
WoMAP: World Models For Embodied
Open-Vocabulary Object Localization

Author Names Omitted for Anonymous Review.

Abstract—Language-instructed active object localization is
a critical challenge for robots, requiring efficient exploration
of partially observable environments. However, state-of-the-art
approaches either struggle to generalize beyond demonstration
datasets (e.g., imitation learning methods) or fail to generate
physically grounded actions (e.g., VLMs). To address these
limitations, we introduce WoMAP (World Models for Active
Perception): a recipe for training open-vocabulary object local-
ization policies that: (i) uses a Gaussian Splatting-based real-
to-sim-to-real pipeline for scalable data generation without the
need for expert demonstrations, (ii) distills dense rewards signals
from open-vocabulary object detectors, and (iii) leverages a latent
world model for dynamics and rewards prediction to ground
high-level action proposals at inference time. Rigorous simulation
and hardware experiments demonstrate WoMAP’s superior
performance in a wide range of zero-shot object localization
tasks, with more than 7x and 2.5x higher success rates compared
to VLM and diffusion policy baselines, respectively. Further,
we show that WoMAP achieves strong sim-to-real transfer in
experiments on a TidyBot robot.

Index Terms—Active Perception, World Models, Object Local-
ization.

I. INTRODUCTION

Perceptual activity in biological agents is inherently active
and exploratory [11, 2]. As an example, consider the task of

open-vocabulary object localization, where an agent needs
to approach a target object specified by natural language in
a previously unseen environment. In such settings, humans
will actively seek information guided by prior expectations to
search efficiently. For example, when looking for keys, we
preferentially inspect locations where they are most likely to
be found, e.g., near the door or on the couch.

However, reproducing intelligent search behavior for robots
remains challenging, as it requires interpreting open-vocabulary
object descriptions and commonsense reasoning from partial
observations in unfamiliar environments. While vision-language
models (VLMs) provide useful heuristics for exploration [5, 6,
40, 32], effectively grounding these high-level action proposals
to physical execution is a non-trivial problem. This grounding
can be achieved via imitation learning methods [30, 45], which
require large-scale expert demonstrations and can struggle
to generalize beyond demonstration datasets. Alternatively,
reinforcement learning (RL) [44, 9, 28] offers another route to
grounding, but is challenging to employ without an accurate
simulation environment.

To address these challenges, we present WoMAP (World
Models for Active Perception): a novel recipe for efficient

Find me a banana.

Scalable

Sim-to-Real

No Expert

Demonstration

Open

Vocabulary

Action

Grounding

A: 0.3

B: 1.2

C: 0.5

B*

VLM

B. Look behind the bowl.

C. Look under the shelf.

A. Look in the fruit basket.

WoMAP

Reward optimization

Latent Space

Fig. 1: WoMAP leverages a learned world model to evaluate and optimize actions given high-level proposals and chooses the
candidate with the highest predicted reward. In this example, the VLM suggested three exploration directions; after analyzing
the outcome of each action roll-out in latent space, WoMAP selects “looking behind the bowl” as the optimal choice.

active object localization that can be trained without expert
demonstrations or online interactions with the environment (??).
In order to achieve this, we propose an approach that learns a
latent world model [13] using three key ingredients (Figure 2,
left). First, we introduce a scalable data generation pipeline
based on Gaussian Splatting [19] that allows us to generate
photorealistic data with broad coverage using real-world videos.
Second, we propose a training framework that is reconstruction-
free; instead of using image reconstruction as a supervisory
training signal (which can lead to poor generalization, training
stability, and sample efficiency [46]), we construct dense
rewards from the confidence outputs of open-vocabulary object
detectors and distill these into the latent space of the world
model. Finally, we present an inference-time planning scheme
that optimizes high-level action proposals from VLMs using
the trained world model.

Taken together, we contribute a novel approach to open-
vocabulary object localization that can be trained in a data-
efficient manner, generalize to novel scenes and object descrip-
tions, and exploit commonsense reasoning abilities of VLMs.
We demonstrate our approach on a suite of simulated and
real-world object localization tasks and demonstrate significant
improvements (2.5x – 7x higher success rates) over baselines
that only utilize imitation learning or VLMs.

II. RELATED WORK

Active Object Localization. Broadly, active object localization
has been explored with both end-to-end approaches [29, 10],
such as imitation learning (IL) [30, 45] and reinforcement
learning (RL) [44, 9, 28], and modular approaches incorpo-
rating foundation models [5, 6, 40]. End-to-end methods map
visual observations directly to actions but typically require
large amounts of expert demonstrations or interactions to learn
effective exploration behaviors, [29, 30] and they generalize
poorly to new environments or tasks [47]. In contrast, WoMAP
does not require on-policy demonstrations or interactions with
the environment, and leverages a learned world model to plan
sequences of actions at inference time in order to achieve
strong generalization across tasks and sim-to-real gaps.

Other modular approaches incorporate foundation models
such as pre-trained object detectors or VLMs [6, 40, 18] to
reason over observations and plan exploration. However, they
rely heavily on the accuracy of each modular component, and
usually require engineering effort to ground executions using
other modalities or scene representations. WoMAP instead
directly optimizes VLM outputs within a learned environment
model, offering a light-weight solution for grounded actions
with minimal reliance on external representations. Finally, in
terms of task setup, most prior work focuses on simulated
indoor navigation, utilizing rich contextual cues (e.g., the sofa
is more likely to be in the living room) and restricting the
action space in 2D for tractability. In contrast, our framework
makes no such assumptions and addresses more general settings
requiring full 6D camera control to locate objects in cluttered
scenes.

World Models for Robotics. World models have become
increasingly prominent in robotics, providing predictive fore-
sight in learning action-conditioned dynamics and planning
over longer horizons [22, 43, 46, 23]. To capture environment
dynamics that generalize to test-time distributions, existing
works typically rely on large quantities of uncurated data
[43, 46], expert demonstrations [23, 3], or on-policy interactions
[16], all of which are costly and labor-intensive to collect in real-
world settings. In contrast, WoMAP learns a policy-agnostic
environment model from synthetically generated offline data
via Gaussian Splatting [19]. Many existing works also employ
an image reconstruction loss to provide dense learning signals
[43, 25], but often result in greater model complexity and
unstable training. WoMAP instead leverages a pretrained
latent representation with dense reward signals to encode rich
visual and spatial information, improving both scalability and
robustness for downstream tasks.

III. METHODOLOGY

A. Problem Formulation

We consider an open-vocabulary object localization task
with a robot equipped with an onboard RGB camera with a
six degree-of-freedom (6-DoF) action space, operating in an
environment E 2 E . We model the problem as a partially
observable Markov decision process (POMDP), where given
the current state of the environment and the robot, the camera
returns a partial observation ot under sensing uncertainty,
occlusions, and limited field of view. At each time step, the
robot selects a continuous action at 2 R6, corresponding
to camera translation and rotation in 3D space, to obtain a
new observation. Given a language description l of the target
object Tg, the robot seeks to efficiently obtain a best view:
maxa0:t R(ot, Tg), where R 2 [0, 1] is the object localization
reward describing how well the target object Tg is identified
in ot.

Our proposed framework, WoMAP, uses a world model
to capture latent space dynamics and reward prediction that
can generalize to any E 2 E . However, as discussed in
Section I, learning a world model that operate across such
diverse task settings is non-trivial, requiring training data with
sufficient coverage, strong supervisory reward signals, and the
ability to incorporate high-level commonsense reasoning during
planning. In the following sections, we describe the three core
components of WoMAP as illustrated in Figure 2, addressing
each of these fundamental challenges.

B. Scalable Data Generation

Unlike imitation learning methods, world models do not
require expert trajectories for training, which are generally
expensive to collect. However, they do require sufficient data
coverage to effectively capture the dynamics of the environment,
which necessitates strategic data collection design to maximize
sample efficiency. Gathering diverse observation data from the
real-world also poses significant challenges, and becomes hard
to scale as the number of training environments increases.

Fig. 2: Left: Three Core Components of WoMAP: scalable data generation with Gaussian Splats (III-B), world model with
object detection reward supervision (III-C), latent space action planning (III-D). Right: The action optimization/selection
process. Given the task and current observation, VLM generates high-level proposals which we translate to coarse actions; we
further optimize each action within WoMAP’s reward gradient field, and execute the sequence with the highest predicted reward.

Fig. 3: Data Generation with Gaussian Splats. We train
Gaussian Splats for each scene and obtain ground truth object
locations through semantic labeling [36] for informative view
sampling. Each observation is labeled with GroundingDINO
[21] to get confidence scores for all training targets.

In WoMAP, we introduce a scalable real-to-sim-to-real data
generation pipeline that utilizes only a few real-world videos to
efficiently generate diverse training data. Our pipeline leverages
Gaussian Splatting [19] to generate a photorealistic simulation
environment from video input and can render arbitrary views
given the view matrix. Shown in Figure 3, we automatically
annotate the location and dimension of each target in the
training scene by distilling language semantics from CLIP [27]
from semantic Gaussian Splats [36]. Within the trained splat,
we collect a training dataset D consisting of M observation-
reward-pose tuples, i.e., D = {(oi, ri, Pi), 8i 2 [M]}, where
Pi 2 R6 denotes the spatial camera pose, and oi is generated

by rendering the scene with the computed view matrix at Pi.
At training time, given two samples we compute the action aij

required to transition from Pi to Pj , since training the world
model does not require sequentially-ordered data.

Further, to improve sample efficiency, we design our data
distribution to concentrate on trajectories starting from random
initial positions and leading towards sampled target objects,
with added linear and angular perturbations for data augmen-
tation. These trajectories can be generated with any planning
algorithm and require no human demonstration. We show more
implementation details in Appendix A-A3. In Section IV-D. We
demonstrate that despite only training on synthetically rendered
images in GSplat, WoMAP still achieve strong zero-shot sim-
to-real performance.

C. World Models for Active Perception

Given data generated from Sec. III-B, we outline key design
choices that enable the world model to accurately capture
evolving dynamics with environment interactions. A central
innovation of our pipeline is the use of dense reward distillation
from open-vocabulary object detectors, which allows for data-
efficient training without relying on image reconstruction
objectives.

1) World Model Architecture: As shown in Figure 4, the
world model consists of three standard core components [13,
14]:

Observation Encoder: zt = h✓(ot),

Dynamics Predictor: zt+1 ⇠ q (zt+1 | zt, at),
Rewards Predictor: rt ⇠ v�(rt | zt, eg),

(1)

Dynamics Predictor

Rewards Predictor

0.5 optional
decoder

“Banana”

Fig. 4: World Model Architecture for simultaneous dynamics
and rewards prediction.

where zt 2 Rd denotes the latent state, eg represents the
language embedding computed from a description l of the
target object Tg , rt 2 R denotes the associated reward with zt

when querying for Tg , and ✓, ,� denote network parameters
for each component of the world model.

The observation encoder h✓ maps a high-dimensional camera
observation ot to a compact latent space zt. Inspired by [46],
we leverage a pre-trained vision encoder model DINOv2 [24] to
directly compute flattened patch embeddings of the given image
as zt to retain rich visual and spatial features resulting from
large-scale pre-training. The dynamics predictor q models
the transition distribution p(zt+1 | zt, at) using a standard ViT
architecture [8]. With variational inference, we parametrize
q as a Gaussian distribution q (zt+1 | zt, at) ⇠ N (µt,�

2
t
)

and minimize the Kullback-Leibler (KL) divergence between
the true state transition, p(zt+1 | zt, at) and q , with the loss
function: Ldyn = KL(p(zt+1 | zt, at)kq (zt+1 | zt, at)). Dur-
ing training, we supervise q recurrently on a sequence of
H observation-action pairs {(oi, ai)}Hi=1 to enforce dynamics
consistency. The rewards predictor v� estimates the reward for
each latent state, conditioned on the language embedding of
the task Tg. Additional implementation details can be found
in Appendix A-B.

2) Reward Distillation: Despite providing dense reward sig-
nals, image reconstruction objectives often lead to training insta-
bility [15, 4], which we further demonstrate in Appendix A-B1.
To tackle this challenge, WoMAP introduces a novel reward
distillation procedure that generates dense rewards signals
without reconstruction objectives for data-efficient training. As
shown in Figure 3, during data generation, WoMAP computes
a per-frame reward rdet(ot, T) 2 [0, 1] for each object T in
the observation ot using the detection confidence provided by
a pretrained object detector, e.g., GroundingDINO [21], scaled
by the associated detection bounding-box size. This annotation
procedure yields a rich, task-relevant training signal for each
object in the scene, and scales efficiently with environment
complexity by enabling parallel processing of detections. At
training time, we distill the reward signal rsp(ot, eg) 2 [0, 1]
from rdet(ot, T) by using it as a supervisory signal for the

rewards predictor v� conditioned on the language embedding
e of each relevant object. This distillation pipeline enables an
effective planning framework using world models, which we
discuss in the following subsection.

D. Planning with WoMAP
While world models can directly plan actions via sam-

pling or gradient-based optimization, such methods are often
inefficient in continuous action spaces without informed
guidance. Especially for complex problem spaces, gradient-
based methods struggle to localize target objects within a finite
optimization budget and frequently converge to suboptimal
solutions. WoMAP addresses this limitation by leveraging
VLMs’ commonsense reasoning to generate informed action
proposals, which are then refined via model predictive control
using a world model for spatial grounding.

For a given task instruction, we prompt a VLM using chain-
of-thought prompting [39] to provide high-level guidance for
promising locations for the robot to explore. In preliminary
experiments, we observed that VLMs struggle with spatial
understanding when prompted for numerical relative actions
given an input image. Consequently, we query the VLM using
a multiple-choice prompt with the options given by a fixed
set of textual description of the possible actions, e.g., “turn
left,” or “move forward.” We provide additional implementation
details in Appendix A-C. Subsequently, WoMAP optimizes a
set of candidate actions provided by the VLM to maximize
the expected rewards:

max
at:t+T

TX

⌧=1

(Ev� [rt+⌧ | zt+⌧ , eg)] + � kat+⌧�1 � at+⌧�2k1),

subject to zt+⌧ ⇠ q (zt+⌧ | zt+⌧�1, at+⌧�1) 8⌧ 2 [T],
(2)

at each timestep t with latent state zt, target-object language
embedding eg, previous control action at�1, MPC planning
horizon T , and weight � 2 R+. While the first objective term
seeks to maximize the expected rewards, the second objective
term incentivizes smoothness of the robot’s trajectories.

Figure 2 illustrates the trajectory planning process on the
right panel. The VLM provides three action proposals. WoMAP
optimizes each of the three action proposals and estimates their
reward. It then execute the optimized actions with the highest
reward.

IV. EXPERIMENTS

We evaluate WoMAP on open-vocabulary active object local-
ization tasks both in simulation and on a TidyBot [42] to answer
the following questions: (1) How does WoMAP compare to
prior work across a range of environments with different task
difficulty, defined by scene complexity, occlusion degree, and
initial conditions? (2) Can WoMAP achieve strong sim-to-
real transfer when trained only on photorealistic simulation
data? (3) Can WoMAP achieve zero-shot generalization to
visual (unseen lighting, backgrounds) and semantic (unseen
instructions, target objects) conditions? In Appendix A-B1, we
ablate training with image reconstruction objectives, freezing

Fig. 5: Visualization of the TidyBot’s trajectories for all planners, when asked the find a banana occluded by a mug. While other
planners fail to find the banana, WoMAP finds the banana efficiently, unlike WM-Grad, which computes inefficient, circuitous
paths. Note note that the VLM fails to closely approach the banana, the DP does not look behind occlusions, WM-CEM is
sample-inefficient, and WM-HR is less robust to hallucinations by the world model. Further, (right) we show images from the
scene and wrist cameras at different timesteps when planning with WoMAP.

vs. finetuning pretrained image encoders, and training image
encoders from scratch.

A. Environments and Tasks

We evaluate all methods in four PyBullet (PB) simulation
environments [7] and three real-world environments both
within Gaussian Splat (GS) and on a TidyBot, designing the
evaluation environments with a particular focus on practical
scene configurations and task difficulty. Within each envi-
ronment, we create distinct scenes by fixing a set of target
objects (listed in Appendix B-A) but randomly arranging them,
while also randomly adding other objects, creating distractions
and occlusions. We curate four distinct environments in PB
and three in GS, themed on office, kitchen, and random
everyday objects, with varying difficulties. For a comprehensive
evaluation of all methods, we vary the task difficulty along two
axes: (i) scene difficulty, determined by the number, diversity,
and layout of objects in the scene, and (ii) initial-pose difficulty,
representing the task difficulty due to occlusions, viewability,
and distance to the target object which depends on the initial
pose of the robot. In Appendix B-A, we provide a detailed
discussion of the evaluation setup, as well as illustrations of
the tasks and environments.

B. Baselines, Ablations, and Evaluation Metrics

We benchmark WoMAP against a VLM-based planner using
GPT-4o [17], similar to prior work [12, 32]. We prompt GPT-
4o for the best action given the observation ot using the same
prompt template as WoMAP’s, described in Appendix A-C.
In addition, we compare against a multi-task diffusion policy
(DP), trained on each environment using expert trajectories for
multiple objects. We also benchmark against world model-only

planners, using (i) derivative-free, cross-entropy optimization
for action proposals (WM-CEM), inspired by [46]; (ii) gradient-
based action optimization (WM-Grad); and (iii) heuristic-guided
action proposals (WM-HR) without a VLM, consisting of a
fixed set of atomic actions that was also used to prompt the
VLM, which are further optimized via gradient descent. We use
success rate and efficiency (given by the success rate weighted
by the path length [1]) as evaluation metrics, where success is
defined by a threshold on the detection confidence of the target
object and the proportion of the associated bounding-box in
the robot’s camera image. See Appendix B-C for additional
implementation details.

C. Evaluation across Varying Task Difficulty

While varying the scene difficulty and the initial-pose
difficulty, we examine the performance of each method in novel
(unseen) scenes in PyBullet and Gaussian Splat environments.
Figures 6 and 7 summarize our main results, showing that
on average, WoMAP significantly outperforms state-of-the-art
VLM and DP baselines by more than 9⇥ and 2⇥, respectively.
While the VLM planner fails to account for physical grounding
and the DP policy struggles to generalize beyond the training
distribution, WoMAP generates grounded actions across diverse
scenes. Moreover, we observe a progressive increase in the
performance of the world-model-based planners with more
informed search methods, in the order of (i) sampling-based
WM-CEM, which is sample-inefficient even with 4⇥ as many
action proposals, (ii) gradient-based WM-Grad, which relies
on myopic local gradients and generates inefficient, circuitous
actions, evidenced by its much lower efficiency compared to
success scores, (iii) heuristics-based WM-HR, which does
not leverage intelligent guidance from the VLM, limiting

Varying Scene Difficulties Varying Initial Condition Difficulties

Unseen environments Random initial poses
Fig. 6: PyBullet evaluation tasks and results. Success rates (translucent bars) and efficiency scores (solid bars) in active
object localization across PyBullet scenes (presented in the order of increasing difficulty) and initial-pose conditions: easy (E),
medium (M), and hard (H). WoMAP outperforms all baseline methods in all scenes and initial-pose conditions.

its performance in challenging problems, and ultimately (iv)
WoMAP, which evaluates and optimizes the VLM action
proposals with the world model.

In Figure 5, we visualize the trajectories computed by all
planners on a TidyBot robot tasked with finding a banana
occluded behind a mug in the real-world. We observe the same
findings as that of the simulation environments. Notably, the
VLM fails to closely approach the banana, and the DP does not
look behind occlusions. Further, the scene and wrist camera
images demonstrate the efficiency of WoMAP in localizing
the banana. Next, we discuss the performance of the planners
with respect to the difficulty of the scene and initial pose and
direct readers to Appendix B for ablations on the correlation
between data quantity/scene diversity and performance.

Varying Scene Difficulty. As expected, the performance
of all methods decreases with increasing scene difficulty,
with a drop in success rates over 50% for VLM and DP
baselines. In comparison, WoMAP’s performance only drops
by 23.6% in PyBullet and 40.2% in Gaussian Splat. Notably, all
world-model-based planners exhibit lower performance drops,
suggesting the importance of planning with physical priors
provided by world models.

Varying Initial Conditions. WoMAP achieves the second-
smallest performance drop in the PyBullet environments (after
the DP) and the smallest performance drop in the Gaussian
Splat environments, even with its highest absolute scores. By
leveraging the high-level reasoning capabilities of the VLM for
action proposals, WoMAP effectively mitigates hallucinations
in world models that arise in difficult-to-predict scenarios, e.g.,
occlusions.

D. Sim-to-Real Transfer with Gaussian Splats
We evaluate WoMAP’s sim-to-real transfer ability on 20

hardware trials for each of the 3 corresponding real-world
tasks using the TidyBot [42] platform. For each trial, we
randomize both the scene configuration and target object to
include a diverse range of initial conditions and task difficulties.

TABLE I: Success rates (%) for zero-shot sim-to-real transfer
for VLM and WoMAP.

Model GS-Kitchen GS-Office GS-Random

VLM (sim) 6 13 3
VLM (real) 0 5 0

WoMAP (sim) 71 65 32
WoMAP (real) 55 65 63

TABLE II: Visual generalization results for various background
and lighting conditions.

Axis Success Rate % Efficiency %

Nominal 63 60
Lighting 50 47
Backgrounds 30 28

As shown in Table I, despite being trained entirely in the
Gaussian Splat simulation, WoMAP transfers effectively to
the real world, achieving the same success rate in GS-Office
and a higher success rate in GS-Random compared to the
sim success rates, with only a moderate performance drop of
23% in GS-Kitchen. In contrast, the VLM baseline typically
predicts unrealistic actions that violate joint limits, resulting
in a substantial performance drop of 62% or more. This
finding highlights WoMAP’s strong generalization capabilities
in producing reliable reward predictions under domain shifts,
enabling efficient sim-to-real transfer.

E. Generalization to Novel Task Conditions
We examine the visual and semantic generalization ca-

pabilities of WoMAP trained only on nominal conditions
in GS-Random on 10 scenes with 30 trajectories each. We
evaluate WoMAP in out-of-distribution lighting and background
conditions, illustrated in Figure 8. In Table II, we show that
WoMAP achieves strong zero-shot generalization with a success
rate and efficiency score of 50% and 47% compared to 63%

Varying Scene Difficulties Varying Initial Condition Difficulties

Random initial posesUnseen environments

Fig. 7: Gaussian Splat evaluation tasks and results. Success rates (translucent bars) and efficiency scores (solid bars) in
active object localization across Gaussian Splat scenes and initial-pose conditions: easy (E), medium (M), and hard (H). As in
the PyBullet scenes, WoMAP outperforms all baseline methods via effective action grounding and optimization.

Fig. 8: Visual generalization: lighting and background conditions.

Fig. 9: Generalization plots for unseen queries and objects in the same category: (left) banana, (center) scissors, (right) mug.
We see a positive correlation in semantic similarity (cosine distance) of the objects/queries with the most similar object present
in our training objects, and the efficiency score suggesting the model’s performance.

and 60% in nominal conditions, respectively (a decrease of
less than 22%), even under extreme lighting conditions, with a
further performance drop with out-of-distribution backgrounds.
In general, these findings show that WoMAP learns robust
latent-space features for generalization to out-of-distribution
test-time conditions.

In addition, we evaluate semantic generalization of WoMAP
to unseen target objects and task instructions across two axes:
(i) to unseen language instructions to find target objects that
were seen during training and (ii) to unseen target objects
with unseen language instructions. As illustrated in Figure 9,

we consider three representative object categories: “banana,”
“scissors,” and “mug,” where WoMAP is only trained on a single
banana, scissors, and mug. We find that WoMAP achieves
strong semantic generalization, with an expected decrease in
performance with decreasing semantic similarity as measured
by the the cosine similarity metric. For example, we ask
WoMAP to find the following unseen objects: “pear,” “pliers,”
and “beaker.” Even though WoMAP has not seen these objects
during training, WoMAP is able to find each of these objects
at test time. We discuss these results further in Appendix B.

V. CONCLUSION

We present WoMAP, a recipe for open-vocabulary active
object localization, that uses a scalable data generation pipeline
to train a latent world model without expert demonstrations
or online interaction data. WoMAP distills dense rewards
signals into the world model with a reconstruction-free training
architecture for strong generalization from a few training
samples. At inference time, WoMAP utilizes the world model
for dynamics and rewards prediction to ground high-level action
proposals from VLMs, demonstrating more efficient object
localization performance and strong generalization capabilities
to novel task settings.

VI. LIMITATIONS AND FUTURE WORK

Interactive Active Object Localization. Although we limit
our problem to non-interactive object localization problems in
this work, interaction between the robot and its environment
is crucial to efficient exploration in many problem setting.
Consequently, active object localization with interactive feed-
back from the environment is a promising direction for future
research to enable more expressive and manipulation-intensive
tasks.

Uncertainty Quantification in Rewards Distillation. WoMAP
distills the confidence of pretrained object detectors into a
world model as a rewards signal. However, learned object
detectors sometimes produce uncalibrated confidence estimates,
which could corrupt the training data, negatively impacting its
effectiveness in grounding action proposals. Future work will
explore calibration methods for pretrained object detectors to
ensure data fidelity during training.

Hallucination Detection and Uncertainty Quantification
in World Models. WoMAP’s action optimization fails when
the world model hallucinates the dynamics/rewards, usually
in areas where the world model is not confident. Uncertainty
quantification of world models remains critical to identifying
when to trust predictions from world models, which has been
relatively unexplored. In future work, we will derive calibrated
uncertainty quantification methods to enable uncertainty-aware
planning to ensure effective action grounding and optimization.
In addition, we will explore incorporating calibrated uncertainty
estimates from the VLM on the action proposals into WoMAP
to enable risk-sensitive planning.

REFERENCES

[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis
Savva, et al. On evaluation of embodied navigation agents.
arXiv preprint arXiv:1807.06757, 2018.

[2] R. Bajcsy. Active perception. Proceedings of the IEEE,
76(8):966–1005, 1988. doi: 10.1109/5.5968.

[3] Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and
Yann LeCun. Navigation world models. arXiv preprint
arXiv:2412.03572, 2024.

[4] Maxime Burchi and Radu Timofte. Mudreamer: Learning
predictive world models without reconstruction. arXiv
preprint arXiv:2405.15083, 2024.

[5] Matthew Chang, Theophile Gervet, Mukul Khanna, Sri-
ram Yenamandra, Dhruv Shah, So Yeon Min, Kavit Shah,
Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh
Mottaghi, Jitendra Malik, and Devendra Singh Chaplot.
Goat: Go to any thing, 2023. URL https://arxiv.org/abs/
2311.06430.

[6] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi,
Abhinav Gupta, and Russ R Salakhutdinov. Object
goal navigation using goal-oriented semantic exploration.
Advances in Neural Information Processing Systems, 33:
4247–4258, 2020.

[7] Erwin Coumans and Yunfei Bai. Pybullet, a Python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2022.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[9] Lei Fan, Mingfu Liang, Yunxuan Li, Gang Hua, and
Ying Wu. Evidential active recognition: Intelligent and
prudent open-world embodied perception, 2023. URL
https://arxiv.org/abs/2311.13793.

[10] Theophile Gervet, Soumith Chintala, Dhruv Batra, Ji-
tendra Malik, and Devendra Singh Chaplot. Navigating
to objects in the real world. Science Robotics, 8(79):
eadf6991, 2023.

[11] James J. Gibson. The Ecological Approach to Visual
Perception. Houghton Mifflin, Boston, 1979.

[12] Dylan Goetting, Himanshu Gaurav Singh, and Antonio
Loquercio. End-to-end navigation with vision language
models: Transforming spatial reasoning into question-
answering. arXiv preprint arXiv:2411.05755, 2024.

[13] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

[14] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

[15] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. arXiv
preprint arXiv:2203.04955, 2022.

[16] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2:
Scalable, robust world models for continuous control.
arXiv preprint arXiv:2310.16828, 2023.

[17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o
system card. arXiv preprint arXiv:2410.21276, 2024.

[18] Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li,
Shubham Garg, Hooshang Nayyeri, Shenlong Wang, and
Yunzhu Li. Roboexp: Action-conditioned scene graph via

https://arxiv.org/abs/2311.06430
https://arxiv.org/abs/2311.06430
http://pybullet.org
https://arxiv.org/abs/2311.13793

interactive exploration for robotic manipulation. arXiv
preprint arXiv:2402.15487, 2024.

[19] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-
time radiance field rendering. ACM Trans. Graph., 42(4):
139–1, 2023.

[20] Steven M LaValle and James J Kuffner. Rapidly-exploring
random trees: Progress and prospects: Steven m. lavalle,
iowa state university, a james j. kuffner, jr., university
of tokyo, tokyo, japan. Algorithmic and computational
robotics, pages 303–307, 2001.

[21] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection. In
European Conference on Computer Vision, pages 38–55.
Springer, 2024.

[22] Russell Mendonca, Shikhar Bahl, and Deepak Pathak.
Alan: Autonomously exploring robotic agents in the
real world. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3044–3050. IEEE,
2023.

[23] Kensuke Nakamura, Lasse Peters, and Andrea Ba-
jcsy. Generalizing safety beyond collision-avoidance
via latent-space reachability analysis. arXiv preprint
arXiv:2502.00935, 2025.

[24] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without
supervision. arXiv preprint arXiv:2304.07193, 2023.

[25] Han Qi, Haocheng Yin, Yilun Du, and Heng Yang.
Strengthening generative robot policies through predictive
world modeling. arXiv preprint arXiv:2502.00622, 2025.

[26] Mohammad Nomaan Qureshi, Sparsh Garg, Francisco
Yandun, David Held, George Kantor, and Abhisesh
Silwal. Splatsim: Zero-shot sim2real transfer of rgb
manipulation policies using gaussian splatting. arXiv
preprint arXiv:2409.10161, 2024.

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language
supervision. In International conference on machine
learning, pages 8748–8763. PmLR, 2021.

[28] Santhosh K. Ramakrishnan, Dinesh Jayaraman, and
Kristen Grauman. Emergence of exploratory look-around
behaviors through active observation completion. Science
Robotics, 4(30), May 2019. ISSN 2470-9476. doi:
10.1126/scirobotics.aaw6326. URL http://dx.doi.org/10.
1126/scirobotics.aaw6326.

[29] Ram Ramrakhya, Eric Undersander, Dhruv Batra, and
Abhishek Das. Habitat-web: Learning embodied object-
search strategies from human demonstrations at scale. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5173–5183, 2022.

[30] Ram Ramrakhya, Dhruv Batra, Erik Wijmans, and Ab-
hishek Das. Pirlnav: Pretraining with imitation and rl
finetuning for objectnav. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 17896–17906, 2023.

[31] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing. Association for
Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

[32] Allen Z Ren, Jaden Clark, Anushri Dixit, Masha Itkina,
Anirudha Majumdar, and Dorsa Sadigh. Explore until
confident: Efficient exploration for embodied question
answering. arXiv preprint arXiv:2403.15941, 2024.

[33] Dhruv Shah, Michael Equi, Blazej Osinski, Fei Xia, Brian
Ichter, and Sergey Levine. Navigation with large language
models: Semantic guesswork as a heuristic for planning,
2023. URL https://arxiv.org/abs/2310.10103.

[34] Ola Shorinwa, Jiankai Sun, and Mac Schwager. Fast-
splat: Fast, ambiguity-free semantics transfer in gaussian
splatting. arXiv preprint arXiv:2411.13753, 2024.

[35] Ola Shorinwa, Johnathan Tucker, Aliyah Smith, Aiden
Swann, Timothy Chen, Roya Firoozi, Monroe Kennedy III,
and Mac Schwager. Splat-mover: Multi-stage, open-
vocabulary robotic manipulation via editable gaussian
splatting. arXiv preprint arXiv:2405.04378, 2024.

[36] Ola Shorinwa, Jiankai Sun, Mac Schwager, and Anirudha
Majumdar. Siren: Semantic, initialization-free registration
of multi-robot gaussian splatting maps. arXiv preprint
arXiv:2502.06519, 2025.

[37] Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey
Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
63–70. IEEE, 2024.

[38] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A
modular framework for neural radiance field development.
In ACM SIGGRAPH 2023 conference proceedings, pages
1–12, 2023.

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in
large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

[40] Congcong Wen, Yisiyuan Huang, Hao Huang, Yanjia
Huang, Shuaihang Yuan, Yu Hao, Hui Lin, Yu-Shen Liu,
and Yi Fang. Zero-shot object navigation with vision-
language models reasoning. In International Conference
on Pattern Recognition, pages 389–404. Springer, 2025.

[41] Ronald J Williams and David Zipser. A learning algorithm
for continually running fully recurrent neural networks.
Neural computation, 1(2):270–280, 1989.

[42] Jimmy Wu, William Chong, Robert Holmberg, Aaditya

http://dx.doi.org/10.1126/scirobotics.aaw6326
http://dx.doi.org/10.1126/scirobotics.aaw6326
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2310.10103

Prasad, Yihuai Gao, Oussama Khatib, Shuran Song,
Szymon Rusinkiewicz, and Jeannette Bohg. Tidybot++:
An open-source holonomic mobile manipulator for robot
learning. arXiv preprint arXiv:2412.10447, 2024.

[43] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter
Abbeel, and Ken Goldberg. Daydreamer: World models
for physical robot learning. In Conference on robot
learning, pages 2226–2240. PMLR, 2023.

[44] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans.
Auxiliary tasks and exploration enable objectgoal navi-
gation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 16117–16126, 2021.

[45] Naoki Yokoyama, Ram Ramrakhya, Abhishek Das, Dhruv
Batra, and Sehoon Ha. Hm3d-ovon: A dataset and
benchmark for open-vocabulary object goal navigation. In
2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5543–5550. IEEE,
2024.

[46] Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel
Pinto. Dino-wm: World models on pre-trained visual
features enable zero-shot planning. arXiv preprint
arXiv:2411.04983, 2024.

[47] Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen,
Hongxia Jin, Lise Getoor, and Xin Eric Wang. Esc:
Exploration with soft commonsense constraints for zero-
shot object navigation. In International Conference on
Machine Learning, pages 42829–42842. PMLR, 2023.

[48] Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen
Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari, Suya
You, Zhangyang Wang, and Achuta Kadambi. Feature
3dgs: Supercharging 3d gaussian splatting to enable
distilled feature fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 21676–21685, 2024.

APPENDIX A
IMPLEMENTATION DETAILS

A. Details on Data Generation

1) Preliminaries: Gaussian Splatting for Photorealistic
Novel View Rendering: We provide a brief introduction to
Gaussian Splatting and its applications to robotics. Gaussian
Splatting [19] is a volumetric scene representation that uses
explicit ellipsoidal primitives to represent non-empty space
in any given environment. Trained entirely from RGB poses
and associated camera poses, Gaussian Spatting enables real-
time photorealistic novel-view synthesis without any structural
priors, unlike many existing scene reconstruction methods.
Given its high-fidelity reconstruction, novel-view synthesis, and
amenability to open-vocabulary semantics, Gaussian Splatting
has been widely applied in robotics, e.g., robot manipulation
[35, 26]. Training a latent world model requires abundant data
coverage of the environment, which is challenging to collect
in real world. In this work, we leverage Gaussian Splatting for
scalable data generation from only a few real-world videos.
Specifically, we employ semantic Gaussian Splatting [48, 34]
for automatic labeling of target objects, distilling language
semantics from CLIP [27] into the Gaussian Splat. In the
following subsections, we briefly describe the procedure used
for generating, aligning, and rendering views for multiple
scenes.

Collecting Videos and Training the Gaussian Splat.
Trained Gaussian Splats do not share a common reference
frame, in general. Hence, we align the individual Gaussian
Splats using four Aruco markers in fixed positions. However, we
note that other approaches such as semantics-based alignment
can also be used. In each scene, we record a one-minute video
as input to the Gaussian Splat. We compute the camera poses
for each video using structure-from-motion and subsequently
train the semantic 3D Gaussian Splat [36] for 30,000 iterations
on an Nvidia L40 GPU using Nerfstudio [38].

Scene Alignment and Annotation. The reconstructed scene
representation could have arbitrary reference frame. However,
a common reference frame is necessary for data consistency
when generating data from multiple scenes. Consequently, we
first perform alignment of the scene coordinates by matching
Aruco tags detected in the reconstruction with its measured
ground-truth position and orientation. Finally, given coordinates
of the detected points in world frame, we solve the Perspective-
n-Point (PnP) problem and the point-registration problem
using RANSAC to compute the camera-to-world and the
Gaussian Splat-to-world transforms, respectively. We query the
semantic field of the Gaussian Splat to annotate the position
and dimension of each target object in the scene, visualized in
Figure 10, with different target objects.

2) Ablation: Generating Training Data without Novel Views:
We examine the need for data scalability beyond real-world
data, ablating WoMAP limited to real-world video frames
compared to the data generated from the Gaussian Splats. First,
we extract a set of image frames uniformly across each real-
world video and use these images in training the Gaussian

Splat. Next, we train two world models with: (i) only the video
frames of each scene (Video-Only) and (ii) on the rendered
images from the Gaussian Splat (GSplat-Data). The training
data of the Video-Only and GSplat-Data world models consist
of about 2100 and 9000 images, respectively. We evaluate the
trained model using the gradient-based planner WM-Grad and
summarize our results in Table III. Across all scenes and initial
conditions, the GSplat-Data model outperforms the Video-Only
model by significant margins, ranging between 50% and 200%.
The relatively poor performance of the Video-Only model can
be explained by the lack of sufficient data coverage in the
real-world videos, underscoring the importance of our scalable
data pipeline. Our data generation pipeline provides not only
additional training images, but also diverse viewpoints, which
makes the GSplat-Data model more robust to initial conditions
compared to the Video-Only model (sweeping from easy to
hard).

3) Details on Trajectory Data Generation: To get sufficient
coverage of diverse viewpoints in the the PyBullet environment
and Gaussian Splat scenes, we generate synthetic collision-
free trajectories that start from randomized initial positions
and navigate toward various target locations. Specifically, we
leverage the RRT* planner [20] to compute feasible, diverse
paths between the start and goal. We concatenate these camera
poses and add random linear and angular perturbations to
further increase data diversity to cover a more realistic range
of viewpoints encountered at deployment time. Figure 11
provides a visualization of trajectories generated in our training
dataset. We collect observations at relatively low frequencies
where the delta distance between consecutive observations is
around 1-5cm. The largest model that we train contains about
10,000 observation-camera pose pairs for 500 trajectories (or
20 observations per trajectory), which is considerably smaller
in scale than the training data used in many other imitation
learning or reinforcement learning-based visual navigation
policies [33, 37]. Moreover, we show in Appendix B-D1 that
WoMAP’s performance remains competitive in much smaller
training configurations.

B. World Model Implementation
Here, we summarize the implementation details of the world

model—composed of the observation encoder, dynamics pre-
dictor, and rewards predictor—and provide the hyperparameters
used in training the world model. For interpretability, we train
a decoder to map latent states to the image space without
backpropagating the gradients through the other components
of the world model. In addition, to better visualize the objects
the world model is focusing on, we train the rewards models to
predict bounding-boxes along with the scalar rewards, which
we overlay in the decoded RGB images.
Observation Encoder. We encode raw image observations
into the latent space using the pre-trained DINOv2 model
dinov2 vits14 [24]. We use the norm of the patch tokens of
image ot as its feature embedding h✓(ot) 2 R384. In addition,
we freeze the weights of the DINOv2 model during training
and do not apply any image data augmentation, e.g., color

Fig. 10: Querying the semantic field of the Gaussian Splat.

TABLE III: Success score of the world model trained using only real-world video frames (Video-Only model) compared to the
(GSplat-Data model). With more diverse data, the GSplat-Data model outperforms Video-Only model across scenes and initial
conditions.

Training Data GS-Kitchen GS-Office GS-Random
init-easy init-medium init-hard init-easy init-medium init-hard init-easy init-medium init-hard

Video-Only 0.06 0.04 0.02 0.24 0.06 0.02 0.04 0 0
GSplat-Data 0.84 0.50 0.14 0.86 0.50 0.22 0.76 0.36 0

jittering and random cropping, since the pre-trained DINOv2
model already utilizes data augmentation for training. Moreover,
random perturbation of the image, such as random rotation
or cropping, may compromise the fidelity of the ground-
truth image-action pairs. In Appendix A-B1, we ablate the
observation encoder.
Dynamics Predictor. To condition the ViT-based dynamics
predictor on both the latent state zt and action at, we map
zt and at to a 384-dimensional embedding space using an
affine transformation and concatenate the resulting embeddings.
In preliminary experiments, we found that a longer historical
context for dynamics prediction did not provide any significant
improvement in prediction accuracy. As a result, we provide
only the last latent state to the dynamics predictor. To
improve the multi-step prediction accuracy, we supervise the
dynamics predictor over a sequence of observation-action pairs,
recursively passing in the previous prediction into the model.
Consequently, we do not optimize the dynamics predictor using
teacher forcing [41]. Although teacher forcing facilitates faster
training through parallelism, teacher forcing contributes to
significant accumulation of dynamics errors over multi-step
predictions.
Rewards Predictor. Like the dynamics predictor, we condition
the rewards predictor on zt and the language embedding
eg, each mapped to R384. We concatenate the embeddings
and apply full cross-attention to predict the scalar reward
for that latent state and target object. We train the rewards

predictor using the binary cross-entropy loss function given by:
`t = �[rsp,t log(rt) + (1� rsp,t) log(1� rt))], for datapoint
(rsp,t, rt) with ground-truth reward rsp,t and predicted reward
rt.

Training Setup and Hyperparameters. We train the world
model on a single Nvidia L40 GPU with 48GB of GPU
VRAM using a batch size of 25 for between 8 to 10 hours,
depending on the task environment. In Table IV, we present the
hyperparameters used in training the world model. We warmup
training with a learning rate (LR) of 1e�3 before training
for the full number of epochs (100) with an LR of 5e�4 for
stable training. We observed that the training loss diverged
for learning rates greater than 1e�3. Further, in Table V, we
report the number of trainable and non-trainable parameters
in each component of the world model. The dynamics q and
rewards v� predictors are similarly-sized, with about 7.6 and
4.1 million trainable parameters, respectively. Meanwhile, we
do not fine-tune the observation encoder h✓.

1) Ablations: We ablate different components of the world
model, examining the effects of training an encoder from
scratch, fine-tuning a pre-trained encoder, and using an
image reconstruction loss. We report our findings in Fig-
ure 12, 13, and 14, where ViT-R and ViT-NR denote ViT trained
with image reconstruction and without image reconstruction,
respectively, DINO-Frozen denote a frozen DINOv2 model,
and DINO-R-FT and DINO-NR-FT denote a finetuned DINOv2
model trained with and without image reconstruction. In

Fig. 11: Visualization of training trajectories generated in PyBullet and Gaussian Splat.

TABLE IV: WoMAP’s Hyperparameters.

Name Value

Image Size 224
Lang. Embed Dim 384
Pred. Embed Dim 384
Start LR 1e-3
LR 5e-4
Warmup Epochs 2
Weight Decay 4e-2
Final Weight Decay 0.4
Batch Size 25
Total Epoch 100
Planning Horizon 4

TABLE V: WoMAP’s Number of Parameters (in millions).

Name # trainable # non-trainable

h✓ 0 22
q 7.6 0.1
v� 4.1 0.1

all applicable plots, we represent the success rate of each
method by the solid-color bars and the efficiency scores by
the translucent bars. We discuss these results in the following
subsections.
Training the Observation Encoder from Scratch. We
compare a ViT-based observation encoder trained from scratch
(ViT-NR) to a frozen pre-trained DINOv2 model (DINO-
NR-FZ), without an image reconstruction objective. From
Figure 12 and 13, DINO-NR-FZ achieves higher success rates
and efficiency scores across the PyBullet and GSplat scenes.

Although both models have access to the same data when
training the world model, the results suggest that DINO-NR-
FZ model benefits from large-scale pre-training, which provides
a robust latent state for dynamics and rewards prediction even
without any fine-tuning. Likewise, when trained with an image
reconstruction loss, DINO-R-FZ also outperforms ViT-R for
similar reasons. Further, we observed that the ViT was more
unstable to train, given the total number of trainable parameters.
In general, the ViT-NR and ViT-R models may require more
training data to learn more useful visual features compared to
the frozen DINOv2 models.

Finetuning the Pre-trained Observation Encoder. We explore
fine-tuning the DINOv2 encoder, comparing its performance
to that of the frozen model. We find that fine-tuning the
DINOv2 encoder leads to training instability that adversely
impacts the performance of the world model. In fact, in many
of our experiments, the training loss failed to decrease or
raised Not-a-Number (NaN) errors. In Figure 14, we show
the training loss for the dynamics predictor across the four
PyBullet environment, highlighting the increase in the training
loss at the initial stages of the training procedure in the
fine-tuned DINOv2 model. This training instability may be
attributed to the more complicated loss landscape with many
local minima during fine-tuning. In contrast, the training loss for
the frozen DINOv2 models decreases relatively monotonically.
These training dynamics are reflected in the success rates and
efficiency scores achieved by both models. The fine-tuned
models DINO-NR-FT and DINO-R-FT have notably lower

Fig. 12: World Model Architecture Ablations in the PyBullet Scenes. We explore training the observation encoder from
scratch, finetuning and training the observation encoder with image reconstruction, where ViT-R denotes a ViT with image
reconstruction, ViT-NR denote a ViT trained without image reconstruction, respectively, DINO-Frozen denotes a frozen DINOv2
encoder, DINO-R-FT denotes a finetuned DINOv2 model trained with image reconstruction, and DINO-NR-FT denotes a
finetuned DINOv2 encoder trained without image reconstruction. WoMAP uses DINO-Frozen.

Fig. 13: World Model Architecture Ablations in the Gaussian Splatting Scenes. We ablate training the observation encoder
from scratch, finetuning and training the observation encoder with image reconstruction, where ViT-R denotes a ViT with image
reconstruction, ViT-NR denote a ViT trained without image reconstruction, respectively, DINO-Frozen denotes a frozen DINOv2
encoder, DINO-R-FT denotes a finetuned DINOv2 model trained with image reconstruction, and DINO-NR-FT denotes a
finetuned DINOv2 encoder trained without image reconstruction. WoMAP uses DINO-Frozen.

scores on the performance metrics compared to frozen DINO
encoder DINO-Frozen.

Training with a Reconstruction Objective. Here, we inves-
tigate training the world model with an image reconstruction
objective. From Figures 12 and 13, we find that training with an
image reconstruction objective generally leads to a degradation
in the performance of the world model, e.g., in the ViT-R and
DINO-R-FT models. Although image reconstruction objectives
can provide dense rewards supervision, training instability
often eliminates this potential advantage, underscoring the
challenge with image reconstruction-based training. In some
cases, the training instability can lead to significant drops in
performance, e.g., in the ViT-R model when trained in the
PB-Kitchen-M scene. However, with a non-frozen observation
encoder, training with an image reconstruction loss degrades
the performance of the world model, e.g., in the ViT-R and
DINO-R-FT models. This finding underscores the challenge
with image reconstruction-based training. In some cases, the
training instability can lead to significant drops in performance,
e.g., in the ViT-R model when trained in the PB-Kitchen-M
scene. In summary, the results from the ablations indicate that
the frozen pretrained DINOv2 provides generalizable latent
features that enable accurate dynamics and rewards prediction
and effecive action grounding.

C. Details on Planning Integration

1) Planning with VLMs: Using the world model as a
local planner poses many challenges given the noisy reward
landscape, particularly in the low training data regime. However,
world models can serve as a good evaluator/optimizer on
imperfect action proposals generated from another policy. For
example, generating good 6D action proposals with VLMs
is difficult due to the limited spatial understanding ability of
VLMs, a challenge that can be addressed using a world model.
We experimented with the following prompting strategies using
GPT-4o [17]:

Direct 6D action output. We first provide rough dimensions
of the scene and ask the VLM to directly output 6D actions
(x, y, z, roll, pitch, yaw). However, due to inconsistencies
in coordinate system conventions across its pretraining data
(e.g., variations in the orientation of the positive x and y axes),
the vision-language model often fails to consistently interpret
spatial directions and rotations correctly.

Direction output. To minimize confusion on the coordinate
axes definition, we experimented with expressing the translation
and rotation actions with natural language descriptions, such
as move forwards/backwards, tilt up/down, etc. However, we
have found that these directions are not fully descriptive of
exploration behavior. For example, if the VLM suggests looking
behind an obstacle that is directly in front, its action outputs are
often axis-aligned, which is not expressive enough to encode

Fig. 14: Frozen vs. Finetuned DINOv2 Encoder. Fine-tuning the DINOv2 encoder generally leads to training instability,
negatively impacting performance.

this “look around” behavior.
Action Primitives. Our final version frames the prompt as

a multiple-choice question, providing the VLM with a list of
action primitives. Empirically, we find that using the coarse
action primitives as shown in Fig. 15, the VLM is capable
of matching its high-level suggestions with the correct action
outputs consistently. Despite covering only a limited set of
actions with coarse magnitudes, we demonstrate that WoMAP’s
action optimization capability can still successfully transform
these action proposals into grounded actions, as shown in ??.

APPENDIX B
EXPERIMENT DETAILS

A. Task Design Details

We provide more details on the design choices for the tasks
we examine WoMAP on.

1) Designing task environments: As mentioned in Sec-
tion IV-A, we evaluate WoMAP on four simulation environ-
ments and three real environments. Figures 6 and 7 show
example scenes for each environment, and Figure 16 shows
the different variation for a single environment across different
scenes.

Our key motivation to selecting the suite of environments
and objects lies on two axes: practicality and difficulty. We
design each task based on a particular theme resembling a
cluttered living area where active object localization is a a core
challenge requiring spatial reasoning, viewpoint planning, and
the ability to handle occlusions. For each environment, we pick
representative objects along the axis of difficulty and try to
cover a diverse set of objects. For easy scenes, we pick distinct
objects, which are typically small in size, whereas for difficult
scenes, we place large shelves and visually similar objects
(e.g., apple and peach), creating occlusions and distractions.
We provide a comprehensive list of environments and target
objects in each environment in Table VI.

2) Evaluating Task Difficulty: To systematically evaluate
our framework under various settings, we define task difficulty
across two dimensions: scene difficulty, which is determined by
the diversity of objects present and the level of compactness,
and initial-pose difficulty, which is determined by a heuristics
function that is computed from three factors: initial detection
confidence d, ground truth distance to target d, and level of
occlusion of the bounding box. The thresholds for these factors

are environment-dependent to account for scene dimensions,
detection qualities, etc. Though the difficulty metrics are
not strictly quantifiable, from empirical results we observe
consistent trends in degrading performance as task difficulty
increases, and show promising trend on WoMAP’s robustness
to exhibiting less performance degradation compared to the
baselines. Figure 17 and 18 show a more comprehensive
visualization of different initial condition levels in two selected
PyBullet and Gaussian Splat environments to offer readers a
better intuition.

B. Hardware Experiment Setup
We evaluate our policy trained entirely in the Gaussian

Splat directly on a TidyBot [42] platform with a Panda Franka
arm. With a mobile base and a 6-DOF arm equipped with an
onboard Intel RealSense camera, the TidyBot is well suited for
active object localization tasks since it has a larger effective
workspace, compared to tabletop, fixed-base Franka robots that
are constrained to mostly top-down views. We interface with
the TidyBot through an onboard NUC, which publishes images
to a desktop for inference using the world model or VLM.

C. Evaluation Setup
1) Choice of Baselines and Ablations: In the following

sections, we discuss in more detail how we setup the evaluation
framework, and motivation for the choice of baseline and
ablations that we choose to include. Selecting the proper
baseline is particularly challenging in our case. For one, many
policies are not open-vocabulary and requires more constrained
problem/action spaces. Secondly, the setup of our task (large
environment variations and observations from only an on-board
camera) also makes fine-tuning state-of-the-art manipulation
policies difficult, since they are not designed for the task. In our
experiments, we compare WoMAP to a VLM-based planner
with GPT-4o [17] as the VLM. We compute the gradients
during planning using automatic differentiation in the WM-
Random, WM-HR, and WoMAP.

Diffusion Policy. One might expect the diffusion policy to
perform better in our experiments. Upon further investigation,
we observed that single-task diffusion policy (trained to localize
a single object in an environment) performs well; however,
the multi-task diffusion policy (DP), which is more relevant
to the active object localization problem, failed to perform
well. We found that the DP generally moved forward in the

This is what you currently see. Please carefully analyze the current observation
and think about what is the best action to take given what you see.
If you think the current observation is a good enough view of {self.target}
and you can’t get any closer, please say ‘DONE’.
Otherwise, please select the top {self.k} choices from the action options
below that you think would help you achieve the goal given the current observation.
The options are:

(A) Move directly forward for 15 cm -- this lets you approach the objects in view
(B) Move directly to the left for 15 cm -- this expands your left left by a bit
(C) Move directly to the right for 15 cm -- this expands your right left by a bit
(D) Look to the left by 45 degrees -- this lets you look around
(E) Look to the right for 45 degrees -- this lets you look around
(F) Move forward-left for 15 cm -- this lets you approach objects on the
left side of your view
(G) Move forward-right for 15 cm -- this lets you approach objects on the
right side of your view
(H) Move forward-left for 15 cm and then look right by 45 degrees -- this lets
you look behind an object
(I) Move forward-right for 15 cm and then look left by 45 degrees -- this lets
you look behind an object

All these actions should be executed relative to the current your position.
Please think carefully step by step and reason about why your choice can help you
get the desired observation.
Please also review your movement history to see where you’ve already explored.
Output the results in a structured JSON format as follows:
{

"descriptions": <what you observe in the the current scene and
whether there are hints of the {self.target}.>
"actions": [

{"rank": 1, "choice": <choice1>, "confidence": <confidence_score1>,
"explanation": <explanation1>},
...
{"rank": {self.k}, "choice": <choice{self.k}>, "confidence":
<confidence_score{self.k}>, "explanation": <explanation{self.k}>},

]
}
<choice1>, ... <choice{self.k}> should be a single letter representing one of the
7 choices above.
Ensure the confidence scores are in descending order.
Do not include any extra explanation outside of the JSON structure.

Fig. 15: Prompt provided to the Vision-Language Model

direction the robot was initialized at, without exhibiting any
intelligent exploration behavior, e.g., looking behind objects and
in occluded areas. We visualize some of the DP trajectories in
Figure 19 in the PB-Kitchen-Easy and PB-Kitchen-Hard scenes.
The arrows in the figure indicate the direction of travel. From
Figure 19, we see that the DP does not seem to make intentional
decisions to move towards the target objects, annotated in the
figure.

2) Choice of Metrics: We make two key observations when
designing the evaluation metrics. First, in order to make sure
that the final observation is of good quality, our success score
is defined to be 1 if both (i) the detection confidence labeled
by GroundingDINO is above a certain threshold, and (ii) the
labeled bounding box proportion is above a certain threshold.
Since GroundingDINO’s detection confidence and bounding
box size on different objects can behave differently depending
on the object identity, shape, or size, we choose the object-
specific scaling parameter from the best view.

Secondly, the quality of task completion should also be
dependent on the amount of distance traveled to reach the target
as some policies are more efficient than others. To this end,
we define the efficiency score as efficiency = r ⇤ exp(�d/d

?),
where r denotes the success rate, d denotes the distance traveled,
and d

? the optimal distance to the object. In practice, we use
an estimate of d?.

D. Additional Experiment Results

1) Ablation Studies on Training Data: Though we performed
all of our experiments with a fixed training setup (50 scenes-
500 trajectories for the PyBullet environments and 10 scenes-
300 trajectories for the Gaussian Splat/Real environments),
we conducted additional ablation studies to investigate the
influence of the size and diversity of the training data on
model performance. We perform this ablation study in the
PB-Kitchen-Easy scene, since we can easily vary the size and
diversity of the training data in PyBullet.

Fig. 16: Scene variations for a single environment. We create multiple scenes within each environment by varying the
configuration and degree of occlusions of the objects in the environment. We show a few scenes in the PB-Kitchen-Medium
and GS-Office environments.

Fig. 17: PB-Kitchen-Hard initialization difficulty. Initial observations and target query for different initial-pose difficulty
levels in the PB-Kitchen-Hard scene.

TABLE VI: Target objects used for each environments.

PB-Kitchen-Easy PB-Kitchen-
Medium

PB-Kitchen-Hard PB-Office GS-Kitchen GS-Office GS-Random

banana banana banana gum banana banana banana
apple apple apple lipton tea mug mug mug
green bowl green bowl green bowl small marker bowl scissors bowl
lemon lemon lemon glue fork books fork
mustard mustard mustard book pot keyboard keyboard
cracker box cracker box sugar box stapler kettle mouse mouse
blue cup mug mug mug screwdriver screwdriver

scissors scissors scissors eyeglass eyeglasses
peach peach remote pot
fork fork cleanser scissors
strawberry strawberry potato chip milk box
jello box jello box skeleton

plate
potato chip

In Figure 20, we observe that the performance of WoMAP
and WM-Grad increases as the total number of trajectories in
the training dataset increases. We show the performance of
WM-Grad alongside WoMAP to indicate the base performance
of the world model without VLM action proposals. As expected,
WoMAP’s performance is strongly correlated with the size of
the training data, which influences the dynamics and rewards
prediction accuracy of the world model. Notably, even with
only 200 training trajectories, WoMAP outperforms the VLM
and DP baselines by about 1033% and 17%, respectively, (see
Figure 6), showing its remarkable data efficiency.

Figure 21 shows the performance of WoMAP as we vary the
scene diversity while keeping the total number of trajectories
fixed. Overall, we do not observe a strong correlation between
the number of training scenes and the success score. How-
ever, when training with fewer trajectories (e.g., 100 or 200
trajectories), the performance of the models decreases with the
number of scenes. This finding may be attributed to the tradeoff
between learning more specialized (scene-specific) features
versus more generalizable features across multiple scenes, with
a tight budget on the number of training trajectories. In contrast,
when training with 500 trajectories, we find that the success
rate improves as the number of scene increases, resulting in
much higher success rates.

2) Full Experiment Results: We provide the full results for
the experiments used to compute the values in Figure ?? and ??
in Table VII below for reference. Each experiment under a given
environment and initialization difficulty is performed under 50
independent trials with randomized scene configuration and
initial position.

3) Semantic Generalization Experiment Results: As dis-
cussed in Section IV-E, we evaluate WoMAP’s semantic
zero-shot generalization to novel tasks. We quantify the
semantic similarity between different tasks using the cosine
similarity between language embeddings computed from the
task instructions by Sentence-Bert [31]. For seen target objects,
we vary the task instructions to capture the breadth of possible
user descriptions, e.g., asking WoMAP to find a “sweet thing”
or a “yellow fruit” with the goal of locating a banana. We
utilize partial success scores to better evaluate the degradation

in performance with more semantically dissimilar target object
queries, where the success scores is linearly scaled based on the
bounding-box proportion and the detection confidence. From
Figure 9, we find that WoMAP achieves strong generalization
with a correlation coefficient between 0.6 and 0.71 across
the three object categories. Likewise in Figure 9, we observe
that WoMAP generalizes well to unseen target objects. For
example, WoMAP localizes a pair of “pliers” and a “hammer,”
which WoMAP was not trained on. We attribute the strong
generalization performance of WoMAP to the generalizable
semantic features captured in WoMAP’s latent space.

4) Additional Discussion: Here, we provide additional
discussion for main results that are touched upon in Section IV.

World Model-Heuristics (WM-HR) Baseline: We use the
set of candidate actions provided to the VLM as the heuristic
actions in the W-HR baseline. This clever set of actions enabled
the WM-HR to perform similarly to WoMAP, since the world
model performed well at evaluating these candidate actions
and selecting the most promising one. However, the WM-HR
baseline lacks any high-level intelligence, posing a limitation
in practical situations, since a brute-force approach would not
scale, in general.

Sim-to-Real Performance for VLM: We observe that the
performance of the VLM drops significantly when moving
from simulation to the real-world. This drop in performance is
in part due to the limitations in directly executing the VLM’s
action proposals on the physical robot. We find that the robot
reaches its range limits often when evaluating the VLM, which
effectively ends the experiments, leading to an increase in the
failure of the VLM. Further, the VLM occasionally struggled
with fully approaching the object in the real-world and often
stopped a good distance away from the object.

5) Extension: Non-tabletop Scenes: Despite using tabletop
scenes for easy standardized benchmarking in this paper, we
also illustrate that our framework works for more general
environments. We provide a video in the supplementary
material, demonstrating WoMAP on a larger scale, particularly
in a living room.

Fig. 18: GS-Random initialization difficulty. Initial observations and target query for different initial-pose difficulty levels in
the GS-Random scene.

Fig. 19: Diffusion policy trajectory visualizations. Top two rows: PB-Kitchen-Easy with easy initial conditions, Bottom two
rows: PB-Kitchen-Hard with hard initial conditions. The DP generally moved forward in the direction the robot was initialized
at, without showing any intelligent exploration behavior, e.g., looking behind objects.

Fig. 20: Average success score for different number of trajectories sampled from 50 scenes in the PB-Kitchen-Easy task. We
observe a positive correlation between the number of training trajectories and the success rate of WM-Grad and WoMAP across
different initial conditions: Easy (E), Medium (M), and Hard (H). With only 200 training trajectories, WoMAP outperforms the
VLM and DP baselines (see Figure 6).

Fig. 21: Average success score for total number of trajectories 2 {100, 200, 300, 400} sampled from different numbers of scenes
in the PB-Kitchen-Easy task. When trained with very few trajectories (e.g., 100 or 200 trajectories), the model performance
decreases when the number of training scenes increases, due to the tradeoff between learning scene-specific features versus
generalizable features. However, we observe a positive correlation between the number of training scenes and the success rate
when training with more trajectories, e.g., 500 trajectories.

TABLE VII: Full Experiment Results

IC: Easy PB-Office PB-Kitchen-Easy PB-Kitchen-Medium PB-Kitchen-Hard

Planner Success Efficiency Success Efficiency Success Efficiency Success Efficiency

VLM 0.30 0.28 0.06 0.05 0.00 0.00 0.02 0.02
DP 0.28 0.25 0.28 0.25 0.22 0.19 0.16 0.15
WM-CEM 0.30 0.24 0.18 0.13 0.10 0.08 0.16 0.13
WM-Grad 0.60 0.41 0.78 0.50 0.66 0.41 0.66 0.46
WM-HR 0.74 0.63 0.74 0.61 0.68 0.56 0.62 0.54
WoMAP 0.88 0.73 0.90 0.72 0.78 0.60 0.80 0.68

IC: Medium PB-Office PB-Kitchen-Easy PB-Kitchen-Medium PB-Kitchen-Hard

Success Efficiency Success Efficiency Success Efficiency Success Efficiency

VLM 0.24 0.22 0.04 0.04 0.04 0.04 0.02 0.02
DP 0.42 0.36 0.26 0.23 0.28 0.25 0.08 0.07
WM-CEM 0.26 0.22 0.24 0.17 0.24 0.18 0.16 0.11
WM-Grad 0.58 0.39 0.48 0.30 0.52 0.34 0.46 0.32
WM-HR 0.74 0.61 0.66 0.52 0.50 0.41 0.44 0.38
WoMAP 0.70 0.55 0.82 0.63 0.64 0.52 0.50 0.41

IC: Hard PB-Office PB-Kitchen-Easy PB-Kitchen-Medium PB-Kitchen-Hard

Planner Success Efficiency Success Efficiency Success Efficiency Success Efficiency

VLM 0.08 0.05 0.00 0.00 0.00 0.00 0.00 0.00
DP 0.14 0.10 0.32 0.28 0.20 0.18 0.18 0.16
WM-CEM 0.06 0.04 0.02 0.01 0.02 0.02 0.02 0.02
WM-Grad 0.24 0.11 0.18 0.11 0.16 0.09 0.16 0.09
WM-HR 0.38 0.26 0.24 0.19 0.24 0.19 0.22 0.19
WoMAP 0.58 0.39 0.34 0.25 0.40 0.32 0.34 0.28

IC: Easy GS-Kitchen GS-Office GS-Random

Planner Success Efficiency Success Efficiency Success Efficiency

DP 0.50 0.47 0.54 0.49 0.28 0.26
VLM 0.12 0.11 0.14 0.13 0.08 0.07
WM-CEM 0.58 0.48 0.40 0.35 0.40 0.30
WM-Grad 0.84 0.67 0.86 0.63 0.76 0.56
WM-HR 0.78 0.66 0.96 0.83 0.58 0.49
WoMAP 0.86 0.74 0.96 0.77 0.72 0.59

IC: Medium GS-Kitchen GS-Office GS-Random

Planner Success Efficiency Success Efficiency Success Efficiency

VLM 0.06 0.06 0.06 0.05 0.02 0.01
DP 0.42 0.36 0.32 0.29 0.12 0.11
WM-CEM 0.26 0.20 0.22 0.18 0.20 0.13
WM-Grad 0.50 0.32 0.50 0.30 0.36 0.23
WM-HR 0.56 0.45 0.66 0.56 0.30 0.23
WoMAP 0.68 0.55 0.72 0.55 0.46 0.36

IC: Hard GS-Kitchen GS-Office GS-Random

Planner Success Efficiency Success Efficiency Success Efficiency

VLM 0.00 0.00 0.02 0.02 0.00 0.00
DP 0.18 0.16 0.14 0.11 0.08 0.06
WM-CEM 0.08 0.06 0.08 0.05 0.02 0.01
WM-Grad 0.14 0.09 0.22 0.11 0.00 0.00
WM-HR 0.18 0.15 0.32 0.25 0.08 0.07
WoMAP 0.24 0.18 0.48 0.34 0.12 0.08

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Scalable Data Generation
	World Models for Active Perception
	World Model Architecture
	Reward Distillation

	Planning with WoMAP

	Experiments
	Environments and Tasks
	Baselines, Ablations, and Evaluation Metrics
	Evaluation across Varying Task Difficulty
	Sim-to-Real Transfer with Gaussian Splats
	Generalization to Novel Task Conditions

	Conclusion
	Limitations and Future Work
	Appendix A: Implementation Details
	Details on Data Generation
	Preliminaries: Gaussian Splatting for Photorealistic Novel View Rendering
	Ablation: Generating Training Data without Novel Views
	Details on Trajectory Data Generation

	World Model Implementation
	Ablations

	Details on Planning Integration
	Planning with VLMs

	Appendix B: Experiment Details
	Task Design Details
	Designing task environments
	Evaluating Task Difficulty

	Hardware Experiment Setup
	Evaluation Setup
	Choice of Baselines and Ablations
	Choice of Metrics

	Additional Experiment Results
	Ablation Studies on Training Data
	Full Experiment Results
	Semantic Generalization Experiment Results
	Additional Discussion
	Extension: Non-tabletop Scenes

