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Abstract
Multimodal Large Language Models (MLLMs)
for tabular understanding have made significant
progress in tasks such as financial report anal-
ysis and public data tests. However, our com-
prehensive analysis shows that these models are
still limited in certain simple scenarios, particu-
larly when handling compositional conditions in
QA. Further investigation reveals that the poor
performance can be attributed to two main chal-
lenges: the visual encoder’s inability to accurately
recognize the content of a row, and the model’s
tendency to overlook conditions in the question.
To address these, we introduce a new Composi-
tional Condition Tabular Understanding method,
called COCOTAB. Specifically, to capture the
structural relationships within tables, we enhance
the visual encoder with additional row and col-
umn patches. Moreover, we introduce the con-
ditional tokens between the visual patches and
query embeddings, ensuring the model focuses
on relevant parts of the table according to the
conditions specified in the query. Additionally,
we also introduce the Massive Multimodal Tab-
ular Understanding (MMTU) benchmark, which
comprehensively assesses the full capabilities of
MLLMs in tabular understanding. Our proposed
method achieves state-of-the-art performance on
both existing tabular understanding benchmarks
and MMTU. Our code can be available at https:
//github.com/LAMDA-Tabular/MMTU.

1. Introduction
Tabular understanding (Deng et al., 2022; Jin et al., 2022;
Shigarov, 2023; Wan et al., 2024) aims to automatically
extract, analyze, and comprehend information from vari-
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ous types of tables, such as images or screenshots. It is
a critical task in numerous fields, including financial anal-
ysis (Zavitsanos et al., 2024), experimental data interpre-
tation (Konopka et al., 2023), and public service record
management (Engin & Treleaven, 2019).

Recent advancements in Multimodal Large Language Mod-
els (MLLMs) (Zhu et al., 2023; Achiam et al., 2023; Liu
et al., 2024b;a; Yin et al., 2023) have significantly pro-
gressed the field of tabular understanding. These models,
which integrate pre-trained large language models (LLMs)
with vision encoders through projections, provide an end-to-
end framework. While conventional tabular understanding
tasks, including table detection and structure recognition,
have been successfully addressed by previous studies (Xu
et al., 2020; Hu et al., 2021a; Huang et al., 2022; Tang et al.,
2023; Wei et al., 2024), our work focuses on the more chal-
lenging task of table question answering (TQA), particularly
in scenarios where tabular data is presented in image format.

For simple TQA tasks, MLLMs may only need to recog-
nize and interpret the table’s structure to provide accurate
answers. For instance, in a grade report, MLLMs can easily
extract a specific student’s score for a course. However,
such tasks do not engage with the table’s inherent struc-
ture, where rows represent samples and columns represent
attributes. The complexity of rows and columns often leads
to compositional queries (Oh et al., 2011; Lei et al., 2018;
Talmor et al., 2021; Dang et al., 2024), like identifying the
mathematics score of the student with the highest overall
total. Such tasks demand a more profound understanding of
the table’s content and structure, significantly increasing the
complexity and requiring enhanced interpretative capabili-
ties from MLLMs. This raises the question: When provided
with a table image, can MLLMs understand the structural
information and handle such complex TQA tasks?

To answer the question, we conducted a preliminary investi-
gation. Based on the characteristics of tabular data, we cate-
gorize the existing benchmark into four aspects: understand-
ing individual elements (IE), interpreting rows and columns
(RC), comprehending compositional conditions (CC), and
performing basic calculations or reasoning (CR). Our analy-
sis, shown in Figure 1, reveals that current MLLMs perform
well on IE and RC tasks, which mainly require structural
recognition. However, they face significant limitations on
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Question: Which village has a negative growth rate that 

is the most close to 0?

IE

CCRC

CR

Qwen-VL-Max GPT-4o

TextMonkey DocOwl2

0.90.2 0.5

0.88

0.82

0.77

Ground Truth: Casselman with a growth rate of -2.2%.

TextMonkey: Burk‘s Falls, South River(5,625), (235,654). 

DocOwl2: each village are Burks Falls: 1.4%, Casselman: 

2.2%, …,  Merrickville-Lower-tier: 7.6%, … , Westport: -

6.1%.  Therefore, the village with a negative growth rate 

closest to 0 is Westport with a rate of -6.1%.

GPT-4o: The village with a negative growth rate closest to 0 is Oil Springs, with a growth rate of -0.1%.

missing conditions incorrectly alignmentcondition 1 condition 2

An example

Qwen-VL-Max: Step1: Identify the villages with a negative growth rate. Point Edward: -8.0%, Westport: -6.1%, Oil Springs: -8.0%

…… Step4: The village with the negative growth rate closest to 0 is Westport, with a growth rate of -6.1%.

Figure 1. An overview of the capabilities of some current MLLMs on a subsample of WikiTableQuestions (Pasupat & Liang, 2015) dataset
in the four aspects of tabular understanding, including understanding individual elements (IE), rows or columns (RC), compositional
conditions(CC), and calculations or reasoning (CR). An example on the CC is also provided. Almost all models perform poorly, with the
two main types of errors being: incorrectly aligned with the row or column, and overlooking a condition specified in the question.

CC and CR tasks, which require deeper engagement with
the information in rows and columns. MLLM performance
varies notably, even on simple IE tasks. Furthermore, all
models, including GPT-4o (OpenAI, 2024), perform poorly
on tasks involving basic compositional conditions.

To understand what exactly causes current MLLMs to per-
form poorly in tabular understanding, especially in compo-
sitional conditions. we investigate several aspects according
to the three components of MLLMs: vision encoder, projec-
tion, and LLM. Our analyses suggest that the primary reason
for the observed poor performance is the vision encoder and
the projection. Specifically, the patch division strategy of
the vision encoder causes an inability to accurately recog-
nize the content of a row, leading to positional errors in the
table’s structure. Moreover, when handling complex QA,
MLLMs tend to overlook all the relevant conditions in the
question, leading to incomplete or incorrect answers.

To address this, we propose Compositional Condition Tab-
ular Understanding (COCOTAB), a new MLLM aimed at
improving tabular understanding. In COCOTAB, the visual
encoder is enhanced to better capture the full structure of
tables, processing row and column information without the
distortions from dividing the table image into patches. We
also improve the alignment between the table’s structure
and the query conditions, ensuring key information is at-
tended. Our approach offers a lightweight enhancement to
the original model without adding complexity.

Specifically, COCOTAB works by augmenting the visual
encoder with row and column patches, which allows the
model to better capture the structural relationships within
tables. These patches provide contextual information in
specific rows or columns, helping the model focus on the
specific sample or attribute of the table, and improving its

understanding of contextual dependencies. Moreover, we
introduce the conditional tokens between the visual patches
and query embeddings. This ensures that the model can
focus on the relevant parts of the table based on the con-
ditions specified in the question, allowing it to effectively
reason across different rows, columns, or conditions. Exper-
imental results demonstrate the effectiveness of COCOTAB
in improving the model’s ability in complex TQA tasks,
particularly those involving compositional conditions.

To better assess MLLMs’ ability in tabular understanding,
we identify gaps in current benchmarks, such as a lack of
focus on specific question types and the presence of factual
errors. We propose evaluating four key aspects: element,
row/column, compositional condition understanding, and
basic calculations/reasoning. Introducing the Multimodal
Tabular Understanding (MMTU) benchmark, with 8921 QA
pairs across 4 categories and over 10 domains, we aim to
overcome existing dataset limitations. The key contributions
of this paper are as follows:

• Evaluating MLLMs weaknesses in tabular under-
standing: Our evaluation with multiple MLLMs on
benchmarks demonstrates the significant disparities and
limitations of MLLMs in tabular understanding.

• Analyzing causes of limited understanding perfor-
mance: Through testing various hypotheses, we find that
the primary reasons for MLLMs’ poor performance in tab-
ular understanding are misalignment in vision encoders
and overlook of conditions in questions.

• Enhancing MLLMs with structural information: By
incorporating row and column patches and attention mech-
anisms, we improved the performance of MLLMs in tab-
ular understanding. The new benchmark also provides a
more comprehensive evaluation.

2



Compositional Condition Question Answering in Tabular Understanding

2. Related Work
2.1. Mutlimodal Large Language Models

The field of multimodal large language models (MLLMs)
has seen remarkable progress, especially in the integration
of visual and textual processing. Modern MLLMs typi-
cally combine visual encoders (Radford et al., 2021; Sun
et al., 2023; Zhai et al., 2023; Han et al., 2022), large lan-
guage models (LLMs) (Brown et al., 2020; Ouyang et al.,
2022; Chang et al., 2024; Tianhao et al., 2025; Lian et al.,
2025), and various fusion modules (Li et al., 2024; Sun
et al., 2025b;a; Zhang et al., 2024; 2025). Recent devel-
opments, such as Flamingo (Alayrac et al., 2022), have
advanced visual representation by utilizing the Perceiver Re-
sampler alongside vision encoders. Models like BLIP-2 (Li
et al., 2023) and InstructBLIP (Dai et al., 2023) employ a
Q-Former to bridge the gap between vision encoders and
frozen LLMs. MiniGPT-4 (Zhu et al., 2023) introduces a
combination of Q-Former and a linear projector to align
vision and LLM modules more effectively.

In contrast, LLaVA (Liu et al., 2024b) utilizes a straightfor-
ward MLP projector to enhance the alignment between the
vision encoder and LLM. mPLUG-Owl (Ye et al., 2023a)
takes a different approach by fine-tuning the vision encoder
first and then using LoRA (Hu et al., 2021b) to adjust the
LLM. The Qwen-VL model (Bai et al., 2023) increases the
visual module’s resolution to 448 in order to improve visual
processing performance. Alongside these open-source ad-
vances, proprietary models such as GPT-4V/4o (OpenAI,
2024; Achiam et al., 2023), Gemini (Team et al., 2023) and
Qwen-VL-Plus/MAX (Bai et al., 2023) have demonstrated
outstanding performance in both benchmarks and real-world
applications. Given the simplicity and effectiveness of the
LLaVA architecture, we adopt a similar framework for our
model design in this work.

2.2. Tabular Understanding

Traditional tabular data learning primarily addresses stan-
dard tasks such as classification and regression (Ye et al.,
2024; Meng et al., 2024; Ye et al., 2025b; Jiang et al., 2025).
In recent years, increasing attention has been devoted to tab-
ular data learning in open-world settings (Jiang et al., 2024;
Cai & Ye, 2025; Hollmann et al., 2025; Liu & Ye, 2025; Ye
et al., 2025a). Among these, tabular understanding involves
comprehending the information contained within tabular
data and can be broken down into several tasks, such as
Table Structure Recognition (TSR) (Schreiber et al., 2017;
Salaheldin Kasem et al., 2024), Table Detection (TD) (Gi-
lani et al., 2017; Li et al., 2020), and Table Question An-
swering (TQA) (Chen et al., 2020; Talmor et al., 2021; Jin
et al., 2022). Traditional methods, whether OCR-based (Ap-
palaraju et al., 2021; Da et al., 2023; Gu et al., 2022) or
OCR-free (Nassar et al., 2022; Kim et al., 2021; Feng et al.,

2023; Wan et al., 2024; Zhao et al., 2024), have made sig-
nificant strides in recognizing the structure and content of
tables. However, we focus on more challenging TQA tasks.

Previous methods have tried a lot but the performance is not
ideal. Donut (Kim et al., 2021) proposes a new task and a
synthetic document image generator to pre-train the model
to mitigate the dependencies on large-scale real document
images Monkey and TextMonkey (Li et al., 2024; Liu et al.,
2024c) adopt shifted window attention and use similarity
to filter out significant tokens without redundancy. They
expand the model’s capabilities to encompass text spotting
and grounding, and incorporate positional information into
responses to enhance interpretability. mPLUG-DocOwl (Ye
et al., 2023b) adjusts mPLUG-Owl for OCR-free document
understanding. Tabpedia (Zhao et al., 2024) constructs a
low-resolution vision encoder and a high-resolution vision
encoder, with a concept synergy mechanism for visual ta-
ble understanding. Deng et al. (2024) focuses on exploring
various table representations and prompts LLMs directly.
In addition to these advantages, they often suffer from the
limitations of the ViT architecture. The patch-based divi-
sion of the image into blocks causes the model to ignore
the inherent relationships in the table, and it also tends to
overlook certain conditions in the question.

3. Analyze the Ability of MLLMs in Tabular
Understanding

We first introduce some notations for MLLMs in tabular
understanding tasks. Then, we analyze the performance of
current MLLMs on existing benchmarks and examine the
reasons behind their performance limitations.

3.1. MLLMs for Tabular Understanding

A notable contribution in the field of MLLMs is LLaVA (Liu
et al., 2024a), which presents a straightforward yet efficient
approach to align the vision encoder with a pre-trained LLM.
Specifically, given an input image Xv, LLaVA uses the pre-
trained CLIP vision encoder ViT-L/14 g (Radford et al.,
2021) to extract visual features Zv = g(Xv). The LLM,
which is denoted as fϕ(·) parameterized by ϕ, is then em-
ployed to generate textual embeddings Hq from instruction
Xq. To ensure alignment between the vision encoder and
the LLM, LLaVA learns a projector, represented by a multi-
layer perceptron (MLP) denoted as W, which transforms
visual features Zv into language embedding tokens Hv. This
enables the seamless integration of multimodal information
within the LLM framework.

Hv = W · Zv,with Zv = g(Xv). (1)

Then, by inputting Hv and Hq into the language model
fϕ(·), the model generates the response Xa = fϕ(Hv,Hq).
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In the tabular understanding task, particularly the TQA task
we focus on, Xv represents the input table image, and Xq

represents the question. Our goal is for the final answer, Xa,
to be as consistent as possible with the correct answer Ya.

min
fϕ

N∑
i=1

ℓ(fϕ(Hv,Hq),Ya) . (2)

ℓ is the loss function that measures the discrepancy between
prediction and ground-truth.

In our paper, based on the rows and columns of tabular
data, we categorize TQA into four key aspects: understand-
ing individual elements (IE), interpreting rows or columns
(RC), comprehending compositional conditions (CC), and
performing basic calculations or reasoning (CR). A more
detailed introduction is as follows:

• IE: This refers to the task of understanding and extracting
specific cell values within a table, such as identifying the
value at a particular row and column intersection. For
example, ”What is Student A’s math score?”

• RC: This involves comprehending specific samples or
attributes within a table. For instance, ”Which course
does Student A have the highest score in?” or ”Which
student has the best math score?”

• CC: This pertains to understanding table content that sat-
isfies compositional conditions. Examples include, ”What
is the math score of the student with the highest total
score?” or ”Among the top three students in total score,
how many have an ‘A’ in physical education?”

• CR: This refers to performing basic calculations or log-
ical reasoning on specific cell values within a table. For
example, ”How much higher is the total score of the top
student compared to the lowest-scoring student?”

3.2. Analysis on MLLMs in Tabular Understanding

Models. We selected several widely used state-of-the-art
MLLMs, covering different architectures, training methods,
and data. These MLLMs include two proprietary ones, GPT-
4o (OpenAI, 2024), and Qwen-VL-Max (Bai et al., 2023),
and seven public ones, LLaVA1.6-Vicuna7B/13B (Liu et al.,
2024a), Monkey (Li et al., 2024), TextMonkey (Liu et al.,
2024c), mPlug-Owl (Ye et al., 2023a), DocOwl (Ye et al.,
2023b), InstructBLIP-Vicuna7B (Dai et al., 2023), and
Donut (Kim et al., 2021).

Data. We evaluated the aforementioned models on the
widely used tabular understanding benchmark: WikiTable-
Questions (WTQ) (Pasupat & Liang, 2015). In particular,
we divided the test set of the entire WTQ into four categories
based on the nature of the tables, including understanding
individual elements (IE), interpreting rows or columns (RC),
comprehending compositional conditions (CC), and per-
forming basic calculations or reasoning (CR). For conve-

Table 1. Accuracy on four types of table understanding tasks. The
results show a significant gap between open-source and closed-
source MLLMs. Additionally, the performance on the composi-
tional condition QA is generally poor across the board.

IE RC CC CR

LLaVA-7B 0.37 0.28 0.03 0.05
LLaVA-13B 0.47 0.32 0.07 0.10
Monkey 0.52 0.37 0.17 0.22
TextMonkey 0.52 0.40 0.25 0.18
mPlug-Owl 0.11 0.08 0.14 0.05
DocOwl 0.55 0.50 0.20 0.22
BLIP 0.05 0.07 0.07 0.25
Donut 0.27 0.03 0.02 0.07

GPT-4o 0.88 0.80 0.47 0.77
Qwen-VL-Max 0.85 0.82 0.48 0.70

nience in statistics, we randomly sampled 60 questions from
each category and evaluated them on this smaller dataset.

Evaluation Protocol. Since this is an open-ended question-
answering process, directly assessing the correctness of the
model’s answers is challenging. Additionally, relying solely
on GPT-4 to evaluate the correctness of the QA pairs is
not ideal, as GPT-4 is not always accurate. For instance,
in Figure 1, GPT-4 overlooked the condition of “negative”.
However, when we input the question, ground truth, and
the generated answer into LLMs, such as Qwen2.5-72B-
Instruct (Yang et al., 2024), the evaluation becomes more
accurate compared to using MLLMs alone. This strategy en-
sures a more precise assessment of MLLMs by transforming
multimodal questions into a single modality for evaluation,
thus reducing the likelihood of misjudging the model’s ca-
pabilities and resulting in a more accurate evaluation.

Results. Table 1 shows the performance of different
MLLMs on the tiny tabular understanding dataset. MLLMs
perform poorly overall, with a significant performance gap
compared to human experts, where all tasks are easy for hu-
mans. For instance, nearly all open-source models achieve
less than 55% accuracy on the simple IE task, while closed-
source models perform better, with GPT-4o reaching 88%,
compared to just 55% for the best open-source model. On
more challenging CC and CR tasks, the performance gap
between open-source and closed-source models becomes
even more pronounced. Even within the open-source mod-
els, there is a significant performance disparity. Document
models, such as DocOwl and TextMonkey, outperform the
more general large models like LLaVA on all tasks.

Furthermore, we found that even the strongest model, GPT-
4o, performs poorly on CC tasks. The performance of open-
source models is even worse, achieving less than half the
accuracy of closed-source models. However, despite being
compositional condition tasks, the answers to these ques-
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Figure 2. A further analysis of the compositional condition task.
OE represents the OCR error rate, MC refers to the rate of missing
conditions in answers, and IA denotes the incorrect alignment rate.

tions can be directly obtained from the table images, without
requiring much additional knowledge. For human experts,
these questions are also simple and straightforward. This
raises the question: why do current large models struggle
with even fundamental compositional condition tasks?

3.3. Why are MLLMs Limited in TQA?

To further investigate why MLLMs perform poorly on table
understanding tasks, we analyze their structure, focusing on
the visual encoder and LLM components. When it comes to
tabular understanding, two key aspects arose: whether the
table image can be accurately recognized and whether the
LLMs can effectively comprehend the image. According to
the results above, we primarily analyzed the performance of
LLaVA-7B, LLaVA-7B, mPlug-Owl, mPlug-DocOwl.

The adaptation of the visual encoder to table images is
crucial. We analyzed the capabilities of the vision encoder
in MLLMs. We evaluated the instances of text recognition
errors in the results of these MLLMs and found that LLaVA
exhibited a significant number of text recognition mistakes.
Even GPT-4o showed some cases of fuzzy text recogni-
tion errors. For example, they often misinterpret “1007”
as “1001” or “1009”. Additionally, while analyzing these
results, we also observed errors in misalignment in rows or
columns. For instance in Figure 1, the Oil Springs’s change
rate is -8.0, but recognized as Point Edward’s change rate 0.1
by GPT-4o. When comparing the results of mPlug-Owl and
DocOwl, we find that, with fine-tuning on document data,
DocOwl significantly reduces rates of missing conditions
and incorrect alignments. This highlights the importance of
familiarizing the visual encoder with table images.

Fully understanding each condition in the table is essen-
tial for successfully handling compositional condition
tasks. To further analyze why the model provides incorrect
answers, we asked the model to answer step by step in a
chain-of-thought format. We found that in conditional con-
dition scenarios, the model may overlook certain conditions,

leading to incorrect final answers. As shown in the exam-
ple above, even though the model initially considered the
condition “most close to 0”, it failed to factor the condition
of “negative” when answering the question, resulting in an
incorrect response. The results in Figure 2 show that open-
source models like LLaVA and DocOwl frequently overlook
conditions. Even GPT-4o overlooks certain conditions at a
high rate. More analysis can be found in Appendix D.1

In summary, we find that the poor performance of MLLMs
in tabular understanding can be attributed to two main as-
pects. First, the vision encoder has limited capabilities,
failing to recognize the row and column information accu-
rately. This is likely due to the visual encoder splitting the
same sample or attribute into multiple patches, and relying
solely on position embeddings may not capture this infor-
mation effectively. Second, there is a gap in how MLLMs
understand both the question and the image, which causes a
disconnection between the two and leads to the neglect of
some conditions mentioned in the question.

4. Compositional Condition Tabular
Understanding

Motivated by our findings, this section presents our method,
which incorporates row and column patches along with text-
enhanced conditional tokens. We then outline the training
process for our approach.

4.1. Contextual Information Extraction in Table Images

Traditional MLLMs, such as LLaVA, Donut, Tabpedia,
typically use the ViT architecture as the vision encoder.
Specifically, for 2D images, ViT reshape the image Xv ∈
RH×W×C into a sequence of flattened 2D patches Xv

p ∈
RN×(P 2·C). where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution
of each image patch, and N = HW/P 2 is the resulting
number of patches, which also serves as the effective input
sequence length for the Transformer.

However, when dealing with table images, using the same
patch division can result in the splitting of certain infor-
mation or column attributes across different patches, dis-
rupting the contextual relationships within the table’s rows
and columns. For example, in the case in Figure 1, the
village “Point Edward” and its corresponding change rate
are divided into separate patches, severing their relation-
ship within the same row. This causes incorrect matching
during reading, where the change rate of “Oil Springs” is
mistakenly paired with “Point Edward” instead. Therefore,
ensuring that the model properly understands the content
within the rows and columns becomes crucial.

To address this issue, we augment the original patches by
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Which village has a negative growth 

rate that is the most close to 0?

Word Embedding

Large Language Model

Casselman with a growth rate of -2.2%.

Vision Encoder
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Vision Encoder

Projection
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Instruction Tuning

Cross
Attention

··· ···

Projection1

··· ···

Projection2 Projection3

···
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negative

close to 0

Q
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K

Figure 3. The overall architecture of COCOTAB. It primarily augments the table image with row and column patches and incorporates
conditional tokens to enhance the relationship between each condition in the question and the image. The training details within each
stage are presented on the right.

adding additional row and column patches. The goal is
to better preserve the relationships within the sample or
attributes through these row and column patches, thereby
reducing the problem of misaligned rows in the vision en-
coder. Specifically, in addition to the original patches Xp

v

with resolution (P, P ), we introduce row patches Xrow
v with

resolution (P,W ) and column patches Xcol
v with resolu-

tion (H,P ). As a result, the total number of patches is
N = HW/P 2 +H/P +W/P . Therefore, the final image
tokens can be represented as follows:

Zv,Zrow,Zcol = g(Xp
v,Xrow

v ,Xcol
v ). (3)

After obtaining the tokens for all image patches, we learn a
projection from each kind of patch token type to text, result-
ing in Hv = (Hp

v,H
row
v ,Hcol

v ). By partitioning the table
into row and column patches, we enhance the integration of
sample-level and attribute-level information within individ-
ual patches, which preserves intra-sample and intra-attribute
relationships, ensuring their structural integrity. Further-
more, the use of separate projections enables the learning of
distinct mappings, effectively mitigating information loss.

4.2. Attend Tables with Questions

In current MLLMs, such as LLaVA, the visual encoder g
is built on the Vision Transformer (ViT). When process-
ing image data, the model divides the image into patches
and employs multiple layers of multi-head self-attention
to capture the relationships between these patches. Simi-
larly, in the language component, like the Transformer block
in LLaMA, the architecture typically combines multi-head
attention and MLP layers. For text, only self-attention is

computed to capture relationships within the sequence. Al-
though the image patch tokens are projected into the same
space as text tokens, this method appears inadequate for
truly effective cross-modal understanding, leading to the
missing of certain conditions in tabular understanding.

Therefore, to fully leverage the information from both the
image and the question, we attend to the image according
to the question. First, we extract visual features using the
visual encoder g and then project them into language em-
bedding tokens Hv ∈ RNv×C , where Nv is the vision token
length and C is the embedding dimension. Similarly, we
obtain the question embedding Hq ∈ RNq×C from the text
input via a word embedding table. Subsequently, to guide
the transformation of visual features towards the question,
we employ a cross-modal attention to obtain H′

v.

H′
v = Attention(Q,K,V) = Softmax

(
HqH

T
v√

C

)
Hv,

(4)
where Q equals the matrix Hq. K and V are equivalent to
Hv, H′

v ∈ RNq×C . This process allows the visual features
to be dynamically adjusted based on the input questions.

After obtaining the question-guided image tokens, we feed
them into the LLM alongside the text tokens. Specifically,
by inputting Hv, H′

v and Hq into the language model fϕ(·),
the model generates the response Xa = fϕ(Hv,H

′
v,Hq).

This approach explicitly combines the information from
both the question and the image, rather than leaving the
LLM to learn the relationships between the image and text
tokens independently. Doing so more effectively captures
the conditions specified in the question.
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4.3. Training Stages

Our goal is to enhance different aspects of the tabular un-
derstanding capabilities of MLLMs. The whole training
procedure is divided into two distinct stages.

Stage 1: Patch Learning and Modality Alignment. In
this stage, we keep most of the parameters in the vision
encoder and the LLM weights frozen, focusing on optimiz-
ing the projectors to align the visual features Hv with the
pre-trained LLM word embedding. We unfrozen the row
and column embedding to capture the representation of the
samples and attributes. Row tokens and column tokens are
aligned to LLM word embedding with their own projection
to capture corresponding information. To enhance the diver-
sity of images, we extract a portion of data from LAION and
CC12M and construct the caption data, along with some
tabular datasets, including Pub1M (Smock et al., 2022),
WTQ (Pasupat & Liang, 2015), NAT-QA 1, PlotQA (Wang
et al., 2024b), OCR-VQA 2 (Mishra et al., 2019).

Stage 2: Instruction Tuning for Tabular Understand-
ing. In the first stage, we learned the representations of the
patches and their mapping to the text embeddings. In stage
2, we freeze the vision encoder weights while continuing
to train the projection and LLM. Our primary goal in this
stage is to refine the representations of rows and columns,
facilitating the LLMs’ adaptation to these representations.
Specifically, we focus on learning the row and column patch
tokens and the image tokens that the questions attend.

To tackle the challenge of limited data in TQA, we adopt
a semi-automatic approach to acquire image-QA data. We
begin by randomly sampling tables from existing datasets,
selecting a subset, and converting them into images. Next,
we use GPT-4 to generate random questions about these ta-
bles and provide corresponding answers. After obtaining the
initial QA data, we validate it using Qwen-VL-Max, retain-
ing only the datasets that pass the validation. Recognizing
that this step may introduce noise and potential errors, we
apply a manual calibration process to further fine-tune and
clean the data, thereby obtaining high-quality TQA data.

4.4. MMTU: A Massive Multimodal Tabular
Understanding Benchmark

There are several existing tabular understanding bench-
marks (e.g., WikiTableQuestions, TabFact, FinaQA, and
ComTQA) for MLLMs, but they have some limitations:
(1) Narrow Domain. FinaQA focuses primarily on simple
calculations within the financial domain, TabFact assesses
the truthfulness of content, and WTQ addresses basic ques-

1https://huggingface.co/datasets/
staghado/ArXiv-tables

2https://huggingface.co/datasets/
howard-hou/OCR-VQA

Generate question

GPT-4

Q1

Q2

Q3

Q4

A1

A2

A3

A4

Voting

Refinement

MMTU

Q1: A1   Q2: A2

Q3: A3 Q4: A4

Generate answer

A1

A2

A3

A4

GPT-4

Qwen2-VL-Max

Q1: A1✔

Q2: A2✔

Figure 4. The calibration process for constructing the MMTU. The
calibration process is mainly divided into three stages: GPT Gen-
eration, MLLMs Answer, and Manual Calibration.

tion answering. (2) Uncertainty of Table Images. Except
ComTQA, other benchmarks do not provide table images.
Since the method for converting data into table format can
vary, this leads to potential biases in the evaluation results.
(3) Lack of Systematic Evaluation. All existing bench-
marks group similar QA tasks together without systemati-
cally evaluating specific capabilities, such as understanding
individual cells, interpreting specific rows or columns, han-
dling compositional conditions, and assessing reasoning and
calculation abilities.

To address these challenges, we selected four tasks: un-
derstanding individual elements (IE), interpreting rows and
columns (RC), comprehending compositional conditions
(CC), and performing calculations or reasoning (CR). For
the MMTU benchmark, we curated tables from WTQ (Pa-
supat & Liang, 2015), TabFact (Chen et al., 2019), and
NAT-QA, creating four QA task types across over ten do-
mains, yielding 8921 QA pairs. To ensure quality, GPT-4
generated questions, LLMs and human experts validated an-
swers, retaining consistent pairs and resolving discrepancies,
as shown in Figure 4. More details are in Appendix C.

5. Experiments
In this section, we first outline the experimental framework,
providing details on the specific implementation, evaluation
benchmarks, and MLLMs used for comparative assessment.
Subsequently, we use tabular understanding benchmarks to
conduct a comprehensive comparison of COCOTAB with
state-of-the-art methods. Finally, this section summarizes
the ablation study and visualizations for the tabular under-
standing case, highlighting COCOTAB’s exceptional ability
in handling compositional condition tasks.

5.1. Experimental Setup

Implementation Details: In this study, we configure CO-
COTAB with the pre-trained Siglip-ViT (Zhai et al., 2023)
as the vision encoder and Qwen2-Instruct (Yang et al., 2024)
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Table 2. Accuracy performance comparison on existing benchmarks. MMTU is our proposed benchmark, with four aspects of tabular
understanding, including understanding individual elements (IE), rows or columns (RC), compositional conditions(CC), and calculations
or reasoning (CR). Our COCOTAB achieves the best performance.

MMTU WTQ TabFact ComTQAIE RC CC CR

LLaVA-1.6-7B (Liu et al., 2024a) 0.50 0.32 0.12 0.06 0.23 0.27 0.27
LLaVA-1.6-13B (Liu et al., 2024a) 0.59 0.38 0.13 0.08 0.24 0.51 0.29
Monkey (Li et al., 2024) 0.39 0.24 0.28 0.06 0.23 0.51 0.19
TextMonkey (Liu et al., 2024c) 0.62 0.36 0.28 0.06 0.28 0.37 0.25
mPlug-Owl (Ye et al., 2023a) 0.11 0.08 0.15 0.06 0.10 0.50 0.07
Docowl (Ye et al., 2023b) 0.65 0.45 0.26 0.07 0.33 0.61 0.31
shareGPT4V (Chen et al., 2025) 0.17 0.09 0.16 0.04 0.13 0.52 0.10
VisCPM (Hu et al., 2023) 0.04 0.03 0.27 0.04 0.09 0.36 0.04
InstructBLIP (Dai et al., 2023) 0.06 0.04 0.08 0.04 0.09 0.51 0.04
Donut (Kim et al., 2021) 0.62 0.14 0.03 0.02 0.10 0.02 0.24

COCOTAB 0.68 0.50 0.43 0.38 0.45 0.74 0.34

as the backbone for LLM. The initial learning rates for the
two stages are set as 2e-4 and 2e-6, respectively, with the
batch size of 64 and 32. The learning rate for the vision
encoder is set as 5e-7. The entire training process is about
5 days on the four A800 GPUs setup. Additionally, BF16
and TF32 precision formats are employed to balance speed
and accuracy throughout the training process meticulously.
As shown in Figure 3, we set three projections for visual
patches, row patches, and column patches respectively.

Evaluation Benchmark: Our evaluation is divided into two
parts: one assesses the capabilities of MLLMs in various
aspects of table understanding, while the other evaluates
their overall performance. The first evaluation is conducted
on our proposed benchmark, MMTU, where we break down
table understanding into four distinct components for assess-
ment. For the overall performance, the evaluation covers
a wide broad range of tabular understanding tasks, such as
WTQ (Pasupat & Liang, 2015), TabFact (Chen et al., 2019),
and ComTQA (Zhao et al., 2024).

Comparison Models: For comprehensive comparisons,
we select leading open-source models in MLLMs, includ-
ing LLaVA (Liu et al., 2024a), Monkey (Li et al., 2024),
TextMonkey (Liu et al., 2024c), mPlug-Owl (Ye et al.,
2023a), DocOwl (Ye et al., 2023b), ShareGPT-4V (Chen
et al., 2025) InstructBLIP-Vicuna7B (Dai et al., 2023), Vis-
CPM (Hu et al., 2023), and Donut (Kim et al., 2021).

5.2. Results

Main Reuslts. In this section, we present a table show-
casing the table understanding capabilities of most current
models. As shown in Table 2, nearly all open-source models
perform modestly on table understanding tasks. Especially
in compositional condition tasks, all open-source models

IE RC CC CR
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w/ Patches

w/ CT

CoCoTab

Figure 5. Ablation study of components in COCOTAB on MMTU.

perform poorly. Compared to LLaVA-7B, despite the use
of a larger language model in LLaVA-13B, there is no sig-
nificant improvement in performance on the CC and CR
tasks. This validates our point that the primary limitation
of the model’s performance lies in the shortcomings of the
visual encoder. In contrast, our COCOTAB achieves the
best performance across all TQA tasks. Furthermore, it also
delivers optimal performance on other existing benchmarks.
In the CC and CR tasks, our performance far surpasses that
of the original LLaVA, approaching or even close to the
performance of the closed-source model Qwen2-VL in Ap-
pendix D.2. The experiment demonstrates the effectiveness
of our approach to open-source MLLMs.

Ablation Study. To validate the importance of each com-
ponent in our approach, we evaluated different models on
the same dataset. “Baseline” refers to the original LLaVA
model in our data, “w/ CT” indicates the addition of con-
ditional tokens on top of the baseline, and “w/ Patches”
represents the incorporation of row and column patches into
the baseline. COCOTAB is our method, which combines
both components. As shown in Figure 5, each component of
our method contributes to an improvement over the baseline,
and our approach achieves optimal performance. This not
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Q: What is the overall record for the 2011-12 season?
A: The overall record for the 2011-12 season is 29-7.

Q: Which season ended with an NCAA Final Four appearance?
A: 2010-11

Q: How many seasons had an overall record with more than 27 wins?
A: Two seasons had an overall record with more than 27 wins: \n\n- 2010–11 with a record of 
28–12\n- 2011–12 with a record of 29–7

Q: What is the difference in conference wins between the 2008-09 and 2011-12 seasons?
A: The difference in conference wins between the 2008-09 season (14 wins) and the 2011-12 
season (15 wins) is 1 win. This can be found in row 2008-09 and 2011-12 and column conference.

Figure 6. A case of COCOTAB. We present an example illustrating four types of questions on a single table image: understanding
individual elements (IE), rows or columns (RC), compositional conditions (CC), and calculations or reasoning (CR). Our method
demonstrates strong capability in effectively addressing all these question types.

only validates the effectiveness of row and column patches
for table data but also confirms that adding attention be-
tween the question and the image enhances the model’s
ability to understand.

sy
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im
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sys img QAP&CA

Figure 7. Visulization of COCOTAB. It can be observed that, after
incorporating our row-column tokens and conditional tokens, the
model places greater focus on relevant regions, leading to more
accurate answer generation.

5.3. Visulization.

To validate the effectiveness of our approach, we visual-
ize all tokens by generating attention matrices during the
QA process. The results, depicted in Figure 7, reveal sev-
eral key insights. While attention to image tokens becomes
sparser, certain critical tokens continue to receive significant
focus. Notably, the row-column tokens and conditional to-
kens we introduced emerge as pivotal in generating accurate
responses, as they are consistently among the most heavily
attended tokens. This visualization underscores the effec-
tiveness of our row and column patches in extracting critical

information and aligning the model’s focus with the specific
conditions outlined in the questions. We also incorporate an
example in Figure 6, showcasing our model’s capability to
address diverse types of TQA tasks effectively. More details
can be found in Appendix D.5.

6. Conclusion
In this paper, we introduce COCOTAB, a new MLLM for
TQA that effectively addresses compositional condition
tasks. Our approach adapts to the features of table images
by incorporating row and column patches in addition to the
original patches. To help the model better understand each
condition in the question, we use conditional tokens to en-
hance the interaction between the question and the image.
Experimental results demonstrate that our method outper-
forms nearly all current open-source models. Through our
experiments, we observe that current MLLMs still have
limitations in handling compositional condition tasks and
calculating or reasoning tasks. We hope this paper sparks
further reflection on MLLMs, as even for foundational tasks,
there is still substantial room for improvement.
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A. Training Datasets
In this section, we provide a comprehensive overview of the datasets employed in our study. During the first stage, we focus
on two primary objectives: (1) effectively learning row and column patches, and (2) establishing a preliminary mapping
from visual tokens to text embeddings. To achieve robust learning of row and column patches in tables, we trained our
model using a diverse collection of table-based QA datasets. Additionally, we integrated the LLaVA-pretrain dataset to
further enhance the training of the projection module. WTQ-Generate means we use the WTQ images and generate QA
pairs with the help of GPT-4o. Moreover, the inclusion of conditional tokens during this stage allows the model to more
effectively concentrate on visual tokens that are relevant to the posed questions, thereby improving its overall performance.

In the second stage, our primary objectives are to further refine the projection module and fine-tune the MLLM on table-based
QA datasets. To achieve this, we leverage a range of TQA datasets, including WTQ, NAT-QA, and others. By fixing the
visual tokens, we enable more effective optimization of the projection module, while unfreezing the LLM allows it to further
adapt and learn from the QA datasets. Additionally, to enhance the model’s versatility and performance across diverse tasks,
we supplement the training with caption-based tasks, such as OCR-VQA and LLaVA-finetune. The datasets utilized in both
stages are detailed in Table 3.

Table 3. Details on the COCOTAB’s training data, derived from publicly available datasets and some TQA datasets.

Training Stage Datasets Samples Total

Stage 1

LLaVA-1.5-pretrain (Liu et al., 2024b) 50K

1.4M

Laion-Caption∗ (Schuhmann et al., 2022) 50K
CC12M-Caption∗ (Changpinyo et al., 2021) 50K

PUB-1M∗ (Smock et al., 2022) 500K
WTQ∗ (Pasupat & Liang, 2015) 14K

WTQ-Genrate∗ (Pasupat & Liang, 2015) 142K
TabFact∗ (Chen et al., 2019) 105K

NAT-QA∗ 270K
Plot-QA∗ (Wang et al., 2024b) 100K

OCR-VQA∗ (Mishra et al., 2019) 168K

Stage 2

LLaVA-1.5-finetune (Liu et al., 2024b) 100K

1M

PUB-1M∗ (Smock et al., 2022) 82K
WTQ∗ (Pasupat & Liang, 2015) 14K

WTQ-Genrate∗ (Pasupat & Liang, 2015) 200K
TabFact∗ (Chen et al., 2019) 105K

NAT-QA∗ 174K
Plot-QA∗ (Wang et al., 2024b) 100K

OCR-VQA∗ (Mishra et al., 2019) 200K

B. Training Details
As shown in Table 4, we provide the training hyperparameters for COCOTAB. Throughout all stages of training, we pre-train
for one epoch and fine-tune for two epochs, with a batch size of 64 for the first stage and 32 for the second stage. We
maintain an image resolution of 384x384 for all two stages and enable the gradient checkpoint mode for each training stage.

C. MMTU: A Massive Multimodal Tabular Understanding Benchmark
In this section, we begin by addressing current benchmarks’ shortcomings, and then by outlining the features that an
optimal tabular understanding benchmark should have. Additionally, we propose and build a new benchmark along with its
associated evaluation strategy.
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Table 4. Training hyperparameters.
Config Stage 1 Stage 2

MLP expert network 2 Linear layers with SiLU
Deepspeed Zero3 Zero3
Image resolution 384×384
Image encoder siglip-so400m-patch14-384
Feature select layer -2
Image projector 2 Linear layers with GeLU
Epoch 1 2
Optimizer AdamW
Learning rate 2e-4 2e-6
Learning rate Vision 5e-7 -
Learning rate scheduler Cosine
Weight decay 0.0
Text max length 8096 2048
Batch size per GPU 16 8
GPU 4 × A800-80G
Precision Bf16
Gradient checkpoint True

C.1. Limitations of Existing Benchmarks

There are several existing tabular understanding benchmarks (e.g., WikiTableQuestions, TabFact, FinaQA, and ComTQA)
for MLLMs, but they have some limitations: (1) Narrow Domain. FinaQA focuses primarily on simple calculations
within the financial domain, TabFact assesses the truthfulness of content, and WTQ addresses basic question answering. (2)
Uncertainty of Table Images. Except ComTQA, other benchmarks do not provide table images. Since the method for
converting data into table format can vary, this leads to potential biases in the evaluation results. (3) Lack of Systematic
Evaluation. All existing benchmarks group similar QA tasks together without systematically evaluating specific capabilities,
such as understanding individual cells, interpreting specific rows or columns, handling compositional conditions, and
assessing reasoning and calculation abilities.

C.2. Characteristics of an Effective Tabular Understanding Benchmark

To more suitably evaluate the tabular understanding capabilities of MLLMs, an ideal benchmark should exhibit the following
characteristics:

(1) Multiple Domains of Content. An excellent benchmark should cover a wide range of application domains to minimize
bias that may arise in specific areas. By including data from multiple domains, we ensure that the model’s performance is
not influenced by any single domain. This not only enhances the benchmark’s generalizability but also allows for a better
evaluation of the model’s cross-domain adaptability, ensuring that effective models are more widely applicable in real-world
scenarios.

(2) Unified Table-to-Image Conversion. To ensure fairness in the benchmark, a standardized rule should be established for
converting data in formats such as tables, CSV, HTML, and MD into images. This unified standard eliminates potential
differences that could arise from using varying formats, thus preventing discrepancies in the conversion process from
affecting the model’s evaluation. By employing a consistent conversion method, all models being evaluated face the same
challenges when processing data, thereby ensuring the evaluation results are more reliable and comparable.

(3) Multidimensional Evaluation of Table Understanding. Evaluating table understanding should not be limited to
recognizing individual data cells but should encompass more complex tasks. For instance, the model needs to understand not
only the content of individual cells but also the relationships between cells, rows, and columns. Additionally, the evaluation
should assess the model’s ability to understand compositional conditions, reasoning capabilities, and computational skills.
This multidimensional assessment will comprehensively measure the strength of a table understanding model, ensuring that
it remains efficient and accurate when handling complex data.

(4) Accurate and Reasonable Evaluation. When designing a benchmark, it is important to avoid including tables with
excessive row-column differences that could lead to extreme cases. For example, tables with large row-column disparities
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Figure 8. The calibration process for constructing the MMTU benchmark. The calibration process is mainly divided into two stages:
GPT-4o Generation, MLLMs Answer, and Manual Calibration.

may have overly complex structures that hinder the model’s performance, and should therefore be excluded from the
benchmark’s test scope. Additionally, the data and task design in the benchmark should be as clear and unambiguous as
possible to ensure the reliability of the evaluation results. Most importantly, the dataset in the benchmark should not contain
any errors, as any inaccurate data could lead to misleading evaluation results, ultimately distorting the true reflection of the
model’s performance.

Q:What was the Team's Score-Final?
A:395.666

Q:Which apparatus in the Olympic Games had the highest 
Rank-Qualifying?
A:All-Around

Q:How many apparatus had a Rank-Qualifying of less than 5 
at the World Championships?
A:3

Q:How much higher is the Score-Qualifying of Floor exercise 
(Semi-final) ompared to Uneven bars (Qualification) in the 
World Championships?
A:INDETERMINABLE

Q:What is the overall record for the 2011-12 season?
A:29 – 7

Q:Which season ended with an NCAA Final Four appearance?
A:2010-11

Q:How many seasons had an overall record with more than 
27 wins?
A:TWO

Q:What is the difference in conference wins between the 
2008-09 and 2011-12 seasons?
A:1

4 categories
8,921 samples

10+ 
domains

A
tr

Figure 9. Detailed information and some cases in our MMTU benchmark.

C.3. Construction of the MMTU benchmark

We select four tasks for inclusion: understanding individual elements (ie), interpreting rows or columns (rc), comprehending
compositional conditions (cc), and performing basic calculations or reasoning (cr). For the massive multimodal tabular
understanding benchmark, denoted as MMTU, we select and clean the suitable tables from WTQ, FinaQA and Arxiv papers.
Based on these tables, we constructed four types of question-answering tasks according to different understanding objectives,
resulting in four question categories, six domains, and approximately 10,000 question-answer pairs.

To reduce noise and errors that may arise during the data construction process, we implemented several strategies to
improve translation quality, as shown in Figure 8. First, we used GPT-4 to generate questions for each image based on
our predefined question types. Next, we enhanced the data quality through a peer evaluation process involving both large
language models (LLMs) and human experts. Specifically, we leveraged three of the most reputable MLLMs in the industry:
GPT-4, Qwen2-VL-Max, and InternVL2.5-78B to generate corresponding answers. Using consistency criteria, we retained
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Table 5. Accuracy performance comparison on existing benchmarks.

MMTU WTQ TabFact ComTQAIE RC CC CR

LLaVA-1.6-7B 0.50 0.32 0.12 0.06 0.23 0.27 0.27
LLaVA-1.6-13B 0.59 0.38 0.13 0.08 0.24 0.51 0.29
Monkey 0.39 0.24 0.28 0.06 0.23 0.51 0.19
TextMonkey 0.62 0.36 0.28 0.06 0.28 0.37 0.25
mPlug-Owl 0.11 0.08 0.15 0.06 0.10 0.50 0.07
Docowl 0.65 0.45 0.26 0.07 0.33 0.61 0.31
shareGPT4V 0.17 0.09 0.16 0.04 0.13 0.52 0.10
VisCPM 0.04 0.03 0.27 0.04 0.09 0.36 0.04
InstructBLIP 0.06 0.04 0.08 0.04 0.09 0.51 0.04
Donut 0.62 0.14 0.03 0.02 0.10 0.02 0.24

COCOTAB 0.68 0.50 0.43 0.38 0.45 0.74 0.34

Qwen2-VL 0.93 0.71 0.38 0.38 0.51 0.72 0.52
GPT-4o 0.95 0.88 0.61 0.85 0.67 0.73 0.62

QA pairs with matching answers. For pairs with inconsistent answers, we consulted multiple human experts to resolve
discrepancies, resulting in the final MMTU benchmark.

This approach significantly enhanced the quality of the data, ensuring it is more representative of real-world scenarios
and diverse across various question types. We list the detailed information and some cases in Figure 9. As a result, our
benchmark provides a more comprehensive and accurate assessment of tabular understanding. We believe this improvement
contributes positively to the overall robustness of our research findings.

D. More Experiments
D.1. More Analysis

In our analysis, we also identified significant challenges in the computational and reasoning capabilities of MLLMs.
However, this paper does not focus on these issues for two main reasons. First, computational and reasoning limitations
have long been a persistent challenge for large language models (Wei et al., 2022; Yuan et al., 2023; Yanid et al., 2024),
primarily due to inherent architectural deficiencies. Second, our study prioritizes improving aspects of MLLMs that directly
impact table comprehension, such as the limitations in visual encoding and the misalignment between visual and textual
spaces. As a result, we do not directly address computational and reasoning challenges in this work.

D.2. Comparison with GPT-4o

Furthermore, we incorporate closed-source methods in our benchmarks, including GPT-4o (OpenAI, 2024), and Qwen2-VL-
Max (Wang et al., 2024a) to show the SOTA remarkable performance.

From the experimental results, a significant performance gap between open-source and closed-source models is evident. This
discrepancy can be attributed to the following primary factors: Model Size: The parameter scale of models such as GPT and
Qwen far exceeds that of our model, as their architectures are designed with substantially larger parameter counts. Training
Data: Our model was trained on a relatively limited dataset, while these models likely benefited from extensive training on
significantly larger and more diverse datasets, enabling them to achieve superior generalization and performance.”

D.3. Comparison with Structured Methods

Our method primarily focuses on question answering over visual tables, as in most cases, we do not have direct access
to the structured information of the tables. Instead, we feed the table image directly into the model and train a more
effective end-to-end model. This approach reduces the information loss between rows and columns that can occur during
the intermediate step of converting the image into structured text, and also avoids potential errors introduced during such
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Table 6. Comparison with structured methods.

IE RC CC CR

TAPEX (Liu et al., 2021) 0.73 0.79 0.33 0.19
TaPas (Herzig et al., 2020) 0.59 0.52 0.04 0.19

COCOTAB 0.68 0.50 0.43 0.38

Table 7. Inference time and memory cost of different methods.

Model Time(s) Memory(G)

InstructBlip 0.29 30.98
LLaVA1.6 0.45 17.21
DocOWL 0.36 19.50
TextMonkey 1.68 23.96
Donut 0.42 0.478
InternVL2.5 1.27 43.28
TabPedia 0.21 19.02
CoCoTab 0.20 20.47

conversions.

Here, we also conducted experiments using structured table parsing-based QA methods based on the data presented in
Section 3.2. The experimental results are shown Table 6.

As seen from the results, our method achieves comparable performance to existing approaches on IE and RC tasks. However,
for the more complex CC and CR tasks, COCOTAB significantly outperforms the structured table parsing-based QA methods.
This is because once the table is converted into structured text, it becomes challenging for pure language models to preserve
the spatial relationships between rows and columns, which leads to performance degradation on tasks that require complex
reasoning, such as CC and CR. In contrast, our method directly processes the table image and, with the help of row and
column patches, effectively captures the spatial layout and structure, enabling more accurate question answering. This
further validates the effectiveness of our approach.

D.4. Computation Cost

The original method divides the table image into 27×27 patches (729 total). COCOTAB adds 27 row patches (one per row,
covering full width) and 27 column patches (one per column, covering full height), resulting in only 54 additional patches
(7% increase over the original 729). This modest increase in token count (from 729 to 783) incurs minimal computational
overhead during training and inference.

As shown in our ablation study, adding row/column patches alone improves accuracy on CC tasks over the baseline.
This demonstrates that the cost increase is highly justified by the performance gains, particularly for critical tasks like
compositional reasoning.

While our paper focused on accuracy and structural alignment improvements, we conducted additional experiments to
quantify the computational overhead of COCOTAB. Key results and analyses are in Table 7.

We have measured the average inference time and memory consumption per sample. As shown in the results, our method
does not introduce significant overhead. On the contrary, compared to LLaVA, our approach provides more concise and
precise answers, leading to improved inference speed. COCOTAB adds only 7% in token count but outperforms in all
baselines.

D.5. More Visulizations

Visulization. To validate the effectiveness of our approach, we visualize all tokens by generating attention matrices during
the QA process. The results, depicted in Figure 10, reveal several key insights. In the lower layers of the model, attention is
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Figure 10. Visulization of attention matrix from lower layers to deeper layers.

distributed relatively evenly across different token types. However, in the deeper layers, while attention to image tokens
becomes sparser, certain critical tokens continue to receive significant focus. Notably, the row-column tokens and conditional
tokens we introduced emerge as pivotal in generating accurate responses, as they are consistently among the most heavily
attended tokens. This visualization underscores the effectiveness of our row and column patches in extracting critical
information and aligning the model’s focus with the specific conditions outlined in the questions. We also incorporate several
illustrative examples in Figure 11, showcasing our model’s capability to address diverse types of TQA tasks effectively.

Q: What was the Team's Score-Final?
A: The Team's Score-Final was 395.666.

Q: Which apparatus in the Olympic Games had the highest Rank-Qualifying?
A: All-Around. This can be found in Rank-Qualifying column.

Q: How many apparatus had a Rank-Qualifying of less than 5 at the World Championships?
A: At the World Championships in Paris, three apparatus had a Rank-Qualifying of less than 
5:\n\n1. Uneven bars (Qualification) - Rank-Qualifying: 2\n2. Balance beam (Qualification) -
Rank-Qualifying: 3\n3. Floor exercise (Qualification) - Rank-Qualifying: 4

Q: How much higher is the Score-Qualifying of Floor exercise (Semi-final) ompared to Uneven 
bars (Qualification) in the World Championships?
A: The Score-Qualifying of the Floor exercise (Semi-final) is not provided.

Q: What is the overall record for the 2011-12 season?
A: The overall record for the 2011-12 season is 29-7.

Q: Which season ended with an NCAA Final Four appearance?
A: 2010-11

Q: How many seasons had an overall record with more than 27 wins?
A: Two seasons had an overall record with more than 27 wins: \n\n- 2010–11 with a record of 
28–12\n- 2011–12 with a record of 29–7

Q: What is the difference in conference wins between the 2008-09 and 2011-12 seasons?
A: The difference in conference wins between the 2008-09 season (14 wins) and the 2011-12 
season (15 wins) is 1 win. This can be found in row 2008-09 and 2011-12 and column conference.

Figure 11. Some cases of COCOTAB.

E. Limitations and Future Works
In this paper, we aim to address the problem of tabular understanding. We propose four types of issues in table understanding,
namely understanding individual elements (IE), interpreting rows and columns (RC), comprehending compositional
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conditions (CC), and performing basic calculations or reasoning (CR). In our work, we primarily focus on addressing the
CC problem, as it involves a deeper understanding of the intrinsic row-column structure of tables. While we propose four
types of problems, we only partially tackle the CR problem. Through analysis, we find that a better understanding of the
table’s intrinsic structure can enhance the CR capabilities of MLLMs. However, the CR ability primarily places higher
demands on the reasoning and computational power of LLMs, rather than on table understanding. Therefore, we were
unable to fully address this issue in the current work, and it will be part of our future research.

From another perspective, there is still a significant gap in capabilities between open-source and closed-source models. As
we analyzed earlier, this gap primarily stems from two factors: the difference in model size and data volume. Closed-source
models tend to use larger parameter counts and more data, which ultimately contribute to their high performance. However,
in our work, we have used relatively fewer parameters and less data, yet we have achieved better results with open-source
models. In the future, we will further explore the gap between open-source and closed-source models in table understanding,
investigating more fundamental issues, with the aim of narrowing this gap and even surpassing closed-source models.

Finally, we hope that this paper will spark deeper reflection on the fundamental capabilities of MLLMs, encouraging the
exploration of basic yet important issues. We aim to contribute more meaningful work to the field of MLLMs.
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