. The
competitors either produce a rough surface or suffer from shape incompleteness. As a comparison,
our PEIF reconstructs a complete surface with fine-grained details. These results show that our PEIF
trained on the synthetic data can be well generalized to real scenarios. The reason might be that
the pose-normalized patches are the basic elements for composing different shapes, and our PEIF is
based on the pose-invariant patch representations.

GeoUDF NVF E-GraphONet PEIF

Figure 6: Visual results before (top) and after
(down) arbitrary rotations.

Table 4: Performance under Arbitrary SO(3) rotations.

Methods CD ↓ EMD ↓ NC ↑ F-Score ↑
NVF [9] 0.245 2.685 0.963 0.997

w/o GeoUDF [7] 0.245 2.688 0.964 0.997
rotations E-GraphONet [24] 0.432 2.688 0.910 0.906

PEIF (Ours) 0.241 2.672 0.969 0.998

NVF [9] 0.261 2.699 0.946 0.993
w/ GeoUDF [7] 0.253 2.698 0.957 0.994

rotations E-GraphONet [24] 0.433 2.689 0.912 0.909
PEIF (Ours) 0.241 2.675 0.968 0.998
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Table 5: Ablation study on ABC [52] dataset.

Setting CD ↓ EMD ↓ NC ↑ F-Score ↑

Pose normalization w/o 0.261 2.677 0.933 0.993

Memory bank

NM = 0 0.275 2.713 0.957 0.985
NM = 1 0.244 2.705 0.962 0.997
NM = 2 0.244 2.696 0.962 0.997
NM = 3 0.243 2.694 0.964 0.998
NM = 5 0.244 2.691 0.961 0.997

KNN
K = 54 0.245 2.692 0.962 0.996
K = 20 0.249 2.691 0.957 0.996

Full Model
0.241 2.672 0.969 0.998

(NM = 4, and K = 32)

Table 6: Model size and inference time.

Method # Para (M) Time (s)

POCO [10] 12.19 45.10
GIFS [12] 3.51 16.68
ALTO [20] 2.64 20.78

NVF [9] 10.29 73.90
GeoUDF [7] 0.74 124.73

GridFormer [11] 4.11 13.32
GraphONet [24] 0.06 1.72

E-GraphONet [24] 0.07 1.92
Ours 7.65 40.98

Robustness to rotations. We compare the robustness of two equivariant networks (PEIF and E-
GraphONet), and two non-equivariant networks (NVF and GeoUDF) to arbitrary rotations. All
methods are trained with canonical pose and tested with arbitrary rotations on the ABC [52] dataset.
The quantitative and qualitative results are reported in Table 4 and Figure 5, respectively. In Table
4, "w/ rotation" and "w/o rotation" represent that the testing input point cloud is with and without
arbitrary rotation, respectively. The visual results presented in Figure 5 illustrate that our PEIF can
retain stable performance under arbitrary rotations, which is consistent with the numerical results
presented in Table 4. These results justify the robustness of our PEIF to arbitrary rotations.

5.2 Ablation Study and Model Analysis

We conduct ablation studies and present the model size and inference time on the ABC [52] dataset.

Effect of Pose Normalization. As shown in the 2nd row in Table 5, after removing the patch-level
pose normalization, all metrics decline. Particularly, the NC metric is notably affected.

Effect of the Multi-head Memory Bank. As demonstrated in Table 5, the performance of our
PEIF deteriorates significantly when the multi-head memory bank, i.e., the intrinsic patch geometry
extractor, is removed. The model performs better with NM increase from 1 to 4. When NM = 5, the
performance of the model starts to deteriorate.

Number of Neighbour Points K. The size of KNN determines the number of points in each patch.
We report the performance of our PEIF with different patch sizes in Table 5. The results show that
our method is relatively stable to the size of KNN.

Model Size and Computational Time. We compare model size and inference time on the ABC [52]
dataset. In Table 6, our network is comparable to other methods in the number of parameters. The
computation time of our approach for 3D reconstruction of one point cloud is lower than the state-of-
the-art models NVF, and GeoUDF, but higher than GrridFormer and E-GraphONet. However, our
method achieves the best accuracy for 3D reconstruction as shown in experiments.

6 Conclusion

In this work, we propose a patch-level equivariant implicit function, based on the patch-level
pose invariant feature representation over the pose-normalized query points and corresponding
neighboring patches. The proposed representation achieves promising results in 3D reconstruction
both quantitatively and qualitatively, and generates shapes with better geometry details and robustness
to SE(3) transforms. Due to the flexibility of the patch-based representation, in the future, we plan
to extend this approach to larger-scale 3D reconstruction of real scans. Additionally, our patch-based
pose invariant representation can be taken as a foundation network for pre-training, followed by
fine-tuning on few-shot examples.

Limitation. As an implicit network, one limitation is that PEIF relies on the query points and
estimating the displacement point-wisely. For scaling up to a larger scale, we plan to utilize a
multi-scale technique and importance sampling of query points for efficient displacement field
estimation.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Lemma 1. With τ as our pose normalization, and D as displacement predictor, D ◦ {τ(P ), τ(q)}
is invariant under SE(3) transformation of P .

Assume that P, Y ∈ RK×3 are two point patches with Y = ζ(P ), ζ ∈ SE(3), and ζ(P ) =
PR+ T is the SE(3) transformation of P with rotation matrix R and translation vector T . Denote
the patch centers of P, Y are µ, ν respectively, and their corresponding PCA-normalization are
τP (P ) = (P − µ)U, τY (Y ) = (Y − ν)V . To prove Lemma 1, we firstly prove the uniqueness of
pose-normalization, then prove the SE(3)-invariance of D ◦ {τ(P ), τ(q)}.

Step 1. Uniqueness of PCA-normalization τ . According to the definition of τP (P ) = (P − µ)U , the
patch center µ is uniquely computed as patch centroid, while rotation matrix U is computed by SVD
over the covariance matrix (P − µ)⊤(P − µ). The vector elements of matrix U = {ui}3i=1 may
change their directions and result in eight rotation matrix Û = {±ui}3i=1, which bring uncertainty for
pose-normalization τP . To uniquely determine U , we follow [46] to determine a single direction for
every {ui}3i=1 by estimating their angle with a predefined anchor point y (the vector from the farthest
point of the patch to the patch center). The direction of ui should be flipped if the corresponding
angle is larger than 90◦. Specifically, if ⟨ui, y⟩ > 0, we take ui as one vector of U . If ⟨ui, y⟩ < 0,
we take −ui instead. If ⟨ui, y⟩ = 0, we take another point y′ (e.g., the second farthest point from
patch center) that satisfies ⟨ui, y

′⟩ ≠ 0 as a new anchor point to determine the U . By this strategy,
the rotation matrix U is uniquely determined and the PCA-normalized τP (P ) is uniquely determined.

Step 2. SE(3)-invariance of D ◦ {τP (P ), τP (q)}. For point patch P = {pi} and its SE(3)
transformed patch Y = {yi| yi = piR+ T}, with their corresponding centers µ, ν computed by

µ =
1

K

K∑
i=1

pi, ν =
1

K

K∑
i=1

yi, (17)

we have

ν =
1

K

K∑
i=1

yi =
1

K

K∑
i=1

(piR+ T ) =

(
1

K

K∑
i=1

pi

)
R+ T = µR+ T. (18)

Then it is obvious
Y − ν = PR+ T − (µR+ T ) = PR− µR = (P − µ)R, (19)

which means Y − ν is an orthogonal transformation of P − µ, thus Y − ν has same singular values
as P − µ when we conduct SVD on their corresponding covariance matrices, i.e.,

UΛU⊤ = (P − µ)⊤(P − µ),

V ΛV ⊤ = (Y − ν)⊤(Y − ν)

= [(P − µ)R]⊤[(P − µ)R]

= R⊤[(P − µ)⊤(P − µ)]R

= R⊤(UΛU⊤)R

= (R⊤U)Λ(R⊤U)⊤.

(20)

Eqn. (20) holds for any rotation matrix R, and recalling that we uniquely conduct SVD as proved in
Step 1, we derive

V = R⊤U. (21)

Finally, according to the definition of our PCA-normalization and Eqns. (19,21), it is obvious that

τY (Y ) = (Y − ν)V = (P − µ)RR⊤U = (P − µ)U = τP (P ), (22)
which means τP (P ) is SE(3)-invariant. The SE(3)-invariance of τP (q) can be proven similarly.
Taking the SE(3)-invariant τP (P ), τP (q) as input, our displacement predictor D will produce
SE(3)-invariant output, i.e., D ◦ {τP (P ), τP (q)} = D ◦ {τζ(P )(ζ(P )), τζ(P )(ζ(q))},∀ζ ∈ SE(3).
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Table 7: The time to process 10,000 points on the ABC [52] dataset using one NVIDIA 4090 GPU.
Operator SVD PE SRM PFEM IPGE Others Total

Time(s) 0.4473 0.1773 0.0297 0.0004 0.0008 0.02 0.6688

A.2 Proof of Theorem 1

Theorem 1 Given query point q and patch P , implicit function F(q) is SE(3)-equivariant.

Following the denotations in the proof of Lemma 1, we denote the query point of patch P, Y as
p1, p2, and we further denote the predicted SE(3)-invariant displacements for query point p1, p2 as
p∗1, p

∗
2, and the final prediction of p1, p2 are respectively

F(p1) = τ−1
p1

(p∗1) = p∗1U
⊤ + µ, F(p2) = τ−1

p2
(p∗2) = p∗2V

⊤ + ν. (23)
According to Eqns. (19,21), we can derive

F(p2) = p∗2V
⊤ + ν

= p∗1(R
⊤U)⊤ + (µR+ T )

= (p∗1U
⊤ + µ)R+ T

= F(p1)R+ T,

(24)

which means F(p1) is equivariant under SE(3) transformation of point patch P .

B Architecture Details

MLPs. γθs in Eqn. ( 7) consists of four 1 × 1 convolution layers with 6, 32, 64, and 128 hidden
units. γθq and γθq in Eqn. (8) consists of 1 × 1 convolution layers with 3, 32, 64, and 128 hidden
units while these for γθp are 3, 32, 64, and 128. For γθa in Eqn. ( 14), the unit numbers are 256, 512,
256, and 384. For γθd , the unit numbers are 256, 256, 256, and 256. All feature dimensions are 128.
For the multi-head memory bank M, the number of the memory bank is set as NM = 4, with each
memory bank containing 596 items.

C Additional Results

C.1 The visualization of the learned memory bank

In Figure 7, we provided two approaches to visualize the learned memory bank.

(1) We visualize the set of point patches with the highest weights to the corresponding element of the
memory bank (the weights are computed by Eqn. (12). These patches are highlighted by colors in
these examples. It shows that the patches with high weights to each element of memory have similar
geometry structures.

(2) We further visualize (by t-SNE) the features of point patches with the highest weights (Eqn. (12))
to different elements of the learned memory bank, rendered by different colors. It shows that the
patches with high weights assigned to different elements of the learned memory bank have clustered
features in the feature space.

C.2 A detailed analysis of the inference time

In Table 7, we report the time consumption of each operator in PEIF to process 10,000 query points.
Specifically, the operations include SVD (Singular Value Decomposition), PE (Point-wise Feature
Extraction), SRM (Spatial Relation Module), PFEM (Patch Feature Extraction Module), IPGE
(Intrinsic Patch Geometry Extractor) and Others (other Conv layers).

C.3 Computational cost

We report the computational cost in Table 8, including the training time per epoch, training memory,
testing time per 3D shape, and testing memory cost on the ABC dataset. Methods of GeoUDF and
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(a) (b)

(c) (d)

Figure 7: The visualization of the learned memory bank. (a)-(c) Visualization of patches correspond-
ing to the same memory item with the highest weights (Different colors represent different items).
(d) t-SNE visualization of patch features. The patches with the highest weights to different memory
items are highlighted in different colors.

Table 8: The comparison of computational cost.
Cost Training Time (s) Training Mem (G) Testing Time (s) Testing Mem (G)
NVF 28.06 6.70 73.9 0.66

GeoUDF 61.20+58.78 14.99+14.99 124.73 2.27
GridFormer 26.48+26.78 6.59+6.59 13.32 0.31

E-GraphONet 37.82 16.11 1.92 1.49
PEIF (Ours) 34.56 17.75 40.98 1.56

GridFormer include two stages of upsampling/reconstruction and reconstruction/refinement. We
report the computation cost of them in each table cell with two values (denoted as ·+ ·), respectively
representing the costs for each stage.

C.4 Additional results on degraded data

We evaluate the performance of our PEIF on different data degradations (sparse, noisy, and partial)
on the ABC [52] dataset. In the following experiments, the test input point clouds with different
degradations, and the results are reported in Tables 9-11.

Sparse point cloud. In previous experiments, all the compared methods use the same number of
input points (10k) for each shape in testing, as NVF. We randomly select a subset of input points as
input, and the results are in Table 9.

Table 9: The reconstruction results of sparse data on the ABC [52] dataset.

Method
N = 5k N = 2k

CD ↓ EMD ↓ NC ↑ F-Score ↑ CD ↓ EMD ↓ NC ↑ F-Score ↑

NVF [9] 0.297 2.706 0.935 0.979 0.409 2.725 0.932 0.946
GeoUDF [7] 0.306 2.726 0.940 0.985 0.399 2.711 0.935 0.952
GridFormer [11] 0.292 2.694 0.952 0.982 0.369 2.703 0.945 0.956
PEIF(Ours) 0.269 2.679 0.945 0.988 0.360 2.685 0.938 0.960
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Noisy point cloud. We plugged Gaussian noise with standard deviation (σ) as 0.005 and 0.01 to
the input points. The results are reported in Table 10.

Table 10: The reconstruction results from noisy input on the ABC [52] dataset.

Method
σ = 0.005 σ = 0.01

CD ↓ EMD ↓ NC ↑ F-Score ↑ CD ↓ EMD ↓ NC ↑ F-Score ↑

NVF [9] 0.512 3.257 0.712 0.924 0.792 3.687 0.723 0.693
GeoUDF [7] 0.496 3.268 0.732 0.911 0.785 3.428 0.710 0.655
GridFormer [11] 0.839 3.321 0.793 0.805 1.132 3.379 0.759 0.510
PEIF(Ours) 0.480 3.132 0.745 0.952 0.773 3.358 0.715 0.702

Partial point cloud. We remove a fraction (with ratio p) of the input points to form a partial point
cloud. Specifically, we use the farthest point sampling to select a set of center points and remove
their KNN points to ensure the sampling fraction. The results are reported in Table 11.

Table 11: The reconstruction results from partial points on the ABC [52] dataset.

Method
p = 10% p = 20%

CD ↓ EMD ↓ NC ↑ F-Score ↑ CD ↓ EMD ↓ NC ↑ F-Score ↑

NVF [9] 0.264 2.697 0.943 0.992 0.274 2.710 0.940 0.990
GeoUDF [7] 0.268 2.695 0.959 0.994 0.275 2.745 0.947 0.991
GridFormer [11] 0.267 2.706 0.964 0.982 0.298 2.746 0.946 0.987
PEIF(Ours) 0.246 2.692 0.960 0.996 0.249 2.697 0.956 0.995

C.5 Additional ablation study

Ablation study in ABC [52]. In Table 13, we present the additional results of our ablation studies
with respect to the coefficient β of the joint loss function in Section 4.4, the impact of keypoint-boosted
feature representation fP̄s

in Section 4.3.

Table 12: The impact of K when training on Synthetic Rooms
and testing on MGN [53].

K CD ↓ EMD ↓ NC ↑ F-Score ↑
48 0.247 2.724 0.961 0.998
32 0.252 2.735 0.959 0.991

Ablation study in MGN [53]. In
Table 12, we present the additional
ablation results of K on MGN
dataset. The testing results in Ta-
ble 3 on the MNG dataset using the
trained model with K = 54 on the
Synthetic Rooms dataset. As shown
in Table 12, when changing K to 48 and 32, the test results using the corresponding K on MGN are
stable.

C.6 Additional Visualizations

In this section, we provide more visual results of our PEIF across four datasets: ShapeNet, ABC,
Synthetic Rooms, and MGN.

ShapeNet [51]. We present three examples to further illustrate the performance of our PEIF. The 1st
row in Figure 8 are results of examples selected from base classes. In contrast, results in the 2nd and
3rd rows come from the novel classes in this dataset. The visualization results show that our PEIF not
only preserves local structures but also demonstrates a remarkable generalization capability.

ABC [52]. We validate the efficacy of our multi-head memory bank on this dataset, with visualizations
depicted as shown in Figure 9. By using the intrinsic patch geometry extractor with a multi-head
memory bank, our PEIF reconstructs better 3D surfaces which are more smooth and complete.

Synthetic Rooms [19]. Beyond the reconstruction of CAD objects, we also validate the performance
of our PEIF on a synthesized scene dataset, thereby extending its applicability to more complex
environmental contexts. The results in Figure 10 demonstrate that our PEIF achieves competitive
results in terms of structural completeness and surface smoothness.
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Table 13: Additional ablation study in ABC [52].
Setting CD ↓ EMD ↓ NC ↑ F-Score ↑

Feature fP̄s

w/o 0.247 2.684 0.961 0.997
w/ 0.241 2.672 0.969 0.998

β

β = 0.0 0.244 2.705 0.962 0.997
β = 0.01 0.245 2.683 0.960 0.996
β = 0.1 0.241 2.672 0.969 0.998
β = 0.5 0.248 2.732 0.961 0.996

POCO GIFS ALTO NVF GeoUDF GridFormer PEIF GT

Figure 8: Results on ShapeNet [51] dataset. The results from the 1st row are selected from base
classes in Table 1. Objects in the 2nd to 3rd rows are selected from meshes used for class-unseen
reconstruction (novel classes in Table 1).

Figure 9: Examples of results on ABC [52] dataset with (below) and without (top) intrinsic patch
geometry extractor using multi-head memory bank.

MGN [53]. To evaluate the generalization of competing methods, we conducted tests on the real
scanned data, and the corresponding results are presented in Figure 11. The results indicate that our
PEIF yields reconstruction results with better completeness and surface smoothness.
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NVF GeoUDF GridFormer PEIF

Figure 10: Examples of results on Synthetic Room dataset.

GT GeoUDF NVF GridFormer Ours

Figure 11: The visual example of cross-domain evaluation on the real scanned dataset MGN [53],
where the model is trained on Synthetic Room dataset [19].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section Conlusion.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See the implementation details of section Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the codes at https://github.com/mathXin112/PEIF.git.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See section Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See section Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the code of ethics carefully and ensure there is no violation.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See section Conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no contents concerning safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We were unable to find the license for the datasets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no Crowdsourcing and Research with Human Subjects in this paper.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no potential risks as far as we are concerned.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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