
Proceedings of Machine Learning Research 260, 2024 ACML 2024

The data-driven transferable adversarial space

Yuan Liu yuan.liu@insa-rouen.fr

Séphane Canu stephane.canu@insa-rouen.fr

Normandie Univ, INSA Rouen, LITIS, Saint-Etienne-du-Rouvray, France

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

Deep Neural Network (DNN) models are vulnerable to deception through the intentional
addition of imperceptible perturbations to benign examples, posing a significant threat to
security-sensitive applications. To address this, understanding the underlying causes of
this phenomenon is crucial for developing robust models. A key research area involves
investigating the characteristics of adversarial directions, which have been found to be
perpendicular to decision boundaries and associated with low-density regions of the data.
Existing research primarily focuses on adversarial directions for individual examples, while
decision boundaries and data distributions are inherently dataset-dependent. This paper
explores the space of adversarial perturbations within a dataset. Specifically, we represent
adversarial perturbations as a linear combination of adversarial directions, followed by a
non-linear projection. Using the proposed greedy algorithm, we train the adversarial space
spanned by the set of adversarial directions. Experiments on Cifar10 and ImageNet sub-
stantiate the existence of the adversarial space as an embedded space within the entire data
space. Furthermore, the learned adversarial space enables statistical analysis of decision
boundaries. Finally, we observe that the adversarial space learned on one DNN model is
model-agnostic, and that the adversarial space learned on a vanilla model is a subset of
that learned on a robust model, implicating data distribution as the underlying cause of
adversarial examples.
Keywords: Adversarial perturbation, Dictionary learning, Deep learning, Robust model,
Transferability

1. Introduction

Deep Neural Networks (DNNs) have demonstrated significant advancements over the past
decades, finding successful applications in Natural Language Processing (NLP), object
recognition, image processing, and other areas. However, it has been revealed that DNNs are
often vulnerable to imperceptible, intentionally crafted perturbations, known as adversarial
attacks Goodfellow et al. (2015). This vulnerability raises significant concerns, particularly
in security-critical domains such as autonomous driving and AI-assisted diagnosis systems.

To address these concerns, current research predominantly focuses on developing algo-
rithms to generate adversarial perturbations within bounded constraints, aiming for a high
Attack Success Rate (ASR) Croce and Hein (2020); Carlini and Wagner (2017); Madry et al.
(2018); Wang and He (2021). Simultaneously, defensive strategies have evolved to counter
these adversarial perturbations effectively Rebuffi et al. (2021); Huang et al. (2023); Wu and
Zhu (2020). In contrast, an emerging research direction seeks to uncover the fundamental
causes of adversarial vulnerabilities, with the potential to foster the development of truly

© 2024 Y. Liu & S. Canu.

Liu Canu

robust models. However, this area remains relatively underexplored, representing an open
frontier in current research Han et al. (2023).

The fundamental principle behind crafting adversarial examples lies in identifying di-
rections where benign examples cross decision boundaries, resulting in misclassification.
Recent studies indicate that these adversarial directions align with gradient directions and
are closely orthogonal to decision boundaries Goodfellow et al. (2015); Li et al. (2020).
They also extend towards low-density regions of datasets, thereby enhancing transferability
Zhu et al. (2021). Moreover, Ilyas et al. Ilyas et al. (2019) propose that adversarial direc-
tions can be interpreted as non-robust features, while Tramèr et al. Tramèr et al. (2017)
demonstrate that adversarial perturbations form a subspace rather than isolated instances.
However, all the aforementioned hypotheses and analyses concerning adversarial perturba-
tions pertain to individual examples. In reality, adversarial perturbations are inherently
tied to the decision boundary, which is primarily influenced by the entire data distribution
rather than any singular example. Thus, adopting a holistic perspective on the space of
adversarial perturbations across a dataset offers deeper insights into their existence and
characteristics.

In this study, we propose to investigate the space of adversarial perturbations within a
dataset. Specifically, we represent an adversarial perturbation as a linear combination of
a set of adversarial directions, followed by a non-linear projection. This adversarial space
is learned by solving an optimization problem using a proposed greedy algorithm. Our
experiments on Cifar10 and ImageNet yield explicit sets of adversarial directions, enabling
a statistical analysis of decision boundaries. Furthermore, we verify that the learned adver-
sarial space is model-agnostic, implicating its dependence on data distribution. In summary,
our main contributions are as follows:

1. Demonstrate the existence of the adversarial perturbation space within the dataset,
which is an embedded subset of the image space.

2. Propose a greedy algorithm for learning the set of adversarial directions.
3. Provide an indirect analysis of decision boundaries based on statistical results.
4. Illustrate the model-agnostic characteristics of the learned adversarial space. We

also find that the adversarial space learned by attacking vanilla models is a subset of the
adversarial space learned by attacking robust models, emphasizing its dependence on data
distribution.

The remainder of the paper is organized as follows: Section 2 introduces related research.
Section 3 presents the problem of adversarial attacks. In Section 4, we detail the greedy
algorithm for learning an adversarial space. Finally, Section 5 provides the experiments and
analysis.

2. Related works

Adversarial perturbations remain a subject of active investigation, with hypotheses centered
on two primary factors: DNN models and data distributions, each subject to ongoing debate
and scrutiny.

Researchers focusing on DNN models attribute adversarial examples to inherent flaws
in model properties. Goodfellow et al. associated adversarial attacks with the linearity of
DNNs, which amplify minor perturbations into significant output shifts Goodfellow et al.

Adversarial space

(2015). Ilyas et al. Ilyas et al. (2019) argued that DNNs often rely on non-robust features
that are incomprehensible to humans for classification, exploited by adversarial attacks.
However, the extent to which adversarial examples reflect genuine features is a topic of
ongoing debate Li et al. (2024). Additionally, factors such as model architecture (e.g.,
skip connections), activation functions, and training procedures contribute to adversarial
vulnerabilities Han et al. (2023).

Conversely, researchers examining data distribution contend that adversarial vulnera-
bilities stem primarily from intrinsic dataset properties. Gilmer et al. proposed that the
high-dimensionality of data contributes significantly to the emergence of adversarial exam-
ples Gilmer et al. (2018); Pal et al. (2024). Fawzi et al. Fawzi et al. (2018) highlighted the
susceptibility of any DNN model on specific datasets to adversarial perturbations. Pal et
al. Pal et al. (2024) revealed a data distribution that mitigates adversarial attacks, though
achieving this in the original space for complex datasets like Cifar10 remains challenging.
Further insights into adversarial perturbations reveal that adversarial directions are or-
thogonal to the tangent space of the data manifold Li et al. (2020). Moreover, decision
boundaries, heavily influenced by the data manifold, exhibit similar characteristics across
different models, facilitating adversarial example transferability Tramèr et al. (2017). Zhu
et al. Zhu et al. (2021) identified that adversarial directions also point towards low-density
regions, enhancing their transferability. Tramèr et al. Tramèr et al. (2017) argued that the
adversarial direction associated with a benign example exists not in isolation but within a
broader space. However, this space pertaining to a single example does not extend to the
entire dataset, thereby limiting our ability to globally analyze the relationship of adversarial
perturbations to the data distribution. As of today, research on this topic remains scarce.

3. Statement of the adversarial attacks problem

Let F : X ⊂ Rn→Rc be a DNN model that maps an input x of dimension n to a vector of
class scores F (x) with dimension c, representing the total number of classes. This vector is
also known as the logit output. When the softmax function is applied, it converts F (x) into
a class probabilities vector f(x) = softmax(F (x)) of the same dimension. The predicted
class for a given input x is then obtained by y = argmaxi fi(x) or y = argmaxi Fi(x)
where fi(x) and Fi(x) denotes the i-th element of the output vector f(x) and F (x) and
i ∈ {1, . . . , c}.

An adversarial attack refers to a method that generates an imperceptible adversarial
perturbation δ to a benign input x ∈ X , resulting in the adversarial example x′ = ΠX (x+δ)
where ΠX denotes the projection onto X , such that argmaxi fi(x) ̸= argmaxi fi(x

′). The
problem of adversarial attack can thus be summarized as follows:

min
δ∈Rn

dist(x,x′)

s.t.

{
x′ = ΠX (x+ δ)
argmaxi fi(x) ̸= argmaxi fi(x

′) ,

(1)

where dist is a distance metric, typically dist(x,x′) = ∥δ∥p, the ℓp-norm of the adversarial
perturbation (usually ℓ2-norm and ℓ∞-norm are considered). However, addressing this
problem directly is challenging due to the non-continuity of the constraint argmaxi fi(x) ̸=

Liu Canu

argmaxi fi(x
′). To overcome these difficulties, our strategy consists to relax it by introducing

a continuous and differentiable loss function, such as the negative cross-entropy loss,

L(f(x), f(x′), y) =
c∑
0

yilog(fi(x
′)), (2)

where yj = 1 if j = argmaxi fi(x) else yj = 0, or the loss of logit difference introduced in
Carlini and Wagner (2017), which is defined as,

L(f(x), f(x′), y) = max(Fj(x
′)− Fh(x

′),−γ), (3)

where j = argmaxi fi(x) and h = argmaxi ̸=j fi(x), and γ a non-negative parameter. Using
the loss function, the adversarial perturbation for an input x can be produced by solving
the problem,

min
δ∈Rn

L(f(x), f(x′), y)

s.t.

{
x′ = ΠX (x+ δ)
∥δ∥p ≤ ϵ ,

(4)

with ϵ ∈ R+ a predefined small value associated with the chosen norm.

4. Representation of adversarial samples in the adversarial space

This section investigates adversarial perturbations within an image dataset (e.g., CIFAR-
10) designed to fool a specific deep neural network (DNN) model. These perturbations are
constrained to an embedded lower-dimensional subspace, where we hypothesize that such
perturbations can be represented as a function of adversarial directions and a coding vector.
Specifically, we define: δ(x) = g(Dv(x), ϵp) (hereafter referred to simply as ϵ for clarity),
where D = {d1, . . . ,di, . . . ,dk} ∈ D = [−1, 1]n×k consists of k adversarial directions,
referred to as the adversarial dictionary, and v(x) ∈ Rk is the corresponding composition
coefficient vector (hereafter denoted simply as v for readability). The function g ensures
that the resulting perturbations remain within the feasible region defined by the constraints
of the problem (4), that is, the adversarial example x′ is a valid input and the ℓp-norm of
the adversarial perturbation δ belongs to the ϵ ball.

In this approach, the problem can be divided into two phases: 1) Adversarial dictionary
learning, which aims to find the optimal D with the smallest number of directions that can
attack the most examples in the dataset; 2) Coding of the adversarial perturbation, where,
given an unseen example x and the trained D, we only need to solve for v.

We then present the problems of adversarial dictionary learning and the coding of ad-
versarial perturbations, along with the associated algorithms to find their solutions.

4.1. Learning the adversarial dictionary

The adversarial dictionary is dataset-specific and consists of a small number of adversarial
directions capable of attacking all vulnerable examples under specified conditions within
the dataset. Within this theoretical framework, we formulate the adversarial dictionary
learning problem.

Adversarial space

Problem 4.1 (Adversarial dictionary learning) Given a DNN model f and a labeled
dataset T = {(xi, yi)}Ni=1, the adversarial dictionary learning is to search for the optimal
solution for D and V = [v0, . . . ,vN], by maximizing the number of examples attacked in
the dataset using the smallest number of adversarial directions k. The problem can be
formulated as the following bi-objective optimization problem,

min
D∈[−1,1]n×k,V ∈RN×k

[
−

N∑
i=1

1{argmax
l

fl(xi) ̸= argmax
l

fl(x
′
i}, k

]
s.t.

{
x

′
i = ΠX (xi + g(Dvi, ϵ)) ∀i = 1, . . . , N
∥di∥p = 1 ∀i = 1, . . . , k,

(5)

where
∑N

i=1 1{argmaxl fl(xi) ̸= argmaxl fl(x
′
i} counts the number of examples successfully

attacked.

Unfortunately, this bi-objective optimization problem is untackleable directly. The two
objectives are contradictory. Decreasing one objective comes at the expense of the other,
as increasing the number of adversarial directions k also increases the attack success rate.

To address this issue, we propose to compute the entire Pareto front of the problem by
monitoring the evolution of the attack rate as the size of the dictionary k increases in a
greedy fashion. This approach will enable a trade-off between the effectiveness of the attack
and the size of the dictionary. Specifically, in the jth iteration, we successively
1). learn a sub-dictionary, where a set ofmj adversarial directions is trained to maximize
the number of examples attacked among the remaining unattacked examples in the training
data. The sub-dictionary learning problem, formulated using the surrogate loss function
introduced in Section 3, can be formulated:

min
Dj∈[−1,1]n×mj

,V j∈Rmj×Nj

Nj∑
i=0

L
(
f(x

′
i), f(xi), yi

)
s.t.

{
x

′
i = ΠX (xi + g(Djv

j
i , ϵ)) ∀i = 1, . . . , Nj

∥dj
i∥p = 1 ∀i = 1, . . . ,mj ,

(6)

where Dj is the jth sub-dictionary, Dj = [Dj−1, D
j] = [D1, . . . , Dj] represents the current

dictionary updated in the jth iteration, and mj denotes the number of adversarial directions
added in the iteration, mj = mj−1+mj indicates the total number of adversarial directions

in the current dictionary Dj . For the function g, we choose tanh. Denoting vj
(i,1:mj−1)

as

the sub-vector containing the first mj−1 elements of vj
i , and vj

(i,mj−1+1:mj)
as the sub-vector

with indices from (mj−1 + 1) to mj , the Djv
j
i can thus be represented by

Djv
j
i = Dj−1v

j
(i,1:mj−1)

+Djvj
(i,mj−1+1:mj)

. (7)

Now, with the explicit formulation of x
′
i and Djv

j
i , problem (6) can be tackled using the

projected gradient descent algorithm. The algorithm for computing (Dj , V j) is summarized
in Algorithm 1. Specifically, the problem (6) is not strictly convex and is non-differentiable
everywhere due to the non-linearity of the deep model f . While Automatic Differentiation

Liu Canu

Algorithm 1 Updating sub-dictionary

Require: Remaining unattacked training examples Tj = {(xi, yi)}
Nj

i=1, DNN model f , current

adversarial dictionary Dj−1, sub-dictionary Dj , set of composition vectors V j , initial learning

rate (ρD, ρv), maximal magnitude of adversarial perturbation ϵ, batch size B, stop criterion τ ,

list of losses SL, current minimal loss Lb, current best fooling rate frb, current best solution

(BDj , (BV j)), length between checkpoints nc, total loss Lt and total fooling rate frt

1: Initialize V j(0) = 0, Dj(0) ∼ N (0, In×mj), loss Lb = 106, L = Lt = 0, fooling rate frt = frb = 0

2: while ρD > τ do
3: for (xi,yi) ∈ Tj do

4: δi = g(Djv
j
i , ϵ) (adversarial perturbation)

5: x
′
i = ΠX (xi + δi) (adversarial example)

6: L = L+ L(f(x′
i), f(xi), yi) (objective function)

7: frt = frt + 1{f(x′
i) ̸= f(xi)} (update attacked examples’ number)

8: if modulo(i/B) = 0 then
9: Dj ← ΠD(Optim(∇DjL, Dj , ρD)) (Update Dj by projected gradient descent)

10: V j ← Optim(∇V jL, V j , ρv) (Update V j by gradient descent)
11: Lt = Lt + L, L = 0, i = 0
12: end if
13: end for
14: SL = [SL,Lt]
15: if Lt < Lb and frt > frb then
16: (BDj , BV j) = (Dj , V j) (update the best solution)
17: Lb = Lt, frb = frt
18: end if

19: if len(SL) = nc and (Lb = SL[0] or
nc−1∑
l=1

1{SLl−1 > SLl} < 0.75) then

20: ρD = ρD/2, ρv = ρv/2 (decrease the learning rate)
21: SL = [Lb], (Dj , V j) = (BDj , BV j) (restart using the current best solution)
22: end if

23: end while
24: return Dj and V j

enables computation of local gradients with respect to Dj and V j , achieving only a local
solution is highly probable. To optimize, we employ techniques introduced in Croce and
Hein (2020). To begin, this method explores solutions across the entire feasible region using
a fixed, relatively large learning rate to facilitate escaping local minima. Every nc iterations,
we assess whether the current learning rate effectively reduces the loss. If not, and no better
solution is found after several iterations or if the loss fails to decrease, the learning rate is
halved, as detailed in Algorithm 1, lines 13-16. The process concludes when the learning
rate of Dj falls below a stopping criterion τ thereby achieving the final solution.
2). Identify attacked examplesWithin the trained subspaceDj , we compute adversarial
perturbations for each training example Tj to generate adversarial examples x

′
i = ΠX (xi +

Adversarial space

g(Djv
j
i , ϵ)), ∀(xi, yi) ∈ Tj . We then identify the subset of successfully attacked examples

A0
j = {(xi, yi) | f(x

′
i) ̸= f(xi)),∀(xi, yi) ∈ Tj}. Furthermore, it’s important to note that ϵ1

the perturbation magnitude used in the ith iteration, may differ from ϵ. This discrepancy
necessitates re-computing the composition vectors for examples that remain unattacked
under the condition ∥δ∥p < ϵ. Consequently, the final ensemble of successfully attacked
examples is defined as:{

x
′
i = coding(xi, Dj , yi, ϵ), ∀(xi, yi) ∈ Tj/A0

j

Aj =
{
i | f(x′

i) ̸= f(xi)), ∀(xi, yi) ∈ Tj
}
,

(8)

3) Updating the training data Upon identifying successfully attacked examples, they are
not immediately removed from the training data. Instead, a verification step is introduced to
manage redundancy in directions. Specifically, if the number of identified attacked examples
|Aj | exceeds the size of the sub-dictionary mj , those examples are excluded. Subsequently,
the training data is updated for the next iteration as Tj+1 = Tj/Aj . Otherwise, we consider
the following situations: (a) If the current constraint on δ is too strict, i.e., ϵ1 < ϵ, then we
relax ϵ1 by setting ϵ1 = ϵ1+1/255; (b) If the number of training data is small or insufficient
to learn a sub-dictionary of size mj , then mj is reduced to the size of the training data |Tj |;
(c) If there is a large amount of training data and ϵ1 = ϵ, but the learned sub-dictionary
does not effectively attack mj examples. In this case, the Dj and V j re-initialized using a
well-developed attack method (e.g., AutoAttack), as detailed below:

dtemp
i = g−1((atk(f,ϵ)(xi, yi)− xi)/ϵ), ∀i = 1, . . . ,mj

vj
i [mj−1 + i] = ||dtemp

i ||∞, ∀i = 1, . . . , Nj

dj
i = dtemp

i /||dtemp
i ||∞, ∀i = 1, . . . ,mj ,

(9)

where dtemp
i denotes the adversarial direction in the space of D, vj

i [mj−1+ i] assigns the l∞-
norm of dtemp

i and di is derived by normalizing dtemp
i . Whenever any of the aforementioned

situations arises, the Dj and V j are retrained until at least mj examples are successfully
attacked. However, if this process is attempted more than 10 times without any example
being successfully attacked, the program stops and returns Dj−1. Otherwise, if the model
to be deceived is a vanilla model, the program stops and returns Dj . For a robust model,

the size of the sub-dictionary is reset as mj = min(max(1.5×Na,
|Tj |
a),

|Tj |
b), the number of

attempts ts is reset to 0, and Dj is retrained for a maximum of the last 10 attempts.

4.2. Coding of the adversarial perturbation

When D is learned, the adversarial perturbation of an input, represented by δ = g(Dv, ϵ)
, is determined by solving for v. This problem, known as the coding of the adversarial
perturbation, is formulated as follows:

Problem 4.2 (Coding of the adversarial perturbation) Given a DNN model f and
a labeled input (x, y), the objective is to compute a vector v ∈ Rk that accurately represents
an adversarial perturbation while satisfying specific problem constraints:

min
v∈Rk

L
(
f(x′), f(x), y

)
s.t. x′ = ΠX (x+ g(Dv, ϵ)) (10)

Liu Canu

Algorithm 2 Adversarial dictionary learning

Require: Initial training examples T1 = {(xi, yi)}Ni=0, initial attacked examples A = ∅, DNN
model f , maximal magnitude of perturbations ϵ, initial magnitude of perturbations ϵ1, initial
adversarial dictionary D0 = ∅, initial sub-dictionary D1 ∼ N (0, In×m1

), initial coefficient vectors
V 1 = 0, attack method atk, threshold of small number of training data remaining Ns, number
of attempts te, best number of attacked examples Na, best adversarial dictionary BD and best
coefficient vectors BV , coefficient a and b, mark of last sub-dictionary last=False

1: Initialize j = 1, number of attacked examples Ne = 0, number of examples N1 = N , Na = 0,
initial sub-dictionary size m1

2: while Ne < 0.999N do
3: (Dj , V j) = Updating sub-dictionary(Tj , Dj−1, ϵj) (Algorithm 1)
4: Aj = identify attacked examples(Tj , Dj−1, D

j , ϵ)

5: Ne = Ne + |Aj |
6: // update the training data if an insufficient number of examples are attacked
7: if ϵj < ϵ and Ne < mj then
8: ϵj = ϵj + 1/255
9: else if Ne < mj then

10: if Ne > Na then
11: Na = Ne, BD = Dj , BV = V j (refine the best solution)
12: end if
13: if ts = 10 and Na = 0 then
14: return D = Dj−1 (stop training when no additional examples attacked)
15: else if ts = 10 and last then
16: Dj = BD, V j = BV , ts = ts + 1 (stop the trial and keep the best solution)
17: end if
18: //mark as the final sub-dictionary training and resize the sub-dictionary accordingly
19: if (|Tj | < mj or |Tj | < Ns) and ts = 0 then
20: mj = |Tj |, last=True
21: else if fr N < mj+1 and f is a robust model and ts = 10 then

22: mj = min(max(1.5Na,
|Tj |
a),

|Tj |
b), ts = 0, last=True

23: end if
24: (Dj , V j) = Reinitialize by attack method(atk, Tj , g,mj−1,m

j)
25: ts = ts + 1
26: end if
27: if Ne >= mj and ts > 10 then
28: Tj+1 = Tj/Aj , Dj = [Dj−1, D

j] (Update the training examples and dictionary)
29: reset j = j + 1, Na = 0
30: return if last
31: end if
32: end while
33: return D = Dj−1

The problem of coding the adversarial perturbation with respect to v remains non-convex
and non-differentiable everywhere in the feasible region due to the non-linearity introduced
by the DNN model f . Similar to solving the adversarial dictionary learning problem, we uti-
lize auto-differentiation and employ gradient descent to search for a solution of v. However,
due to the risk of converging to local minima, we apply also the aforementioned technique
to gradually reduce the learning rate.

Adversarial space

5. Experiences and results

In this section, we present our experiments on adversarial dictionary learning conducted
using the CIFAR-10 and ImageNet datasets. We begin by detailing the experimental setup
and methodology. Following this, we showcase the learned dictionaries and analyze their
characteristics to provide deeper insights.

5.1. Experimental Settings

Dataset. The experiments are conducted using two datasets: CIFAR-101 and ImageNet
ILSVRC20122. These experiments are performed exclusively on the validation sets. The
datasets are partitioned into three subsets: the training subset for learning the adversarial
dictionary D, the validation subset for hyperparameter tuning, including the initial per-
turbation magnitude ϵ1 and the initial learning rate for the composition vector ρv and the
testing subset for evaluating performance. For CIFAR-10, the dataset is divided into 7,000
training examples, 1,500 validation examples, and 1,000 testing examples. For ImageNet,
the dataset is partitioned into 20,000 training examples, 2,000 validation examples, and
1,000 testing examples.
DNN models. Our proposed algorithm is evaluated on CIFAR-10 across five vanilla DNN
models: ResNet18, ResNet50, Inception-V3, DenseNet121, and VGG11, as well as three
robust DNN models: robust ResNet-183, robust ResNet152 4, and robust WideResNet-34-
10 4 Sehwag et al. (2022). When experimenting on ImageNet, Inception-V3 is excluded due
to its different input size compared to other vanilla models.
Parameters. The parameters used in our attack are as follows: During the training phase,
we employ the AdamW optimizer with a stop criterion of τ = 10−4. We exclusively use
the p = ∞ distance metric denoted by dist = l∞ and the perturbation magnitude ϵ value
is consistent with that used in RobustBench4. The initial learning rate ρD is fixed at 2ϵ.
During the validation and testing phases, the initial learning rate ρv is set to 1, and the
stop criterion is adjusted to τ = 0.1. This work aims to analyze the properties of the
adversarial space and demonstrate its model-agnostic and data-dependent characteristics.
Consequently, all experiments are conducted under a white-box setting.
State-of-the-art attacks. In our experiments, we use the attack methods AutoAttack and
PGD as reference attacks to measure the total number of examples that can be successfully
attacked in the entire dataset.

5.2. Adversarial dictionary

5.2.1. Parameter Determination

The initial constraint on magnitude of adversarial perturbation ϵ1. The parameter
ϵ1 significantly impacts the learned adversarial dictionary. In the simple scenario illustrated
in Figure 1, if ϵ1 = ϵa, the first learned direction is likely to be d2. Subsequently, the

1. https://www.cs.toronto.edu/ kriz/cifar.html
2. https://www.image-net.org/challenges/LSVRC/2012/
3. https://robustbench.github.io/
4. https://robustbench.github.io/

Liu Canu

Figure 2: Fooling rate of attacking VGG on CIFAR-10 as a function of the learning rate
(ρv) and initial perturbation magnitude (ϵ1)

Figure 3: Fooling rate of VGG attacks on ImageNet with varying learning rates (ρv) and
initial perturbation magnitudes (ϵ1)

Figure 1: Illustration of the im-
pact of ϵ1 on adversarial direc-
tions learning

algorithm identifies the second direction d1, thus span-
ning the complete two-dimensional space {d1,d2} which
allows finding all adversarial perturbations in the plane.
However, as ϵ1 increases to ϵb, a one-dimensional adver-
sarial dictionary D = {d1} is likely to be computed. This
dictionary cannot cover the adversarial perturbations sit-
uated in the direction d2; for example, the instance B1

lacks an adversarial perturbation within D under the con-
straint δ < ϵ2. This conclusion is supported by the fool-
ing rate results on ImageNet, as presented in Figure 3,
Specifically, the larger ϵ1 results in fewer trained adver-
sarial directions (i.e., k(ϵ1 = 4/255) < k(ϵ1 = 2/255) <
k(ϵ1 = 1/255)), leading to a deterioration in fooling
rate performance (fr(ϵ1 = 1/255) > fr(ϵ1 = 2/255) >
fr(ϵ1 = 4/255)). However, this phenomenon can be mit-
igated or avoided with a sufficiently large training dataset, as shown in Figure 2. For
CIFAR-10, training with 700 examples per class showed little difference in the number of
learned adversarial directions across different ϵ1 values. Nonetheless, it is noteworthy that
the performance on training data and test data is most consistent when ϵ1 = 4/255. Con-
sequently, we chose ϵ1 = 1/255 for ImageNet and ϵ1 = 4/255 for CIFAR-10, considering the
balance between the number of examples attacked and computational complexity.

Adversarial space

(a) (b) (c)

Figure 4: Fooling rates on CIFAR-10 when attacking: (a) vanilla models with N1 = 10, (b)
vanilla models with N1 = 50, and (c) robust models with N1 = 50

The initial learning rate ρv. An adversarial direction can be considered an average
adversarial example, which can be updated using the learning rate ρD as employed in Croce
and Hein (2020). Subsequently, the learning rate ρv plays a critical role in determining the
distribution of examples that share the same adversarial direction. For instance, in Figure 1,
if all examples converge to a single adversarial direction d1, the resulting dictionary would
contain only d1. Conversely, if subsets like A1, A2, and B1 share one direction while others
share a different one, the dictionary D would span both d1 and d2. Optimal selection of
ρv ensures comprehensive coverage of training examples while generalizing well to unseen
data. On ImageNet, setting ρv = 1.0 facilitates escaping local minima to find optimal
solutions, whereas a smaller value like ρv = 0.5 tends to trap the search in local minima.
In contrast, the impact of ρv on CIFAR-10 is minimal, suggesting exhaustive exploration
of the feasible region when sufficient training data is available. Specifically, with ρv = 0.5
and ϵ1 = 4/255, we achieve optimal performance in attacking test data using the fewest
adversarial directions. In conclusion, we select ρv = 1.0 for ImageNet and ρv = 0.5 for
CIFAR-10, based on their respective abilities to balance exploration and exploitation in the
adversarial space.
The initial size of subdictionary m1. As illustrated in Figure 4, increasing m1 enhances
the discovery of an adversarial dictionary solution with fewer adversarial directions. This
highlights the superior performance of global search algorithms over greedy methods in
solution exploration. Therefore, we adopt m1 = 50 for training the adversarial dictionary
on both ImageNet and CIFAR-10 across various DNN models. We refrain from further
increasing m1 to manage computational complexity and memory requirements effectively.

5.2.2. Learned adversarial dictionary

Existence of the adversarial space. Adversarial perturbations reside within an embed-
ded subspace of the image space X = [0, 1]n. This embedded space exists and is specific
to the dataset on which it is trained. We consider the adversarial space to be adequately
found when the total fooling rate on the training data approximates the results achieved
with state-of-the-art attack methods. Furthermore, the dimension of the adversarial space
varies when trained with different DNN models. Specifically, for CIFAR-10, the adversarial
space has a dimension ranging from 244 to 330, as illustrated in Figure 4, For ImageNet, the

Liu Canu

(a) (b) (c)

(d) (e)

Figure 5: Confusion matrices with rows representing the initial labels and columns repre-
senting the shifted labels after attacking with the target models (a) ResNet18, (b) ResNet50,
(c) VGG, (d) DenseNet, and (e) Inception.

range is from 233 to 691, as shown in Figure 6. The dimension of the adversarial space is
significantly smaller than that of the image space; approximately 300 vs. 3072 for CIFAR-
10 (with 10 classes), and approximately 450 vs. 150528 for ImageNet (with 1000 classes).
Notably, the ratio for ImageNet is much smaller, which suggests that more decision bound-
aries are present within the same subspace. This could explain why images from ImageNet
are easier to attack.
Decision boundaries defined by different DNN models. It was demonstrated that
the adversarial direction associated with an example is typically perpendicular to the deci-
sion boundary. However, when adversarial directions are not constrained to be perpendic-
ular but intersect with decision boundaries, we cannot always guarantee finding a minimal
δ for an example x, For instance, in the case where the trained adversarial dictionary is
{d1}, it may result in a non-minimal perturbation ϵb for the example A1.

Due to high dimensionality, direct analysis of decision boundaries is impractical. How-
ever, statistical analysis using confusion matrices obtained from fooling a specific DNN
model provides insights. Specifically, one-vs-one decision boundaries exist where examples

Adversarial space

(a) (b) (c)

Figure 7: Confusion matrices with rows representing the initial labels and columns repre-
senting the shifted labels after attacking with the target models (a) robust Resnet18, (b)
robust WideResnet-34-10, (c) robust Resnet152

of class j ̸= i. In the confusion matrix, all off-diagonal elements are non-zero, as shown in
Figure 5. Certain decision boundaries, such as those between classes 1 and 9, and classes
3 and 5, have relatively large surface areas. This increases the likelihood of examples

Figure 6: Fooling rate of attacking
vanilla models on ImageNet

from class 1 being misclassified as class 9, and exam-
ples from class 3 as class 5, and vice versa. Moreover,
confusion matrices for different vanilla models exhibit
similar patterns, indicating common decision bound-
ary characteristics across architectures. This simi-
larity underscores the feasibility of transferring ad-
versarial perturbations between different DNN mod-
els. Notably, the confusion matrix for the Inception
model shows some unique features. For example, the
matrix is not symmetric, indicating that the decision
boundary separating classes i and j is closer to the
data of one class, say class i. Consequently, examples
of class i are more likely to be misclassified as class j
but not vice versa. This asymmetry significantly im-
pacts the transferability of adversarial perturbations from other DNN models to Inception,
a point we discuss further in the subsequent analysis.

For robustly trained DNNmodels utilizing techniques such as data augmentation Sehwag
et al. (2022), the one-vs-one decision boundaries remain largely unchanged. Consequently,
the off-diagonal elements of the confusion matrix for robust DNN models are almost all non-
zero. Specifically, examples from classes 2, 3, 4, and 5 are more susceptible to being attacked,
constituting approximately 60% of the attacked examples. Furthermore, the adversarial
space trained on vanilla models is a subspace of that trained on robust models. This can be
verified by examining the performance of transferring the adversarial space to attack vanilla
models, as shown in Table1.

Liu Canu

Table 1: Transferable performance of ℓ∞-attacks on CIFAR-10 ϵ = 8/255 in terms of fooling
rates (fr)

inception resnet18 ResNet50 DenseNet VGG R-r18 R-wrn-34-10 R-r152

Inception Ours 94.6 99.1 99.7 98.3 99.1 20.7 19.9 18.7
resnet18 Ours 94.4 99.7 99.8 98.1 99.2 21.7 20.3 20.3
resnet50 Ours 92.5 99.5 99.8 98.6 99.1 22.0 18.2 19.3
densenet Ours 94.5 99.7 99.8 98.9 99.1 22.6 20.8 19.3

vgg Ours 93.5 99.5 99.5 98.5 99.4 20.8 19.8 19.9
robust-r18 Ours 92.1 99.1 99.8 98.2 99.2 31.7 27.6 25.8

robust-wrn-34-10 Ours 91.6 99.3 99.6 98.6 98.7 29.7 28.0 25.2
robust-r152 Ours 90.8 99.1 99.6 97.2 98.3 31.5 27.3 27.4

AutoAttack 100 100 100 100 100 35 31.5 28.6
reference attacks PGD 87.8 97.7 98.7 94.7 97.2 29.5 26.2 24.2

Table 2: Transferable performance of ℓ∞-attacks on ImageNet ϵ = 4/255 in terms of fooling
rates (fr)

resnet18 ResNet50 DenseNet VGG

resnet18 Ours 99.8 90.7 92.8 88.9
resnet50 Ours 97.4 97.8 96.8 93.9
densenet Ours 97.0 96.3 98.2 94.7

vgg Ours 99.5 99.2 99.6 99.2

AutoAttack 100 100 100 100
reference attacks PGD 100 100 100 99.9

Model-agnostic adversarial space. The results regarding the transferability of the
learned adversarial space for CIFAR-10 are presented in Table 1, and for ImageNet, they
are in Table 2. Specifically, for CIFAR-10, the adversarial space learned using vanilla mod-
els demonstrates significant transferability across different architectures. For instance, the
likelihood of finding an adversarial perturbation capable of deceiving ResNet18 within the
space learned with ResNet50, DenseNet, VGG, or Inception exceeds 99%. Furthermore,
adversarial spaces learned with vanilla models can also be utilized to search for adversarial
perturbations that can attack robust models, achieving performance approximately 70% of
that observed in spaces learned with robust models. Similarly, adversarial spaces learned
with various robust models exhibit transferability among themselves. For instance, the suc-
cess rate in fooling a robust ResNet18 model within its own adversarial space is comparable
to that achieved in spaces learned with robust ResNet152 and slightly superior to those
learned with robust WideResNet34-10 models. Notably, adversarial spaces learned with
robust models are effective in attacking vanilla models as well. Consequently, it can be
inferred that the adversarial space learned with vanilla models for CIFAR-10 is a subset of
that learned with robust models. However, vulnerabilities persist within the same adver-
sarial space, contingent upon the underlying data distribution. Similarly, these conclusions
extend to the ImageNet dataset, where adversarial spaces learned with one vanilla model
can effectively transfer to attack other models. Particularly, VGG demonstrates superior
performance in generating adversarial spaces capable of attacking a majority of examples,
comparable to state-of-the-art attack models.

As mentioned previously, a smaller ϵ1 tends to result in an adversarial space of higher
dimension, enhancing its capability to generalize to test data. Conversely, the adversarial

Adversarial space

(a) (b) (c)

Figure 8: Trend in the fooling rate as a function of ϵ using a space trained on ResNet18,
when attacking (a) vanilla models on CIFAR-10, (b) robust models on CIFAR-10, and (c)
vanilla models on ImageNet.

space learned with a smaller ϵ includes the adversarial space learned with a larger ϵ. For
example, on CIFAR-10, the fooling rate when attacking vanilla models (excluding Inception)
increases to 100% when ϵ increase to ϵ = 16/255. On ImageNet, this increase occurs only
when ϵ = 10/255 as shown in Figure 8. Even for robust models on CIFAR-10, the fooling
rate reaches approximately 60 when ϵ = 16/255.

Acknowledgements This work was partially supported by a grant from ANR (#ANR-
20-CHIA-0021 Raimo to Stéphane Canu) and the grant 20E02165 from Normandy region.

References

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks, 2020.

Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any classifier.
Advances in neural information processing systems, 31, 2018.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin
Wattenberg, Ian Goodfellow, and G Brain. The relationship between high-dimensional
geometry and adversarial examples. arXiv preprint arXiv:1801.02774, 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Sicong Han, Chenhao Lin, Chao Shen, Qian Wang, and Xiaohong Guan. Interpreting
adversarial examples in deep learning: A review. ACM Computing Surveys, 55(14s):
1–38, 2023.

Liu Canu

Shihua Huang, Zhichao Lu, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Revisiting resid-
ual networks for adversarial robustness. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8202–8211, 2023.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. Advances in
neural information processing systems, 32, 2019.

Ang Li, Yifei Wang, Yiwen Guo, and Yisen Wang. Adversarial examples are not real
features. Advances in Neural Information Processing Systems, 36, 2024.

Yueru Li, Shuyu Cheng, Hang Su, and Jun Zhu. Defense against adversarial attacks via
controlling gradient leaking on embedded manifolds. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII
16, pages 753–769. Springer, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings, 2018.

Ambar Pal, Jeremias Sulam, and René Vidal. Adversarial examples might be avoidable:
The role of data concentration in adversarial robustness. Advances in Neural Information
Processing Systems, 36, 2024.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles,
and Timothy A Mann. Data augmentation can improve robustness. Advances in Neural
Information Processing Systems, 34:29935–29948, 2021.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chi-
ang, and Prateek Mittal. Robust learning meets generative models: Can proxy distribu-
tions improve adversarial robustness? In ICLR, 2022. URL https://openreview.net/

forum?id=WVX0NNVBBkV.

Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick Mcdaniel.
The space of transferable adversarial examples. ArXiv, abs/1704.03453, 2017.

Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through
variance tuning. In Proceedings of the IEEE/CVF CVPR, pages 1924–1933, 2021.

Lei Wu and Zhanxing Zhu. Towards understanding and improving the transferability of
adversarial examples in deep neural networks. In Asian Conference on Machine Learning,
pages 837–850. PMLR, 2020.

Yao Zhu, Jiacheng Sun, and Zhenguo Li. Rethinking adversarial transferability from a data
distribution perspective. In International Conference on Learning Representations, 2021.

https://openreview.net/forum?id=WVX0NNVBBkV
https://openreview.net/forum?id=WVX0NNVBBkV

	Introduction
	Related works
	Statement of the adversarial attacks problem
	Representation of adversarial samples in the adversarial space
	Learning the adversarial dictionary
	Coding of the adversarial perturbation

	Experiences and results
	Experimental Settings
	Adversarial dictionary
	Parameter Determination
	Learned adversarial dictionary

