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Abstract

Network data are ubiquitous in our daily life, containing rich but often sensitive
information. In this paper, we expand the current static analysis of privatised
networks to a dynamic framework by considering a sequence of networks with
potential change points. We investigate the fundamental limits in consistently local-
ising change points under both node and edge privacy constraints, demonstrating
interesting phase transition in terms of the signal-to-noise ratio condition, accom-
panied by polynomial-time algorithms. The private signal-to-noise ratio conditions
quantify the costs of the privacy for change point localisation problems and exhibit
a different scaling in the sparsity parameter compared to the non-private counter-
parts. Our algorithms are shown to be optimal under the edge LDP constraint up to
log factors. Under node LDP constraint, a gap exists between our upper bound and
lower bound and we leave it as an interesting open problem, echoing the challenges
in high-dimensional statistical inference under LDP constraints.

1 Introduction

Numerous application areas and everyday life routinely generate network data, which contain valuable
but often sensitive information [e.g. 33, 31]. Understanding the underlying patterns of network data
while preserving individuals’ privacy is crucial in modern data analysis. Several attempts have been
made, but mostly focus on studying single snapshots of networks (a.k.a. static networks) and/or
subject to central differential privacy constraint, where a central data curator is allowed to handle
raw information from all individuals [e.g. 21, 22, 23, 9, 30]. In this paper, we are instead concerned
with understanding the dynamics of a sequence of networks (a.k.a. dynamic networks), under local
privacy constraints (LDP), where no one is allowed to handle the raw data of other individuals [e.g.
13, 17, 26, 40, 34].

Dynamic networks are usually in the form of a sequence of static networks, along a linear ordering,
say time. In the dynamic networks studies, it is vital to capture the ever changing nature. A handy
and useful way to model the changes is to assume that there exists a sequence of unknown time
points, where the underlying distributions change abruptly [e.g. 37, 38]. These unknown time points
are referred to as change points. Identifying change points helps to pinpoint important events, and
more accurately estimate underlying distributions, which can be regarded as stationary between two
consecutive change points. Dynamic networks change point analysis has demonstrated its success in
climatology [e.g. 28], crime science[e.g. 6] and neuroscience [e.g. 10, 29], to name but a few.
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Despite the growing popularity in studying dynamic networks, we have witnessed a vacuum in
estimating change points while preserving data owners’ privacy. Having said this, a line of attack
has been made to analyse static network data under LDP constraints, where only data owners have
access to their individual raw data [e.g. 34, 40]. The private analysis of network data is complicated
by the fact that different LDP conditions are required depending on the information that one wants to
protect. For example, in a relationship network, users may want to protect their edge information,
i.e. whether they are connected to someone else or not. As we argue in Section 2.1, formalisation to
protect such information should require minimal trust between users due to the symmetric nature of
network data. In a recommending system network, users may want to protect their entire connection
portfolio, representing the purchase status of a user over a collection of products. In a brain imaging
network, a patient may even prefer protecting the entire network from adversarial inference attacks.

In view of the aforementioned state of the art, we list the contributions of this paper below.

• To our best knowledge, this is the first time investigating change point localisation in dynamic
networks, under LDP constraints. We consider two dynamic network models, where a sequence of
sensitive networks are generated from (a) inhomogeneous Bernoulli networks (IBN) (Definition 1)
and (b) bipartite networks with possibly dependent Bernoulli entries (Definition 2). Multiple change
points of the raw network distributions are allowed. To tailor to the network models, we consider two
forms of privacy requirements - edge LDP and node LDP (See Section 2).

• For dynamic IBNs under edge LDP, we show a phase transition in terms of the signal-to-noise
ratio, partitioning the whole parameter space into two parts: (1) the infeasibility regime where no
algorithm is expected to provide consistent change point estimators and (2) the regime where a
computationally-efficient algorithm is shown to output consistent estimators. The importance of
this phase transition is twofold: (1) The transition boundary is different from its counterpart in the
non-private case [38], quantifying the cost of preserving edge privacy in localising change points. (2)
We show that a simple randomised response [39] based privacy mechanism is minimax rate-optimal
for the purpose of change point localisation.

• For bipartite networks under node LDP, we derive an infeasibility regime which is different from
that under the edge LDP. This fundamental difference quantifies the difference between these two
different LDP constraints, and can be used to help practitioners designing data collection mechanisms.
We adopt a privacy mechanism proposed in [13], together with a change point estimation routine,
providing a consistent change point estimator. Supported by a minimax lower bound result, our
estimator is shown to be minimax rate optimal when the number of columns is of constant order.
When the number of columns is allowed to diverge, a gap between our lower and upper bounds exists.
This echos the well-identified challenges in the high-dimensional privacy research [e.g. 13, 14]. We
contribute a high-dimensional network example along with in-depth discussions.

Notation For any matrix A ∈ RM×N , let Aij be the (i, j)-th entry of A, Ai ∈ RN be the i-th row of
A, A⊤ be the transpose of A, ∥A∥∞ = max1≤i≤M,1≤j≤N |Aij | and ∥A∥ denote the operator norm
of A. For any matrix B ∈ RM×N , let (A,B) =

∑
1≤i≤M,1≤j≤N AijBij and ∥A∥F =

√
(A,A) be

the Frobenius norm of A. For any vector v ∈ Rp, let ∥v∥1, ∥v∥2, ∥v∥∞ be the ℓ1, ℓ2 and ℓ∞ vector
norms respectively. For any set S, let |S| be the cardinality of S. Let S = S′⊔S′′, if S′∪S′′ = S and
S′ ∩ S′′ = ∅. Let 1{·} be the indicator function only taking values in {0, 1}. For two any functions
of T , say f(T ) and g(T ), we write f(T ) ≳ g(T ) if there exists constants C > 0 and T0 such that
f(T ) ≥ Cg(T ) for any T ≥ T0, and write f(T ) ≍ g(T ) if f(T ) ≳ g(T ) and f(T ) ≲ g(T ).

1.1 Problem setup

We consider two parallel models of dynamic networks. The first one is built upon an IBN model,
which covers a wide range of models for undirected networks, including the Erdős–Rényi random
graph [16], the stochastic block model [18] and the random dot product graph [e.g. 3], among others.

Definition 1 (Inhomogeneous Bernoulli network, IBN). A network with node set {1, . . . , n} is
an inhomogeneous Bernoulli network if its adjacency matrix A ∈ Rn×n satisfies that Aij =
Aji = 1{nodes i, j are connected by an edge} and {Aij , i ≤ j} are independent Bernoulli random
variables with E(Aij) = Θij .

The second model considered is a bipartite IBN with possibly correlated entries within each row of
the biadjacency matrix. See [2] for more discussions on bipartite networks.
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Definition 2 (Bipartite IBN). A network with node set {1, . . . , n1 + n2} = V1 ⊔ V2, |V1| = n1

and |V2| = n2, is a bipartite IBN if its biadjacency matrix A ∈ Rn1×n2 satisfies the following.
(1) For i ∈ V1 and j ∈ V2, Aij = 1{nodes i, j are connected }. (2) For any i1, i2 ∈ V1, i1 ̸= i2,
{Ai1,j , j = 1, . . . , n2} and {Ai2,j , j = 1, . . . , n2} are independent. (3) For any i ∈ V1, j ∈ V2,
Aij is a Bernoulli random variable with E(Aij) = Θij .

Bipartite IBNs are often used in the recommending system, where each i ∈ V1 represents a user
and each j ∈ V2 represents a product [e.g. 27, 20]. An important difference between Definitions 1
and 2 is that, in Definition 1 all entries are assumed to be independent, while in Definition 2, entries
within the same row are allowed to be arbitrarily dependent. Dependence in networks are common
in practice, for example the control-flow graph considered in [42] where V1 corresponds to the set
of users and each node in V2 corresponds to a component within some software application and the
dependencies therein are due to the causality between nodes.

The change points are defined formally in Assumption 1 where the magnitude of the distributional
change is measured by the normalised Frobenius norm. The choice of Frobenius norm captures both
dense and sparse changes in the network structure, see [38].

Assumption 1. Let {A(t)}Tt=1 ⊂ {0, 1}n1×n2 be an independent sequence of adjacency matrices of
IBNs defined in Definition 1 (in which case n1 = n2 = n) or biadjacency matrices of bipartite IBNs
defined in Definition 2, with E{A(t)} = Θ(t). Assume that there exist {η1, . . . , ηK} ⊂ {2, . . . , T},
with 1 = η0 < η1 < . . . < ηK ≤ T < ηK+1 = T + 1, such that Θ(t) ̸= Θ(t − 1), if and only if
t ∈ {η1, . . . , ηK}.

Let ∆ = minK+1
k=1 (ηk − ηk−1) be the minimal spacing and κ0 = minKk=1 ∥Θ(ηk) − Θ(ηk −

1)∥F/(
√
n1n2ρ) be the minimal jump size, where ρ = maxTt=1 ∥Θ(t)∥∞ denotes the entry-wise

sparsity.

For both models, under privacy constraints to be discussed in Section 2, our goal is to construct
consistent estimators {η̂k}K̂k=1 of {ηk}Kk=1. To be specific, {η̂k}K̂k=1 is said to be consistent if
∆−1 maxKk=1 |η̂k − ηk| → 0 and K̂ = K holds with probability tending to 1, as the sample size T
grows unbounded.

Lastly, we note that in statistical network analysis, when allowing for entry-wise sparsity, it is usually
assumed that ρ ≥ log(n)/n [e.g. 38] to ensure there are sufficiently many observed edges. However,
We do not impose lower bounds on ρ in Assumption 1, since to preserve privacy, the expectations of
privatised network entries are inflated by a factor of the privacy level α ∈ (0, 1). Let ρ′ be the sparsity
parameter of the privatised networks. Such inflation automatically ensures that ρ′ ≥ log(n)/n, for
any ρ ∈ [0, 1] and n > 1 (See the proof of Theorem 3).

2 Network local differential privacy

To formalise different network LDP notions, we first recall a general definition of LDP. A private
mechanism is a conditional distribution, which conditional on raw data, outputs privatised data. For a
pre-specified privacy level α ≥ 0, a random object Zi taking values in Z is a non-interactive1 α-LDP
version of raw data Xi, if for any raw data x and x′, any measurable set S ⊂ Z , it holds that

Qi(Zi ∈ S|Xi = x)/Qi(Zi ∈ S|Xi = x′) ≤ eα. (1)

A privacy mechanism is α-LDP if all output Zi’s are α-LDP. We focus on the regime α ∈ (0, 1), where
the effect of privacy is the strongest and is often the regime of primary interest [e.g. 12, 13, 5, 36].

In view of (1), the LDP constraint ensures that each individual i only has access to their own raw data.
To be specific, the privatised Zi only depends on the raw data Xi. As for network data, to impose
LDP, it is crucial to formalise what a unit of information includes and who are the owners of each unit
of information. In the rest of this section, we consider two cases arising from different application
backgrounds.

1In this paper, we only consider non-interactive privacy mechanisms throughout and will call it privacy
mechanism when there is no concern of ambiguity. For more general interactive privacy mechanisms, see [13].
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2.1 Edge local differential privacy in inhomogeneous Bernoulli networks

In epidemiological studies on sexually transmitted diseases, network data are formed by edges linking
sexual partners [e.g. 35]. A natural choice of information unit is the existence of sexual relationship
among subjects. Due to the sensitivity of such data, one may wish to consider all parties involved
to be the owners of a potential link. Inspired by such applications, we formalise the edge LDP in
Definition 3.

Definition 3 (Edge α-LDP). We say that the privacy mechanism Q = {Q(t)
ij , 1 ≤ i ≤ j ≤ n, 1 ≤

t ≤ T} is edge α-LDP, if for any integer 1 ≤ t ≤ T , any integer pair 1 ≤ i ≤ j ≤ n, any measurable
set S ⊂ Z and any x, x′ ∈ {0, 1}, it holds that

Q
(t)
ij (Zij(t) ∈ S|Aij(t) = x)/Q

(t)
ij (Zij(t) ∈ S|Aij(t) = x′) ≤ eα. (2)

Definition 3 is seemingly stricter than some existing edge LDP notions [e.g. 34, 40], where, instead
of (2), it is required that for any i ∈ {1, . . . , n} and any x, x′ ∈ Rn with ∥x− x′∥1 = 1,

Q
(t)
i (Zi(t) ∈ S|Ai(t) = x)/Q

(t)
i (Zi(t) ∈ S|Ai(t) = x′) ≤ eα. (3)

It is clear that applying any mechanisms that satisfy (2) to each entry of Ai(t) guarantees (3). While
appropriate for some settings, the edge LDP defined in (3) possesses some caveats [19], listed below.

• The same piece of information is recorded in the adjacency matrix twice, i.e. Aij(t) = Aji(t), and
these two records are treated as being potentially different. The same quantity is thus randomised
twice, leading to some inefficiency.

• As a more damning issue, mechanisms satisfying (3) may require trust between nodes. If a node
does not follow the protocol correctly, or their data are intercepted, they may reveal information on
other nodes in the network. This is not the case with LDP mechanisms in other settings, where the
privacy of an individual is guaranteed regardless of the behaviour of other individuals.

Our definition (2) does not suffer either of these drawbacks since we only privatise the upper triangular
part of the adjacency matrix, and to privatise each edge between two nodes, (2) implicitly requires that
both parties to agree on their status and the privatised result so that the trust issue can be prevented.

2.2 Node local differential privacy in bipartite inhomogeneous Bernoulli networks

In a Netflix data set, one may model the viewing history by a dynamic bipartite IBN, where each
row represents a user, each column represents a movie and each snapshot of network gathers the
viewing information within a short time frame. It is reasonable to consider an information unit to be
the viewing history of a user within a time frame, which is a row in a biadjacency matrix. Inspired by
such applications, we formalise the bipartite node LDP in Definition 4.

Definition 4 (Bipartite node α-LDP). We say that the privacy mechanism Q = {Q(t)
i , 1 ≤ i ≤

n1, 1 ≤ t ≤ T} is bipartite node α-LDP, if for any integer 1 ≤ t ≤ T , any integer 1 ≤ i ≤ n1, any
measurable set S ⊂ Z and any x, x′ ∈ {0, 1}n2 , it holds that

Q
(t)
i (Zi(t) ∈ S|Ai(t) = x)/Q

(t)
i (Zi(t) ∈ S|Ai(t) = x′) ≤ eα. (4)

Different notions of node LDP have been studied in the literature. Our definition (4) is consistent with
[e.g. 34, 40] while some adopt the definition inherited from central DP allowing the neighbouring
networks to have different dimension by either inclusion and deletion of one node [23, 11]. Several
works consider the same constraint as (4) under the name user-level LDP [e.g. 24, 43] for different
learning tasks.

One appealing feature of bipartite graphs when considering node LDP is that the neighbouring data
sets x, x′ can be protected independently for each node in V1, whereas in a general graph, node
LDP should account for the intrinsic symmetry of the adjacency matrix when defining neighbouring
data sets [19]. Comparing the two LDP definitions we considered in this section, we see that in
Definition 3 level α privacy is imposed to protect one edge, and in Definition 4 level α privacy
is imposed to protect n2 edges. For the same privacy parameter α, node privacy is a much more
stringent constraint than edge privacy [e.g. 34, 40, 19].

4



3 Fundamental limits in consistent change point localisation

Recall that our task is to understand how the underlying distributions of dynamic networks change,
especially to provide consistent change point estimators defined in Section 1.1, under certain form
of LDP constraints. Without the concern of privacy, dynamic IBN change point localisation is
investigated in [38], where a scaling (namely the signal-to-noise ratio) is proposed to partition the
whole parameter space into two regimes: a low signal-to-noise ratio regime (infeasibility regime)
where no consistent estimator is guaranteed in a minimax sense, and a high signal-to-noise ratio
regime where computationally-efficient algorithms are shown to produce consistent estimators. Recall
the model parameters κ0 the minimal jump size, ρ the entry-wise sparsity of networks, n the network
size and ∆ the minimal spacing. Without the presence of privacy constraints, the infeasibility regime
[38] is

κ2
0ρn∆ ≲ 1, (5)

which will serve as the benchmark for us to quantify the cost of privacy.

The first model we study is a dynamic IBN model (Definition 1 and Assumption 1), which is identical
to the one studied in [38]. Lemma 1 demonstrates an infeasiblity regime of localising change points
in such a model under the edge α-LDP defined in Definition 3.

Lemma 1 (Edge α-LDP). Let {A(t)}Tt=1 ⊂ {0, 1}n×n be a sequence of adjacency matrices satisfying
Assumption 1 with K = 1 and let PT

κ0,∆,n,ρ denote their joint distribution. Consider the class of
distributions

P = {PT
κ,∆,n,ρ : κ2

0 ≤ min{[68nρ2∆(eα − 1)2]−1, 1/4}, ∆ ≤ T/3}.

Let Qedge
α denote the set of all non-interactive privacy mechanisms that satisfy the edge α-LDP

constraint in Definition 3, for α ∈ (0,min{1, (2ρ)−1}). We have that

inf
Q∈Qedge

α

inf
η̂

sup
P∈P

EP,Q|η̂ − η(P )| ≥ ∆/12,

where η(P ) denotes the change point location specified by distribution P , the first infimum is taken
over all possible non-interactive privacy mechanisms, the second infimum is taken over all measurable
functions of the privatised data and the supremum is taken over all raw data’s distributions in the
class P .

Lemma 1 studies an LDP minimax lower bound in the framework put forward by [13]. It shows
that for dynamic IBNs under edge α-LDP, provided κ2

0ρ
2n∆(eα − 1)2 ≍ κ2

0ρ
2n∆α2 ≲ 1, the

localisation error ∆−1|η̂ − η(P )| ≥ 1/12. This leads to the infeasiblity regime

κ2
0ρ

2n∆α2 ≲ 1. (6)

Comparing (5) and (6), any distribution in the regime (5) also falls in the regime (6), implying that
imposing edge α-LDP enlarges the infeasibility regime and makes the localisation task harder. To be
specific, the cost of preserving edge LDP comes from two fronts.

• The effective sample size is decreased from ∆ to ∆α2. LDP’s impact on the effective sample size
is commonly observed in the literature over a wide range of problems [e.g. 13, 7, 5, 25].

• A more interesting and problem-specific cost of LDP is reflected by the role of the sparsity
parameter ρ, which power is raised to ρ2 in (6) from ρ in (5). Despite that networks have been
studied under LDP constraints, such result is the first time seen. Similar effects have been observed
in different problems under LDP constraint, including the impacts on dimensionality [e.g. 5] and
smoothness levels [e.g. 25]. It is interesting to see that in a high-dimensional sparse network problem,
this problem-specific cost of LDP appears on the sparsity parameter.

The second model we consider is a dynamic bipartite IBN model (Definition 2 and Assumption 1),
the change point analysis of which is not seen in the literature, even without privacy concerns. In
addition to the rows and columns of bipartite IBNs denoting different entities, which is different from
well-studied network models, we also allow potentially arbitrary within-row dependence. Lemma 2
establishes an infeasiblity regime of localising change points in such a model under the bipartite node
α-LDP defined in Definition 4.
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Lemma 2 (Bipartite node α-LDP). Let {A(t)}Tt=1 ⊂ {0, 1}n1×n2 be a sequence of biadjacency
matrices satisfying Assumption 1 with K = 1 and let PT

κ0,∆,n1,n2,ρ
denote their joint distribution.

Consider the class of distributions

P = {PT
κ0,∆,n1,n2,ρ : κ2

0 ≤ min{[20n1/2
1 ρ2∆(eα − 1)2]−1, 1/4}, ∆ ≤ T/3}.

Let Qnode
α denote the set of all non-interactive privacy mechanisms that satisfy the bipartite node

α-LDP constraint in Definition 4, for α ∈ (0,min{1, (4ρ)−1}). We have that

inf
Q∈Qnode

α

inf
η̂

sup
P∈P

EP,Q|η̂ − η(P )| ≥ ∆/12,

where η(P ) denotes the change point location specified by distribution P .

In an LDP minimax framework, Lemma 2 shows that provided κ2
0ρ

2n
1/2
1 ∆α2 ≲ 1, the localisation

error ∆−1|η̂ − η(P )| ≥ 1/12. This leads to the infeasibility regime

κ2
0ρ

2n
1/2
1 ∆α2 ≲ 1. (7)

To compare (6) and (7), we first let n1 = n2 = n in Lemma 2 for convenience. The infeasibility
regime under the node LDP reads as κ2

0ρ
2n1/2∆α2 ≲ 1, which compared to (6) implies that the cost

of node LDP is higher than the edge LDP. To further understand the difference between node LDP
and edge LDP, we let n =

√
n1n2 in Lemma 1. The infeasibility regime under the edge LDP reads

as κ2
0ρ

2(n1n2)
1/2∆α2 ≲ 1, which compared to (7) highlights the difference of n1/2

2 , an extra cost
of dimensionality. The extra cost captures the difference between privatising vectors with possibly
correlated entries under node LDP and privatising discrete values under edge LDP.

Lastly, we note that both proofs of Lemma 1 and Lemma 2 follow the convex Le Cam method [e.g.
41] where the key step is bounding the chi square distance between a privatised product distribution
and mixture of privatised product distributions. For the node LDP case, the hard distributions exploit
the dependence within rows of the biadjancency matrices.

4 Consistent private network change point algorithms

We have established infeasibility regimes of change point localisation tasks under different network
LDP constraints in Section 3 and have understood how the privacy preservation makes the tasks
fundamentally harder. In this section, we provide polynomial-time private algorithms to obtain
consistent change point estimators outside of the infeasibility regimes. A private algorithm has two
key ingredients: (1) a privacy mechanism and (2) an algorithm with privatised data as inputs. For the
two models we consider in this paper, we adopt the same change point localisation algorithm, while
using different privacy mechanisms.

The change point localisation algorithm we consider is the network binary segmentation (NBS)
algorithm proposed and studied in [38]. It is shown that NBS provides consistent change point
estimators without privacy concerns, under minimax optimal conditions. For completeness, we
include NBS in Algorithm 1 and introduce the CUSUM statistic below. For any form of data {Xi}Ti=1
and any integer triplet 0 ≤ s < t < e ≤ T , the CUSUM statistic is defined as

X̃(s,e)(t) =

√
e− t

(e− s)(t− s)

t∑
i=s+1

Xi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

Xi.

As pointed out in [38], two sequences of independent networks are required as inputs of Algorithm 1
in order to estimate the Frobenius norm of an IBN. In practice, one can split the data to even and odd
indices to obtain two sequences of networks.

4.1 Edge α-LDP

To privatise a dynamic IBN (Definition 1) under the edge α-LDP, we apply the randomised response
mechanism [39] independently to every edge. The privacy guarantee follows by virtue of the the
randomised response mechanism [15]. To be specific, given data {A(t)}Tt=1 ⊂ {0, 1}n×n, let

6



Algorithm 1 Network Binary Segmentation. NBS((s, e), {(αm, βm)}Mm=1, τ)

INPUT: {U(t)}Tt=1, {V (t)}Tt=1 ⊂ Rn1×n2 , {(αm, βm)}Mm=1 ⊂ [0, T ], τ1 > 0
for m = 1, . . . ,M do

[s′m, e′m]← [s, e] ∩ [αm, βm], (sm, em)← [s′m + 64−1(e′m − s′m), e′m − 64−1(e′m − s′m)]
if em − sm ≥ 1 then

bm ← argmaxt=sm+1,...,em−1(Ũ
(sm,em)(t), Ṽ (sm,em)(t))

am ← (Ũ (sm,em)(bm), Ṽ (sm,em)(bm))
else

am ← −1
end if

end for
m∗ ← argmaxm=1,...,M am
if am∗ > τ then

add bm∗ to the set of estimated change points
NBS((s, bm∗), {(αm, βm)}Mm=1, τ)
NBS((bm∗ + 1, e), {(αm, βm)}Mm=1, τ)

end if
OUTPUT: The set of estimated change points.

{Ut,i,j , 1 ≤ i ≤ j ≤ n}Tt=1 be independent Unif[0, 1] random variables that are independent of
{A(t)}Tt=1. For any t ∈ {1, . . . , T} and any integer pair 1 ≤ i ≤ j ≤ n, let the privatised data be
{A′(t)}Tt=1 ⊂ {0, 1}n×n with

A′
ij(t) = A′

ji(t) =

{
Aij(t), Ut,i,j ≤ eα/(1 + eα),

1−Aij(t), otherwise.
(8)

Note that due to the symmetry of the networks, each edge is only privatised once. Despite that we are
dealing with a high-dimensional, sparse dynamic IBN model, with potentially multiple change points,
Theorem 3 below shows that this, arguably simplest privacy mechanism not only provides consistent
change point estimators, but also is optimal in terms of the signal-to-noise ratio condition required.
Theorem 3. Let {A(t)}Tt=1 and {B(t)}Tt=1 be two independent sequences of adjacency matrices
satisfying Assumption 1. For an arbitrarily small ξ > 0 and an absolute constant c0 > 0, assume that

κ2
0ρ

2n∆α2 ≥ c0 log
2+ξ(T ). (9)

Let {η̂k}K̂k=1 be the output of the NBS algorithm, with inputs:

• {A′(t)}Tt=1 and {B′(t)}Tt=1, privatised version of {A(t)}Tt=1 and {B(t)}Tt=1 obtained through (8);
• {(αm, βm)}Mm=1, random intervals whose end points are drawn independently and uniformly
from {1, . . . , T} such that maxMm=1(βm − αm) ≤ CR∆, for some constant CR > 3/2; and •
tuning parameter τ satisfying c1n log3/2(T ) < τ < c2κ

2
0n

2ρ2∆α2, where c1, c2 > 0 are absolute
constants.

It holds with probability at least 1− exp{log(T/∆)− c3M∆/T} − c4T
−c5 that

K̂ = K and
K

max
k=1
|η̂k − ηk| ≤ c6 log(T ){

√
∆/(κ0nρα) +

√
log(T )/(κ2

0ρ
2nα2)},

where c3, c4, c5, c6 > 0 are absolute constants.

Theorem 3 shows that, provided M ≳ T∆−1 log(T/∆), it holds with probability tending to one,

∆−1 K
max
k=1
|η̂k − ηk| ≲ ∆−1 log(T ){

√
∆/(κ0nρα) +

√
log(T )/(κ2

0ρ
2nα2)} → 0, (10)

where the second inequality is due to (9). Recalling the consistency definition in Section 1.1, (10)
implies the consistency of NBS with randomised response privacy mechanism under edge α-LDP.

In view of the condition (9) and the edge LDP infeasibility regime (6), up to a logarithmic factor,
we unveil a phase transition with boundary κ2

0ρ
2n∆α2 ≍ 1 and show that the randomised response

mechanism is optimal in the minimax sense. This is conceptually interesting since, as pointed out in
[34], the privatised network obtained by (8) leads to a dense graph even though the original graph may
be sparse and therefore does not represent the original graph well. However, our result shows that
this is the best one can do for change point localisation, at least among non-interactive mechanisms.
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4.2 Bipartite node α-LDP

To privatise a dynamic bipartite IBN (Definition 2) under the bipartite node α-LDP, we apply the
privacy mechanism developed in Duchi et al. [12, 13] for privatising vectors with bounded ℓ∞ norm
to each row of the biadjacency matrices. This privacy mechanism has been used in the analysis of
mean estimation [e.g. 13], nonparametric density estimation [e.g. 13, 25] and exact support recovery
[e.g. 8] problems under LDP.

Given data {A(t)}Tt=1 ⊂ {0, 1}n1×n2 , let {Ut,i}T,n1

t=1,i=1 be independent Unif[0, 1] random variables
that are independent of {A(t)}Tt=1 and let {Ãij(t)}T,n1,n2

t=1,i=1,j=1 be random variables satisfying

P{Ãij(t) = 1|Aij(t)} = 1− P{Ãij(t) = −1|Aij(t)} = {1 +Aij(t)}/2.

Let

B = Cn2(e
α + 1)/(eα − 1) with C−1

n2
=

{
1

2n2−1

(
n2−1

(n2−1)/2

)
, n2 mod2 ≡ 1,

1

2n2−1+ 1
2 (

n2
n2/2)

(
n2−1
n2/2

)
, n2 mod2 ≡ 0.

The privatised data {A′(t)}Tt=1 ⊂ {0, 1}n1×n2 are obtained by sampling

A′
i(t) ∼

Unif
(
z ∈ {B,−B}n2 |

∑n2

j=1 ziÃij(t) ≥ 0
)
, Ut,i ≤ eα/(1 + eα),

Unif
(
z ∈ {B,−B}n2 |

∑n2

j=1 ziÃij(t) ≤ 0
)
, otherwise.

(11)

Note that ∥Ai(t)∥∞ = 1 for any i = 1, . . . , n1 and t = 1, . . . , T. Applying (26) in [13] with d = n2

guarantees that A′
i(t) is an α-private version of Ai(t) and therefore satisfies the bipartite node α-LDP

constraint. In Theorem 4, we demonstrate that NBS with inputs obtained through (11) is consistent in
localising change points under bipartite node α-LDP constraint.
Theorem 4. Let {A(t)}Tt=1 and {B(t)}Tt=1 be two independent sequences of biadjacency matrices
satisfying Assumption 1. For an arbitrarily small ξ > 0 and an absolute constant c0 > 0, assume that

κ2
0ρ

2 min{
√
n1/n2, n1/n2}∆α2 ≥ c0 log

2+ξ(Tn1n2). (12)

Let {η̂k}K̂k=1 be the output of the NBS algorithm with inputs:

• {A′(t)}Tt=1 and {B′(t)}Tt=1, privatised version of {A(t)}Tt=1 and {B(t)}Tt=1 obtained through (11);
• {(αm, βm)}Mm=1, random intervals whose end points are drawn independently and uniformly from
{1, . . . , T} such that maxMm=1(βm − αm) ≤ CR∆, for some constant CR > 3/2; and • tuning
parameter τ satisfying c1n2α

−2 log2(Tn1n2)max{√n1n2, n2} < τ < c2κ
2
0n1n2ρ

2∆, where
c1, c2 > 0 are absolute constants.

It holds with probability at least 1− exp{log(T/∆)− c3M∆/T} − c4T
−c5 that K̂ = K and

K
max
k=1
|η̂k − ηk| ≤ c6 log(Tn1n2)

( √
∆

κ0ρα

√
n2

n1
+

log(Tn1n2)

ρ2α2κ2
0

max

{√
n2

n1
,
n2

n1

})
,

where c3, c4, c5, c6 > 0 are absolute constants.

Theorem 4 shows that, provided M ≳ T∆−1 log(T/∆), NBS with privatised inputs through channel
(11) is consistent. When n2 ≍ 1, the signal-to-noise ratio condition (12) and the infeasibility
regime (7) demonstrate a phase transition with boundary κ2

0ρ
2n

1/2
1 ∆α ≍ 1, up to a logarithmic factor.

When n2 is allowed to diverge, a gap between the infeasibility regime (7) and (12) - the regime where
our proposed method is deemed to be consistent - emerges. The larger n2 is, the larger the gap is. It is
interesting to understand further what happens within the gap and we leave this as an open problem,
which echos the challenging problems in high-dimensional statistical inference under LDP.

Despite this open problem, we would like to point out that the condition (12) already exhibits
some fundamental difference between change point localisation and mean estimation problems. To
make this clear, we simplify the model by considering only one change point occurs at ∆ and set
n1 = n2 = n. Then, for each i ∈ {1, . . . , n}, {Ai(t)}∆t=1 can be regarded as ∆ i.i.d random vectors
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satisfying that Aij(t) ∼ Ber(θij). Let θi = {θij}nj=1 ∈ [0, 1]n. The fundamental limit of estimating
θi is studied in [14]. With ∆ i.i.d samples, their Corollary 3 gives

inf
privacy

mechanism Q

inf
θ̂
sup
Pθi

E∥θ̂ − θi∥22 ≳ n2/(∆α2), (13)

when α ≲ 1. Now, write {θ′i}
n1
i=1 for the row means of the distribution after the change point and we

have ∥E{A(∆)} − E{A(∆ + 1)}∥2F =
∑n

i=1 ∥θi − θ′i∥22. Aggregating (13) over i = 1, . . . , n, it is
natural to expect one needs

∑n1

i=1 ∥θi − θ′i∥22 ≳ n3/(∆α2) in order to detect the change point at ∆.
However, under the same setup, Theorem 4 shows that consistent change point localisation can be
achieved under (12), read as

∑n1

i=1 ∥θi − θ′i∥22 ≳ n2/(∆α2), up to logarithmic factors.

This discrepancy between n3 and n2 suggests that the gap between our upper bound and lower bound
cannot be closed by straightforwardly applying techniques designed for establishing lower bounds in
mean estimation problems. It also illustrates the general wisdom in the change point literature that,
one may afford to sacrifice some accuracy in estimating the underlying distributions, if the goal is
just to estimate the change points [e.g. 32].

To conclude this section, we would like to present some result of independent interest. It is studied
in the existing literature [Appendix I.3 in 13] that the privatised output from (11) is unbiased,
i.e. E{A′

i(t)} = E{Ai(t)}, while the covariance structure of the privatised output is unknown. In
Lemma 5, we carefully analyse the covariance matrix of the privatised output and provide an upper
bound on its operator norm. Due to its independent interest, we denote the raw data vector as
V = (Vi) ∈ Rd and denote its privatised output obtained through (11) as Z = (Zi) ∈ Rd.

Lemma 5. For any random vector V ∈ Rd with ∥V ∥∞ ≤ 1, we have that

Var(Zi) = B2 − {E(Vi)}2, i = 1, . . . , d; (14)

and

Cov(Zi, Zj) =

{
−E(Vi)E(Vj), d mod 2 ≡ 1,

−E(Vi)E(Vj)− Cd,α

d1/2α2E(ViVj), d mod 2 ≡ 0,
∀ i ̸= j, (15)

where where Cd,α ∈ [C0, C1] for some absolute constants C1 > C0 > 0. Letting ΣZ be the
covariance matrix of Z, it holds that

∥ΣZ∥ ≤

{
B2 + ∥E(V )∥22, d mod 2 ≡ 1

B2 + ∥E(V )∥22 + c
√
d

α2

√
maxi,j E(ViVj) d mod 2 ≡ 0,

(16)

where c > 0 is an absolute constant.

5 Conclusion

In this paper, we studied network change point localisation problems under two forms of LDP
constraints. New signal-to-noise conditions (9) and (12) are derived and by comparing with the non
private counterpart, we quantify the cost of privacy as discussed in Sections 3 and 4. A change in
the scaling of sparsity parameter in the private signal to noise conditions reveals a new challenge of
learning dynamic networks with possibly sparse and correlated entries. The results are summarised
in the table below, where for clarity we ignored logarithmic factors and consider n1 = n2 = n in the
bipartite node LDP case.

No privacy [38] Edge LDP [(6)&(9)] Node LDP Node LDP
lower bound (7) upper bound (12)

κ2
0ρ ≍ 1

n∆ κ2
0ρ

2 ≍ 1
n∆α2 κ2

0ρ
2 ≲ 1√

n∆α2 κ2
0ρ

2 ≳ 1
∆α2

As for limitations, we have only considered non-interactive privacy mechanisms so far, and it would
be interesting to further consider interactive ones. This could take two possible routes by including
interactive mechanisms in the lower bound considerations and/or designing interactive mechanism
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that improves on the current upper bound. Both directions present some challenges. From the
lower bound perspective, even in our analysis of non-interactive mechanisms, we identify a technical
challenge in controlling the χ2-divergence between mixtures of private distributions. Although
some techniques have been developed for discrete distributions [e.g. 4, 1], the counterpart for high-
dimensional discrete distributions is still largely unexplored. As for the upper bound, different entries
in our network model follow different distributions, which is in sharp contrast to the usual i.i.d. case
where interactive methods may be helpful. We therefore expect that allowing interaction within
networks cannot improve the signal to noise ratio condition, while interaction across time points
requires novel methodology that can handle temporal dependence, account for the decay of privacy
and is suitable for the task of change point localisation. We leave that as our future work.
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